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CLASSICAL SYSTEM THEORY REVISITED FOR TURNPIKE IN

STANDARD STATE SPACE SYSTEMS AND IMPULSE

CONTROLLABLE DESCRIPTOR SYSTEMS

JAN HEILAND∗ AND ENRIQUE ZUAZUA†

Abstract. The concept of turnpike connects the solution of long but finite time horizon optimal
control problems with steady state optimal controls. A key ingredient of the analysis of the turnpike
is the linear quadratic regulator problem and the convergence of the solution of the associated
differential Riccati equation as the terminal time approaches infinity. This convergence has been
investigated in linear systems theory in the 1980s. We extend classical system theoretic results for
the investigation of turnpike properties of standard state space systems and descriptor systems. We
present conditions for turnpike in the nondetectable case and for impulse controllable descriptor
systems. For the latter, in line with the theory for standard linear systems, we establish existence
and convergence of solutions to a generalized differential Riccati equation.

Key words. linear systems, descriptor systems, optimal control, long time behavior, Riccati
equations
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1. Introduction. The notion of turnpike has been used in economics since long
and in control theory (see, e.g., the textbook [33]) since with an increasing interest in
the last decade. Turnpike denotes the property of the control and the solution to a
finite time optimization problem to be close to the optimal values for the associated
steady state problem most of the time.

The backbone of most turnpike results for time autonomous systems is the turn-
pike for a relevant linear quadratic regulator (LQR) optimization problem. And the
turnpike of the LQR problem is intimately linked to the decay of the solution to the
associated generalized differential Riccati equation towards the stabilizing solution of
an algebraic Riccati equation; see e.g. [28, Lem. 2.6].

In the first part of this manuscript, we use classical mathematical systems the-
oretic results as presented by Callier, Willems, and Winkin [7] to show the turnpike
property of the LQR problem. For that we extend the results to the affine linear
optimal control problem using an explicit formula of the state transition matrices of
the closed loop system. Having connected the system theoretic toolbox to the inves-
tigation of turnpike behaviors, we can immediately provide new general results for
cases where the system is not detectable which is a current research issue; see [30].

In the second part of the paper, we derive turnpike properties of linear quadratic
optimal control problems that are constrained by descriptor systems. Descriptor
systems are also commonly referred to as differential algebraic equations (DAEs). To
our best knowledge turnpike for DAEs has not been addressed so far.

In analogy with the standard LQR case, we will link the asymptotic behavior of
an associated differential Riccati equation to the turnpike property.
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Early considerations on Riccati equations for DAEs were made in [14] by ex-
amining LQ-regulators for singularly perturbed ordinary differential equations. An
extensive investigation and fundamental results for the finite time LQR problem for
DAEs has been provided by Bender and Laub [4] who expanded also on the work of
Cobb [8] and Pandolfi [26].

Bender and Laub defined several equivalent relevant Riccati equations in standard
state space form; see [4, Sec. IV]. A generalized Riccati equation which, in particular,
can be stated in the original system coefficients is not addressed in [4] apart from
noting that the most obvious symmetric formulation is not well suited. We also men-
tion the extension of the work by [4] to endpoint constraints [34]. The nonsymmetric
differential Riccati that is formulated in the original coordinate system and that also
a main subject of this paper has been treated in [12]. There the relation the LQR
problem for descriptor system has been discussed and the existence of solutions under
general conditions has been shown. Before, this nonsymmetric differential generalized
Riccati equation has been considered in [21], where necessary conditions for existence
of solutions in general and sufficient conditions for some special cases were derived.

The related nonsymmetric generalized algebraic Riccati has been investigated in
[13] and applied in the context of model reduction for infinite time-horizon control
systems in [25].

Apart from this branch, the literature on the DAE LQR optimization problem on
finite time horizons has been enriched with results on suitable reformulations of the
optimality conditions [16], on particularly structured cases [2, 11], and on the problem
with time-varying coefficients [18, 20, 22]. In the course of the investigations, several
formulations of generalized differential Riccati equations have been proposed; see the
discussion in [22].

This work contributes to the theory on Riccati equations for descriptor systems
in the following respects. We show that under the conditions used in [4, 12] and
an additional definiteness condition on the optimization problem, the solution of the
nonsymmetric generalized differential Riccati equations has a distinguished structure
and converges to the stabilizing solution of the associated algebraic Riccati equation.
This structure also implies that the provided optimal feedback gains make the closed-
loop system impulse-free so that they are a best choice according to a conjecture
stated in [4, Sec. VII].

With the convergence of the gains and the closed-loop being impulse free, we
then can show that the DAE constrained LQ optimization problem has the turnpike
property.

The line of arguments and results in this paper are as follows. In Section 2,
we introduce the linear quadratic regulator (LQR) problem for standard state space
systems, the notion of turnpike, and classical results on the asymptotic behavior of the
solutions and the controls that immediately imply well known turnpike results. Next,
in Section 3, we derive explicit formulas for the solutions to the affine LQR problem,
i.e. the LQR problem with nonzero target states. Then the arguments of the first
section can be applied to conclude turnpike properties also in this case. In the second
part of the paper, we consider the LQR problem with DAE constraints. Therefore,
we introduce the relevant concepts in Section 4 and prove existence and asymptotic
decay of solutions of the generalized differential Riccati equation in Section 5. Finally,
we can prove turnpike properties of the affine LQR problem with DAE constraints
in Section 6. We conclude the paper with summarising remarks and an overview of
related open research questions.
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2. Basic Notations, Notions and Results for the Linear Quadratic Reg-

ulator Problem. We consider the finite time horizon linear quadratic optimization
problem.

Problem 2.1 (Finite horizon optimal control problem). For coefficients A ∈
Rn×n, B ∈ Rn×m, C ∈ Rk×n, and F ∈ Rℓ×n, for an initial value x0 ∈ Rn, for target
outputs yc ∈ Rk and ye ∈ Rℓ and a terminal time t1 > 0, consider the optimization
of the cost functional

1

2

∫ t1

0

‖Cx(s)− yc‖2 + ‖u(s)‖2 ds +
1

2
‖Fx(t1)− ye‖2 → min

u

subject to

ẋ(t) = Ax(t) +Bu(t), x(0) = x0.

Problem 2.2 (Steady state optimal control problem). Consider

‖Cx− yc‖2 + ‖u‖2 ds → min
u

subject to

0 = Ax+Bu.

If yc = 0 and ye = 0, then we will refer to Problems 2.1 and 2.2 as homogeneous
LQR problems, otherwise as affine LQR problems.

Definition 2.3. The finite time optimal control problem has the turnpike prop-
erty, if for some constant vectors xs and us it holds that

‖x(t)− xs‖ ≤ const(e{−λt} + e{−λ(t1−t)})

and

‖u(t)− us‖ ≤ const(e{−λt} + e{−λ(t1−t)})

for t ≤ t1 and for positive constants const and λ independent of t1.

Remark 2.4. Throughout this manuscript, the notation const will be used to de-
note a generic constant value that is independent of t and t1 but unspecified otherwise.

The turnpike property refers to the phenomenon that the solution to the finite
time horizon problem is close to some steady state (xs, us) most of the time. Typically,
this steady state is the solution to the associated steady state optimal control problem.
However, as it will turn out in the consideration of differential algebraic equations
below, the notion of an associated steady state problem might be not well-posed.

Assumption 2.5. We assume that A, B, and C in Problems 2.1 and 2.2 are such
that the algebraic Riccati equation

(2.1) A∗X +XA−XBB∗X + C∗C = 0

has a stabilizing solution P+ ∈ Rn×n which means that the eigenvalues of

A+ := A− BB∗P+

all have negative real part.
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Remark 2.6. Assumption 2.5 requires that (A,B) are stabilizable. Detectability
of (C,A) is not required, since P+ may exist in the case where detectability is not
given, see, e.g., [24, 15].

Note that A+ is invertible.

Lemma 2.7. Under Assumption 2.5, the solution to the steady state optimal con-
trol problem is given as

xs = (A−BB∗P+)
−1BB∗(A∗ − P+BB∗)−1C∗yc

= A−1
+ BB∗A−∗

+ C∗yc

and

us = −B∗P+xs −B∗ws,

where

ws = A−∗
+ C∗yc.

Proof. One can confirm directly that xs and us fulfill the first order necessary
optimality conditions for Problem 2.2.

The turnpike property is intimately linked to the convergence of the solution P to
the differential Riccati equation towards the stabilizing solution P+ of the associated
algebraic Riccati equation. In fact, this convergence appears as a necessary condition
for turnpike in linear quadratic systems in the fundamental work by Porreta and
Zuazua [28, Cor. 2.7]. On the other hand, basic system theoretic investigations of the
convergence of P towards P+, as presented in [7], resulted in the formula

‖xh(t)− e{tA+}x0‖ ≤ const e{λt1}e{λ(t1−t)};

with λ < 0 being the spectral abscissa of A+ and where xh is the solution to Problem
2.1 with yc = 0 and ye = 0; cp. [7, Thm. 4]. Since e{tA+}x0 goes to zero exponentially
with rate λ and since xs = 0 for the homogeneous problem with yc = 0, from (2), one
can directly infer turnpike for the homogeneous case:

‖xh(t)− 0‖ ≤ ‖xh(t)− e{tA+}x0‖+ ‖e{tA+}x0‖
≤ const e{λt1}e{λ(t1−t)} + const e{λt}

≤ const(e{λ(t1−t)} + e{λt}).

(2.2)

Below, we will extend this result from [7] to the inhomogeneous case. Therefore,
we recall the following well-known link between the solution to the finite time optimal
control problem and the differential Riccati equation combined with a feedforward
term that accounts for the inhomogeneities.

Theorem 2.8 (Ch. 3.1 of [23]). The solution to Problem 2.1 is given as (x, u)
where

u(t) = −B∗(P (t)x(t) + w(t)),
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where P is the unique solution to the differential Riccati equation (DRE)

(2.3) − Ṗ (t) = A∗P (t) + P (t)A− P (t)BB∗P (t) + C∗C, P (t1) = F ∗F,

where w is the solution to

(2.4) − ẇ(t) = (A∗ − P (t)BB∗)w(t) − C∗yc, w(t1) = −F ∗ye,

and where x solves

ẋ(t) = (A−BB∗P (t))x(t) −BB∗w(t), x(0) = x0.

In what follows we will use the abbreviation S = F ∗F .
Note that in Theorem 2.8 that characterizes the optimal controls for finite times,

stability does not play a role so that the coefficients (A,B,C) and F can be arbitrary.
In order to link to the steady state, however, we will require Assumption 2.5 to hold.
In this case, namely if P+ exists, the following quantities are well-defined; see (see [7,
Lem. 1, Lem. 5]):

1. The closed loop reachability Gramian

(2.5) W :=

∫ ∞

0

e{sA+}BB∗e{sA
∗

+} ds ,

2. the closed loop reachability Gramian on [0, τ ]

(2.6) W (τ) =

∫ τ

0

e{sA+}BB∗e{sA
∗

+} ds = W − e{τA+}We{τA
∗

+}

3. as well as the sliding terminal condition.

(2.7) S̃(τ) := (S − P+)[I +W (τ)(S − P+)]
−1

For the latter, the following Lemma is relevant:

Lemma 2.9 ([7], Lem. 5). Let Assumption 2.5 hold and consider W , W (τ), and
S̃ as defined in (2.5), (2.6), and (2.7). If [I+W (S−P+)] is invertible, then τ → S̃(τ)
is a decreasing function and for any τ ≥ 0, meaning that

S − P+ = S̃(0) ≥ S̃(τ) ≥ S̃(∞) = [I +W (S − P+)]
−1.

Moreover, for the spectral norm it holds that

K(S̃) := sup
τ≥0

‖S̃(τ)‖ = max{‖S − P+‖, ‖S̃(∞)‖}.

Remark 2.10. For the spectral norm of the Gramians it holds that

‖W (τ)‖ ≤ ‖W‖.

The condition that [I +W (S −P+)] is invertible, was shown to be necessary and
sufficient for the convergence of P (t) → P+ as t1 → ∞; see [7, Thm. 2]. For what
follows we will assume that this condition holds.
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Assumption 2.11. Let Assumption 2.5 hold and consider W , W (τ), and S̃ as
defined in (2.5). Then F , as it defines the terminal constraint in Problem 2.1, is such
with S = F ∗F the matrix

[I +W (S − P+)]

is invertible.

Remark 2.12. Most literature on turnpike properties of optimal control problems
assume that (C,A) is detectable, which is a sufficient condition for Assumption 2.11.
However, the undetectable subspace for (C,A) can be compensated for if the nullspace
of the terminal constraint F only has the trivial intersection with it, which provides
a necessary and sufficient condition for the convergence of P (t) towards P+; see [7,
Thm. 2].

We illustrate the implications of Remark 2.12 in a numerical example.
Consider the optimal control problem Problem 4.1 with t1 = 10, yc = 0, and

ye = 1 and with the coefficients

(2.8) A =

[

2 0
0 −1

]

, B =

[

1
1

]

, C =
[

0
√
3
]

,

borrowed from an example in [24, pp. 31]. Here, (A,B) is controllable and, thus, sta-
bilizable, while (C,A) is not detectable. Still, a stabilizing solution to the associated
algebraic Riccati equation (2.1) exists.

Then, as implied by the conditions laid out in Remark 2.12, the solution to the
differential Riccati equation that starts in F ∗F converges to the stabilizing solution
if, and only, the nullspace of F and the space that is not detected by (C,A) – which
in this case is spanned by

[

1 0
]∗

– intersect only trivially.
Accordingly, with the choice F = C, the solution of the differential Riccati equa-

tion converges to

[

0 0
0 1

]

which is a symmetric positive definite solution to the ARE

that, however, is not stabilizing. Then, also the associated optimal state x does
not satisfy the turnpike property as it can be seen from the logarithmic plot of the
components of |x| in Figure 1.

Vice versa, with the choice of F =
[√

3 0
]

, Assumption 2.11 holds, the solution
to the DRE converges to a stabilizing solution of the ARE, the optimal state x satisfies
the turnpike estimate; cp. the second column of Figure 1.

3. Explicit Formulas for the Optimal States and Controls of the Affine

Problem. In this section, we use an explicit formula of the state transition matrices
to derive formulas for the solution to the finite time optimal control problem.

Lemma 3.1. Under Assumption 2.5, the fundamental solution matrix U to

U̇ = (A−BB∗P (t))U, U(t1) = I,

where P solves the DRE with P (t1) = S is given as

(3.1) U(t) = e{−(t1−t)A+}
(

I − [W − e{(t1−t)A+}We{(t1−t)A∗

+}](P+ − S)
)

.

Proof. This formula has been used in the literature in a more or less explicit way.
A direct derivation is provided [3, Proof of Thm. 3.4].
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The case of F = C:

0 5 10

0

1

2

3

t

DRE solution components

0 5 10

10−5

101

107

t

State (log of |x|)

0 5 10

0

0.5

1

1.5

t

Output (Fx,Cx)

The case of F ⊥ C:

0 5 10

−2

0

2

4

6

t

DRE solution components

0 5 10

10−5

10−3

10−1

t

State (log of |x|)

0 5 10

−1

0

1

t

Output (Fx,Cx)

Fig. 1. Example simulation results of the optimal control problem Problem 2.1 with coefficients

as in (2.8), with the initial value x(0) = [1 1]∗ and choices of the endpoint constraint F that illustrate

the sufficiency and necessity of Assumption 2.11 for the turnpike property as in Definition 2.3.

Corollary 3.2 (Of Lemma 3.1). Given initial conditions α, β and an inhomo-
geneity f . With U as in (3.1), the state transition for the forward evolution of

ẋ(t) = (A−BB∗P (t))x + f(t), x(t0) = α
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is given as

x(t) = U(t)U(t0)
−1α+

∫ t

t0

U(t)U(s)−1f(s)ds

and the backwards propagation of, say,

−ẏ(t) = (A∗ − P (t)BB∗)y(t) + f(t), y(t0) = β

is given as

y(t) = U(t)−∗U(t0)
∗β −

∫ t

t0

U(t)−∗U(s)∗f(s)ds.

Before we apply the formulas to the evolution of the optimal state, we introduce
a number of relations and simplifications. We write

U(t) = e{−(t1−t)A+}(I +W (t1 − t)(S − P+))

and

U(t)−∗ = e{(t1−t)A∗

+}(I +W (t1 − t)(S − P+))
−1

using that P+, S, and W are symmetric.
Moreover, with the help of the identity

(I + γt)(I + γs)
−1 = (I + γt)[I − γs(I + γs)

−1]

= I + γt − (I + γt)γs(I + γs)
−1

= I + [γt(I + γs)− (I + γt)γs](I + γs)
−1

= I + [γt − γs](I + γs)
−1

= I − [γs − γt](I + γs)
−1,

we compute

U(t)U(s)−1 = e{−(t1−t)A+}(I +W (t1 − t)(S − P+))×
(I +W (t1 − s)(S − P+))

−1e{(t1−s)A+}

= e{−(t1−t)A+}
[

I − [W (t1 − s)−W (t1 − t)]S̃(t1 − s)
]

e{(t1−s)A+}

= e{−(t1−t)A+}
[

I − e{(t1−t)A+}W (t− s)e{(t1−t)A∗

+}S̃(t1 − s)
]

e{(t1−s)A+}

= e{(t−s)A+} −W (t− s)e{(t1−t)A∗

+}S̃(t1 − s)e{(t1−s)A+}

and

U(t)−∗U(s)∗ = e{(t1−t)A∗

+}
[

I − S̃(t1 − t)e{(t1−s)A+}W (s− t)e{(t1−s)A∗

+}
]

e{−(t1−s)A∗

+}

= e{(s−t)A∗

+} − e{(t1−t)A∗

+}S̃(t1 − t)e{(t1−s)A+}W (s− t)

(3.2)

with the definition of W and S̃ as in (2.5) and (2.7).
For the case that s = t1, we have

U(t)−∗U(t1)
∗ = e{(t1−t)A∗

+}[I − S̃(t1 − t)W (t1 − t)].
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Now we can express the feedforward w as defined in (2.4) via

w(t) = wh(t) + wp(t) := −U(t)−∗U(t1)
∗F ∗ye +

∫ t

t1

U(t)−∗U(s)∗C∗yc ds

with

(3.3) wh(t) = −e{(t1−t)A∗

+}[I − S̃(t1 − t)W (t1 − t)]F ∗ye

which is the feedforward induced by the nonzero terminal constraint ye and the part
wp that belongs to the inhomogeneity induced by yc. With the help of expression
(3.2) for U(t)−∗U(s)∗, we calculate

wp(t) =

∫ t

t1

e{(s−t)A∗

+} ds C∗yc

−
∫ t

t1

e{(t1−t)A∗

+}S̃(t1 − t)e{(t1−s)A+}W (s− t) ds C∗yc

=A−∗
+ [I − e{(t1−t)A∗

+}]C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)

∫ t

t1

e{(t1−s)A+}W (s− t) ds C∗yc

=A−∗
+ [I − e{(t1−t)A∗

+}]C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)

∫ t

t1

e{(t1−s)A+}[W − e{(s−t)A+}We{(s−t)A∗

+}] ds C∗yc

=A−∗
+ [I − e{(t1−t)A∗

+}]C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)

∫ t

t1

e{(t1−s)A+}W − e{(t1−t)A+}We{(s−t)A∗

+}] ds C∗yc

=A−∗
+ C∗yc − e{(t1−t)A∗

+}C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)
[

A−1
+ W −A−1

+ e{(t1−t)A+}W
]

C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)
[

−e{(t1−t)A+}WA−∗
+ +

e{(t1−t)A+}We{(t1−t)A∗

+}A−∗
+

]

C∗yc

=A−∗
+ C∗yc − e{(t1−t)A∗

+}C∗yc

− e{(t1−t)A∗

+}S̃(t1 − t)

[

A−1
+

[

I − e{(t1−t)A+}
]

W+

e{(t1−t)A+}W
[

I − e{(t1−t)A∗

+}
]

A−∗
+

]

C∗yc.

(3.4)
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For the optimal solution x, we can derive the formula

x(t) =U(t)U(0)−1x0 −
∫ t

0

U(t)U(s)−1BB∗w(s) ds

=xh(t)−
∫ t

0

[e{(t−s)A+} −W (t− s)e{(t1−t)A∗

+}S̃(t1 − s)e{(t−s)A+}]BB∗w(s) ds

=xh(t)−
∫ t

0

e{(t−s)A+}BB∗w(s) ds +

∫ t

0

W (t− s)e{(t1−t)A∗

+}S̃(t1 − s)e{(t−s)A+}BB∗w(s) ds

= : xh(t)− I1[w] + I2[w],

(3.5)

where I1 and I2 denote the integrals, respectively.
We anticipate that all terms that include e{(t1−τ)A+} will be estimated as going

to zero as t1 → ∞. Accordingly, the only substantial contribution of w to x will be
given by I1 and the constant part in (3.4):

−I1[A
−∗
+ C∗yc] = −

∫ t

0

e{(t−s)A+}BB∗A−∗
+ C∗yc ds

= A−1
+ BB∗A−∗

+ C∗yc −A−1
+ e{tA+}C∗yc

= xs − e{tA+}A−1
+ C∗yc,

which is the solution to the steady state optimization problem (cp. Lemma 2.7) plus
a term that decays to 0 as t → ∞.

For the part −e{(t1−t)A∗

+}C∗yc of wp we calculate

−I1[−e{(t1−t)A∗

+}C∗yc] =

∫ t

0

e{(t−s)A+}BB∗e{(t1−s)A∗

+}C∗yc ds

=

∫ t

0

e{(t−s)A+}BB∗e{(t−s)A∗

+} ds e{(t1−t)A∗

+}C∗yc

= W (t)e{(t1−t)A∗

+}C∗yc,

which because of the uniform boundedness of W (t) decays to zero exponentially as
t1 → ∞.

For the remaining part of wp in (3.4), we note that, by the stability of A+,

c(t1, t) := ‖
[

A−1
+

[

I − e{(t1−t)A+}
]

W + e{(t1−t)A+}W
[

I − e{(t1−t)A∗

+}
]

A−∗
+

]

‖

is bounded independently of t1 and t ≤ t1. With that we can estimate the remaining
contribution of wp to I1 as

∫ t

0

‖e{(t−s)A+}BB∗e{(t−s)A∗

+}‖ ds ‖e{(t1−t)A∗

+}‖‖K(S̃)c(t1, t)‖C∗yc‖,

which, again, is a term that decays as t1 → ∞.
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The contribution by I1(wh) (cp. (3.3) and (3.5)) reads

∫ t

0

e{(t−s)A+}BB∗wh(s) ds

=−
∫ t

0

e{(t−s)A+}BB∗e{(t1−s)A∗

+}[I − S̃(t1 − s)W (t1 − s)] ds F ∗ye

=−
∫ t

0

e{(t−s)A+}BB∗e{(t−s)A∗

+}e{(t1−t)A∗

+}[I − S̃(t1 − s)W (t1 − s)] ds F ∗ye

=−
∫ t

0

e{(t−s)A+}BB∗e{(t−s)A∗

+} ds e{(t1−t)A∗

+}F ∗ye

+

∫ t

0

e{(t−s)A+}BB∗e{(t−s)A∗

+}e{(t1−t)A∗

+}S̃(t1 − s)W (t1 − s) ds F ∗ye.

With the uniform boundedness of τ → S̃(τ),W (τ) (cp. Lemma 2.9 and Remark 2.10)
we get the estimate

‖
∫ t

0

e{(t−s)A+}BB∗wh(s) ds ‖

≤‖W (t)‖‖e{(t1−t)A+}‖(1 + sup
0≤τ≤t

{‖S̃(t1 − τ)W (t1 − τ)‖})‖F ∗ye‖

≤‖W‖(1 +K(S̃)‖W‖‖F ∗ye‖)e{(t1−t)λ} =: const e{(t1−t)λ}.

Finally, we note that the integrants of I2 equal the integrants of I1 up to the factor
W (t− s)e{(t1−t)A∗

+}S̃(t1 − s) which is uniformly bounded by K(S)‖W‖‖e{(t1−t)A∗

+}‖.
Accordingly, the contribution of I2(w) can be estimated by the contributions of I1
times a factor that includes e{(t1−t)λ} but is independent of t and t1 otherwise.

We collect the above calculations in the following lemma:

Lemma 3.3. Let Assumptions 2.5 and 2.11 hold. Then the solution x to the finite
time optimal control problem Problem 2.1 is given as

x(t) = xh(t) + xs − e{tA+}A−1
+ C∗yc + g(t, t1)

where xh solves Problem 2.1 for yc = 0 and ye = 0, where xs is the solution to the
steady state optimal control problem Problem 2.2, and where g(t, t1) can be estimated
like

‖g(t, t1)‖ ≤ const e{(t1−t)λ}

where λ < 0 is the spectral abscissa of A+.

Corollary 3.4 (of Lemma 3.3). With x as in Lemma 3.3, the optimal input u
for Problem 2.1 is given as

Lemma 3.3 directly implies the turnpike property for the solutions to Problem
2.1; cp. Definition 2.3.

Theorem 3.5. Under Assumptions 2.5 and 2.11, for the solutions (x, u) to Prob-
lem 2.1 and (xs, us) to 2.2 it holds that

‖x(t)− xs‖ ≤ const(e{tλ} + e{(t1−t)λ})
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and

‖u(t)− us‖ ≤ const(e{tλ} + e{(t1−t)λ}),

for a constant const > 0 independent of t1 and λ < 0 being the spectral abscissa of
A+.

Proof. By Lemma 3.3, we have that

‖x(t)− xs‖ ≤ ‖xh(t) + xs − e{tA+}A−1
+ C∗yc + g(t, t1)− xs‖

≤ ‖xh(t)‖ + ‖e{tA+}A−1
+ C∗yc‖+ ‖g(t, t1)‖

≤ const(e{tλ} + e{(t1−t)λ}).

For the input we recall that by Theorem 2.8 the optimal input is given as u(t) =
−B∗(P (t)x(t) + w(t)), where P is the solution to the differential Riccati equation
(2.3) and w solves (2.4). With P (t) = P+ + P∆(t) and with the formulas (3.3) and
(3.4) for w we find that

u(t) = −B∗P+x(t)−B∗P∆x(t) −B∗A∗
+C

∗yc −B∗gw(t, t1),

where gw(t, t1) collects all reminder terms of w and which is readily estimated by the
decay of e{(t1−t)A∗

+}. With us = −B∗P+xs−B∗A∗
+C

∗yc (see Lemma 2.7), we directly
estimate

‖u(t)− us‖ = ‖ −B∗P+(x(t) − xs)−B∗P+xs

−B∗A∗
+C

∗yc −B∗P∆x(t)−B∗gw(t, t1)− us‖
≤ ‖B∗P+(x(t) − xs)‖+ ‖B∗P∆(t)x(t)‖ + ‖B∗gw(t, t1)‖
≤ ‖B∗P+‖‖x(t)− xs‖+ ‖B∗‖‖P∆(t)‖(‖xs‖+ ‖x(t)− xs‖)+
‖B∗‖‖gw(t, t1)‖

(3.6)

from where the turnpike estimate follows directly by the turnpike estimate for x(t)−xs,
the exponential decay of gw(t, t1) with t1 → ∞, and the exponential decay of P∆(t)
as t1 → ∞, see [7, Thm. 3].

4. Linear Quadratic Optimal Control for Descriptor Systems. We now
consider optimal control problems with differential algebraic equations (DAE) of the
form

(4.1) E ẋ(t) = Ax(t) + Bu(t), Ex(0) = Ex0.

as constraints. If the coefficient E is not invertible, then the equation (4.1) will be
made of differential and algebraic equations for x, hence the name DAE.

Problem 4.1 (Finite horizon optimal control problem). For coefficients A, E ∈
Rn×n, B ∈ Rn×m, C ∈ Rk×n, and F ∈ Rℓ×n, for an initial value x0 ∈ Rn, for target
outputs yc ∈ Rk and ye ∈ Rℓ and a terminal time t1 > 0, consider

1

2

∫ t1

0

‖Cx(s)− yc‖2 + ‖u(s)‖2 ds +
1

2
‖Fx(t1)− ye‖2 → min

u

subject to the DAE (4.1).
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For DAEs, the steady state optimal control problem is not simply obtained via
considering solutions to 0 = Ax + Bu as this does not respect the nature of the dy-
namical and algebraic parts at all. Below, we will show that under certain conditions,
the solutions to the finite time optimal control problem tend exponentially towards a
turnpike. Once this turnpike is determined, we will get back to the question of what
is the corresponding steady state optimal control problem.

Problem 4.1 is a convex problem with affine linear constraints, which implies that
if a candidate solution satisfies first order necessary optimality conditions, then it is
an optimal solution.

For yc = 0 and ye = 0, the formal first order necessary conditions [19] for 4.1
read
(4.2)

[

E 0
0 E∗

]

d

dt

[

x

p

]

=

[

A −BB∗

−C∗C −A∗

] [

x

p

]

, Ex(0) = Ex0, E∗p(t1) = F∗Fx(t1),

and define the optimal control as u(t) = −B∗p(t).

Remark 4.2. The optimality conditions (4.2) are called formal, because they are
formally derived through a variation of the original problem formulation. However,
it is known that the optimal control problem can have a solution while the formal
optimality conditions do not have a solution [19]. Thus, one should either use an
equivalent reformulation of the optimal control problem (as proposed in [19]) or make
sure that the formal optimality conditions are solvable [11].

One can confirm directly that, if P solves the generalized differential Riccati
equation (gDRE)

(4.3) − E∗Ṗ = A∗P + P∗A− P∗BB∗P + C∗C = 0, E∗P(t1) = F∗F ,

then the ansatz p = Px decouples the optimality conditions (4.2) and defines a solu-
tion.

As in the ODE case, we will consider stabilizing solutions of an associated gener-
alized algebraic Riccati equation (gARE)

(4.4) A∗X +X∗A−X∗BB∗X + C∗C = 0, E∗X = X∗E .

Next, we provide the basic nomenclature and fundamental results for DAEs with
inputs and outputs.

Definition 4.3. A matrix pair (E ,A) or a matrix pencil sE−A is called regular,
if there exists an s ∈ C such that sE − A is invertible.

To introduce stability concepts we refer to the following lemma which is a direct
consequence of the canonical form that can be derived for regular DAEs; see [17,
Thm. I.2.7].

Lemma 4.4. If (E ,A) is regular, then the associated DAE is equivalent to the
decoupled system

(4.5)

[

I 0
0 N

]

d

dt

[

xsss

xfss

]

=

[

J 0
0 I

] [

xsss

xfss

]

+

[

Bsss

Bfss

]

u,

where J and N are square matrices in Jordan canonical form and where N is nilpotent
which means that there exists a ν ∈ N such that Nν = 0.
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The part with the state xsss is called the slow subsystem or the finite dynamics
and the part of xfss is called the fast subsystem.

Definition 4.5 (Finite dynamics stability). Let (E ,A) be regular.
1. The DAE (4.1) with coefficients (E ,A) is called finite dynamics stable if its

slow subsystem is stable, i.e., if all eigenvalues of J in the associated canonical
form (4.5) have negative real part.

2. The triple (E ,A,B) is called finite dynamics stabilizable, if there exists a
feedback matrix K such that (E ,A− BK) is finite dynamics stable.

For equivalent algebraic characterizations and for the duality with detectability, see
[9, Ch. 3-1.2].

From the solution formula ([17, Lem. I.2.8]) for the fast subsystem

(4.6) xfss(t) = −
ν−1
∑

i=1

N iBfss
di

dti
u(t)

one finds that an initial condition for xfss that does not equal the expression of (4.6)
at t = 0 generates impulses in the solution; cp. [9, Eqn. (2-2.9)]. If any such impulse
can be compensated by an input that is piecewise ν − 1-times differentiable, then the
system is called impulse controllable. To circumvent the technicalities that come with
distributions and to express impulse controllability in terms of the original coefficients
(E ,A,B), we will use an equivalent algebraic characterization; see [9, Thm. 2-2.3].

Definition 4.6. Let (E ,A) be regular. The DAE (4.1) with coefficients (E ,A,B)
is called impulse controllable, if

rank

[

E 0 0
A E B

]

= n+ rank E .

A matrix pencil sE−A is called impulse-free if no impulses occur in the DAE solu-
tion regardless of the initial value. This means that it is trivially impulse controllable.
In line with Definition 4.6, this can be characterized as follows

Definition 4.7. Let (E ,A) be regular. The DAE (4.1) with coefficients (E ,A) is
called impulse-free, if

rank

[

E 0
A E

]

= n+ rank E .

Remark 4.8. As for standard systems, the notions of finite time detectability and
impulse observability of a DAE with output matrix C can be defined by duality, i.e.,
via the finite time stability and impulse controllability of (E∗,A∗, C∗); see [9, Thm.
2-4.1].

For semi-explicit impulse-free systems, finite-dynamics stability can be character-
ized as follows:

Lemma 4.9. Let

(

[

I 0
0 0

]

,

[

A11 A12

A21 A22

]

)

be a regular impulse-free matrix pair. Then it is finite dynamics stable if, and only
if, A11 −A12A

−1
22 A12 is stable.
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Proof. By the index 1 assumption it follows that A22 is invertible. From the
equality

[

I −A12A
−1
22

0 I

] [

−sI +A11 A12

A21 A22

] [

I 0
−A−1

22 A21 I

]

=

[

−sI +A11 −A12A
−1
22 A21 0

0 I

]

,

we find that

(

[

I 0
0 0

]

,

[

A11 A12

A21 A22

]

)

is equivalent to
(

[

I 0
0 0

]

,

[

A11 −A12A
−1
22 A21 0

0 I

]

)

from where we deduce that the slow subsystem is stable if, and only if, the matrix
A11 −A12A

−1
22 A21 is stable.

Next, we state the underlying assumptions for our analysis and some immediate
consequences.

Assumption 4.10. The coefficients E , A, B, and C in Problem 4.1 and (4.1) are
such

1. that the pair (E ,A) is regular and
2. that the gARE (4.4) has a stabilizing solution P+, i.e., the pair

(E ,A+) := (E ,A− BB∗P+)

is regular, impulse-free, and finite dynamics stable.

Assumption implies that the system (E ,A,B) is finite dynamics stabilizable and
impulse controllable. We will show below, that impulse observability of (E ,A,B) is a
necessary condition for existence of a stabilizing Riccati solution P+. As for the ODE
case, (finite time) detectability is not necessary for the existence of P+; cp. Remark
2.6.

For existence of solutions to the necessary optimality conditions (4.2) in general,
we make the following assumption

Assumption 4.11. The matrices E and F in Problem 4.1 are compatible in the
sense that

rangeF∗ ⊂ range E∗.

Looking at the terminal condition E∗p(t1) = F∗Fx(t1), one can find that Assump-
tion 4.11 is necessary for existence of solutions to the optimality conditions (4.2). Also
it is an implicit assumption made in [4, cp. Equation (1)] and the base for more gen-
eral results (see, e.g., [18, Thm. 13]). Still it is not a necessary condition for existence
of optimal solutions; cp. Remark 4.2.

In order to simplify the formulas, we further assume that E has a semi-explicit
structure:

Assumption 4.12. The matrix E ∈ Rn,n in (4.1) is of the form

(4.7) E =

[

I 0
0 0

]

where I ∈ Rd,d is the identity matrix.
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Remark 4.13. In theory, this assumption is not restrictive since a regular trans-
formation of the system can always provide such a form of E . In practice, to actually
solve the Riccati equations, this semi-explicit realization of the state equations might
be helpful. In this sense we point out that for many applications, this assumption
readily holds or can be achieved in a computationally feasible way.

Remark 4.14. Assumption 4.12 and the symmetry constraint E∗P+ = P∗
+E imply

that P+ is a block lower-triangular matrix, i.e.

(4.8) P+ =

[

P+;1 0
P+;21 P+;2

]

with P+;1 being symmetric, i.e. P ∗
+;1 = P+;1. Moreover, Assumptions 4.12 and 4.11

together imply that

(4.9) F∗F =

[

S1 0
0 0

]

.

Remark 4.15. For E in semi-explicit form, several concepts can be made more
explicit. Let

(4.10) A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, and C =
[

C1 C2

]

,

then (E ,A,B, C) are impulse controllable or impulse observable if, and only if,

(4.11)
[

A22 B2

]

or
[

A∗
22 C∗

2

]

have full rank, respectively. And (E ,A) is impulse-free if, and only if, A22 is invertible.

The following lemma relates the associated Hamiltonian matrix pencil to the
existence of stabilizing solutions of the generalized algebraic Riccati equation (4.4).
Although it is the direct extension of the standard state space result, it has not been
stated explicitly so far.

Lemma 4.16. Let (E ,A) be regular. The gARE (4.4) has a stabilizing solution if,
and only if, (E ,A,B) is finite dynamics stabilizable and the matrix pencil

H(s) =

[

−sE +A −BB∗

−C∗C −sE∗ −A∗

]

is regular, impulse-free, and has no finite eigenvalues on the imaginary axis.

Proof. The necessity is stated and proved in the first lines of the proof of [13,
Lem. 1]. The sufficiency follows by the arguments of [25, Sec. 3] as follows. With E
in semi-explicit form, the absence of impulses in H(s) implies that

[

A22 −B2B
∗
2

−C∗
2C2 A∗

22

]

is invertible so that (E ,A,B, C) must be impulse controllable and impulse observable;
cp. (4.11). Thus, the condition of [25, Thm. 3.2] are fulfilled up to the finite dynamics
observability of (E ,A, C). Still, one can apply [25, Lem. 3.10] since the needed in-
vertibility is guaranteed by H(s) having no finite modes on the imaginary axis which
implies that

[

C∗ A∗
]

has full rank (see [24, Thm. 4]) as it is needed in the proof of
[25, Lem. 3.8]. Thus, existence of the relevant stabilizing solution, which is denoted
by Y in [25], follows as laid out in [25, Sec. 3.2].
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5. Existence and Asymptotic Behavior of Structured Solutions to the

Differential Riccati Solution. In this section, we establish the existence of a partic-
ularly structured solution to the generalized differential Riccati equation gDRE (4.3)
under the assumption that the associated algebraic Riccati equation gARE (2.1) has
a stabilizing solution.

We start with adding another assumption that will be shown to be a sufficient
criterion for existence of solutions to the (gDRE) (4.3) and that we will justify by
considering its necessity for particular cases.

Assumption 5.1. Let Assumptions 4.10 and 4.12 hold and let (E ,A, C) and the
stabilizing solution P to the gARE (4.4) be partitioned as in (4.8) and (4.10). Then
with the P+;2 block of P and with K2 := A∗

22 − P+;2B2B
∗
2 being regular (cp. [13,

Lem. 1]):

(5.1) C∗
1C1 − (C∗

1C2 +A∗
21P+;2)K

−∗
2 B2B

∗
2K

−1
2 (C∗

2C1 + P ∗
+;2A21) ≥ 0.

Remark 5.2. We note that the P+;2 block of P+ is not uniquely defined, it only
has to fulfill the quadratic equation

(5.2) A∗
22P22 + P ∗

22A22 − P ∗
22B2B

∗
2P22 + C∗

2C2 = 0

and the condition that A∗
22 − P ∗

22B2B2 is regular. See [13, Lem. 1] or the solution
representation provided in [25, Lem. 3.10] for the semi-explicit E . Also, cp. the
nonuniqueness of the feedback law provided in [12, Eqn. (3.43)].

Before we state global existence of solutions to the generalized differential Ric-
cati equations, we show that Assumption 5.1 generalizes the general assumption of a
positive definite cost functional for problems that are impulse-free.

For that we consider a system that is impulse free and that, without loss of
generality, can be assumed in the form of

(5.3) E =

[

I 0
0 0

]

, A =

[

A11 0
0 −I

]

, B =

[

B1

B2

]

, and C =
[

C1 C2

]

.

Like for every system with (E ,A) impulse free, the optimal control problem Prob-
lem 4.1 with system (5.3) as constraint is equivalent to a standard LQR problem. In
this case, if the state x = (x1, x2) is partioned accordingly, one can express x2 as
x2 = B2u and finds that the cost functional is positive definite if, and only if,

C∗
1C1 − C∗

1C2B2B
∗
2C

∗
2C1 ≥ 0 or I − C2B2B

∗
2C

∗
2 ≥ 0

which is equivalent to the largest singular vector of C2B2 being less than one, i.e.
σ̄(C2B2) ≤ 1. Thus, for systems in the form (5.3), the condition σ̄(C2B2) ≤ 1 is
necessary to be in line with the standard theory (cp. [35, Eqn. (14.2)] or [23, Rem.
3.4]).

Lemma 5.3. Consider a system (E ,A,B, C) in the form of (5.3). If σ̄(C2B2) ≤ 1,
then there exists a P22 that solves (5.2), such that A∗

22−P ∗
22B2B

∗
2 is regular and such

that (5.1) holds.

Proof. For a system in the form of (5.3), i.e. A22 = −I, by standard theory,
the Riccati equation (5.2) has a symmetric positive definite or positive semi-definite
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solution P2 such that −I − P ∗
2B2B

∗
2 is stable and, thus, invertible. With A21 = 0,

condition (5.1) reads

C∗
1C1 − C∗

1C2(−I −B2B
∗
2P2)

−1B2B
∗
2 (−I − P ∗

2B2B
∗
2 )

−1C∗
2C1 ≥ 0

or

(5.4) I − C2(I +B2B
∗
2P2)

−1B2B
∗
2 (I + P ∗

2B2B
∗
2)

−1C2 ≥ 0.

With the identity (I+B2B
∗
2P2)

−1B2 = B2(I+B∗
2P2B2)

−1, with P2 ≥ 0 which implies
that all eigenvalues of I+B∗

2P2B2 are larger than one. Accordingly, all eigenvalues of
(I +B∗

2P2B2)
−1 are smaller than one. Since for symmetric positive definite matrices,

the eigenvalues coincide with the singular values and since σ̄ has all the properties of
a norm, we can estimate

σ̄(C2(I +B2B
∗
2P2)

−1B2) = σ̄(C2B2(I +B2B
∗
2P2)

−1)

≤ σ̄(C2B2)σ̄((I +B2B
∗
2P2)

−1) ≤ σ̄(C2B2) ≤ 1

from where we conclude (5.4).

By Lemma 5.3, for impulse-free systems, validity of Assumption 5.1 is implied by
the assumption that the underlying cost functional is positive definite.

Theorem 5.4. Consider the DAE (4.1) and the optimal control problem Problem
4.1. Assume that E is semi-explicit and that F is compatible (Assumptions 4.12 and
4.11). Assume that (E ,A) is regular and that a stabilizing solution to the gARE exists
(Assumption 4.10). Let Assumption 5.1 hold. Then the gDRE (4.3) has a solution
P for t ≤ t1.

Proof. Since E∗Ṗ(t) is symmetric and E∗P(t1) = F∗F is symmetric, it holds that
E∗P(t) is symmetric or, due to the semi-explicit form of E , that

P =

[

P1 0
P21 P2

]

with P1(t) being symmetric. With this block triangular structure and the partition
of the coefficients (A,B, C) as in (4.10), the gDRE (4.3) can be written in terms of
the following four coupled matrix valued equations:

−Ṗ1 = A∗
11P1 +A∗

21P21 + P1A11 + P ∗
21A21

− P1B1B
∗
1P1 − P ∗

21B2B
∗
1P1 − P1B1B

∗
2P21 − P ∗

21B2B
∗
2P21 + C∗

1C1,

P1(t1) = S,(5.5a)

0 = A∗
12P1 +A∗

22P21 + P ∗
2A21 − P ∗

2B2B
∗
1P1 − P ∗

2B2B
∗
2P21 + C∗

2C1,(5.5b)

0 = P1A12 + P ∗
21A22 +A∗

21P2 − P ∗
1B1B

∗
2P2 − P ∗

21B2B
∗
2P2 + C∗

1C2,(5.5c)

0 = A∗
22P2 + P ∗

2A22 − P ∗
2B2B

∗
2P2 + C∗

2C2.(5.5d)

Note that (5.5c) is the transpose of and, thus, equivalent to (5.5b).
Since (5.5d) does not differ from the left-lower block of the gARE (4.4), Assump-

tion 4.10 implies the existence of a (constant) matrix (function) P2 that solves (5.5d)
such that

K2 := A∗
22 − P ∗

2B2B
∗
2
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is invertible. Accordingly, the matrix valued function P21 is defined by virtue of (5.5c)
or (5.5b) as

(5.6) P21(t) = −K−1
2 (A∗

12P1(t) + P ∗
2A21 − P ∗

2B2B
∗
1P1(t) + C∗

2C1)

and existence of P relies on the existence of a Riccati solution to (5.5a) which, with
P21 expressed in terms of a linear relation with P1 and a constant term as in (5.6),
reads

(5.7) − Ṗ1 = Ã∗P1 + P1Ã− P1R̃P1 + Q̃, P1(t1) = S,

where

Ã : = A11 − (A21 −B1B
∗
2P2)K

−∗
2 A21 +B1B

∗
2K

−1
2 (P2A21 + C∗

2C1)

R̃ : =
[

B1 −(B1B
∗
2P2 −A∗

12)K
−∗
2 B2

]

[

B∗
1

−B∗
2K

−1
2 (P ∗

2B2B
∗
1 −A12)

]

Q̃ : = C∗
1C1 − (C∗

1C2 +A∗
21P2)K

−∗
2 B2B

∗
2K

−1
2 (C∗

2C1 + P ∗
2A21).

With R̃ ≥ 0, for arbitrary S ≥ 0, global existence of the unique solution to (5.7)
is ensured (cp. [1, Thm. 4.1.6]), if also Q̃ is positive semi-definite which it is by
Assumption 5.1 and with the choice P2 = P+;2.

For this solution to the gDRE, in analogy to the standard ODE case [7], we can
show the exponential decay towards the gARE solution.

To prepare the arguments, we consider the associated Hamiltonian boundary
value problem
(5.8)

[

E 0
0 E∗

]

d

dt

[

V1

V2

]

=

[

A −BB∗

−C∗C −A∗

] [

V1

V2

]

, EV1(t1) =

[

I

0

]

, EV2(t1) =

[

S

0

]

,

with V1(t), V2(t) ∈ Rn,d, where d is the size of identity block in E (cp. Assumption
4.12) and where the initial conditions already anticipate the semi-explicit form of E .

With P+ solving the gARE (4.4) and being partitioned as in (4.8), we can make
use of the transformation

(5.9)

[

I 0
−P∗

+ I

] [

−sE +A −BB∗

−C∗C −sE∗ −A∗

] [

I 0
P+ I

]

=

[

−sE +A+ −BB∗

0 −sE∗ −A∗
+

]

to write (5.8) as
(5.10)
[

E 0
0 E∗

]

d

dt

[

V1

Ṽ2

]

=

[

A+ −BB∗

0 −A∗
+

] [

V1

Ṽ2

]

, EV1(t1) =

[

I

0

]

, EṼ2(t1) =

[

S1 − P+;1

0

]

,

with

[

V1

Ṽ2

]

=

[

I 0
−P+ I

] [

V1

V2

]

.

In line with the semi explicit structure of E , we further differentiate

(5.11) A+ =

[

A+;1 A+;12

A+;21 A+;2

]

, BB∗ =

[

B1B
∗
1 B1B

∗
2

B2B
∗
1 B2B

∗
2

]

,

[

V1

Ṽ2

]

=









V11

V12

Ṽ21

Ṽ22









.
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With this partitioning and with the swap of the third and second line and column,
respectively, the system reads









I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0









d

dt









V11

Ṽ21

V12

Ṽ22









=









A+;1 −B1B
∗
1 A+;12 −B1B

∗
2

0 −A∗
+;1 0 −A∗

+;21

A+;21 −B2B
∗
1 A+;2 −B2B

∗
2

0 −A∗
+;12 0 −A∗

+;2

















V11

Ṽ21

V12

Ṽ22









,

V11(t1) = I, Ṽ21(t1) = S − P+;1.

(5.12)

Since A+ is of index 1, the block A+;2 is invertible so that with the relation

[

V12

Ṽ22

]

= −
[

A+;2 −B2B
∗
2

0 −A∗
+;2

]−1 [
A+;21 −B2B

∗
1

0 −A∗
+;12

] [

V11

Ṽ21

]

= −
[

A−1
+;2 −A−1

+;2B2B
∗
2A

−∗
+;2

0 −A−∗
+;2

] [

A+;21 −B2B
∗
1

0 −A∗
+;12

] [

V11

Ṽ21

]

= −
[

A−1
+;2A+;21 −A−1

+;2B2B
∗
1 +A−1

+;2B2B
∗
2A

−∗
+;2A

∗
+;12

0 A−∗
+;2A

∗
+;12

] [

V11

Ṽ21

]

(5.13)

we get the reduced system

[

I 0
0 I

]

d

dt

[

V11

Ṽ21

]

=

[

A+;1 −A+;12A
−1
+;2A+;21 −[B1 −A+;12A

−1
+;2B2][B1 −A+;12A

−1
+;2B2]

∗

0 −(A∗
+;1 −A∗

+;21A
−∗
+;2A

∗
+;12)

] [

V11

Ṽ21

]

,

V11(t1) = I, Ṽ21(t1) = S − P+;1.

(5.14)

as it can be derived by means of the explicit representation of the Schur complement

S :=

[

A+;12 −B1B
∗
2

0 −A∗
+;21

] [

A+;2 −B2B
∗
2

0 −A∗
+;2

]−1 [
A+;21 −B2B

∗
1

0 −A∗
+;12

]

=

[

A+;12A
−1
+;2A+;21 A+;12A

−1
+;2B2B

∗
2A

−∗
+;2A

∗
+;12 −A+;12A

−1
+;2B2B

∗
1 −B1B

∗
2A

−∗
+;2A

∗
+;12

0 −A∗
+;21A

−∗
+;2A

∗
+;12

]

.

In what follows, we will use the abbreviations

Ā := A+;1 −A+;12A
−1
+;2A+;21 and B̄ := [B1 −A+;12A

−1
+;2B2].

Theorem 5.5. Consider the gDRE (4.3) with E semi-explicit as in Assumptions
4.12 and let F be compatible as in Assumption 4.11. Let the coefficients (A,B, C) be
partitioned as in (4.10) in accordance with E. Let Assumption 4.10 hold, let P+ be
the stabilizing solution to the gARE (4.4), and let A+ := A − BB∗P+ be partitioned
as in (5.11). Let Assumption 5.1 hold and let P be the solution to the gDRE (4.3).
Then system (5.10) has a unique solution

[

V1

Ṽ2

]

=









V11

V12

Ṽ21

Ṽ22








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with V11(t) being invertible for t ≤ t1 and such that for P∆(t) := P(t) − P+ it holds
that

P∆(t) =

[

P∆;1(t) 0
P∆;21(t) 0

]

=

[

P∆;1(t) 0
−A−∗

+;2A
∗
+;12P∆;1(t) 0

]

=

[

Ṽ (t)21V (t)−1
11 0

−A−∗
+;2A

∗
+;12Ṽ (t)21V (t)−1

11 0

]

.

(5.15)

Proof. By Assumption 2.5 and Theorem 5.4 the existence of P∆ is ensured for t ≤
t1. A direct computation that realizes the transformation of (5.9) for the associated
Riccati equation reveals that P∆ solves the generalized difference Riccati equation
(cp. [7, p. 994]), i.e.

−E∗Ṗ∆ = A∗
+P∆ + P∗

∆A+ − P∗
∆BB∗P∆, E∗P∆(t1) = F∗F − E∗P+.

Since the second block column of P∆ is zero – as it follows directly from P∆ = P−P+

– and A+;2 is invertible, equation (4.3) implies that the left-lower block of P∆ is given
as −A−∗

+;2A
∗
+;12P∆;1(t) and that P∆;1 is the solution to the Riccati equation

−Ṗ∆;1 = Ā∗P∆;1 + P∆;1Ā− P∆;1B̄B̄∗P∆;1, P∆;1(t1) = S − P+;1

which in particular means that this Riccati equation has a global solution for t ≤ t1
despite the possibly indefinite initial condition.

From the existence of the Riccati solution P∆;1, we can infer the invertibility of
V11(t) from the relation

−V̇11(t) = (Ā− B̄B̄∗P∆;1(t))V11(t), V11(t1) = I,

which is a consequence of Radon’s Lemma (see, e.g, [1, Thm. 4.1.1]).
Uniqueness follows from V11 and Ṽ21 being solutions to an ordinary linear differ-

ential equation, namely (5.14).
Thus, P∆ as defined in (5.15) is well-defined.
Following the lines of a proof for a standard result for ODEs [6, 180 Theorem],

we directly confirm that it P∆ solves the generalized difference Riccati equation (4.3).
For that we find that the summands of the left upper block of −E∗Ṗ∆ which are

given as

− d

dt
V21V

−1
11 = − ˙̃

V21V
−1
11 + Ṽ21V

−1
11 V̇11V

−1
11 ,

and which, by means of the equations for ˙̃
V21 and V̇11 in (5.12) with V12 and V22

resolved via (5.13), rewrite as

−V̇21V
−1
11 = (A∗

+;1V21 −A∗
+;21A

−∗
+;2A

∗
+;12V21)V

−1
11

= (A∗
+;1 −A∗

+;21A
−∗
+;2A

∗
+;12)P∆;1

= A∗
+;1P∆;1 +A∗

+;21A
−∗
+;2A

∗
+;12P∆;21



22 J. HEILAND AND E. ZUAZUA

and

V21V
−1
11 V̇11V

−1
11 =

= V21V
−1
11

(

[A+;1 −A+;12A
−1
+;2A+;21]V11

− [B1 −A+;12A
−1
+;2B2][B1 −A+;12A

−1
+;2B2]

∗V21

)

V −1
11

= P∆;1[A+;1 −A+;12A
−1
+;2A+;21]

− P∆;1[B1 −A+;12A
−1
+;2B2][B1 −A+;12A

−1
+;2B2]

∗P∆;1

= P∆;1A+;1 + P ∗
∆;21A+;21

− P∆;1B1B
∗
1P∆;1 − P∆;1B1B

∗
2P∆;21 − P ∗

∆;21B2B
∗
1P∆;1 − P ∗

∆;21B2B
∗
2P∆;1,

sum up to the left upper block of

A∗
+P∆ + P ∗

∆A+ − P ∗
∆BB∗P∆.

By the zero pattern of P+, the other blocks of P ∗
∆BB∗P∆ are zero, whereas the other

possibly nonzero blocks of A∗
+P∆ and P ∗

∆A+ sum up to zero, respectively, because of
how the blocks of P∆ are related. Thus,

−E∗Ṗ∆ = A∗
+P∆ + P ∗

∆A+ − P ∗
∆BB∗P∆

is fulfilled. Finally, by the structure of E , F , and, P∆, the initial condition E∗P∆(t1) =
F∗F − E∗P+ reduces to P∆;1(t1) = S − P+;1 which is fulfilled as Ṽ21(t1)V11(t1) =

Ṽ21(t1) = S − P+;1.

From Theorem 5.5, we can directly deduce necessary conditions for the conver-
gence of P(t) towards P+ as t1 → ∞; cp. Lemma 2.9 for the standard ODE case.

Corollary 5.6 (of Theorem 5.5). The left upper block P∆;1 of P∆ as defined
in (5.15) satisfies the relation

(5.16) P∆;1(t) = e{(t1−t)Ā∗} ¯̃S(t1 − t)e{(t1−t)Ā}

where

(5.17) ¯̃
S(τ) := (S − P+;1)[I + W̄ (τ)(S − P+;1)]

−1

with

W̄ (τ) :=

∫ τ

0

e{sĀ}B̄B̄∗e{sĀ
∗} ds

being well-defined. Moreover, P∆;1(t) → 0 exponentially as t1 → ∞, if, and only if,

I + W̄ (S − P+;1)

is nonsingular, where

W̄ := lim
τ→∞

W̄ (τ).

Proof. Relation (5.16) and (5.17) follow from the variation of constants formular
applied to (5.14) that gives

Ṽ21(t) = e{−(t−t1)Ā
∗}(S − P+;1)
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and

Ṽ11(t) = e{(t−t1)Ā}
(

I +

∫ t

t1

e{−(s−t1)Ā}B̄B̄∗e{−(s−t1)Ā
∗} ds (S − P+;1)

)

and the invertibility of V11(t). By stability of Ā (cp. Lemma 4.9) well posedness of
the improper integral that defines W̄ is ensured, and the equivalence of P∆;1(t) → 0
and invertibility of I + W̄ (S − P+;1) follows by [7, Lem. 3].

The condition for the convergence motivates the following assumption:

Assumption 5.7. Consider Problem 4.1, let Assumption 4.10 hold and let E be
semi-explicit as in Assumption 4.12 and A+ and BB∗ be partitioned as in (5.11) and
let F be compatible with E as in Assumption 4.11. The matrix

I + W̄ (S − P+;1)

is nonsingular, where

W̄ :=

∫ ∞

0

e{sĀ}B̄B̄∗e{sĀ
∗} ds

is the closed loop finite dynamics reachability Gramian and where S is the left upper
block of F∗F ; cp. (4.9).

Another outcome of the existence of this structured solution to the gDRE is that
the corresponding closed loop system does not generate impulses. Since, the closed
loop system is time varying, the definition of impulse freeness (Def. 4.7 does not apply.
Instead, we use the concept of strangeness freeness [17] that is closely connected to
and has the same implications as impulse freeness.

Corollary 5.8 (of Theorem 5.5). The closed loop system

E ẋ(t) = (A − BB∗P(t))x(t), Ex(0) = Ex0,

is strangeness free.

Proof. By the particular structure of P∆, it follows that the left lower block
of A − BB∗P (t) = A − BB∗(P+ + P∆) equals the left lower block of A+, namely
A+;2. Since A+;2 is invertible, the DAE defined by the (time-dependent) coefficients
(E ,A− BB∗P) is strangeness free; cp. [17, Thm. 3.17].

With this assumption, we can show the turnpike property of the homogeneous
optimal control problem with DAE constraints with respect to the zero state and zero
control action.

Theorem 5.9. Under the assumptions of Theorem 5.5 and under Assumption
5.7, the optimal control problem Problem 4.1 with yc = 0 and ye = 0 has a solution
(x, u) which fulfills the estimate

‖x(t)‖ ≤ const(e{tσ̄} + e{(t1−t)σ̄})

and

‖u(t)‖ ≤ const(e{tσ̄} + e{(t1−t)σ̄})

with const independent of t1 and where σ̄ < 0 is the spectral abscissa of Ā.
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Proof. With (V11, V12, Ṽ21, Ṽ22) solving (5.10), with the relation (5.13), and with
V11(t) being invertible, we have that









x1

x2

p̃1
p̃2









=









V11

V12

Ṽ21

Ṽ22









V −1
11 (t0)x0 =









I 0
s11 s12
0 I

0 s22









[

V11

Ṽ21

]

V −1
11 (t0)x0

=









I 0
A−1

+;2A+;21 −A−1
+;2B2B

∗
1 +A−1

+;2B2B
∗
2A

−∗
+;2A

∗
+;12

0 I

0 A−∗
+;2A

∗
+;12









[

V11

Ṽ21

]

V −1
11 (t0)x0.

defines the solution to (5.10), and, in particular, the optimal state as in (5.8). Multi-
plication of the first row gives that

V −1
11 (t)x(t) = V −1

11 (t0)x(t0)

so that, with P∆;1 = V21V
−1
11 (cp. Thm. 5.5), we get the following formula for the

optimal state

[

x1(t)
x2(t)

]

=

[

V11(t)V11(t0)
−1x1(t0)

A−1
+;2A+;21x1(t)− [A−1

+;2B2B
∗
1 +A−1

+;2B2B
∗
2A

−∗
+;2A

∗
+;12]P∆;1(t)x1(t)

]

.

Then the turnpike property for x1 follows by the arguments for the ODE case [7,
Thm. 4] as follows: From

‖x1(t)− e{Āt}‖ ≤ const e{t1λ̄}e{(t1−t)λ̄};

cp. [7, Eqn. (63)], we conclude with e{t1λ̄} ≤ 1 independent of t1, Ā being stable,
and an application of the triangle inequality as in (2.2) that

‖x1(t)‖ ≤ const(e{(t1−t)λ̄} + e{tλ̄}).

The same type of estimate for x2 follows from the turnpike of x1 since P∆;1 is bounded
by Corollary 5.6.

The turnpike estimate for u(t) = −BB∗P(t)x(t) = −BB∗P+x(t) − BB∗P∆(t)x(t)
follows as in (3.6).

We summarize and comment on the assumptions and the results of this chapter
on the optimal control of the linear descriptor system (4.1) with a quadratic costfunc-
tional defined in Problem 4.1.
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Assumptions:
1. Without loss of generality: E is semi-explicit (Assumption 4.12).
2. To enable existence of solutions to the first order optimality condi-

tions (4.2): Compatibility of F and E (Assumption 4.11).
3. In line with the basic assumption for the ODE case: Existence of

a stabilizing solution to the generalized algebraic Riccati equation
(4.4) including regularity of the matrix pair (Assumption 4.10).

4. To ensure existence of global solutions to the reduced closed loop
Riccati equation (5.7): A spectral condition on the coefficients (As-
sumption 5.1).

5. In line with the relevant condition in the ODE case: Compatibility
of the terminal constraint S, the solution to the gARE (4.4), and the
relevant reachability Gramian (Assumption 5.7).

Certainly, Assumption 5.1 is somewhat unpleasant and, because of its dependency
on P2 not readily confirmed or discarded for a given system. Nonetheless, it generalizes
the standard assumption for ODE systems that ensures the definiteness of the cost
functional in the presence of cross terms in the costs or a feedthrough term in the
system.

With these assumptions, the following results have been derived:

Summary of results:
1. Existence of solutions to the generalized differential Riccati equation

(Theorem 5.4).
2. Representation of the difference P(t)−P+ that implies that the closed

loop system is impulse free (Theorem 5.5 and Corollary 5.8).
3. Convergence of P(t) → P+ as t1 → ∞ and turnpike property of the

homogeneous optimal control problem with DAE constraints (Corol-
lary 5.6 and Theorem 5.9).

6. The Affine DAE LQR Problem. In this section, we study the optimal
control problem with nonzero target states yc and ye and get back to the question of
what the steady-state optimal control problem is for a descriptor system.

Similarly to the ODE case, the feedthrough w is defined via

−Eẇ = (A∗ − P∗(t)BB∗)w − C∗yc, E∗w(t1) = −F∗ye,

which we rewrite as

−Eẇ = A∗
+w − P∗

∆(t)BB∗w − C∗yc, E∗w(t1) = −F∗ye.

We partition the variables and coefficients

w =

[

w1

w2

]

, C∗ =

[

C∗
1

C∗
2

]

, and F∗ =

[

F ∗
1

0

]

in accordance with E , A+, BB∗, and P∆, as in (4.7), (5.11), and (5.15), respectively,
and write

A∗
+ − P∗

∆(t)BB∗ =

[

A∗
+;1 A∗

+;21

A∗
+;12 A∗

+;2

]

−
[

P∆;1(t) −P∆;1(t)A+;12A
−1
+;2

0 0

] [

B1B
∗
1 B2B

∗
1

B1B
∗
2 B2B

∗
2

]

=

[

A∗
+;1 − P∆;1(t)B̄B∗

1 A−∗
+;21 − P∆;1(t)B̄B∗

2

A∗
+;12 A∗

+;2

]

.
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In what follows, we will omit the time dependency of P∆. With the relation

(6.1) w2 = −A−∗
+;2A

∗
+;21w1 +A−∗

+;2C
∗
2yc

we can eliminate w2 from the equations and consider only

(6.2) − ẇ1 = (Ā∗ − P∆;1(t)B̄B̄∗)w1 − C̄∗yc + P∆;1(t)B̄B∗
2A

−∗
+;2C

∗
2yc,

with the abbreviations

Ā := A+;1−A+;12A
−1
+;2A+;21, B̄ := B1−A+;12A

−1
+;2B2, and C̄ := C1−C2A

−1
+;2A+;21

as they have been used before.
By the same procedure, we derive the expressions for the parts of the optimal

state as

(6.3) x2 = −A−1
+;2A+;21x1 +A−1

+;2B2B̄
∗(P∆;1x1 + w1) +A−1

+;2B2B
∗
2A

−∗
+;2C2yc

and

(6.4) ẋ1 = (Ā− B̄B̄∗P∆;1(t))x1 − B̄B̄∗w1 − B̄B∗
2A

−∗
+;2C2yc.

The preceding derivations show that if the Riccati solution exists, then the op-
timal states x = (x1, x2) decouple such that x1 reads like a solution to an optimal
control problem with ODE constraints, and x2 is in a direct algebraic relation with
x1. Accordingly, we can state the turnpike property for Problem 4.1 with similar
arguments as for the standard LQR case.

Theorem 6.1. Consider the optimal control problem Problem 4.1 with the costs
defined through t1, C, F , and target states yc and ye, and subject to the DAE (4.1)
with coefficients (E ,A,B).

Assume that E is semi-explicit, that (E ,A) is regular, and that the gARE (4.4)
has a stabilizing solution P+ (Assumptions 4.10 and 4.12).

Assume that F is compatible with E so that with Assumptions 5.1 the gDRE (4.3)
has a solution P with P∆ = P − P+ as in (5.15).

Assume that the relevant part of F is compatible with the relevant part of P+ such
that Assumption 5.7 is fulfilled.

Then the optimal control has a solution (x, u) with x and u satisfying the estimates

‖x(t)− xs‖ ≤ const(e{tλ̄} + e{(t1−t)λ̄},

and

‖u(t)− us‖ ≤ const(e{tλ̄} + e{(t1−t)λ̄},

with const independent of t1 and where λ̄ < 0 is the spectral abscissa of Ā and

(6.5) xs =

[

xs;1

−A−1
+;2A+;21xs;1 +A−1

+;2B2(B̄
∗Ā−∗C̄∗ +B∗

2A
−∗
+;2C

∗
2 )yc

]

with xs;1 := (Ā−1B̄B̄∗Ā−∗C̄ + Ā−1B̄B∗
2A

−∗
+;2C2)yc and

(6.6) us = −B∗P+xs − B̄∗Ā−∗C̄∗yc −B∗
2A

−∗
+;2C

∗
2yc.
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Proof. We consider equations (6.2) and (6.4) for the parts w1 and x1, respectively.
As laid out in the proof of Theorem 5.5, the part P∆ solves the differential Riccati
equation

−Ṗ∆;1 = Ā∗P∆;1 + P∆;1Ā− P∆;1B̄B̄∗P∆;1, P∆;1(t1) = S1 − P+;1

and exists for all t ≤ t1. Thus, Lemma 3.1 applies and provides the formulas for the
relevant fundamental solution as

U(t) = e{−(t1−t)Ā}
(

I − [W̄ − e{(t1−t)Ā}W̄e{(t1−t)Ā∗}](P+;1 − S1)
)

.

As for the ODE case, we conclude that the feedthrough can be written as

(6.7) w1(t) = Ā−∗C̄∗yc + g(t, t1)

with a remainder term g(t, t1) that is dominated by e{(t1−t)Ā}; cp. (3.3) and (3.4).
The only difference to the ODE case lies in the additional term P∆;1(t)B̄A−∗

+;2C
∗
2yc to

w1 as defined (6.7) which, however, can be included in the estimates by the decaying
behavior of P∆;1 as it is ensured by Assumption 5.7 and Corollary 5.6. And again,
that part of x1 that cannot be bounded by e{(t1−t)σ̄}, where σ̄ is the spectral abscissa
of Ā, is given by the integral operator I1 (cp. (3.5)) applied to the constant parts in
the right-hand side of (6.4). Thus, the turnpike for x1 is given by the constant part
of

−
∫ t

0

e{(t−s)Ā}
(

B̄B̄∗Ā−∗C̄∗yc + B̄B∗
2A

−∗
+;2C2yc

)

ds

= (I − e{tĀ})Ā−1
[

B̄B̄∗Ā−∗C̄∗yc + B̄B∗
2A

−∗
+;2C2yc

]

.

which is as in the first component of (6.5). The turnpike for x2 as in the second com-
ponent of (6.5) follows from formula (6.3) in combination with the decaying behavior
of P∆;1 and the estimate for w1 given in (6.7).

With the formulas (6.7) and (6.1) for w1 and w2, the optimal writes as

u(t) = −B∗(Px(t) + w(t))

= −B∗P+x(t) − B∗P∆(t)x(t) −B∗
1w1(t)−B∗

2w2(t)

= −B∗P+(x(t) − xs)− B̄∗P∆;1(t)x1(t)− B̄∗g(t, t1)

− B̄∗Ā−∗C̄∗yc −B∗
2A

−∗
+;2C

∗
2yc − B∗P+xs

= −B∗P+(x(t) − xs)− B̄∗P∆;1(t)x1(t)− B̄∗g(t, t1) + us

from where the estimate (6.6) for u(t) − us follows with the same arguments as for
(3.6).

Now that the turnpike for the linear-quadratic optimization problem with DAE
constraints has been determined, we return to the question of what the associated
steady state problem is. For that we observe that with ps := P+xs+ws and ws being
the time constant parts of w and ws and us as defined in Theorem 6.1, the triple
(xs, ps, us) is a critical point of the Lagrange function

L(x, p, u) = 1

2
‖Cx− yc‖2 +

1

2
‖u‖2 + p∗(Ax+ Bu)



28 J. HEILAND AND E. ZUAZUA

as it can be confirmed by considering the gradient of L with respect to x, p, and u

and the ansatz us = −B∗ps and ps = P+xs +ws. Still, in general, the turnpike is not
that solution that arises from

1

2
‖Cx− yc‖2 +

1

2
‖u‖2 → min

u
, subject to Ax+ Bu = 0

as this does not the respect the particular feedback structure us = −BB∗P+xs that
makes the left-lower block of A− BB∗P+ regular.

7. Conclusion and Discussion. The presented results show that classical sys-
tem theoretic results well apply to prove turnpike properties for LQR problems con-
straint by standard linear state space systems. Under the assumption of impulse
controllability, a descriptor system can be controlled such that it is basically an ODE
with an additional but well separated algebraic part so that similar arguments can be
used to confer turnpike properties of LQR problems with DAE constraints.

In line with the literature on turnpike in control systems, natural extensions of
the presented results could consider periodic orbits as turnpikes (as in [32]), PDE
formulations (as in, e.g., [10]), or particular nonlinear phenomena (as in [27, 31]) for
the differential algebraic case.

As for the theory of control of DAEs, an immediate strengthening of the results
could be achieved by removing the assumption on impulse controllability. A more
general framework will also consider indefinite cost functionals and suitable replace-
ments for the Riccati equations, as they are used recent works on singular feedback
control [5] or infinite time horizon problems [29].

Another issue, in particular in view of numerical realizations, is the nonuniqueness
of P2 that, from an optimistic point of view, could be exploited for the design of
optimal feedback laws; cp. also [12]. A general open research issue is the development
of numerical schemes for the solution of the generalized algebraic and differential
Riccati equations.
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and Systems Theory, Birkhäuser, Basel, Switzerland, 2003.
[2] A. Backes, Optimale Steuerung der linearen DAE im Fall Index 2, Preprint 2003-04, Institut

für Mathematik, Humboldt-Universität zu Berlin, 2003.
[3] M. Behr, P. Benner, and J. Heiland, Invariant Galerkin ansatz spaces and Davison-Maki

methods for the numerical solution of differential Riccati equations, arXiv e-prints, (2019),
arXiv:1910.13362, pp. 1–33.

[4] D. J. Bender and A. J. Laub, The linear-quadratic optimal regulator for descriptor systems,
IEEE Trans. Autom. Control, 32 (1987), pp. 672–688.



CLASSICAL SYSTEM THEORIE AND TURNPIKE FOR DESCRIPTOR SYSTEMS 29

[5] C. Bhawal and D. Pal, Almost every single-input LQR optimal control problem admits a PD

feedback solution, IEEE Control Systems Letters, 3 (2019), pp. 452–457, https://doi.org/
10.1109/LCSYS.2019.2898388.

[6] F. M. Callier and C. A. Desoer, Linear System Theory, Springer, 1991.
[7] F. M. Callier, J. Winkin, and J. L. Willems, Convergence of the time-invariant Riccati

differential equation and LQ-problem: mechanisms of attraction, International Journal of
Control, 59 (1994), pp. 983–1000, https://doi.org/10.1080/00207179408923113.

[8] D. Cobb, Descriptor variable systems and optimal state regulation, IEEE Trans. Autom. Con-
trol, 28 (1983), pp. 601–611.

[9] L. Dai, Singular Control Systems, no. 118 in Lecture Notes in Control and Information Sciences,
Springer, Berlin, 1989.
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