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Abstract: High potential of emission chemistry has been visualized in many fields, from sensors
and imaging to displays. In general, conjugated polymers are the top rankers for such chemistry,
despite the fact that they bring solubility problems, high expenses, toxicity and demanding synthesis.
Metal-free polymeric semiconductor graphitic carbon nitride (g-CN) has been an attractive candidate
for visible light-induced photocatalysis, and its emission properties have been optimized and explored
recently. Herein, we present modified g-CN nanoparticles as organodispersible conjugated polymer
materials to be utilized in a heterophase emission systems. The injection of a g-CN organic dispersion
in aqueous polymer solution not only provides retention of the shape by Pickering stabilization of
g-CN, but high intensity emission is also obtained. The heterophase all-liquid emission display can be
further modified by the addition of simple conjugated organic molecules to the initial g-CN dispersion,
which provides a platform for multicolor emission. We believe that such shape-tailored and stabilized
liquid–liquid multicolor emission systems are intriguing for sensing, displays and photonics.

Keywords: carbon nitride; waterborne systems; multicolor emission droplets; carbon nitride
interfaces; all liquid displays

1. Introduction

Light emission with spatial control is the base of imaging, optoelectronics and active displays [1].
Typically, advanced π-conjugated polymers that are capable of light absorption and emission are used,
e.g., in OLEDS or for optical superresolation microscopy [2–4]. Such experiments can be conducted
from a dissolved single phase or from a colloidal state using particulate dispersions [5–8]. However,
solubility and processing of these polymers relies on conjugation with solution-promoting entities,
such as side chain modification. Polymeric graphitic carbon nitride (g-CN) is a potential replacement
and has striking advantages, such as low cost, non-toxicity and ease of tenability [9]. g-CN is ideally
composed of carbon and nitrogen in tri-s-triazine repeating units to form a conjugated polymer
structure, and can be synthesized from simple nitrogen-rich commodity molecules such as melamine
and urea by thermal condensation at around 500 ◦C [10]. In addition, the supramolecular complexation
of monomers renders a class of carbon nitride materials with special morphologies and photophysical
properties [11–13]. For example, carbon nitride nanosheets can be attained by the thermal condensation
of acid-treated melamine cyanurate complex at 650 ◦C [14]. g-CN ideally has surface defects and
a negative surface charge, and can easily be modified via pre- or post-modification methods [15].
Visible light-induced photoactivity of g-CN is instrumentalized for water splitting [16–20], CO2

reduction [21–24], polymer synthesis [25–27], and solar cells [28–30]. Emission color and intensity of
g-CN materials can be tailored via monomer engineering, which provides an interesting platform
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to be investigated. For example, phenyl edges onto g-CN can be introduced, and synthesis at lower
temperature (450 ◦C) results in incomplete condensation (nanosheets), and like that, water dispersible
and highly fluorescent g-CN can be attained (labeled as CMp) [31]. Furthermore, the emission
color of CMp dispersion can be adjusted to multicolor emission by the introduction of water-soluble
π-conjugated polymers with different side chains [32]. g-CN however shares the same weakness as
other π-conjugated analogues, i.e., high polarization and the coupled problems for solubility. Strong
stacking in general prevents the preparation of dispersions, especially in organic media. A recent
development by our group solved this problem and presented highly stable organodispersions of g-CN,
using light-induced vinyl thiazole modification (denoted as CMp-vTA). In these systems, a permanent
charge separation is created, and electrostatic forces repel the single conjugated sheets [33].

Surface properties of g-CN are highly intriguing. g-CN is not only a light active polymer,
but was also shown to be a Pickering stabilizer for oil-in-water emulsions [34]. This indicated the
possibility of conducting chemistry at the water-oil interfaces using g-CN both as stabilizer and
catalyst, for hydrogenation reactions or light-induced emulsion polymerization [35–37]. Fruitful
combination of g-CN surface chemistry linked to interfaces might pave the way for novel applications
beyond photocatalysis.

Aqueous soft materials have been of great interest, and the persistent materials could be
manufactured via crosslinking and host-guest complexation [38–41]. A switch from single phase
materials to heterophase systems in order to generate interface-induced soft materials has been a
trend recently. This methodology is based on utilizing oppositely charged molecules dissolved in
the different phases, and during the contact, interfaces are formed, which are immediately stabilized
by interfacial polyelectrolyte complex formation. As a result, soft and elastic films are formed at
the interface, which provide a retention of the shape of the injected phase, while the inner part is
still liquid [42]. Since the first description, different combinations of molecules were proposed by
Russell and colleagues, and systems mainly rely on injecting aqueous phases in organic phases [43–45].
Yet, this approach provides stimulation to envision novel soft, structured, liquid devices and novel
display technologies.

In this report, we will exhibit the combination of emissive properties of g-CN harnessed with its
surface properties to form soft emissive droplets. We will demonstrate the formation of organic g-CN
dispersion droplets in water via simple syringe injection. Furthermore, we will present the tunability
of g-CN emission by introducing simple aromatic molecules to the initial g-CN dispersion, and how
the system can be manipulated towards all-liquid heterophase multicolor emission.

2. Materials and Methods

2.1. Chemicals

2,4-diamino-6-phenyl-1,3,5-triazine (97%, Sigma Aldrich, Darmstadt, Germany), 4-methyl-
5-vinylthiazole (vTA, 97%, Sigma Aldrich), anthracene (>96%, Sigma Aldrich, Germany), chloroform
(99%, Merck, Germany), cyanuric acid (98%, Sigma Aldrich), ferrocene (98%, Sigma Aldrich, Germany),
poly(ethylene imine) (PEI, Mn 60,000 g/mol, 50 wt% in water, Sigma Aldrich), pyrene (98%, Sigma
Aldrich, Germany).

2.2. Synthesis of CMp-vTA

CMp-vTA was synthesized according to the literature [33] from cyanuric acid (C) and 2,4-diamino-
6-phenyl-1,3,5-triazine (Mp) supramolecular complex followed by 4-methyl-5-vinylthiazole
(vTA) photomodification.
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2.3. Droplet Formation Experiments

Prior to the experiment, CMp-vTA was dispersed in chloroform (40 mg ml−1) via sonication for
30 min. Afterwards, dispersion was collected into a syringe and injected in a water bath with PEI
(80 mg ml−1) at room temperature to form stable centimeter-sized droplets.

For color tuning of droplets, certain amounts of pyrene, anthracene and ferrocene (14 mg ml−1)
were added to CMp-vTA dispersion, and droplet formation was achieved as explained previously.

2.4. Characterization

Scanning electron microscopy (SEM) was performed on a Jeol JSM 7500 F (Tokyo, Japan)
equipped with an Oxford Instruments X-MAX 80 mm2 detector (Abingdon-on-Thames, UK). Solid state
ultraviolet-visible (UV-Vis) spectroscopy was recorded via a Aglient Cary 500 Scan spectrophotometer
equipped with an integrating sphere (Waldbronn, Germany). Photoluminescent emission spectra
were recorded on a Jasco FP-8300 (Pfungstadt, Germany) instrument at ambient temperature with
the excitation wavelength at 360 nm. Transmission electron microscopy (TEM) measurements were
acquired using a double-corrected Jeol ARM200F (Tokyo, Japan), equipped with a cold field emission
gun and a Gatan GIF Quantum. The used acceleration voltage was 200 kV and the emission was set to
10 µA in order to reduce beam damage. Sample was dispersed in dichloromethane and evaporated
on active surface prior to TEM measurement. Combustive elemental analysis of CMp-vTA was
recorded via a Vario Micro device (Langenselbold, Germany). Florescence of the droplets was excited
by Vilber Lourmat brand Ultra-violet radiation (15 W) source with excitation wavelength of 365 nm
(Marne-la-Vallee, France).

3. Results

3.1. Synthesis and Characterization of CMp-vTA

Organodispersible CMp-vTA was synthesized via one pot photoinduced surface grafting on CMp
as reported previously [33]. Photoluminescence (PL) spectra of CMp-vTA proves the formation of
excited state and corresponding photoluminscence under UV illumination (Figure 1a). A SEM image
of CMp-vTA shows rather uniform morphology without any special features (Figure 1b) and TEM
reveals that CMp-vTA consists of sheets that are 100–150 nm in size (Figure 1c). Combustive elemental
analysis resulted in 49.3% N, 44.6% C and 1% S, indicating that the thiazole species are present in the
structure (from the sulfur content). We have attempted to measure the size distribution of particles by
dynamic light scattering, however TEM provides better insight to estimate the sheet size of carbon
nitride materials.
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Figure 1. (a) Photoluminescence (PL) spectra of CMp-vTA; (b) SEM image of CMp-vTA; (c) transmission
electron microscopy (TEM) image of CMp-vTA nanosheets (scale bar corresponds to 50 nm).

3.2. Formation of Organic Droplets in Aqueous Phase via Injection

In the next step, a chloroform dispersion of CMp-vTA was prepared, and injection into water
was performed. The aqueous phase contains PEI to provide potential polyelectrolyte complex formation
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at the interface, as long PEI chains are expected to interlink the CMp-vTA at the interface from the
water phase, thus resulting in jamming of the sheets. It is important to underline that attempts to utilize
pure water have not allowed the creation of persistent droplet shapes, therefore the cationic polymer in
water is needed. Chloroform was chosen as it has a higher density than water, so the created particles
or structures do not float. The chloroform dispersion of CMp-vTA was prepared via sonication in a
low intensity sonic bath for 30 min, and was subsequently injected into the aqueous phase.

We chose a syringe to form droplets as this in principle was similar to inkjet or melt printing.
Injection at different pH values was conducted; droplets are persistent from acidic conditions (pH = 2,
Figure 2a) over neutral pH (Figure 2b) to slightly basic conditions (pH = 9, Figure 2c), while higher
basicity leads to destruction of the droplet shape. Therefore, one can conclude that the formation and
stability of the interface layer depends on complex formation between differently charged colloids or
polymers, which is similar to previous reports from the literature [46]. Under the applied conditions,
PEI was protonated and underwent interfacial interactions with the negatively charged CMp-vTA
contained in the organic droplet. It is possible to form stable droplets by injection, and a pattern such
as a ‘c’ was formed to demonstrate the robustness of the created structures (at neutral pH with PEI,
Figure 2d). Furthermore, high intensity light emission by CMp-vTA is activated by UV illumination
(Figure 2e). The stability of the droplets against minor mechanical disturbances is an important issue.
To illustrate the moderate yield stress, we tilted the glass vial that contained droplets (Figure 2f),
and the droplets stayed bound to the bottom. Therefore, stable emissive soft droplets can be harnessed
by simple interface complexation chemistry.
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Figure 2. Digital images of CMp-vTA/chloroform (CN/TCM) droplet in aqueous PEI solution at
(a) pH = 2; (b) pH = 7; (c) pH = 9; (d) macroscopic ‘c’-shaped organic droplets; (e) fluorescent image
of ‘c’-shaped organic droplets (f) fluorescent image of tilted glass vial containing ‘c’-shaped organic
droplets. Scale bars correspond to 1 cm.

The stability test was performed by leaving ‘c’-shaped organic droplets undisturbed overnight,
and the droplets remained unchanged (Figure 3a). Furthermore, a stability test was conducted at
pH = 2 for a single droplet over 3 days (Figure 3b), and the stability and viability of the presented
methodology based on organic CMp-vTA dispersion was confirmed.
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3.3. Multicolor Emission

Accessing multicolor emission by simple adjustments of one target system is highly desirable.
As it has been previously demonstrated for perovskite systems, changing the halide ion of the
perovskite structure reveals altered emission colors [7]. Likewise, non fully-condensed carbon
nanostructures possess multiple color emission properties based on the synthesis conditions [47].
g-CN materials possess emission, but the inherent emission color is mainly restricted to blue and
green [48,49]. Charge transfer to a second fluorophore is the second possibility to alter the emission
color. For g-CN materials, such an approach was previously described in aqueous systems with
high-specialty conjugated polymers with diverse backbones, but we strived for something simpler and
cheaper [32]. Hybridization of CMp-vTA with small aromatic molecules was found to alter emission
properties in a similar fashion, therefore anthracene, pyrene and ferrocene were chosen as shifting
agents. Addition of those molecules (14 mg ml−1) to CMp-vTA dispersion alters the emission properties
visibly (Figure 4a–d). Correspondingly, injecting such dispersions into aqueous PEI solution provides
multicolored emissions in a facile fashion (Figure 4a–d inlets).
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and corresponding droplet (inlet); (c) CMp-vTA+pyrene/chloroform (CN-P/TCM) dispersion and
corresponding droplet (inlet); (d) CMp-vTA+ferrocene/chloroform (CN-P/TCM) dispersion and
corresponding droplet (inlet); (e) droplets from inlets of b (bottom), c (top) and d (middle) together.
Scale bars correspond to 1 cm. (f) UV-Vis spectra of utilized dispersions and (g) emission spectra of
utilized dispersions.

In order to quickly visualize the potential, we have employed droplets from two different
dispersions. When droplets were utilized together, individual colors were still detectable (Figure 4e).
This was further examined by UV and PL measurements of employed dispersions (Figure 4f,g).
Absorbance of the dispersions differed from each other, and shifts could be obtained in emission
spectra, except for pyrene. Similar emission spectra after pyrene integration might indicate a more
complex charge transfer-accumulation mechanism between CMp-vTA and pyrene, similar to carbon
nitride-perylene [50], however it is outside of the scope of this project.

One can use this approach to fabricate emission-based encoding systems (Figure 5). Multicolor
emissive soft droplets can be fabricated with great ease, which entails scale-up approaches, and many
potential applications lie beyond this strategy.
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5. Conclusions

Stable organic dispersions of polymeric g-CN were injected in an aqueous polycation solution,
and the droplet shape was retained under water due to interface complexation of the two polymer
compounds. So-formed liquid patterns show high fluorescence arising from g-CN, and the color could
be facilely tuned by the addition of commodity polycyclic aromatic molecules. Such all-liquid systems
could be used as multicolor emissive encoding platforms.
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