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Abstract

Variational integrators are derived for structure-preserving simulation of stochastic forced

Hamiltonian systems. The derivation is based on a stochastic discrete Hamiltonian which ap-

proximates a type-II stochastic generating function for the stochastic �ow of the Hamiltonian

system. The generating function is obtained by introducing an appropriate stochastic action

functional and considering a stochastic generalization of the deterministic Lagrange-d'Alembert

principle. Our approach presents a general methodology to derive new structure-preserving nu-

merical schemes. The resulting integrators satisfy a discrete version of the stochastic Lagrange-

d'Alembert principle, and in the presence of symmetries, they also satisfy a discrete counter-

part of stochastic forced Noether's theorem. Furthermore, mean-square and weak Lagrange-

d'Alembert Runge-Kutta methods are proposed and tested numerically to demonstrate their

superior long-time numerical stability and energy behavior compared to non-geometric meth-

ods. The Vlasov Fokker-Planck equation is considered as one of the numerical test cases, and a

new geometric approach to collisional kinetic plasmas is presented.

1 Introduction

Stochastic di�erential equations (SDEs) play an important role in modeling dynamical systems
subject to internal or external random �uctuations. Standard references include [9], [38], [44], [49],
[65], [75]. Within this class of problems, we are interested in stochastic forced Hamiltonian systems,
which take the form

dtq =
∂H

∂p
dt +

m

∑
i=1

∂hi
∂p

○ dW i(t),

dtp = [ − ∂H
∂q

+ F (q, p)]dt +
m

∑
i=1

[ − ∂hi
∂q

+ fi(q, p)] ○ dW i(t), (1.1)
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where H = H(q, p) and hi = hi(q, p) for i = 1, . . . ,m are the Hamiltonian functions, F = F (q, p)
and fi = fi(q, p) are the forcing terms, W (t) = (W 1(t), . . . ,Wm(t)) is the standard m-dimensional
Wiener process, and ○ denotes Stratonovich integration. We use dt to denote the stochastic dif-
ferential of stochastic processes (other than the Wiener process W (t)) to avoid confusion with the
exterior derivative d of di�erential forms. The system (1.1) can be formally regarded as a classi-
cal forced Hamiltonian system with the randomized Hamiltonian given by Ĥ(q, p, t) = H(q, p) +
∑mi=1 hi(q, p)○Ẇ i(t), and the randomized forcing given by F̂ (q, p, t) = F (q, p)+∑mi=1 fi(q, p)○Ẇ i(t),
where H(q, p) and F (q, p) are the deterministic Hamiltonian and forcing, respectively, and hi(q, p),
fi(q, p) represent the intensity of the noise. Equation (1.1) is a generalization of stochastic Hamil-
tonian systems considered in [11], [35], [52], and [69]. Such systems can be used to model, e.g.,
mechanical systems with uncertainty, or error, assumed to arise from random forcing, limited pre-
cision of experimental measurements, or unresolved physical processes on which the Hamiltonian
of the deterministic system might otherwise depend. Applications arise in many models in physics,
chemistry, and biology. Particular examples include molecular dynamics (see, e.g., [10], [39], [50],
[84]), dissipative particle dynamics (see, e.g., [77]), investigations of the dispersion of passive trac-
ers in turbulent �ows (see, e.g., [82], [89]), energy localization in thermal equilibrium (see, e.g.,
[76]), lattice dynamics in strongly anharmonic crystals (see, e.g., [27]), description of noise induced
transport in stochastic ratchets (see, e.g., [51]), and collisional kinetic plasmas ([43], [85]).

As occurs for other SDEs, most Hamiltonian SDEs cannot be solved analytically and one must
resort to numerical simulations to obtain approximate solutions. In principle, general purpose
stochastic numerical schemes for SDEs can be applied to stochastic Hamiltonian systems. However,
as for their deterministic counterparts, stochastic Hamiltonian systems possess several important
geometric features: in the case of systems without forcing, their phase space �ows (almost surely)
preserve the symplectic structure ([11], [68], [69]); when the forcing terms are present, then the
solutions also satisfy the stochastic Lagrange-d'Alembert principle, as will be shown in Section 2,
and in some special cases the phase space �ow may be conformally symplectic (see [12], [36], [70]).
When simulating these systems numerically, it is therefore advisable that the numerical scheme also
preserves such geometric features. Geometric integration of deterministic Hamiltonian systems has
been thoroughly studied (see [28], [64], [81] and the references therein) and symplectic integrators
have been shown to demonstrate superior performance in long-time simulations of Hamiltonian sys-
tems without forcing, compared to non-symplectic methods; so it is natural to pursue a similar
approach for stochastic Hamiltonian systems. This is a relatively recent pursuit. Stochastic sym-
plectic integrators are discussed in [4], [6], [7], [8], [19], [22], [25], [37], [56], [57], [68], [69], [71], [87],
[94], [95], [97], [98].

Long-time accuracy and near preservation of the Hamiltonian by symplectic integrators applied
to deterministic Hamiltonian systems have been rigorously studied using the so-called backward
error analysis (see, e.g., [28] and the references therein). To the best of our knowledge, such general
rigorous results have not yet been proved for stochastic Hamiltonian systems, but backward error
analysis for SDEs is currently an active area of research. Modi�ed SDEs associated with some
particular numerical schemes are considered in [1], [24], [83], [96], and [99]. Backward error analysis
for the Langevin equation with additive noise is studied for several integrators in [2], [45], and [46].
Recently, backward error analysis for a weak symplectic scheme applied to a stochastic Hamiltonian
system has been presented in [5]. The numerical evidence and partial theoretical results to date
are promising and suggest that stochastic geometric integrators indeed possess the property of very
accurately capturing the evolution of the Hamiltonian H over long time intervals.

An important class of geometric integrators are variational integrators. This type of numerical
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schemes is based on discrete variational principles and provides a natural framework for the dis-
cretization of Lagrangian systems, including forced, dissipative, or constrained ones. These methods
have the advantage that they are symplectic when applied to systems without forcing, and in the
presence of a symmetry, they satisfy a discrete version of Noether's theorem. For an overview of
variational integration for deterministic systems see [60]; see also [31], [40], [42], [53], [54], [72], [73],
[80], [91], [93]. Variational integrators were introduced in the context of �nite-dimensional mechan-
ical systems, but were later generalized to Lagrangian �eld theories (see [59]) and applied in many
computations, for example in elasticity, electrodynamics, or �uid dynamics; see [55], [74], [86], [90].

Stochastic variational integrators were �rst introduced in [14] and further studied in [13]. How-
ever, those integrators were restricted to the special case when the Hamiltonian functions hi = hi(q)
were independent of p, and only low-order Runge-Kutta types of discretization were considered.
Stochastic discrete Hamiltonian variational integrators applicable to a general class of Hamiltonian
systems were proposed in [35] by generalizing the variational principle for deterministic systems in-
troduced in [54] and applying a Galerkin type of discretization; see also [33]. In the present work we
extend the ideas put forth in [35] to forced systems of the form (1.1) and propose the corresponding
Lagrange-d'Alembert variational integrators.

When the forcing terms in Eq. (1.1) are linear functions of the momentum variable p, then
the stochastic �ow of the system is conformally symplectic (see [70] and Section 2.4). Stochastic
conformally symplectic integrators for such systems were proposed in [12], [15], and [36]. Quasi-
symplectic integrators were introduced in [70] and further studied in [66]. These ideas are very
interesting, but at present seem to be limited only to systems that exhibit a very special form, that
is, systems with separable Hamiltonians, linear forcing terms, and additive noise. The stochastic
Lagrange-d'Alembert variational integrators introduced in Section 3 are applicable to the general
class of systems of the form (1.1) and preserve their underlying variational structure.

Main content The main content of the remainder of this paper is, as follows.

In Section 2 we introduce a stochastic Lagrange-d'Alembert principle and a stochastic generating
function suitable for considering stochastic forced Hamiltonian systems, and we discuss their
properties.

In Section 3 we present a general framework for constructing stochastic Lagrange-d'Alembert
variational integrators, prove the discrete stochastic Lagrange-d'Alembert principle, propose
mean-square and weak stochastic Lagrange-d'Alembert partitioned Runge-Kutta methods,
and present several particularly interesting examples of low-stage schemes. We also discuss
connections with the idea of quasi-symplectic integrators.

In Section 4 we present the results of our numerical tests, which verify the excellent long-time per-
formance of our integrators compared to some popular non-geometric methods. In particular,
as one of the test cases we consider the Vlasov Fokker-Planck equation, which is used as a
model for collisional kinetic plasmas.

Section 5 contains the summary of our work.
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2 Lagrange-d'Alembert principle for stochastic forced Hamiltonian

systems

The stochastic variational integrators proposed in [14] and [13] were formulated for dynamical
systems which are described by a Lagrangian and which are subject to noise whose magnitude
depends only on the position q. Therefore, these integrators can be extended to (1.1) only if the
Hamiltonian functions hi = hi(q) are independent of p and the Hamiltonian H is non-degenerate
(i.e., the associated Legendre transform is invertible). However, in the case of general hi = hi(q, p)
the paths q(t) of the system become almost surely nowhere di�erentiable, which poses a di�culty in
interpreting the meaning of the corresponding Lagrangian. To avoid these kind of issues, in [35] an
action functional based on a phase space Lagrangian was introduced, and variational integrators for
unforced Hamiltonian systems were constructed. In the present work we extend the approach taken
in [35] to include forced Hamiltonian systems. To begin, in the next section, we will introduce an
appropriate stochastic action functional and show that it can be used to de�ne a type-II generating
function for the stochastic �ow of the system (1.1).

2.1 Stochastic Lagrange-d'Alembert principle

Let the Hamiltonian functions H ∶ T ∗Q Ð→ R and hi ∶ T ∗Q Ð→ R for i = 1, . . . ,m be de�ned
on the cotangent bundle T ∗Q of the con�guration manifold Q, and let (q, p) denote the canonical
coordinates on T ∗Q. The Hamiltonian forces F ∶ T ∗Q Ð→ T ∗Q and fi ∶ T ∗Q Ð→ T ∗Q for i =
1, . . . ,m are �ber-preserving mappings with the coordinate representations F (q, p) = (q,F (q, p))
and fi(q, p) = (q, fi(q, p)), respectively, where by a slight abuse of notation we use the same symbol
to denote the force and its local representation. For simplicity, in this work we assume that the
con�guration manifold has a vector space structure, Q ≅ RN , so that T ∗Q = Q × Q∗ ≅ RN × RN
and TQ = Q ×Q ≅ RN × RN . In this case, the natural pairing between one-forms and vectors can
be identi�ed with the scalar product on RN , that is, ⟨(q, p), (q, q̇)⟩ = p ⋅ q̇, where (q, q̇) denotes
the coordinates on TQ. Let (Ω,F ,P) be the probability space with the �ltration {Ft}t≥0, and let
W (t) = (W 1(t), . . . ,Wm(t)) denote a standard m-dimensional Wiener process on that probability
space (such that W (t) is Ft-measurable). We will assume that the Hamiltonian functions and
the forcing terms are su�ciently smooth and satisfy all the necessary conditions for the existence
and uniqueness of solutions to (1.1), and their extendability to a given time interval [ta, tb] with
tb > ta ≥ 0. One possible set of such assumptions can be formulated by considering the Itô form
of (1.1),

dtz = A(z)dt +B(z)dW (t), (2.1)

with z = (q, p) and

A(z) =
⎛
⎜
⎝

∂H
∂p +

1
2 ∑

m
i=1 [

∂2hi
∂p∂q

∂hi
∂p +

∂2hi
∂p2

(fi − ∂hi
∂q )]

−∂H∂q + F + 1
2 ∑

m
i=1 [(

∂2hi
∂q∂p −

∂fi
∂p )(

∂hi
∂p − fi) − (∂

2hi
∂q2

− ∂fi
∂q )

∂hi
∂p ]

⎞
⎟
⎠
, B(z) =

⎛
⎝

(∂h
∂p

)T

−(∂h∂q )
T + f

⎞
⎠
,

(2.2)

where ∂2hi/∂q2, ∂2hi/∂p2, and ∂2hi/∂q∂p denote the Hessian matrices of hi, whereas ∂h/∂q, ∂h/∂p,
∂fi/∂q, and ∂fi/∂p denote the Jacobian matrices of h = (h1, . . . , hm) and fi, respectively, and the
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n ×m forcing matrix f is de�ned as f = (f1, . . . , fm). For simplicity and clarity of the exposition,
throughout this paper we assume that (see [9], [38], [44], [49])

(H1) H and hi for i = 1, . . . ,m are C2 functions of their arguments

(H2) F and fi for i = 1, . . . ,m are C1 functions of their arguments

(H3) A and B are globally Lipschitz

These assumptions are su�cient for our purposes, but could be relaxed if necessary. De�ne the
space

C([ta, tb]) = {(q, p) ∶ Ω×[ta, tb]Ð→ T ∗Q ∣ q, p are almost surely continuous Ft-adapted semimartingales}.
(2.3)

Since we assume T ∗Q ≅ RN ×RN , the space C([ta, tb]) is a vector space (see [75]). Therefore, we can
identify the tangent space TC([ta, tb]) ≅ C([ta, tb]) ×C([ta, tb]). We can now de�ne the following
stochastic action functional, B ∶ Ω ×C([ta, tb])Ð→ R,

B[q(⋅), p(⋅)] = p(tb)q(tb) − ∫
tb

ta
[p ○ dtq −H(q(t), p(t))dt −

m

∑
i=1

hi(q(t), p(t)) ○ dW i(t)], (2.4)

where ○ denotes Stratonovich integration, and we have omitted writing the elementary events ω ∈ Ω
as arguments of functions, following the standard convention in stochastic analysis. For a given
curve (q(t), p(t)) in T ∗Q and its arbitrary variation (δq(t), δp(t)), we de�ne the corresponding
variation of the action functional as

δB[q(⋅), p(⋅)] ≡ d

dε
∣
ε=0

B[q(⋅) + εδq(⋅), p(⋅) + εδp(⋅)]. (2.5)

Theorem 2.1 (Stochastic Lagrange-d'Alembert Principle in Phase Space). Suppose that

H(q, p), F (q, p), and hi(q, p), fi(q, p) for i = 1, . . . ,m satisfy conditions (H1)-(H3). If the curve
(q(t), p(t)) in T ∗Q satis�es the stochastic forced Hamiltonian system (1.1) for t ∈ [ta, tb], where
tb ≥ ta > 0, then it also satis�es the integral equation

δB[q(⋅), p(⋅)] − ∫
tb

ta
F(q(t), p(t)) ⋅ δq(t)dt −

m

∑
i=1
∫

tb

ta
fi(q(t), p(t)) ⋅ δq(t) ○ dW i(t) = 0 , (2.6)

almost surely for all variations (δq(⋅), δp(⋅)) ∈ C([ta, tb]) such that almost surely δq(ta) = 0 and

δp(tb) = 0.

Proof. Let the curve (q(t), p(t)) in T ∗Q satisfy (1.1) for t ∈ [ta, tb]. It then follows that the
stochastic processes q(t) and p(t) are almost surely continuous, Ft-adapted semimartingales, that
is, (q(⋅), p(⋅)) ∈ C([ta, tb]) (see [9], [75]). We calculate the variation (2.5) as
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δB[q(⋅), p(⋅)] = p(tb)δq(tb) − ∫
tb

ta
p(t) ○ dtδq(t) − ∫

tb

ta
δp(t) ○ dtq(t)

+ ∫
tb

ta
[∂H
∂q

(q(t), p(t)) δq(t) + ∂H
∂p

(q(t), p(t)) δp(t)]dt

+
m

∑
i=1
∫

tb

ta
[∂hi
∂q

(q(t), p(t)) δq(t) + ∂hi
∂p

(q(t), p(t)) δp(t)] ○ dW i(t), (2.7)

where we have used the end point condition, δp(tb) = 0. Since the Hamiltonians are C2 and the
processes q(t), p(t) are almost surely continuous, in the last two lines we have used a dominated
convergence argument to interchange di�erentiation with respect to ε and integration with respect
to t and W (t). Upon applying the integration by parts formula for semimartingales (see [75]), we
�nd

∫
tb

ta
p(t) ○ dtδq(t) = p(tb)δq(tb) − p(ta)δq(ta) − ∫

tb

ta
δq(t) ○ dtp(t). (2.8)

Substituting and rearranging terms produces,

δB[q(⋅), p(⋅)] = ∫
tb

ta
δq(t)[ ○ dtp(t) +

∂H

∂q
(q(t), p(t))dt +

m

∑
i=1

∂hi
∂q

(q(t), p(t)) ○ dW i(t)]

− ∫
tb

ta
δp(t)[ ○ dtq(t) −

∂H

∂p
(q(t), p(t))dt −

m

∑
i=1

∂hi
∂p

(q(t), p(t)) ○ dW i(t)], (2.9)

where we have used δq(ta) = 0. Therefore, we have

δB[q(⋅), p(⋅)] − ∫
tb

ta
F(q(t), p(t)) ⋅ δq(t)dt −

m

∑
i=1
∫

tb

ta
fi(q(t), p(t)) ⋅ δq(t) ○ dW i(t)

= ∫
tb

ta
δq(t)

⎡⎢⎢⎢⎢⎣
○ dtp(t) + (∂H

∂q
(q(t), p(t)) − F(q(t), p(t)))dt +

m

∑
i=1

(∂hi
∂q

(q(t), p(t)) − fi(q(t), p(t))) ○ dW i(t)
⎤⎥⎥⎥⎥⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

− ∫
tb

ta
δp(t)[ ○ dtq(t) −

∂H

∂p
(q(t), p(t))dt −

m

∑
i=1

∂hi
∂p

(q(t), p(t)) ○ dW i(t)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

. (2.10)

Since (q(t), p(t)) satisfy (1.1), then by de�nition we have that almost surely for all t ∈ [ta, tb],

q(t) = q(ta) + ∫
t

ta

∂H

∂p
(q(s), p(s))ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M0(t)

+
m

∑
i=1
∫

t

ta

∂hi
∂p

(q(s), p(s)) ○ dW i(s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Mi(t)

, (2.11)

that is, q(t) can be represented as the sum of the semi-martingalesMi(t) for i = 0, . . . ,m, where the
sample paths of the process M0(t) are almost surely continuously di�erentiable. Let us calculate
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∫
tb

ta
δp(t) ○ dtq(t) = ∫

tb

ta
δp(t) ○ dt(q(ta) +M0(t) +

m

∑
i=1

Mi(t))

= ∫
tb

ta
δp(t) ○ dtM0(t) +

m

∑
i=1
∫

tb

ta
δp(t) ○ dtMi(t)

= ∫
tb

ta
δp(t)∂H

∂p
(q(t), p(t))dt +

m

∑
i=1
∫

tb

ta
δp(t)∂hi

∂p
(q(t), p(t)) ○ dW i(t), (2.12)

where in the last equality we have used the standard property of the Riemann-Stieltjes integral
for the �rst term, as M0(t) is almost surely di�erentiable, and the associativity property of the
Stratonovich integral for the second term (see [75], [38]). Substituting (2.12) in the term B of
(2.10), we show that B = 0. By a similar argument we also prove that A = 0. Therefore, the
left-hand side of (2.10) is equal to zero, almost surely.

Remark: It is natural to expect that the converse theorem, that is, if (q(⋅), p(⋅)) satisfy the integral
principle (2.6), then the curve (q(t), p(t)) is a solution to (1.1), should also hold, although a larger
class of variations (δq, δp) may be necessary. Variants of such a theorem for systems without forcing
have been proved in Lázaro-Camí & Ortega [52] and Bou-Rabee & Owhadi [14]. We leave this as
an open question. Here, we will use the action functional (2.4) and the Lagrange-d'Alembert prin-
ciple (2.6) to construct numerical schemes, and we will directly verify that these numerical schemes
converge to solutions of (1.1).

2.2 Stochastic type-II generating function and forcing

When the functions H(q, p), F (q, p), hi(q, p), and fi(q, p) satisfy standard measurability and regu-
larity conditions (e.g., (H1)-(H3)), then the system (1.1) possesses a pathwise unique stochastic �ow
Ft,t0 ∶ Ω × T ∗QÐ→ T ∗Q. It can be proved that for �xed t, t0 this �ow is mean-square di�erentiable
with respect to the q, p arguments, and is also almost surely a di�eomorphism (see [9], [38], [44], [49]).
We will show below that the action functional (2.4) can be used to construct a type II generating
function for Ft,t0 . Let (q̄(t), p̄(t)) be a particular solution of (1.1) on [ta, tb]. Suppose that for al-
most all ω ∈ Ω there is an open neighborhood U(ω) ⊂ Q of q̄(ω, ta), an open neighborhood V(ω) ⊂ Q∗

of p̄(ω, tb), and an open neighborhood W(ω) ⊂ T ∗Q of the curve (q̄(ω, t), p̄(ω, t)) such that for all
qa ∈ U(ω) and pb ∈ V(ω) there exists a pathwise unique solution (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) of (1.1)
which satis�es q̄(ω, ta; qa, pb) = qa, p̄(ω, tb; qa, pb) = pb, and (q̄(ω, t; qa, pb), p̄(ω, t; qa, pb)) ∈W(ω) for
ta ≤ t ≤ tb. (As in the deterministic case, for tb su�ciently close to ta one can argue that such
neighborhoods exist; see [58].) De�ne the function S ∶ Y Ð→ R as

S(qa, pb) = B[q̄(⋅; qa, pb), p̄(⋅; qa, pb)], (2.13)

where the domain Y ⊂ Ω ×Q ×Q∗ is given by Y = ⋃
ω∈Ω

{ω} × U(ω) × V(ω). De�ne further the two

functions F ± ∶ Y Ð→ RN as
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F−(qa, pb) = ∫
tb

ta
(∂q̄(t; qa, pb)

∂qa
)
T

[F(q̄(t; qa, pb), p̄(t; qa, pb))dt +
m

∑
i=1

fi(q̄(t; qa, pb), p̄(t; qa, pb)) ○ dW i(t)],

F+(qa, pb) = ∫
tb

ta
(∂q̄(t; qa, pb)

∂pb
)
T

[F(q̄(t; qa, pb), p̄(t; qa, pb))dt +
m

∑
i=1

fi(q̄(t; qa, pb), p̄(t; qa, pb)) ○ dW i(t)].

(2.14)

Below we prove that the functions S and F± generate1 the stochastic �ow Ftb,ta .

Theorem 2.2. The function S(qa, pb) is a type-II stochastic generating function and the functions

F±(qa, pb) are type-II stochastic exact discrete forces for the stochastic mapping Ftb,ta , that is, Ftb,ta ∶
(qa, pa)Ð→ (qb, pb) is implicitly given by the equations

qb =D2S(qa, pb) − F+(qa, pb), pa =D1S(qa, pb) − F−(qa, pb), (2.15)

where the derivatives are understood in the mean-square sense.

Proof. Under appropriate regularity assumptions on the Hamiltonians and forces (e.g., (H1)-(H3)),
the solutions q̄(t; qa, pb) and p̄(t; qa, pb) are mean-square di�erentiable with respect to the parameters
qa and pb, and the partial derivatives are semimartingales (see [9]). We calculate the derivative of
S as

∂S

∂qa
(qa, pb) = (∂q̄(tb)

∂qa
)
T

pb − ∫
tb

ta
(∂p̄(t)
∂qa

)
T

○ dtq̄(t) − ∫
tb

ta
dt(

∂q̄(t)
∂qa

)
T

○ p̄(t)

+ ∫
tb

ta
[(∂q̄(t)

∂qa
)
T
∂H

∂q
(q̄(t), p̄(t)) + (∂p̄(t)

∂qa
)
T
∂H

∂p
(q̄(t), p̄(t))]dt

+
m

∑
i=1
∫

tb

ta
[(∂q̄(t)

∂qa
)
T
∂hi
∂q

(q̄(t), p̄(t)) + (∂p̄(t)
∂qa

)
T
∂hi
∂p

(q̄(t), p̄(t))] ○ dW i(t), (2.16)

where for notational convenience we have omitted writing qa and pb explicitly as arguments of q̄(t)
and p̄(t). Applying the integration by parts formula for semimartingales (see [75]), we �nd

∫
tb

ta
dt(

∂q̄(t)
∂qa

)
T

○ p̄(t) = (∂q̄(tb)
∂qa

)
T

pb − p̄(ta) − ∫
tb

ta
(∂q̄(t)
∂qa

)
T

○ dtp̄(t), (2.17)

where the left-hand side integral is understood as a column vector with the components given by

N

∑
j=1
∫

tb

ta
p̄j(t) ○ dt

∂q̄j(t)
∂qia

, (2.18)

for each i = 1, . . . ,N . Substituting and rearranging terms, we obtain

1A generating function for the transformation (qa, pa) Ð→ (qb, pb) is a function of one of the variables (qa, pa)
and one of the variables (qb, pb). Therefore, there are four basic types of generating functions: S = S1(qa, qb),
S = S2(qa, pb), S = S3(pa, qb), and S = S4(pa, pb). In this work we use the type-II generating function S = S2(qa, pb).
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∂S

∂qa
(qa, pb) = p̄(ta) + ∫

tb

ta
(∂q̄(t)
∂qa

)
T

[ ○ dtp̄ +
∂H

∂q
(q̄(t), p̄(t))dt +

m

∑
i=1

∂hi
∂q

(q̄(t), p̄(t)) ○ dW i(t)]

+ ∫
tb

ta
(∂p̄(t)
∂qa

)
T

[ ○ dtq̄ −
∂H

∂p
(q̄(t), p̄(t))dt −

m

∑
i=1

∂hi
∂p

(q̄(t), p̄(t)) ○ dW i(t)]

= p̄(ta) + ∫
tb

ta
(∂q̄(t)
∂qa

)
T

[F (q̄(t), p̄(t))dt +
m

∑
i=1

fi(q̄(t), p̄(t)) ○ dW i(t)],

= p̄(ta) + F −(qa, pb), (2.19)

since (q̄(t), p̄(t)) is a solution of (1.1). After performing similar manipulations for ∂S/∂pb(qa, pb),
together we obtain the result

q̄(tb) =D2S(qa, pb) − F +(qa, pb), p̄(ta) =D1S(qa, pb) − F−(qa, pb). (2.20)

By de�nition of the �ow, then Ftb,ta(qa, p̄(ta)) = (q̄(tb), pb).

2.3 Stochastic forced Noether's theorem

Let a Lie group G act on Q by the left action Φ ∶ G ×Q Ð→ Q. The Lie group G then acts on TQ
and T ∗Q by the tangent ΦTQ ∶ G×TQÐ→ TQ and cotangent ΦT ∗Q ∶ G×T ∗QÐ→ T ∗Q lift actions,
respectively, given in coordinates by the formulas (see [32], [58])

ΦTQ
g (q, q̇) ≡ ΦTQ(g, (q, q̇)) = (Φi

g(q),
∂Φi

g

∂qj
(q)q̇j),

ΦT ∗Q
g (q, p) ≡ ΦT ∗Q(g, (q, p)) = (Φi

g(q), pj
∂Φj

g−1

∂qi
(Φg(q))), (2.21)

where i, j = 1, . . . ,N and summation is implied over repeated indices. Let g denote the Lie algebra of
G and exp ∶ gÐ→ G the exponential map (see [32], [58]). Each element ξ ∈ g de�nes the in�nitesimal
generators ξQ, ξTQ, and ξT ∗Q, which are vector �elds on Q, TQ, and T ∗Q, respectively, given by

ξQ(q) =
d

dλ
∣
λ=0

Φexpλξ(q), ξTQ(q, q̇) =
d

dλ
∣
λ=0

ΦTQ
expλξ(q, q̇), ξT ∗Q(q, p) =

d

dλ
∣
λ=0

ΦT ∗Q
expλξ(q, p).

(2.22)

The momentum map J ∶ T ∗Q Ð→ g∗ associated with the action ΦT ∗Q is de�ned as the mapping
such that for all ξ ∈ g the function Jξ ∶ T ∗Q ∋ (q, p) Ð→ ⟨J(q, p), ξ⟩ ∈ R is the Hamiltonian for the
in�nitesimal generator ξT ∗Q, i.e.,

ξqT ∗Q =
∂Jξ

∂p
, ξpT ∗Q = −

∂Jξ

∂q
, (2.23)
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where ξT ∗Q(q, p) = (q, p, ξqT ∗Q(q, p), ξ
p
T ∗Q(q, p)). The momentum map J can be explicitly expressed

as (see [32], [58])

Jξ(q, p) = p ⋅ ξQ(q). (2.24)

Noether's theorem for deterministic Hamiltonian systems relates symmetries of the Hamiltonian
to quantities preserved by the �ow of the system (see [32], [58]). When the Hamiltonian system is
subject to external forces that are orthogonal to the in�nitesimal generators of the symmetry group,
then the corresponding momentum maps are still conserved (see [60]). It turns out that this result
carries over to the stochastic case, as well. A stochastic version of Noether's theorem for systems
without forcing was proved in [11], [35], and [52]. Below we state and provide a proof of Noether's
theorem for stochastic forced Hamiltonian systems.

Theorem 2.3 (Stochastic forced Noether's theorem). Suppose that the Hamiltonians H ∶
T ∗QÐ→ R and hi ∶ T ∗QÐ→ R for i = 1, . . . ,m are invariant with respect to the cotangent lift action

ΦT ∗Q ∶ G × T ∗QÐ→ T ∗Q of the Lie group G, that is,

H ○ΦT ∗Q
g =H, hi ○ΦT ∗Q

g = hi, i = 1, . . . ,m, (2.25)

for all g ∈ G. If the forcing terms are orthogonal to the in�nitesimal generators of G, that is,

F (q, p) ⋅ ξQ(q) = 0, fi(q, p) ⋅ ξQ(q) = 0, i = 1, . . . ,m, (2.26)

for all ξ ∈ g and (q, p) ∈ T ∗Q, then the cotangent lift momentum map J ∶ T ∗QÐ→ g∗ associated with
ΦT ∗Q is almost surely preserved along the solutions of the stochastic forced Hamiltonian system (1.1).

Proof. Equation (2.25) implies that the Hamiltonians are in�nitesimally invariant with respect to
the action of G, that is, for all ξ ∈ g we have

dH ⋅ ξT ∗Q = 0, dh ⋅ ξT ∗Q = 0, (2.27)

where dH and dh denote di�erentials with respect to the variables q and p. Let (q(t), p(t)) be a
solution of (1.1) and consider the stochastic process Jξ(q(t), p(t)), where ξ ∈ g is arbitrary. Using
the rules of Stratonovich calculus we can calculate the stochastic di�erential

dtJξ(q(t), p(t)) =
∂Jξ

∂q
(q(t), p(t)) ○ dtq(t) +

∂Jξ

∂p
(q(t), p(t)) ○ dtp(t)

= ( − ∂H
∂q

ξqT ∗Q −
∂H

∂p
ξpT ∗Q + F ⋅ ξqT ∗Q)dt +

m

∑
i=1

( − ∂hi
∂q

ξqT ∗Q −
∂hi
∂p

ξpT ∗Q + fi ⋅ ξ
q
T ∗Q) ○ dW

i(t)

= ( − dH ⋅ ξT ∗Q + F ⋅ ξqT ∗Q)dt +
m

∑
i=1

( − dhi ⋅ ξT ∗Q + fi ⋅ ξqT ∗Q) ○ dW
i(t)

= F (q(t), p(t)) ⋅ ξQ(q(t))dt +
m

∑
i=1

fi(q(t), p(t)) ⋅ ξQ(q(t)) ○ dW i(t), (2.28)
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where we used (1.1), (2.23), (2.24), and (2.27). Therefore, if (2.26) holds, then Jξ(q(t), p(t)) = const
almost surely for all ξ ∈ g, which completes the proof.

Remark. When the external forces are not all orthogonal to the in�nitesimal generators of the
symmetry group, formula (2.28) provides the rate of change of the momentum map.

2.4 Conformal symplecticity and phase space volume

The �ow Ft,t0 for stochastic Hamiltonian systems without forcing almost surely preserves the canon-
ical symplectic two-form

ΩT ∗Q = dq ∧ dp =
N

∑
i=1

dqi ∧ dpi, (2.29)

that is, F ∗
t,t0ΩT ∗Q = ΩT ∗Q, where F

∗
t,t0 denotes the pull-back by the �ow Ft,t0 (see [69], [11], [52]).

This property does not hold for the general stochastic forced Hamiltonian system (1.1). However,
for certain choices of the forcing terms, the �ow may be conformally symplectic, which means that
for all t ≥ t0 there exists a constant (possibly random) ct,t0 ∈ R such that

F ∗
t,t0ΩT ∗Q = ct,t0 ΩT ∗Q. (2.30)

Deterministic conformally symplectic systems are considered in [63]. Conformal symplecticity for
the special case of (1.1) with a separable Hamiltonian, an additive noise, and the forcing terms
equal to F (q, p) = −νp with a real parameter ν, and fi(q, p) = 0 for i = 1, . . . ,m, was considered in
[12] and [36]. Below we demonstrate that the property of conformal symplecticity persists for more
general cases.

Theorem 2.4 (Conformal symplecticity). Suppose that H(q, p), F (q, p), and hi(q, p), fi(q, p)
for i = 1, . . . ,m satisfy conditions (H1)-(H3). If the forcing terms have the form

F (q, p) = −ν0p, fi(q, p) = −νip, i = 1, . . . ,m, (2.31)

for real parameters νi, then the stochastic �ow Ft,t0 for (1.1) is almost surely conformally symplectic
with the parameter ct,t0 in (2.30) given by

ct,t0 = exp (−ν0(t − t0) −
m

∑
i=1

νi(W i(t) −W i(t0))) (2.32)

for all t ≥ t0.

Proof. For �xed (q, p) ∈ T ∗Q, the stochastic process Ft,t0(q, p) satis�es the system (1.1), which can
be written as

dtFt,t0(q, p) =X(Ft,t0(q, p))dt +
m

∑
i=1

Yi(Ft,t0(q, p)) ○ dW
i(t), (2.33)

where X and Yi are vector �elds on T
∗Q, and are given by, respectively,
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X = ∂H
∂p

∂

∂q
+ [ − ∂H

∂q
+ F (q, p)] ∂

∂p
, Yi =

∂hi
∂p

∂

∂q
+ [ − ∂hi

∂q
+ fi(q, p)]

∂

∂p
, i = 1, . . . ,m.

(2.34)

Let us calculate the stochastic di�erential of F ∗
t,t0ΩT ∗Q. Using the stochastic generalization of the

dynamic de�nition of the Lie derivative (see Theorem 1.2 in [33]), we can write

dt(F ∗
t,t0ΩT ∗Q) = F ∗

t,t0(¿XΩT ∗Q)dt +
m

∑
i=1

F ∗
t,t0(¿YiΩT ∗Q) ○ dW i(t), (2.35)

where ¿X and ¿Yi denote the Lie derivatives with respect to the vector �elds X and Yi, respectively.
Using Cartan's magic formula (see, e.g., [3]) we have that

¿XΩT ∗Q = diXΩT ∗Q + iXdΩT ∗Q = diXΩT ∗Q, (2.36)

since dΩT ∗Q = 0, where iX denotes the interior product with the vector �eld X. Substituting (2.34),
(2.31), and (2.29), we obtain

¿XΩT ∗Q = −ν0 ΩT ∗Q, (2.37)

since the Hamiltonian function H is C2. In a similar fashion we show that ¿YiΩT ∗Q = −νiΩT ∗Q.
Plugging this in (2.35), we obtain a stochastic di�erential equation of the form

dt(F ∗
t,t0ΩT ∗Q) = −ν0(F ∗

t,t0ΩT ∗Q)dt −
m

∑
i=1

νi(F ∗
t,t0ΩT ∗Q) ○ dW i(t). (2.38)

It is straightforward to verify that the solution of (2.38) that satis�es the initial condition F ∗
t0,t0ΩT ∗Q =

ΩT ∗Q has the form

F ∗
t,t0ΩT ∗Q = ct,t0 ΩT ∗Q (2.39)

with ct,t0 given by (2.32), which proves the conformal symplecticity of the �ow F ∗
t,t0 . It holds almost

surely, since the solution of the SDE (2.38) is pathwise unique (see [9], [38], [44], [49]).

The evolution of stochastic Hamiltonian systems without forcing preserves volumes in phase
space, that is, for the standard volume form on T ∗Q de�ned as

µ = dq1 ∧ . . . ∧ dqN ∧ dp1 ∧ . . . dpN (2.40)

we have that F ∗
t,t0µ = µ. This is a direct consequence of the symplecticity of the �ow. Phase space

volume preservation does not hold for the general forced system (1.1), although for certain choices
of the forcing terms the �ow F ∗

t,t0 may possess a property similar to (2.30). Such a property was
proved for the special case of (1.1) with a separable Hamiltonian, an additive noise, and the forcing
terms equal to F (q, p) = −Γp with a constant N ×N matrix Γ, and fi(q, p) = 0 for i = 1, . . . ,m (see
[11], [36], [66], [67], [68], [69], [70]). Below we demonstrate that this property holds also for more
general cases.
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Theorem 2.5 (Phase space volume evolution). Suppose that H(q, p), F (q, p), and hi(q, p),
fi(q, p) for i = 1, . . . ,m satisfy conditions (H1)-(H3). If the forcing terms have the form

F (q, p) = −Γ0p, fi(q, p) = −Γip, i = 1, . . . ,m, (2.41)

for constant N ×N matrices Γi, then the phase space volume form µ for t ≥ t0 almost surely evolves

according to the formula

F ∗
t,t0µ = bt,t0 µ, (2.42)

where

bt,t0 = exp (− tr Γ0 ⋅ (t − t0) −
m

∑
i=1

tr Γi ⋅ (W i(t) −W i(t0))), (2.43)

and Ft,t0 is the stochastic �ow for (1.1).

Proof. Similar to (2.35), we can write

dt(F ∗
t,t0µ) = F

∗
t,t0(¿Xµ)dt +

m

∑
i=1

F ∗
t,t0(¿Yiµ) ○ dW

i(t). (2.44)

Using the property of the divergence operator (see, e.g., [3]), we calculate

¿Xµ = (divX) ⋅ µ = −(tr Γ0) ⋅ µ, (2.45)

where we have used (2.34) and (2.41), and the fact that the Hamiltonian function H is C2. In a
similar way we show that ¿Yiµ = −(tr Γi) ⋅ µ. Therefore, we obtain the SDE of the form

dt(F ∗
t,t0µ) = −(tr Γ0) ⋅ (F ∗

t,t0µ)dt −
m

∑
i=1

(tr Γi) ⋅ (F ∗
t,t0µ) ○ dW

i(t). (2.46)

It is straightforward to verify that the solution that satis�es the initial condition F ∗
t0,t0µ = µ is given

by (2.42) with bt,t0 as in (2.43). The formula (2.42) holds almost surely, because the solution of the
SDE is pathwise unique (see [9], [38], [44], [49]).

3 Stochastic Lagrange-d'Alembert variational integrators

Suppose we would like to solve (1.1) on the interval [0, T ] with the initial conditions (q0, p0) ∈ T ∗Q.
Consider the discrete set of times tk = k ⋅∆t for k = 0,1, . . . ,K, where ∆t = T /K is the time step.
In order to determine the discrete curve {(qk, pk)}k=0,...,K that approximates the exact solution of
(1.1) at times tk we need to construct an approximation of the exact stochastic �ow Ftk+1,tk on
each interval [tk, tk+1], so that (qk+1, pk+1) ≈ Ftk+1,tk(qk, pk). A numerical method respecting the
underlying Lagrange-d'Alembert principle (2.6) can be constructed by approximating the generating
function and forcing terms in (2.15). Let the discrete Hamiltonian function H+

d (qa, pb; ta, tb) be an
approximation of the generating function (2.13), and let the discrete forces F±

d (qa, pb; ta, tb) be
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approximations of the forcing terms (2.14). The approximate numerical �ow F +
tk+1,tk ∶ (qk, pk) Ð→

(qk+1, pk+1) is now generated as in (2.20):

qk+1 =D2H
+
d (qk, pk+1; tk, tk+1) − F+

d (qk, pk+1; tk, tk+1),
pk =D1H

+
d (qk, pk+1; tk, tk+1) − F −

d (qk, pk+1; tk, tk+1). (3.1)

If there is no risk of confusion, we will omit writing the time arguments of H+
d and F±

d . We will
refer to the scheme (3.1) as a stochastic Lagrange-d'Alembert variational integrator.

3.1 Discrete stochastic Lagrange-d'Alembert principle

The advantage of the integrator (3.1) is that it follows from a discrete version of the stochastic
Lagrange-d'Alembert principle (2.6). The discrete Lagrange-d'Alembert principle for deterministic
Lagrangian systems was proposed in [42]; see also [60]. Below we generalize it to the stochastic case
in the setting of Hamiltonian systems de�ned on the phase space T ∗Q. De�ne the discrete random
curve space Cd as

Cd = {{(qk, pk)}k=0,...,K
∣ (qk, pk) ∶ ΩÐ→ T ∗Q are random variables for each k = 0, . . . ,K}. (3.2)

On that space de�ne the discrete action functional, Bd ∶ Ω ×Cd Ð→ R,

Bd[{(qk, pk)}k=0,...,K] = pKqK −
K−1

∑
k=0

(pk+1qk+1 −H+
d (qk, pk+1; tk, tk+1)). (3.3)

Note that Bd is an approximation of the stochastic action functional (2.4) on the interval [0, T ].

Theorem 3.1 (Discrete stochastic Lagrange-d'Alembert Principle in Phase Space). Sup-

pose the discrete Hamiltonian H+
d is almost surely continuously di�erentiable, and the discrete

forces F±
d are almost surely continuous with respect to their arguments. The discrete random curve

{(qk, pk)}k=0,...,K satis�es the set of equations

qk =D2H
+
d (qk−1, pk; tk−1, tk) − F+

d (qk−1, pk; tk−1, tk),
pk =D1H

+
d (qk, pk+1; tk, tk+1) − F −

d (qk, pk+1; tk, tk+1), (3.4)

almost surely for k = 1, . . . ,K − 1, if and only if it almost surely satis�es the variational equation

δBd −
K−1

∑
k=0

(F−
d (qk, pk+1)δqk + F+

d (qk, pk+1)δpk+1) = 0 (3.5)

for all variations {(δqk, δpk)}k=0,...,K such that δq0 = 0 and δpK = 0 almost surely.

Proof. Consider an arbitrary random curve {(qk, pk)}k=0,...,K . Let us calculate the variation δBd
corresponding to the arbitrary variation {(δqk, δpk)}k=0,...,K with δq0 = 0 and δpK = 0 (almost
surely). We have
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δBd = pKδqK −
K−1

∑
k=0

(δpk+1qk+1 + pk+1δqk+1 −D1H
+
d (qk, pk+1; tk, tk+1)δqk −D2H

+
d (qk, pk+1; tk, tk+1)δpk+1)

= −
K−1

∑
k=0

(qk+1 −D2H
+
d (qk, pk+1; tk, tk+1))δpk+1 −

K−1

∑
k=0

(pk −D1H
+
d (qk, pk+1; tk, tk+1))δqk, (3.6)

where in the second equality we have shifted the summation index in the δqk+1 term and used the
fact that δq0 = 0. It is now straightforward to see that if the set of equations (3.4) is satis�ed, then
the variational equation (3.5) holds almost surely. Conversely, if the variational equation (3.5) holds
for all variations {(δqk, δpk)}k=0,...,K with δq0 = 0 and δpK = 0, then the set of equations (3.4) has
to be satis�ed almost surely.

3.2 Discrete stochastic forced Noether's theorem

Another advantage of the integrator (3.1) is that one can prove the discrete counterpart of stochastic
forced Noether's theorem. If the discrete system inherits the symmetries of the continuous problem,
then the evolution of the momentum maps will be accurately captured by the numerical solution.
Discrete Noether's theorem for systems described by a type-II generating function was �rst proved
for deterministic systems in [54], and later generalized to the stochastic case in [35]. Discrete forced
Noether's theorem for deterministic Lagrangian systems with forcing was �rst proposed in [60].
Below we combine these ideas and formulate a version of discrete Noether's theorem applicable to
discrete systems described by (3.1). Let Rd ∶ Ω×Q×T ∗QÐ→ R be the generalized discrete stochastic
Lagrangian de�ned as

Rd(qk, qk+1, pk+1) = pk+1qk+1 −H+
d (qk, pk+1). (3.7)

Consider the action of the Lie group G on Q × T ∗Q given by

ΦQ×T ∗Q
g (qk, qk+1, pk+1) = (Φg(qk),ΦT ∗Q

g (qk+1, pk+1)). (3.8)

For any ξ ∈ g the corresponding in�nitesimal generator on Q × T ∗Q is then given by

ξQ×T ∗Q(qk, qk+1, pk+1) = (ξQ(qk), ξT ∗Q(qk+1, pk+1)) = (ξQ(qk), ξqT ∗Q(qk+1, pk+1), ξpT ∗Q(qk+1, pk+1)).
(3.9)

Theorem 3.2 (Discrete stochastic forced Noether's theorem). Suppose the generalized dis-

crete stochastic Lagrangian Rd ∶ Ω ×Q × T ∗Q Ð→ R is invariant under the action of the Lie group

G, that is,

Rd(ΦQ×T ∗Q
g (qk, qk+1, pk+1)) = Rd(qk, qk+1, pk+1), for all g ∈ G. (3.10)

If the discrete forces F±
d satisfy the condition

F−
d (qk, pk+1) ⋅ ξQ(qk) + F +

d (qk, pk+1) ⋅ ξpT ∗Q(qk+1, pk+1) = 0 (3.11)

15



for all (qk, qk+1, pk+1) ∈ Q × T ∗Q, then the cotangent lift momentum map J associated with ΦT ∗Q is

almost surely preserved along the solutions of the discrete equations (3.1), i.e., a.s. J(qk+1, pk+1) =
J(qk, pk).

Proof. Since the generalized discrete Lagrangian Rd is invariant with respect to the actions of G,
for an arbitrary ξ ∈ g we have

0 = d

dλ
∣
λ=0

Rd(ΦQ×T ∗Q
expλξ (qk, qk+1, pk+1)) = dRd ⋅ ξQ×T ∗Q(qk, qk+1, pk+1)

= −D1H
+
d (qk, pk+1) ⋅ ξQ(qk) + pk+1 ⋅ ξQ(qk+1) + (qk+1 −D1H

+
d (qk, pk+1)) ⋅ ξpT ∗Q(qk+1, pk+1), (3.12)

where we have used the fact that ξqT ∗Q(qk+1, pk+1) = ξQ(qk+1). Assume that qk, qk+1, and pk+1 satisfy
the discrete evolution equation (3.1). By substituting (3.1) in (3.12), we obtain

0 = (−pk − F−
d (qk, pk+1)) ⋅ ξQ(qk) + pk+1 ⋅ ξQ(qk+1) − F+

d (qk, pk+1) ⋅ ξpT ∗Q(qk+1, pk+1). (3.13)

This can be rewritten as

Jξ(qk+1, pk+1) − Jξ(qk, pk) = F−
d (qk, pk+1) ⋅ ξQ(qk) + F+

d (qk, pk+1) ⋅ ξpT ∗Q(qk+1, pk+1), (3.14)

where we have used the de�nition of the cotangent lift momentum map (2.24). If the condition (3.11)
holds, then we have Jξ(qk+1, pk+1) = Jξ(qk, pk). The result holds almost surely, because equation
(3.1) is satis�ed almost surely.

Remark. When the discrete forces do not satisfy the condition (3.11), equation (3.14) provides
the rate of change of the momentum map, which mimicks formula (2.28) in the continuous case.

3.3 Mean-square Lagrange-d'Alembert partitioned Runge-Kutta methods

3.3.1 Construction

Partitioned Runge-Kutta methods for deterministic forced Hamiltonian systems have been proposed
in [41] and [60]. A general class of stochastic mean-square Runge-Kutta methods for Stratonovich
ordinary di�erential equations was introduced and analyzed in [16], [17], and [18]. These ideas
were later used by Ma & Ding & Ding [56] and Ma & Ding [57] to construct symplectic Runge-
Kutta methods for stochastic Hamiltonian systems without forcing; see also [35]. Below we combine
these ideas and introduce mean-square Lagrange-d'Alembert partitioned Runge-Kutta methods for
stochastic forced Hamiltonian systems of the form (1.1).

De�nition 3.3. An s-stage mean-square Lagrange-d'Alembert partitioned Runge-Kutta method for

the system (1.1) is given by
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Qi = qk +∆t
s

∑
j=1

aij
∂H

∂p
(Qj , Pj) +

m

∑
r=1

∆W r
s

∑
j=1

bij
∂hr
∂p

(Qj , Pj), i = 1, . . . , s, (3.15a)

Pi = pk −∆t
s

∑
j=1

āij
∂H

∂q
(Qj , Pj) −

m

∑
r=1

∆W r
s

∑
j=1

b̄ij
∂hr
∂q

(Qj , Pj)

+∆t
s

∑
j=1

âijF (Qj , Pj) +
m

∑
r=1

∆W r
s

∑
j=1

b̂ijfr(Qj , Pj), i = 1, . . . , s, (3.15b)

qk+1 = qk +∆t
s

∑
i=1

αi
∂H

∂p
(Qi, Pi) +

m

∑
r=1

∆W r
s

∑
i=1

βi
∂hr
∂p

(Qi, Pi), (3.15c)

pk+1 = pk −∆t
s

∑
i=1

αi
∂H

∂q
(Qi, Pi) −

m

∑
r=1

∆W r
s

∑
i=1

βi
∂hr
∂q

(Qi, Pi)

+∆t
s

∑
i=1

α̂iF (Qi, Pi) +
m

∑
r=1

∆W r
s

∑
i=1

β̂ifr(Qi, Pi), (3.15d)

where ∆t is the time step, ∆W = (∆W 1, . . . ,∆Wm) are the increments of the Wiener process,

Qi and Pi for i = 1, . . . , s are the position and momentum internal stages, respectively, and the

coe�cients of the method aij, āij, âij, bij, b̄ij, b̂ij, αi, α̂i, βi, and β̂i satisfy the conditions

αiāij + αjaji = αiαj , (3.16a)

βib̄ij + βjbji = βiβj , (3.16b)

βiāij + αjbji = βiαj , (3.16c)

αib̄ij + βjaji = αiβj , (3.16d)

αiâij + α̂jaji = αiα̂j , (3.16e)

αib̂ij + β̂jaji = αiβ̂j , (3.16f)

βiâij + α̂jbji = βiα̂j , (3.16g)

βib̂ij + β̂jbji = βiβ̂j , (3.16h)

for i, j = 1, . . . , s.

The partitioned Runge-Kutta method (3.15) can be represented by the tableau

a ā â b b̄ b̂

αT αT α̂T βT βT β̂T
(3.17)

where a = (aij)i,j=1...s, α = (αi)i=1...s, etc. The set of equations (3.15) forms a one-step numerical
scheme. Knowing qk and pk at time tk, one can solve Equations (3.15a)-(3.15b) for the internal
stages Qi and Pi, and then use (3.15c)-(3.15d) to determine qk+1 and pk+1 at time tk+1. If given qk
and pk+1 instead, one can also solve (3.15) for the remaining variables Qi, Pi, qk+1 and pk. Note
that since we have only used ∆W r = ∫

tk+1
tk

dW r(t) in (3.15), we can in general expect mean-square
convergence of order 1.0 at most. To obtain mean-square convergence of higher order we would also
need to include higher-order multiple Stratonovich integrals, e.g., to achieve convergence of order
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1.5 we would need to include terms involving ∆Zr = ∫
tk+1
tk ∫

t
tk
dW r(ξ)dt (see [18], [68], [69]). Below

we prove that the Runge-Kutta method (3.15) with the conditions (3.16) is indeed a stochastic
Lagrange-d'Alembert method of the form (3.1).

Theorem 3.4. The s-stage mean-square partitioned Runge-Kutta method (3.15) with the conditions
(3.16) is a stochastic Lagrange-d'Alembert variational integrator of the form (3.1) with the discrete

Hamiltonian

H+
d (qk, pk+1) = pk+1qk+1−∆t

s

∑
i=1

αi(Pi
∂H

∂p
(Qi, Pi)−H(Qi, Pi))−

m

∑
r=1

∆W r
s

∑
i=1

βi(Pi
∂hr
∂p

(Qi, Pi)−hr(Qi, Pi)),

(3.18)

and the discrete forces

F−
d (qk, pk+1) = ∆t

s

∑
i=1

α̂i(
∂Qi
∂qk

)
T

F (Qi, Pi) +
m

∑
r=1

∆W r
s

∑
i=1

β̂i(
∂Qi
∂qk

)
T

fr(Qi, Pi),

F+
d (qk, pk+1) = ∆t

s

∑
i=1

α̂i(
∂Qi
∂pk+1

)
T

F (Qi, Pi) +
m

∑
r=1

∆W r
s

∑
i=1

β̂i(
∂Qi
∂pk+1

)
T

fr(Qi, Pi), (3.19)

where qk+1, pk, Qi, and Pi satisfy the system of equations (3.15) and are understood as functions of

qk and pk+1.

Proof. The proof involves straightforward, although rather lengthy and tedious algebraic manipula-
tions. Therefore, for the clarity and brevity of the exposition, we only consider the one-dimensional
noise case m = 1 and point out the key steps of the derivations. Let us introduce the following
shorthand notation:

Q̇i ≡
∂H

∂p
(Qi, Pi), Ṗi ≡ −

∂H

∂q
(Qi, Pi), Fi ≡ F (Qi, Pi),

K̇i ≡
∂h

∂p
(Qi, Pi), Ġi ≡ −

∂h

∂q
(Qi, Pi), fi ≡ f(Qi, Pi). (3.20)

Di�erentiate each of the equations (3.15) with respect to qk and pk+1 to express the Jacobians
∂Qi/∂qk, ∂Pi/∂qk, ∂qk+1/∂qk, ∂pk/∂qk, and analogous Jacobians with respect to pk+1, in terms of
the derivatives of the terms (3.20). For instance, we have

∂Pi
∂pk+1

= I+∆t
s

∑
j=1

(āij−αj)
∂Ṗj

∂pk+1
+∆W

s

∑
j=1

(b̄ij−βj)
∂K̇j

∂pk+1
+∆t

s

∑
j=1

(âij−α̂j)
∂Fj

∂pk+1
+∆W

s

∑
j=1

(b̂ij−β̂j)
∂fj

∂pk+1
,

(3.21)

where I denotes the N × N identity matrix. Let us now calculate the derivative of the discrete
Hamiltonian (3.18) with respect to pk+1. After substituting the Jacobians (3.21) and using (3.15d)
to replace pk+1, we obtain the expression
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D2H
+
d (qk, pk+1) = qk+1 +∆t2

s

∑
i,j=1

αiα̂j(
∂Q̇i
∂pk+1

)
T

Fj +∆t∆W
s

∑
i,j=1

αiβ̂j(
∂Q̇i
∂pk+1

)
T

fj

+∆t∆W
s

∑
i,j=1

βiα̂j(
∂K̇i

∂pk+1
)
T

Fj +∆W 2
s

∑
i,j=1

βiβ̂j(
∂K̇i

∂pk+1
)
T

fj

+∆t
s

∑
i=1

αi(
∂Q̇i
∂pk+1

)
T

(pk − Pi) +∆W
s

∑
i=1

βi(
∂K̇i

∂pk+1
)
T

(pk − Pi)

+∆t2
s

∑
i,j=1

(αiαj − αjaji)(
∂Q̇i
∂pk+1

)
T

Ṗj +∆t∆W
s

∑
i,j=1

(αiβj − βjaji)(
∂Q̇i
∂pk+1

)
T

Ġj

+∆t∆W
s

∑
i,j=1

(βiαj − αjbji)(
∂K̇i

∂pk+1
)
T

Ṗj +∆W 2
s

∑
i,j=1

(βiβj − βjbji)(
∂K̇i

∂pk+1
)
T

Ġj .

(3.22)

After using (3.16a)-(3.16d) in the last four terms (e.g., αiαj−αjaji = αiāij), and substituting (3.15b)
for Pi, we get

D2H
+
d (qk, pk+1) = qk+1 +∆t2

s

∑
i,j=1

(αiα̂j − αiâij)(
∂Q̇i
∂pk+1

)
T

Fj +∆t∆W
s

∑
i,j=1

(αiβ̂j − αib̂ij)(
∂Q̇i
∂pk+1

)
T

fj

+∆t∆W
s

∑
i,j=1

(βiα̂j − βiâij)(
∂K̇i

∂pk+1
)
T

Fj +∆W 2
s

∑
i,j=1

(βiβ̂j − βib̂ij)(
∂K̇i

∂pk+1
)
T

fj .

(3.23)

By using the conditions (3.16e)-(3.16h) and collecting terms, we �nally arrive at

D2H
+
d (qk, pk+1) = qk+1 +∆t

s

∑
i=1

α̂i(
∂Qi
∂pk+1

)
T

Fi +∆W
s

∑
i=1

β̂i(
∂Qi
∂pk+1

)
T

fi = qk+1 + F +
d (qk, pk+1). (3.24)

In a similar fashion we derive

D1H
+
d (qk, pk+1) = pk + F−

d (qk, pk+1). (3.25)

Therefore, we have proved that qk, pk, qk+1, and pk+1 satisfy (3.1) if and only if they satisfy
(3.15).

3.3.2 Convergence

Mean-square convergence concentrates on pathwise approximations of the exact solutions (see [44],
[65]). Let z̄(t) = (q̄(t), p̄(t)) be the exact solution to (1.1) with the initial conditions q0 and p0, and
let zk = (qk, pk) denote the numerical solution at time tk obtained by applying (3.15) iteratively k
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times with the constant time step ∆t. The numerical solution is said to converge in the mean-square
sense with global order r if there exist δ > 0 and a constant C > 0 such that for all ∆t ∈ (0, δ) we
have

√
E(∥zK − z̄(T )∥2) ≤ C∆tr, (3.26)

where T = K∆t, as de�ned before, and E denotes the expected value. In principle, in order to
determine the mean-square order of convergence of the Lagrange-d'Alembert partitioned Runge-
Kutta method (3.15) we need to calculate the power series expansions of qk+1 and pk+1 in terms
of the powers of ∆t and ∆W i, and compare them to the Stratonovich-Taylor expansions for the
exact solution q̄(tk + ∆t) and p̄(tk + ∆t) (see [18], [44], [65]). As mentioned in Section 3.3.1, the
mean-square order of the method (3.15) cannot exceed 1.0. Below we provide the conditions that
have to be satis�ed by the coe�cients of the method (3.15) in order for it to be convergent.

Theorem 3.5. Suppose that, in addition to conditions (H1)-(H3), the functions H(q, p), F (q, p),
and hi(q, p), fi(q, p) for i = 1, . . . ,m have all the necessary partial derivatives. Let the coe�cients

of the method (3.15) satisfy the conditions

s

∑
i=1

αi =
s

∑
i=1

α̂i =
s

∑
i=1

βi =
s

∑
i=1

β̂i = 1,

s

∑
i,j=1

βibij =
s

∑
i,j=1

βib̄ij =
s

∑
i,j=1

βib̂ij =
s

∑
i,j=1

β̂ibij =
s

∑
i,j=1

β̂ib̄ij =
s

∑
i,j=1

β̂ib̂ij =
1

2
. (3.27)

If the noise is commutative, that is, if the following conditions are satis�ed

Γij = Γji, Λij = Λji, for all i, j = 1, . . . ,m, (3.28)

where the vectors Γij and Λij for each i, j = 1, . . . ,m are de�ned as

Γij =
∂2hj

∂p∂q

∂hi
∂p

−
∂2hj

∂p2

∂hi
∂q

+
∂2hj

∂p2
fi,

Λij = −
∂2hj

∂q2

∂hi
∂p

+
∂2hj

∂q∂p

∂hi
∂q

+
∂fj

∂q

∂hi
∂p

−
∂fj

∂p

∂hi
∂q

−
∂2hj

∂q∂p
fi +

∂fj

∂p
fi, (3.29)

then the method (3.15) is convergent with mean-square order 1.0. If the noise is noncommutative,

then the method (3.15) is convergent with mean-square order 0.5.

Proof. General order conditions for stochastic non-partitioned Runge-Kutta methods have been
analyzed in [17] and [18]. Conditions for mean-square convergence of order 1.0 for stochastic par-
titioned Runge-Kutta methods with a one-dimensional noise have been derived in [57]. However,
the method (3.15) is more general, as we allow a multidimensional noise, and di�erent coe�cients
are applied to the Hamiltonian and forcing terms, but the method of proof is similar to the proof
of Theorem 2.1 in [57], therefore we only present the main steps. To simplify the notation, denote
α = (α1, . . . , αs)T , b = (bij)i,j=1,...,s, and similarly for the remaining coe�cients of the method. Let
also e = (1,1, . . . ,1)T be an s-dimensional vector. Then the conditions (3.27) can be written more
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compactly, e.g., αT e = 1 or βT be = 1/2. We �rst determine power expansions of the internal stages
Qi and Pi in terms of the powers of ∆t and ∆W i. We plug in series expansions for Qi and Pi
in Equations (3.15a)-(3.15b), and determine their coe�cients by expanding the derivatives of the
Hamiltonians and forcing terms into Taylor series around (qk, pk). Then we plug in thus found series
expansions into Equations (3.15c)-(3.15d), and again expand the derivatives of the Hamiltonians
and forcing terms into Taylor series around (qk, pk). This way we obtain the series expansions of
qk+1 and pk+1 as

qk+1 = qk + (αT e)∂H
∂p

∆t + (βT e)
m

∑
i=1

∂hi
∂p

∆W i + 1

2

M

∑
i=1

Γ̄ii(∆W i)2 + 1

2

M

∑
i=1

M

∑
j=1
j/=i

Γ̄ij∆W
i∆W j + . . . ,

pk+1 = pk − (αT e)∂H
∂q

∆t + (α̂T e)F∆t − (βT e)
m

∑
i=1

∂hi
∂q

∆W i + (β̂T e)
m

∑
i=1

fi∆W
i

+ 1

2

M

∑
i=1

Λ̄ii(∆W i)2 + 1

2

M

∑
i=1

M

∑
j=1
j/=i

Λ̄ij∆W
i∆W j + . . . , (3.30)

where the vectors Γ̄ij and Λ̄ij for each i, j = 1, . . . ,m are de�ned as

Γ̄ij = 2(βT be)
∂2hj

∂p∂q

∂hi
∂p

− 2(βT b̄e)
∂2hj

∂p2

∂hi
∂q

+ 2(βT b̂e)
∂2hj

∂p2
fi,

Λ̄ij = −2(βT be)
∂2hj

∂q2

∂hi
∂p

+ 2(βT b̄e)
∂2hj

∂q∂p

∂hi
∂q

+ 2(β̂T be)
∂fj

∂q

∂hi
∂p

− 2(β̂T b̄e)
∂fj

∂p

∂hi
∂q

− 2(βT b̂e)
∂2hj

∂q∂p
fi + 2(β̂T b̂e)

∂fj

∂p
fi, (3.31)

and the forcing terms and the derivatives of the Hamiltonians are evaluated at (qk, pk). Let
q̄(t; qk, pk) and p̄(t; qk, pk) denote the exact solution of (1.1) such that q̄(tk; qk, pk) = qk and p̄(tk; qk, pk) =
pk. Using (1.1) we calculate the Stratonovich-Taylor expansions for q̄(tk+1; qk, pk) and p̄(tk+1; qk, pk)
as (see [44])

q̄(tk+1; qk, pk) = qk +
∂H

∂p
∆t +

m

∑
i=1

∂hi
∂p

∆W i + 1

2

m

∑
i=1

Γii(∆W i)2 +
m

∑
i=1

m

∑
j=1
j/=i

ΓijJij + . . . ,

p̄(tk+1; qk, pk) = pk + ( − ∂H
∂q

+ F)∆t +
m

∑
i=1

( − ∂hi
∂q

+ fi)∆W i + 1

2

m

∑
i=1

Λii(∆W i)2 +
m

∑
i=1

m

∑
j=1
j/=i

ΛijJij + . . . ,

(3.32)

where Jij = ∫
tk+1
tk ∫

t
tk
dW i(τ)○dW j(t) denotes a double Stratonovich integral, Γij and Λij have been

de�ned in (3.29), and the forcing terms and the derivatives of the Hamiltonians are again evaluated
at (qk, pk). Assuming the conditions (3.27) are satis�ed, we have that Γ̄ij = Γij and Λ̄ij = Λij , but
comparing (3.30) and (3.32), we �nd that in the general case of noncommutative noise not all �rst
order terms agree, and therefore we only have the local error estimates
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E(qk+1 − q̄(tk+1; qk, pk)) = O(∆t
3
2 ),

√
E(∥qk+1 − q̄(tk+1; qk, pk)∥2) = O(∆t),

E(pk+1 − p̄(tk+1; qk, pk)) = O(∆t
3
2 ),

√
E(∥pk+1 − p̄(tk+1; qk, pk)∥2) = O(∆t). (3.33)

Theorem 1.1 from [65] then implies that the method (3.15) has mean-square order 0.5. However,
if the noise is commutative, then using the property Jij + Jji = ∆W i∆W j (see [44], [65]), one can
easily show

m

∑
i=1

m

∑
j=1
j/=i

ΓijJij =
1

2

m

∑
i=1

m

∑
j=1
j/=i

Γij∆W
i∆W j ,

m

∑
i=1

m

∑
j=1
j/=i

ΛijJij =
1

2

m

∑
i=1

m

∑
j=1
j/=i

Λij∆W
i∆W j . (3.34)

In that case all �rst-order terms in the expansions (3.30) and (3.32) agree, and we have the local
error estimates

E(qk+1 − q̄(tk+1; qk, pk)) = O(∆t2),
√
E(∥qk+1 − q̄(tk+1; qk, pk)∥2) = O(∆t

3
2 ),

E(pk+1 − p̄(tk+1; qk, pk)) = O(∆t2),
√
E(∥pk+1 − p̄(tk+1; qk, pk)∥2) = O(∆t

3
2 ). (3.35)

Theorem 1.1 from [65] then implies that the method (3.15) has mean-square order 1.0.

In the case of a one-dimensional noise the commutation condition (3.28) is trivially satis�ed, there-
fore we have the following corollary.

Corollary 3.6. Under the assumptions of Theorem 3.5, the method (3.15) is convergent with mean-
square order 1.0 for systems driven by a one-dimensional noise.

3.3.3 Examples

In the construction of the integrator (3.15) we may choose the number of stages s. In the deter-
ministic case, the higher the number of stages, the higher order of convergence can be achieved
(see [28], [29], [30]). In our case, however, as explained earlier, we cannot in general achieve mean-
square order of convergence higher than 1.0, because we only used ∆W r in (3.15). Since the system
(3.15a)-(3.15b) requires solving 2sN equations for 2sN variables, from the computational point of
view it makes sense to only consider methods with low values of s. In this work we focus on the
following classical numerical integration formulas (one can easily verify that the conditions (3.16)
and (3.27) are satis�ed for the discussed methods).

1. Stochastic midpoint method
Using the midpoint rule we obtain a one-stage non-partitioned Runge-Kutta method repre-
sented by the tableau

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1 1 1
(3.36)
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Noting that Q1 = (qk + qk+1)/2 and P1 = (pk + pk+1)/2, this method can be written as

qk+1 = qk +
∂H

∂p
(qk + qk+1

2
,
pk + pk+1

2
)∆t +

m

∑
i=1

∂hi
∂p

(qk + qk+1

2
,
pk + pk+1

2
)∆W i,

pk+1 = pk + [ − ∂H
∂q

(qk + qk+1

2
,
pk + pk+1

2
) + F(qk + qk+1

2
,
pk + pk+1

2
)]∆t

+
m

∑
i=1

[ − ∂hi
∂q

(qk + qk+1

2
,
pk + pk+1

2
) + fi(

qk + qk+1

2
,
pk + pk+1

2
)]∆W i. (3.37)

It is an implicit method and in general one has to solve 2N equations for 2N unknowns.
However, if the Hamiltonians are separable, that is, H(q, p) = T0(p) + U0(q) and hi(q, p) =
Ti(p) + Ui(q), then qk+1 from the �rst equation can be substituted into the second one. In
that case only N nonlinear equations have to be solved for pk+1.

2. Stochastic Störmer-Verlet method
A generalization of the classical Störmer-Verlet method can be obtained by choosing the
tableau

0 0 1
2 0 1

2 0 0 0 1
2 0 1

2 0
1
2

1
2

1
2 0 1

2 0 1
2

1
2

1
2 0 1

2 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(3.38)

Noting that Q1 = qk, Q2 = qk+1, and P1 = P2, this method can be more e�ciently written as

P1 = pk +
1

2
[ − ∂H

∂q
(qk, P1) + F(qk, P1)]∆t + 1

2

m

∑
i=1

[ − ∂hi
∂q

(qk, P1) + fi(qk, P1)]∆W i,

qk+1 = qk +
1

2

∂H

∂p
(qk, P1)∆t + 1

2

∂H

∂p
(qk+1, P1)∆t + 1

2

m

∑
i=1

∂hi
∂p

(qk, P1)∆W i + 1

2

m

∑
i=1

∂hi
∂p

(qk+1, P1)∆W i,

pk+1 = P1 +
1

2
[ − ∂H

∂q
(qk+1, P1) + F(qk+1, P1)]∆t + 1

2

m

∑
i=1

[ − ∂hi
∂q

(qk+1, P1) + fi(qk+1, P1)]∆W i.

(3.39)

This method was considered in [57] in the context of symplectic integrators for stochastic
Hamiltonian systems without forcing; see also [35]. It is particularly e�cient, because the �rst
equation can be solved separately from the second one, and the last equation is an explicit
update. Moreover, if the Hamiltonians are separable, the second equation becomes explicit.
If in addition the forcing terms F and fi have special forms, then further improvements in
e�ciency are possible. For instance, if the forcing terms depend linearly on p, as is often the
case in practical applications, then the �rst equation is a linear equation for P1, and can be
solved using linear solvers. In case the forcing terms are independent of p altogether, then the
whole method becomes fully explicit.

3. 2-stage stochastic DIRK method

In order to reduce the computational cost of solving nonlinear equations, diagonally implicit
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Runge-Kutta (DIRK) methods use lower-triangular tableaus (see [28], [29], [30]). One can
easily verify that the most general family of 2-stage stochastic DIRK methods that satisfy the
conditions (3.16) and (3.27) has the tableau of the form

λ
2 0 λ

2 0 λ
2 0 λ

2 0 λ
2 0 λ

2 0

λ 1−λ
2 λ 1−λ

2 λ 1−λ
2 λ 1−λ

2 λ 1−λ
2 λ 1−λ

2

λ 1 − λ λ 1 − λ λ 1 − λ λ 1 − λ λ 1 − λ λ 1 − λ
(3.40)

where λ ∈ R is an arbitrary parameter. One can check that for λ = 0 and λ = 1, this method
reduces to the stochastic midpoint method (3.37). For other choices of λ, one needs to solve
equations (3.15a) and (3.15b), �rst for i = 1 (2N equations) in order to calculate the internal
stages Q1 and P1 (2N variables), and then for i = 2 (2N equations) to �nd the internal stages
Q2 and P2 (2N variables). If the Hamiltonians are separable, then equations (3.15a) can be
substituted into equations (3.15b), and the problem is reduced to solving two systems of N
equations each.

Note that the methods (3.37), (3.39), and (3.40) are in general implicit. One can use the Implicit
Function Theorem to show that for su�ciently small ∆t and ∣∆W i∣, the relevant nonlinear equations
will have a solution. However, since the increments ∆W i are unbounded, for some values of ∆W i

solutions might not exist. To avoid problems with numerical implementations, if necessary, one can
replace ∆W i in equations (3.37) and (3.39) with the truncated random variables ∆W i de�ned as

∆W i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A, if ∆W i > A,
∆W i, if ∣∆W i∣ ≤ A,
−A, if ∆W i < −A,

(3.41)

where A > 0 is suitably chosen for the considered problem. See [20] and [69] for more details
regarding schemes with truncated random increments and their convergence.

3.4 Weak Lagrange-d'Alembert partitioned Runge-Kutta methods

3.4.1 Construction

A general class of weak stochastic Runge-Kutta methods for Stratonovich ordinary di�erential
equations was introduced and analyzed in [78] and [79]. These ideas were later used by Wang &
Hong & Xu [97] to construct weak symplectic Runge-Kutta methods for stochastic Hamiltonian
systems without forcing. Below we combine these ideas and introduce weak Lagrange-d'Alembert
Runge-Kutta methods for stochastic forced Hamiltonian systems of the form (1.1).

De�nition 3.7. An s-stage weak Lagrange-d'Alembert partitioned Runge-Kutta method for the sys-

tem (1.1) is given by
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Q
(0)
i = qk +∆t

s

∑
j=1

a
(0)
ij

∂H

∂p
(Q(0)j , P

(0)
j ) +

m

∑
r=1

Îr
s

∑
j=1

b
(0)
ij

∂hr
∂p

(Q(r)j , P
(r)
j ), i = 1, . . . , s, (3.42a)

P
(0)
i = pk +∆t

s

∑
j=1

a
(0)
ij [ − ∂H

∂q
(Q(0)j , P

(0)
j ) + F (Q(0)j , P

(0)
j )]

+
m

∑
r=1

Îr
s

∑
j=1

b
(0)
ij [ − ∂hr

∂q
(Q(r)j , P

(r)
j ) + fr(Q(r)j , P

(r)
j )], i = 1, . . . , s, (3.42b)

Q
(l)
i = qk +∆t

s

∑
j=1

a
(1)
ij

∂H

∂p
(Q(0)j , P

(0)
j ) + Îl

s

∑
j=1

b
(1)
ij

∂hl
∂p

(Q(l)j , P
(l)
j )

+
m

∑
r=1
r/=l

Îr
s

∑
j=1

b
(3)
ij

∂hr
∂p

(Q(r)j , P
(r)
j ), i = 1, . . . , s, l = 1, . . . ,m, (3.42c)

P
(l)
i = pk +∆t

s

∑
j=1

a
(1)
ij [ − ∂H

∂q
(Q(0)j , P

(0)
j ) + F (Q(0)j , P

(0)
j )]

+ Îl
s

∑
j=1

b
(1)
ij [ − ∂hl

∂q
(Q(l)j , P

(l)
j ) + fl(Q

(l)
j , P

(l)
j )]

+
m

∑
r=1
r/=l

Îr
s

∑
j=1

b
(3)
ij [ − ∂hr

∂q
(Q(r)j , P

(r)
j ) + fr(Q(r)j , P

(r)
j )], i = 1, . . . , s, l = 1, . . . ,m, (3.42d)

qk+1 = qk +∆t
s

∑
i=1

αi
∂H

∂p
(Q(0)i , P

(0)
i ) +

m

∑
r=1

Îr
s

∑
i=1

βi
∂hr
∂p

(Q(r)i , P
(r)
i ), (3.42e)

pk+1 = pk +∆t
s

∑
i=1

αi[ −
∂H

∂q
(Q(0)i , P

(0)
i ) + F (Q(0)i , P

(0)
i )]

+
m

∑
r=1

Îr
s

∑
i=1

βi[ −
∂hr
∂q

(Q(r)i , P
(r)
i ) + fr(Q(r)i , P

(r)
i )], (3.42f)

where ∆t is the time step, Î1, . . . , Îm are independent three-point distributed random variables with

P (Îr = ±
√

3∆t) = 1/6 and P (Îr = 0) = 2/3 , Q
(0)
i , Q

(l)
i , P

(0)
i , and P

(l)
i for i = 1, . . . , s and l = 1, . . . ,m

are the position and momentum internal stages, respectively, and the coe�cients of the method a
(0)
ij ,

a
(1)
ij , b

(0)
ij , b

(1)
ij , b

(3)
ij , αi, βi satisfy the conditions

αia
(0)
ij + αja(0)ji = αiαj , (3.43a)

αib
(0)
ij + βja(1)ji = αiβj , (3.43b)

βib
(1)
ij + βjb(1)ji = βiβj , (3.43c)

βib
(3)
ij + βjb(3)ji = βiβj , (3.43d)

for i, j = 1, . . . , s.

The Runge-Kutta method (3.42) can be represented by the tableau
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a(0) b(0)

a(1) b(1) b(3)

αT βT
(3.44)

where a(0) = (a(0)ij )i,j=1...s, α = (αi)i=1...s, etc. The set of equations (3.42) forms a one-step numerical
scheme. Knowing qk and pk at time tk, one can solve Equations (3.42a)-(3.42d) for the internal

stages Q
(0)
i , Q

(l)
i , P

(0)
i and P

(l)
i , and then use (3.42e)-(3.42f) to determine qk+1 and pk+1 at time

tk+1. Depending on the choice of the coe�cients, the method (3.42) is in general implicit. However,
since the random variables Îl are bounded, one can show that for su�ciently small ∆t, the relevant
nonlinear equations will have a solution. Below we prove that the Runge-Kutta method (3.42) with
the conditions (3.43) is indeed a stochastic Lagrange-d'Alembert method of the form (3.1).

Theorem 3.8. The s-stage weak Runge-Kutta method (3.42) with the conditions (3.43) is a stochas-
tic Lagrange-d'Alembert variational integrator of the form (3.1) with the discrete Hamiltonian

H+
d (qk, pk+1) = pk+1qk+1 −∆t

s

∑
i=1

αi(P (0)i

∂H

∂p
(Q(0)i , P

(0)
i ) −H(Q(0)i , P

(0)
i ))

−
m

∑
r=1

Îr
s

∑
i=1

βi(P (r)i

∂hr
∂p

(Q(r)i , P
(r)
i ) − hr(Q(r)i , P

(r)
i )), (3.45)

and the discrete forces

F−
d (qk, pk+1) = ∆t

s

∑
i=1

αi(
∂Q
(0)
i

∂qk
)
T

F (Q(0)i , P
(0)
i ) +

m

∑
r=1

Îr
s

∑
i=1

βi(
∂Q
(r)
i

∂qk
)
T

fr(Q(r)i , P
(r)
i ),

F+
d (qk, pk+1) = ∆t

s

∑
i=1

αi(
∂Q
(0)
i

∂pk+1
)
T

F (Q(0)i , P
(0)
i ) +

m

∑
r=1

Îr
s

∑
i=1

βi(
∂Q
(r)
i

∂pk+1
)
T

fr(Q(r)i , P
(r)
i ), (3.46)

where qk+1, pk, Q
(0)
i , Q

(r)
i , P

(0)
i , and P

(r)
i , satisfy the system of equations (3.42) and are understood

as functions of qk and pk+1.

Proof. The proof is analogous to the proof of Theorem 3.4.

Remark. For stochastic Hamiltonian systems without forcing, i.e. F ≡ 0, fr ≡ 0, the method
(3.42) reduces to the weak symplectic Runge-Kutta methods introduced in [97]. Therefore, in that
case Theorem 3.8 also provides a type-II generating function for such methods, and consequently
an alternative proof of their symplecticity.

3.4.2 Convergence

Rather than precisely approximating each sample path, weak convergence concentrates on approx-
imating the probability distribution and functionals of the exact solution (see [44], [65]). Let
z̄(t) = (q̄(t), p̄(t)) be the exact solution to (1.1) with the initial conditions q0 and p0, and let
zk = (qk, pk) denote the numerical solution at time tk obtained by applying (3.42) iteratively k
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times with the constant time step ∆t. The numerical solution is said to converge weakly with weak

global order r if for each ϕ ∈ C2(r+1)
P (T ∗Q,R) there exists δ > 0 and a constant C > 0 such that for

all ∆t ∈ (0, δ) we have

∥E(ϕ(zK)) −E(ϕ(z̄(T )))∥ ≤ C∆tr, (3.47)

where T =K∆t, and CαP (T ∗Q,R) denotes the space of all ϕ ∈ Cα(T ∗Q,R) with polynomial growth,

i.e., there exists a constant A > 0 and γ ∈ N such that ∣∂βz ϕ(z)∣ ≤ A(1 + ∥z∥2γ) for all z ∈ T ∗Q and
any partial derivative of order β ≤ α. Weak convergence of the Runge-Kutta methods of type (3.42)
has been analyzed, and the relevant order conditions for the coe�cients have been derived in [79].

3.4.3 Examples

In [97] a number of weak symplectic Runge-Kutta methods for stochastic Hamiltonian systems
without forcing have been proposed. Since the symplecticity conditions derived in [97] are equivalent
to the conditions (3.43), these methods become Lagrange-d'Alembert integrators when applied to
systems with forcing. In this work, we particularly focus on two methods, namely SRKw1 and
SRKw2, as dubbed in [97].

1. SRKw1
The family of 1-stage SRKw1 methods is de�ned by the tableau

1
2 λ

1 − λ 1
2

1
2

1 1

(3.48)

where λ ∈ R is an arbitrary parameter. This method is weakly convergent with order 1.0

(see [79], [97]). Since b(1) = b(3), equations (3.42c) and (3.42d) imply that Q
(1)
1 = . . . = Q(m)1

and P
(1)
1 = . . . = P (m)1 . Therefore, in general one has to solve the system (3.42a)-(3.42d) for

the 4N variables Q
(0)
1 , P

(0)
1 , Q

(1)
1 , and P

(1)
1 . However, for several choices of the parameter λ

the computational cost can be reduced. If λ = 0, then one can �rst solve the 2N equations

(3.42a)-(3.42b) for the 2N variables Q
(0)
1 , P

(0)
1 , and then the 2N equations (3.42c)-(3.42d) for

the remaining 2N variables Q
(1)
1 , P

(1)
1 . Moreover, if the Hamiltonians are separable, that is,

H(q, p) = T0(p)+U0(q) and hi(q, p) = Ti(p)+Ui(q), then equation (3.42a) can be substituted
into equation (3.42b), and equation (3.42c) can be substitted into equation (3.42d), thus
reducing the complexity to solving two systems ofN equations each. A similar situation occurs

for λ = 1. For λ = 1
2 we further have Q

(0)
1 = Q(1)1 = (qk+qk+1)/2 and P

(0)
1 = P (1)1 = (pk+pk+1)/2,

and the SRKw1 method takes the form of the stochastic midpoint method (3.37) with ∆W i

replaced by Îi.

2. SRKw2
For systems driven by a single noise (m = 1) we can consider methods with b(3) ≡ 0. The
family of 4-stage SRKw2 methods is de�ned by the tableau
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1
8 0 0 0 5

6 −
√

3
3 −1

2 0 0
1
4

1
8 0 0 −1

6 +
√

3
3

1
2 0 0

1
4

1
4

1
8 0 1

2
1
2 0 0

1
4

1
4

1
4

1
8 −1

6
1
2 0 0

−1
6 +

√
3

6
1
3 −

√
3

6 0 1
3

1
4

1
4 −

√
3

6 0 0
1
2 0 0 0 1

4 +
√

3
6

1
4 0 0

0 0 0 0 λ1 λ2 0 λ3

0 0 0 0 0 −1
2 0 0

1
4

1
4

1
4

1
4

1
2

1
2 0 0

(3.49)

where λ1, λ2, λ3 ∈ R are arbitrary parameters. This method is weakly convergent with order

2.0 (see [79], [97]). Note that β3 = β4 = 0, so the values of the internal stages Q
(1)
3 , Q

(1)
4 ,

P
(1)
3 , and P

(1)
4 are not needed in (3.42e) and (3.42f) to calculate qk+1 and pk+1, respectively.

Moreover, equations (3.42c) and (3.42d) for i = 3,4 are explicit updates, therefore there is no
need to solve for or calculate the values of these internal stages. In fact, the choice of the
parameters λ1, λ2, and λ3 has no e�ect on the values of qk+1 and pk+1, therefore we can set
them to zero for convenience. Consequently, the system of equations (3.42a) and (3.42b) for
i = 1,2,3,4, and equations (3.42c) and (3.42d) for i = 1,2 (12N equations) has to be solved for

the internal stages Q
(0)
1 , . . . ,Q

(0)
4 , P

(0)
1 , . . . , P

(0)
4 , Q

(1)
1 , Q

(1)
2 , P

(1)
1 , and P

(1)
2 (12N variables).

If the Hamiltonians are separable, then equations (3.42a) and (3.42c) can be substituted into
equations (3.42b) and (3.42d), and the resulting system of 6N equations can be solved for

P
(0)
1 , . . . , P

(0)
4 , P

(1)
1 , and P

(1)
2 (6N variables).

3.5 Quasi-symplecticity

The idea of quasi-symplectic integrators has been proposed in [70] as an attempt to construct
numerical methods that at least to some extent emulate the special time evolution of the symplectic
and volume forms, as pointed out in Theorem 2.4 and Theorem 2.5, respectively. The authors
considered a special form of the stochastic forced Hamiltonian system, namely

H(q, p) = 1

2
pTM−1p +U(q), F (q, p) = −Γp,

hi(q, p) = −σTi q, fi(q, p) = 0, for i = 1, . . . ,m, (3.50)

where M is an N × N constant positive de�nite matrix, Γ is an N × N constant matrix, and σi
are constant vectors. The authors call a numerical integrator F+

tk+1,tk ∶ (qk, pk) Ð→ (qk+1, pk+1)
quasi-symplectic if it satis�es the following two conditions when applied to the system (3.50):

(QS1) it degenerates to a symplectic method when the forcing term vanishes, i.e., Γ = 0

(QS2) the Jacobian

J ≡ detDF+
tk+1,tk =

D(qk+1, pk+1)
D(qk, pk)

(3.51)

does not depend on qk and pk.
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The condition (QS2) is natural, since the exact Jacobian (2.43) does not depend on the phase space
variables. Several quasi-symplectic numerical methods have been proposed and tested in [70]; see
also [66]. Below we demonstrate that the idea of quasi-symplecticity can be extended to more
general systems than (3.50).

The methods presented in Section 3.3.3 and Section 3.4.3 preserve the underlying variational
structure of the general system (1.1), as has been shown in Theorem 3.1. These methods also
naturally reduce to symplectic methods, when the forcing terms F and fi vanish (see [35], [56], [57],
[69], [97]). Below we show that the Störmer-Verlet method satis�es the condition (QS2) for a much
broader class of systems than (3.50).

Theorem 3.9. Suppose that H(q, p), F (q, p), and hi(q, p), fi(q, p) for i = 1, . . . ,m satisfy conditions

(H1)-(H3). If the Hamiltonians are separable, that is,

H(q, p) = T0(p) +U0(q), hi(q, p) = Ti(p) +Ui(q), i = 1, . . . ,m, (3.52)

and the forcing terms have the form

F (q, p) = −Γ0p, fi(q, p) = −Γip, i = 1, . . . ,m, (3.53)

for constant N × N matrices Γi, then the Jacobian J of the discrete �ow F +
tk+1,tk ∶ (qk, pk) Ð→

(qk+1, pk+1) de�ned by the Störmer-Verlet method (3.39) does not depend on qk and pk, and is

almost surely equal to

J = det(I + γ(I − 1

2
γ)

−1
), (3.54)

where I is the N ×N identity matrix, γ = ∆tΓ0+∑mi=1 ∆W iΓi, and we assume that the matrix I − 1
2γ

is almost surely invertible.

Proof. With the separable Hamiltonians (3.52) and the linear forcing terms (3.53), the �rst equation
in (3.39) is linear, and P1 can be expressed as

P1 = (I − 1

2
γ)

−1
(pk −

1

2
∆t

∂U0

∂q
(qk) −

1

2

m

∑
i=1

∆W i∂Ui
∂q

(qk)). (3.55)

We then plug in P1 into the second and third equations in (3.39) to obtain expressions for qk+1 and
pk+1 as functions of qk and pk. Let us introduce the notation

η = I − 1

2
γ, A = ∆t

∂2T0

∂p2
(P1) +

m

∑
i=1

∆W i∂
2Ti
∂p2

(P1),

B = ∆t
∂2U0

∂q2
(qk) +

m

∑
i=1

∆W i∂
2Ui
∂q2

(qk), C = ∆t
∂2U0

∂q2
(qk+1) +

m

∑
i=1

∆W i∂
2Ui
∂q2

(qk+1). (3.56)

Using this notation, the Jacobian J of the mapping (qk, pk)Ð→ (qk+1, pk+1) can be expressed as
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J =
RRRRRRRRRRR

∂qk+1
∂qk

∂qk+1
∂pk

∂pk+1
∂qk

∂pk+1
∂pk

RRRRRRRRRRR
= ∣ I − 1

2Aη
−1B Aη−1

−1
2(I + γη

−1)B − 1
2C + 1

4CAη
−1B I − 1

2CAη
−1 + γη−1∣ . (3.57)

Let us transform this determinant into a block upper triangular form by performing basic linear
manipulations on its columns and rows. First, multiply the upper and lower right blocks by 1

2B on
the right, and add the results to the upper and lower left blocks, respectively. Then, multiply the
upper left and right blocks by 1

2C on the left, and add the results to the lower left and right blocks,
thus obtaining a block upper triangular form. Writing out these steps explicitly, we have

J = ∣ I Aη−1

−1
2C I − 1

2CAη
−1 + γη−1∣ = ∣I Aη−1

0 I + γη−1∣ = det(I + γη−1), (3.58)

which completes the proof.

Remark. In case the matrix η = I − 1
2γ is not almost surely invertible, one can replace ∆W i with

the suitably chosen truncated increments (3.41).

4 Numerical experiments

In this section we present the results of our numerical experiments. We have tested the perfor-
mance of the stochastic Lagrange-d'Alembert integrators presented in Section 3, namely the mid-
point method (3.37), the Störmer-Verlet method (3.39), the DIRK method (3.40) with λ = 1/2,
the SRKw1 method (3.48) with λ = 0, and the SRKw2 method (3.49), and compared it to the
performance of some popular general purpose non-geometric explicit stochastic integrators, namely
the mean-square Heun method ([21], [44]), the mean-square R2 and E1 methods (see [16], [17],
[18], [21]), and the weak RS1 and RS2 methods ([79]). The Lagrange-d'Alembert integrators have
demonstrated superior behavior in long-time simulations in all of the examples described below.
In the case of the midpoint, Störmer-Verlet, and DIRK methods, we used unbounded increments
∆W i, but observed no numerical issues. In principle, one should use truncated increments of the
form (3.41), but for the chosen parameters in the examples below, the probability of encountering
a singularity was negligible.

4.1 Long-time energy behavior

The Kubo oscillator is a stochastic Hamiltonian system with the Hamiltonians given by H(q, p) =
p2/2+q2/2 and h(q, p) = β(p2/2+q2/2), where β is the noise intensity (see [69]). The Kubo oscillator
is used in the theory of magnetic resonance and laser physics. Here we consider the damped Kubo
oscillator with the forcing terms given by F (q, p) = −νp and f(q, p) = −βνp, where ν is the damping
coe�cient. It is straightforward to verify that the exact solution is given by

q̄(t) = q0e
− ν

2
(t+βW (t)) cosω(t + βW (t)) + 1

ω
(p0 +

ν

2
q0)e−

ν
2
(t+βW (t)) sinω(t + βW (t)),

p̄(t) = p0e
− ν

2
(t+βW (t)) cosω(t + βW (t)) − 1

ω
(q0 +

ν

2
p0)e−

ν
2
(t+βW (t)) sinω(t + βW (t)), (4.1)
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where q0 and p0 are the initial conditions, the angular frequency is ω = 1
2

√
4 − ν2, and we have

assumed the underdamped case 0 ≤ ν < 2. Note that (4.1) is the solution of the deterministic
damped harmonic oscillator with the time argument shifted by βW (t). Given that W (t) ∼ N(0, t)
is normally distributed, one can explicitly calculate the expected value of the Hamiltonian H as a
function of time as

E(H(q̄(t), p̄(t))) = ae−
ν(2−β2ν)

2
t + e−((2−ν

2)β2+ν)t[b cos (2(1 − β2ν)ωt) + c sin (2(1 − β2ν)ωt)], (4.2)

where

a = 2(p2
0 + q2

0 + νp0q0)
4 − ν2

, b = −ν
2(p2

0 + q2
0) + 4νp0q0

2(4 − ν2)
, c = ν(q

2
0 − p2

0)
2
√

4 − ν2
. (4.3)

Simulations with the initial conditions q0 = 2, p0 = 0, and the parameters β = 0.5 and ν = 0.001
were carried out until the time T = 5000 (approximately 800 periods of the oscillator in the absence
of noise). In each case 50000 sample paths were generated. The numerical value of the mean
Hamiltonian E(H) as a function of time is depicted in Figure 4.1 and Figure 4.2 for the mean-square
and weak integrators, respectively. We see that the Lagrange-d'Alembert integrators capture the
exponential decay of E(H) very accurately even when relatively large time steps ∆t are used. The
explicit Heun and R2 methods fail to reproduce that behavior even for the signi�cantly smaller time
step. While the explicit E1, RS1, and RS2 methods capture the qualitative decay of E(H), still
much smaller time steps would be needed to reach the level of accuracy of the Lagrange-d'Alembert
integrators, thus rendering them ine�cient.

4.2 Ergodic limits

In many cases of practical interest the system (1.1) is ergodic, which means that

(1) it possesses a unique invariant measure represented by the probability density function ρ∞(ξ, ζ)
with (ξ, ζ) ∈ T ∗Q, i.e. a stationary solution of the corresponding Fokker-Planck equation
(see [26])

(2) for any function ϕ ∶ T ∗Q Ð→ R with polynomial growth at in�nity, its ergodic limit, i.e. the
expected value with respect to the invariant measure, can be calculated as the limit

ϕerg ≡ ∫ ∫ ϕ(ξ, ζ)ρ∞(ξ, ζ)dξdζ = lim
t→+∞

E(ϕ(q̄(t), p̄(t))), (4.4)

where (q̄(t), p̄(t)) is an arbitrary solution of (1.1) with arbitrary initial conditions.

For more information about ergodic systems and ergodic numerical schemes see, e.g., [12], [15], [36],
[61], [62], [66], [88]. For many applications, it is interesting to compute the mean of a given function
with respect to the invariant law of the di�usion, but the explicit form of the invariant measure is
often not known. If the considered system is ergodic, then the ergodic limit can be approximated
as
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Figure 4.1: Top: The numerical value of the mean Hamiltonian E(H) for the simulations of the
damped Kubo oscillator with the initial conditions q0 = 2, p0 = 0, and the parameters β = 0.5
and ν = 0.001 is shown for the solutions computed with the mean-square explicit Heun, R2, and
E1 methods, and the mean-square Lagrange-d'Alembert methods presented in Section 3.3.3. The
Lagrange-d'Alembert integrators accurately capture the exponential decay of E(H), whereas the
explicit methods either fail to reproduce that behavior or do so inaccurately. Note that the plots
for the Heun and R2 methods, as well as for the midpoint and Störmer-Verlet methods, overlap
very closely. Bottom: The di�erence between the numerical value of the mean Hamiltonian E(H)
and the exact value (4.2) is shown for the E1 method and the Lagrange-d'Alembert integrators.
The stochastic DIRK method proves to be particularly accurate even when the time step ∆t = 0.5
is used.
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Figure 4.2: Top: The numerical value of the mean Hamiltonian E(H) for the simulations of the
damped Kubo oscillator with the initial conditions q0 = 2, p0 = 0, and the parameters β = 0.5
and ν = 0.001 is shown for the solutions computed with the weak explicit RS1 and RS2 methods,
and the weak Lagrange-d'Alembert methods presented in Section 3.4.3. The Lagrange-d'Alembert
integrators capture the exponential decay of E(H) much more accurately then the explicit ones,
even when much larger time steps are used. Bottom: The di�erence between the numerical value
of the mean Hamiltonian E(H) and the exact value (4.2) is shown instead. The SRKw2 method
proves to be signi�cantly more accurate then the others, even when the time step ∆t = 0.5 is used.
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ϕerg ≈ E(ϕ(q̄(T ), p̄(T ))) (4.5)

by choosing a su�ciently large time T . One can then use numerical integrators to approximate q̄(T )
and p̄(T ). However, formula (4.5) requires integration of the system over comparatively long time
intervals, which poses a signi�cant computational di�culty. Below we compare the performance of
the geometric integrators introduced in Section 3 with the performance of explicit schemes.

Consider Van der Pol's equation with additive noise (see [66]), which is a stochastic forced
Hamiltonian system of the form (1.1) with

H(q, p) = 1

2
p2 + 1

2
q2, F (q, p) = ν(1 − q2)p,

h(q, p) = −σq, f(q, p) = 0, (4.6)

where ν ≥ 0 and σ ≥ 0 are parameters. The explicit form of the invariant measure for this system
is unknown, however, it is interesting to compute the ergodic value of the energy. Simulations with
the initial conditions q0 = 1, p0 = 1, and the parameters σ = 0.05 and ν = 0.001 were carried out
until the time T = 5000. In each case 106 sample paths were generated. The numerical value of the
mean Hamiltonian E(H) as a function of time is depicted in Figure 4.3 for the DIRK, Heun, and
E1 methods. As the reference value we take Herg = 2.3165, which was calculated in [66] using a
second-order weak quasi-symplectic method at the time Tref = 10000 with the time step ∆t = 0.05
and 4× 106 sample paths. We see that the DIRK method accurately reproduces the reference value
even with the relatively large time step ∆t = 0.2, while the Heun and E1 methods require the much
smaller time step ∆t = 0.02 to reach that level of accuracy. The situation is similar for the other
Lagrange-d'Alembert and explicit integrators. Figure 4.4 depicts the behavior of E(H) near the
reference value on the time interval [4000,5000] for each of the tested integrators.

4.3 Vlasov equation

The following two-dimensional Vlasov Fokker-Planck equation

∂ρ

∂t
+ v ∂ρ

∂x
−E(x)∂ρ

∂v
= ν(µ∂(vρ)

∂v
+ D

2

2

∂2ρ

∂v2
) (4.7)

has been studied in [43] and [85] as a model for collisional kinetic plasmas, where ρ = ρ(x, v, t)
denotes the particle distribution function in the position-velocity phase space, E(x) = −φ′(x) is
the external electric �eld with the electrostatic potential φ(x), and ν > 0, µ > 0, D > 0 are real
parameters. A stochastic split particle-in-cell (PIC) method for the numerical simulation of (4.7)
has been proposed in [85], whereby the advection part is solved using the standard PIC method, and
the di�usion part is modeled by a stochastic di�erential equation. Below we demonstrate a structure-
preserving approach to solving (4.7). When ρ is interpreted as a probability density function, then
(4.7) is the Fokker-Planck equation for the two-dimensional stochastic process (X(t), V (t)) whose
evolution is governed by the stochastic di�erential equation (see [26], [44])

dtX = V dt, dtV = (−E(X) − νµV )dt +
√
νD ○ dW (t), (4.8)
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Figure 4.3: The numerical value of the mean Hamiltonian E(H) as a function of time for the
simulations of Van der Pol's equation with the initial conditions q0 = 1, p0 = 1, and the parameters
σ = 0.05 and ν = 0.001, is shown for the solutions computed with the DIRK, Heun, and E1 methods.
The reference value Herg = 2.3165 was calculated in [66]. The DIRK method accurately reproduces
the reference value even with the relatively large time step ∆t = 0.2, while the Heun and E1 methods
require the much smaller time step ∆t = 0.02 to reach that level of accuracy. For the clarity of the
plot the other Lagrange-d'Alembert and explicit methods are not depicted, but they demonstrate
similar behavior. Note that the plots for the DIRK method, and the Heun and E1 methods with
∆t = 0.02 overlap very closely.
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Figure 4.4: The numerical value of the mean Hamiltonian E(H) for the simulations of Van der Pol's
equation with the initial conditions q0 = 1, p0 = 1, and the parameters σ = 0.05 and ν = 0.001, is
shown on the time interval [4000,5000] near the reference value for the solutions computed with the
mean-square (Left) and weak (Right) methods. The reference value Herg = 2.3165 was calculated
in [66].
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driven by the one-dimensional Wiener process W (t). This equation is a stochastic forced Hamilto-
nian system (1.1) with

H(X,V ) = 1

2
V 2 − φ(X), F (X,V ) = −νµV,

h(X,V ) = −
√
νDX, f(X,V ) = 0. (4.9)

It can be easily veri�ed that the stationary solution of (4.7) is given by the Gibbs measure

ρ∞(x, v) = 1

Z
e−

2µ

D2H(x,v) = 1

Z
e

2µ

D2 φ(x)e−
µ

D2 v
2

, (4.10)

where Z is the normalizing constant such that ∫ ∫ ρ∞(x, v)dv dx = 1. Let us consider (4.7) on
the domain (x, v) ∈ [0,1] × R with periodic boundary conditions in x, and with the electrostatic
potential

φ(x) = −E0

4π
sin 4πx, (4.11)

where E0 > 0 is the maximum magnitude of the electric �eld E(x) = −φ′(x). One can check that the
system (4.9) with the potential (4.11) is ergodic (see Theorem 3.2 in [61]). As the initial condition,
we take the probability distribution of the form

ρ(x, v,0) = ρX(x)ρV (v) = (1 + ε cos 2πx)( 1

1 + a
1√
2π
e−

1
2
v2 + a

1 + a
1√
2πσ

e−
1

2σ2
(v−v0)

2

), (4.12)

where ρX(x) for ε > 0 describes a perturbation of the uniform distribution along the spatial direction
x, and ρV (v) for a > 0 is the so called bump-on-tail distribution in the velocity space, where the
bump is centered at v0 with the standard deviation σ > 0. Simulations with the parameters ν = 1,
µ = 1, D =

√
2, E0 = 3, ε = 0.25, a = 0.5, v0 = 4, and σ = 0.5 were carried out until the time

T = 1000. In each case 107 sample paths were generated. The initial conditions X0 and V0 were
randomly drawn from the probability distribution (4.12) using rejection sampling (see Figure 4.5).
The exact ergodic value Herg of the Hamiltonian can be calculated using the invariant probability
density (4.10) as

Herg = ∫
1

0
∫

∞

−∞
H(x, v)ρ∞(x, v)dv dx ≈ 0.471705. (4.13)

The numerical value of the mean Hamiltonian E(H) as a function of time is depicted in Figure 4.6
for the DIRK, Heun, and E1 methods. We see that the DIRK method accurately reproduces the
ergodic limit even with the relatively large time step ∆t = 0.15, while the E1 method requires the
much smaller time step ∆t = 0.02 to reach a comparable level of accuracy. The Heun method yields
a less accurate result even for ∆t = 0.02. The situation is similar for the other Lagrange-d'Alembert
and explicit integrators. Figure 4.7 depicts the behavior of E(H) near the exact ergodic limit on
the time interval [500,1000] for each of the tested integrators. The numerical probability density
at the �nal time T = 1000 calculated with each of the mean-square and weak methods is depicted
in comparison to the exact invariant measure (4.10) in Figure 4.8 and Figure 4.9, respectively.
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Figure 4.5: The initial probability density (4.12) for the simulations of the Vlasov equation with
the parameters ε = 0.25, a = 0.5, v0 = 4, and σ = 0.5.
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Figure 4.6: The numerical value of the mean Hamiltonian E(H) as a function of time for the
simulations of the Vlasov equation with the parameters ν = 1, µ = 1, D =

√
2, E0 = 3, ε = 0.25,

a = 0.5, v0 = 4, and σ = 0.5, and the initial conditions X0 and V0 sampled from the distribution
(4.12), is shown for the solutions computed with the DIRK, Heun, and E1 methods. The exact
ergodic limit Herg ≈ 0.471705 was calculated in (4.13). The DIRK method accurately reproduces the
ergodic limit even with the relatively large time step ∆t = 0.15, while the E1 method requires the
much smaller time step ∆t = 0.02 to reach a comparable level of accuracy. The Heun method yields
a less accurate result even for ∆t = 0.02. For the clarity of the plot the other Lagrange-d'Alembert
and explicit methods are not depicted, but they demonstrate similar behavior. Note that the plots
for the DIRK method and the E1 method with ∆t = 0.02 overlap very closely.
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Figure 4.7: The numerical value of the mean Hamiltonian E(H) for the simulations of the Vlasov
equation with the parameters ν = 1, µ = 1, D =

√
2, E0 = 3, ε = 0.25, a = 0.5, v0 = 4, and σ = 0.5, and

the initial conditions X0 and V0 sampled from the distribution (4.12), is shown on the time interval
[500,1000] near the exact ergodic limit for the solutions computed with the mean-square (Left) and
weak (Right) methods. The exact ergodic limit Herg ≈ 0.471705 was calculated in (4.13).

5 Summary and future work

In this paper we have presented a general framework for constructing a new class of stochastic
variational integrators for stochastic forced Hamiltonian systems. We have extended the approach
taken in [35] by considering the stochastic Lagrange-d'Alembert principle and constructing the
corresponding structure-preserving schemes, which we have dubbed stochastic Lagrange-d'Alembert
variational integrators. We have shown that in the presence of a symmetry such integrators satisfy
a discrete version of stochastic forced Noether's theorem. We have further considered certain classes
of mean-square and weak Runge-Kutta methods previously known in the literature, and determined
the conditions under which such methods become Lagrange-d'Alembert integrators. We have �nally
pointed out several examples of low-stage Runge-Kutta methods of that type, and demonstrated
their superior long-time numerical performance via numerical experiments. In particular, as one of
the test cases we have considered the Vlasov Fokker-Planck equation and proposed a new geometric
approach to the simulation of collisional kinetic plasmas.

Our work can be extended in several ways. The mean-square partitioned Runge-Kutta methods
introduced in Section 3.3 only use the increments ∆W r = ∫

tk+1
tk

dW r(t), therefore their mean-square
order of convergence cannot exceed 1.0 (see [18], [68], [69]). To obtain mean-square convergence of
higher order one can extend the de�nitions of the discrete Hamiltonian (3.18) and the discrete forces
(3.19) to include higher-order multiple Stratonovich integrals, e.g., to achieve convergence of order
1.5 we would need to include terms involving ∆Zr = ∫

tk+1
tk ∫

t
tk
dW r(ξ)dt; see [35] for an example how

this can be done for unforced Hamiltonian systems. Another aspect worth a more detailed investi-
gation is the issue of ergodicity of the Lagrange-d'Alembert methods. In Section 4.2 and Section 4.3
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Figure 4.8: The numerical probability density at time T = 1000 for the simulations of the Vlasov
equation with the parameters ν = 1, µ = 1, D =

√
2, E0 = 3, ε = 0.25, a = 0.5, v0 = 4, and σ = 0.5,

and the initial conditions X0 and V0 sampled from the distribution (4.12), is depicted for each of
the mean-square integrators, and compared to the exact invariant measure (4.10).
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Figure 4.9: The numerical probability density at time T = 1000 for the simulations of the Vlasov
equation with the parameters ν = 1, µ = 1, D =

√
2, E0 = 3, ε = 0.25, a = 0.5, v0 = 4, and σ = 0.5,

and the initial conditions X0 and V0 sampled from the distribution (4.12), is depicted for each of
the weak integrators, and compared to the exact invariant measure (4.10).
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we have experimentally demonstrated the usefulness of our integrators in calculating the ergodic
limits, but have not formally proved their ergodicity. It would be bene�cial to determine under what
conditions Lagrange-d'Alembert integrators can be ergodic in the sense discussed in, e.g., [61], [62],
or [88], when applied to ergodic Hamiltonian systems. It would also be interesting to extend the
idea of Lagrange-d'Alembert integrators to stochastic Hamiltonian systems that are both forced and
constrained. Structure-preserving numerical methods for such systems would be of great interest in
molecular dynamics (see [13], [23], [92]). Yet another direction of great practical signi�cance would
be a further study of the geometric approach to collisional kinetic plasmas presented in Section 4.3
and application of more realistic collision operators that preserve the total energy and momentum,
as well as an extension to the self-consistent Maxwell-Vlasov equations (see [47], [48]). Finally,
one may extend the idea of variational integration to stochastic multisymplectic partial di�erential
equations such as the stochastic Korteweg-de Vries, Camassa-Holm or Hunter-Saxton equations.
Theoretical groundwork for such numerical schemes has been recently presented in [34].
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