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SUMMARY
The Salmonella enterica effector SteD depletes mature MHC class II (mMHCII) molecules from the surface of
infected antigen-presenting cells through ubiquitination of the cytoplasmic tail of the mMHCII b chain. Here,
through a genome-wide mutant screen of human antigen-presenting cells, we show that the NEDD4 family
HECT E3 ubiquitin ligase WWP2 and a tumor-suppressing transmembrane protein of unknown biochemical
function, TMEM127, are required for SteD-dependent ubiquitination of mMHCII. Although evidently not
involved in normal regulation of mMHCII, TMEM127 was essential for SteD to suppress bothmMHCII antigen
presentation in mouse dendritic cells and MHCII-dependent CD4+ T cell activation. We found that TMEM127
contains a canonical PPxY motif, which was required for binding to WWP2. SteD bound to TMEM127 and
enabled TMEM127 to interact with and induce ubiquitination of matureMHCII. Furthermore, SteD also under-
went TMEM127- and WWP2-dependent ubiquitination, which both contributed to its degradation and
augmented its activity on mMHCII.
INTRODUCTION

The ability of Salmonella enterica to cause life-threatening dis-

eases such as typhoid fever requires many bacterial virulence

proteins (effectors) that interfere with both innate and adaptive

immune responses, both of which are normally involved in the

control and elimination of the pathogen. Innate responses are

countered by Salmonella effectors that are translocated into in-

fected host cells (including epithelial cells, macrophages, and

dendritic cells [DCs]) by the Salmonella pathogenicity island

(SPI)-1 and SPI-2 type III secretion systems (T3SS). These effec-

tors are frequently enzymes that catalyze post-translational

modification of host innate signalling pathway proteins (Jennings

et al., 2017).

CD4+ T cells are the major component of the adaptive immune

system involved in elimination of S. enterica from systemic tis-

sues of both mice (Kupz et al., 2014) and humans (Dunstan

et al., 2014). CD4+ T cells are activated by surface major histo-

compatibility complex class II molecules (MHCII) of antigen pre-
54 Cell Host & Microbe 28, 54–68, July 8, 2020 ª 2020 Imperial Colle
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senting cells, such as DCs. DCs internalise Salmonella cells at

the gut epithelium and transport them to mesenteric lymph no-

des, where T cell responses are initiated (Cerny and Hold-

en, 2019).

In DCs, the amount of peptide-loaded, mature major histo-

compatibility complex class II (mMHCII) at the cell surface

reflects the rates of both endocytosis and recycling from

MHCII-containing endosomes (known as MHCII or antigen pro-

cessing compartments). In immature DCs, surface mMHCII is

limited by the membrane-associated RING-CH (MARCH)1 E3

ubiquitin ligase, which targets molecules present in MHCII com-

partments and ubiquitinates the cytoplasmic tail of the MHCII b

chain. This enables recognition by the endosomal sorting

required for transport (ESCRT) complex, internalization of

mMHCII into intra-luminal vesicles, and its endo-lysosomal

degradation (Roche and Furuta, 2015). Upon DC activation,

MARCH1 expression ceases, allowing non-ubiquitinated

mMHCII to recycle to the plasma membrane to initiate CD4+

T cell responses (Cho et al., 2015). Salmonella depletes mMHCII
ge London. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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but not immature (invariant chain-bound) MHCII from the plasma

membrane of infected DCs and decreases the ability of DCs to

activate T cells (Cheminay et al., 2005; Lapaque et al., 2009; To-

bar et al., 2006). We showed previously that the highly conserved

SPI-2 T3SS effector SteD (Jennings et al., 2017) is required and

sufficient for this process and used the MHCII-expressing Mel

Juso cell line to implicate the MARCH1 homologue, MARCH8,

in SteD-dependent ubiquitination of the DRb chain of mMHCII

(Bayer-Santos et al., 2016).

To gain further insights into the mechanism by which SteD de-

pletes surfacemMHCII we undertook both targeted and unbiased

genetic approaches. Targeted knockouts ofMARCH8 inMel Juso

cells and MARCH1 in dendritic cells failed to support a role of

these enzymes in SteD function. Instead, a genome-wide mutant

screen led to the identification of two proteins—the NEDD4 family

homologous to E6AP C terminus (HECT) E3 ubiquitin ligase

WWP2 and the transmembrane protein TMEM127—that are

required for Salmonella Typhimurium (hereafter referred to as Sal-

monella) SteD-dependent ubiquitination of mMHCII. Although

having no detectable influence on the normal regulation of MHCII,

we found that TMEM127 is essential for SteD to suppress both

mMHCII antigen presentation in dendritic cells andMHCII-depen-

dent CD4+ T cell activation. TMEM127 contains a canonical PPxY

motif that is required for binding to WWP2. SteD binds to

TMEM127 and enables TMEM127 to ubiquitinate mMHCII

through WWP2. Furthermore, SteD also undergoes TMEM127-

and WWP2-dependent ubiquitination, which both contributes to

its own degradation and augments its activity on mMHCII.

RESULTS

A Genome-Wide Mutant Screen to Identify Genes
Required for SteD-Dependent Depletion of Surface
mMHCII
RNA knockdown experiments in human melanoma-derived Mel

Juso cells (extensively used for studying MHCII trafficking) sug-

gested that the E3 ligase MARCH8 is required for SteD-induced

mMHCII ubiquitination (Bayer-Santos et al., 2016). In view of

incomplete inactivation of MARCH8 and the possibility of off-

target effects, we generated MARCH8�/� Mel Juso cells by

CRISPR-Cas9 mutagenesis (Figure S1A) and infected them with

wild-type Salmonella or steD mutant bacteria. As previously re-

ported (Bayer-Santos et al., 2016), SteD was required for a dra-

matic reduction in cell surfacemMHCII (Figure S1B), asmeasured

by flow cytometry using mAb L243, which specifically recognizes

mature HLA-DR. However, the same effect was also observed in

the absence of MARCH8 (Figure S1B). Tetra- and penta-ubiquiti-

nated MHCII in uninfected and infected Mel Juso cells was much

reduced in the absence of MARCH8 (Figure S1C), in agreement

with previous work on the endogenous regulation of mMHCII (La-

paque et al., 2009; Ma et al., 2012). In contrast, SteD clearly

increased the amounts of di-ubiquitinatedmMHCII, andMARCH8

was not required for this (Figure S1C). We confirmed that surface

levels of MHCII in a March1�/� mouse-derived MutuDC cell line

werehigher than inwild-typecells (Wilsonetal., 2018) (FigureS1D).

Inmouse cells, it is not possible to discriminate between immature

andmatureMHCIImolecules, someasurements ofMHCII in these

cells reflectboth forms.However,SteD-dependentdepletionof to-

tal surface MHCII by intracellular Salmonella was similar in wild-
type or March1�/� cells (Figure S1E). Together, these results

establish that neither MARCH8 nor MARCH1 are involved in

SteD function and suggest that our previous results (Bayer-Santos

et al., 2016) were due to off-target effects or other artifacts.

To identify host molecules required by SteD to deplete mMHCII

from the host cell plasma membrane we carried out two CRISPR/

Cas9-based genome-wide mutant screens (Joung et al., 2017) in

Mel Juso cells (Figure 1A). Mel Juso cells stably expressing Cas9

and GFP-SteD (MJS GFP-SteD cells) had a much lower level of

surface mMHCII compared to Cas9-expressing wild-type cells

(Figure 1B). We generated two pooled libraries of mutants in

MJS GFP-SteD cells using the Geckov2 gRNA library (Sanjana

et al., 2014) (6 gRNA/ORF for 20,000 ORFs of the human genome

and 4 gRNAs/miRNA). Mutants resulting in high mMHCII surface

levels were enriched by three successive rounds of cell sorting

by flow cytometry (Figure 1B). Immunofluorescence microscopy

confirmed strong surface labelling of mMHCII following enrich-

ment, despite normal production and localization of GFP-SteD

(Figure 1C). The gRNAs in these cells were subjected to PCR

amplification and deep sequencing (Table S1); the gRNAs repre-

senting the 10 most frequent hits for the two screens were ranked

in order of abundance of read count per gRNA (Figure 1D). Of

these, four gRNAs targeting TMEM127 accounted for the three

most abundant sequence reads in each screen (Figure 1D).Overall,

gRNAs targeting TMEM127 represented 97% of the total gRNAs

sequenced. Only one other gene (WWP2) was represented by

two gRNAs among the top ten hits in each screen (Figure 1D).

One gRNA (24711) targeting the microRNA mir-3150 was also en-

riched in each screen. However, three other gRNAs present in the

library targeting mir-3150 were completely absent from

sequencing reads.

TMEM127 andWWP2 Are Required for SteD-Dependent
mMHCII Surface Level Decrease and Ubiquitination
Mutations in TMEM127 confer susceptibility to pheochromocy-

toma, a tumour of the adrenal gland (Qin et al., 2010). It is a

238-amino acid transmembrane protein of unknown biochem-

ical function, involved in mammalian target of rapamycin

(mTOR) nutrient sensing (Deng et al., 2018) and insulin signalling

(Srikantan et al., 2019). WWP2 belongs to the NEDD4 family of

HECT E3 ubiquitin ligases (Scheffner and Kumar, 2014).

NEDD4 ligases control ubiquitination and regulation of many

proteins including membrane proteins (Foot et al., 2008). We

generated independent CRISPR-Cas9 knockouts of WWP2

and TMEM127 in Mel Juso cells (Figures S2A and S2B). There

were no detectable differences in mMHCII surface levels be-

tween wild-type and knockout cells in the absence of infection

(Figure S2C). However, the ability of wild-type Salmonella to

induce SteD-dependent depletion of surface mMHCII in infected

cells was strongly impaired in cells lacking TMEM127 or WWP2

(Figures 2A–2C). Whereas absence of TMEM127 abolished all of

the SteD effect, the WWP2 knockout retained residual activity

(Figure 2C). Ectopic expression of GFP-TMEM127 or GFP-

WWP2 in knockout cells complemented the corresponding mu-

tations partially and completely, respectively (Figures 2B, 2C,

and S3A). The effects in knockout cells were accompanied by

a significant reduction in SteD-induced di-ubiquitination of

mMHCII (Figures 2D and 2E). A catalytic-dead point mutant of

WWP2 (GFP-WWP2[C/A]) (Mund et al., 2015) failed to
Cell Host & Microbe 28, 54–68, July 8, 2020 55
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Figure 1. Genome-Wide Mutant Screen Identifies Two Proteins Required for SteD-Dependent Depletion of Surface mMHCII

(A) Schematic of genome-wide CRISPR/Cas9mutant screen of Mel Juso cells (MJS) to identify genes required for SteD-dependent depletion of surfacemMHCII.

(B) FACS plots representative of the CRISPR/Cas9 screen, revealing enrichment of GFPhigh/L243high cells after mutagenesis and three rounds of sorting.

(C) Confocal immunofluorescence microscopy of GFP-SteD (green) and surface mMHCII (red) before sorting and after three rounds of enrichment. Scale

bar, 10 mm.

(D) gRNAs in enriched cells were subjected to deep sequencing. The 10 most enriched gRNAs, their corresponding genes and number of sequencing reads from

two screens are shown. Data taken from Table S1.

See also Figure S1; Table S1.
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complement WWP2 knockout cells (Figure S3B), showing that

SteD requires WWP2’s catalytic activity to function.

SteD Requires Tmem127 to Deplete Surface MHCII in
Dendritic Cells and to Inhibit T Cell Proliferation
To investigate the involvement of Wwp2 and Tmem127 in SteD-

dependent depletion of total surface MHCII in DCs, we gener-

ated gene knockouts in the mouse MutuDC cell line by

CRISPR-Cas9 mutagenesis (Figures S2D and S2E). Activation

of wild-type MutuDCs by infection with steDmutant Salmonella

led to significantly higher surface MHCII levels than DCs that

were not exposed to bacteria (Figure S2F), and these levels

were unaffected by the absence of either Wwp2 or Tmem127

(Figure S2F). In wild-type Salmonella-infected MutuDCs that

had been treated with scrambled gRNAs, there was a clear

SteD-dependent reduction of surface MHCII (Figure 3A), in

agreement with previous results using primary DCs (Bayer-

Santos et al., 2016). Consistent with results obtained with

Mel Juso cells (Figure 2C), the effect of SteD was completely

abrogated in Tmem127�/� MutuDCs and partially in Wwp2�/�

MutuDCs (Figure 3A). We previously reported a strong SteD-

dependent inhibition of CD4+ T cell proliferation by Salmo-

nella-infected DCs (Bayer-Santos et al., 2016). Loss of

Tmem127 in MutuDCs had no effect on Ovalbumin (OVA)-

dependent CD4+ T cell proliferation induced by MutuDCs

infected with steD mutant Salmonella and pulsed with OVA

peptide (Figure 3B). However, wild-type DCs infected with

Salmonella expressing SteD strongly inhibited T cell prolifera-

tion and this was dependent on Tmem127 and Wwp2 (Fig-

ure 3B). We conclude from these results that Tmem127 and

Wwp2 are not involved in the normal process of MHCII-medi-

ated antigen presentation but are important for the function of

SteD in suppressing surface MHCII in infected DCs and for

MHCII-dependent CD4+ T cell proliferation.

TMEM127 Is a NEDD4 Family-Interacting Protein
NEDD4 ubiquitin ligases including WWP2 contain an N-terminal

C2 lipid-binding domain, several WW domains and a C-terminal

catalytic HECT region (Zou et al., 2015). WW domains recognize

a consensus PPxY sequence in substrates or cognate adaptors,

including the NEDD4 family-interacting proteins (NDFIPs)
Figure 2. Validation of Mutant Screen Hits

(A) TMEM127 andWWP2 are required for reduction of surfacemMHCII by Salmon

type (WT), TMEM127�/�, or WWP2�/� Mel Juso cells infected with mCherry-exp

mMHCII (L243 antibody, white). Arrows indicate surface mMHCII of infected cell

(B) Mutant complementation. Representative confocal immunofluorescence micr

TMEM127 or GFP-WWP2, respectively (green), then infected with mCherry-exp

surface mMHCII (L243 antibody, white). Thick arrows show transfected, infected

transfected, uninfected cells. Scale bar, 10 mm.

(C) Quantification of mMHCII surface levels in mutant and complementedMel Juso

cytometry and amounts of surface mMHCII in infected cells are expressed as a

correspond to GFP-tagged proteins. Data are from 3 independent experiments an

by Tukey’s multiple comparison test).

(D) WT, TMEM127�/�, or WWP2�/� Mel Juso cells infected with WT or steD mu

antibody. Samples were analysed by immunoblot using anti-DRa (MHCII) anti-t

bodies. HC – IgG heavy chain. Ubiquitin blot detects ubiquitinatedmMHCII b chain

and penta-ubiquitinated mMHCII b chain are indicated by **, ****, and *****, respe

(E) Quantification of intensity of di-ubiquitinated mMHCII signal represented in (D).

p < 0.05, ns, not significant (Student’s t test).

See also Figure S2.
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NDFIP1 and NDFIP2 (Shearwin-Whyatt et al., 2006). Inspection

of the amino acid sequences of SteD, MHCII molecules, and

TMEM127 revealed that TMEM127 alone possesses a PPAY

sequence, at its C-terminal extremity (Figure S2A). TMEM127

is predicted to have three (Qin et al., 2010) or possibly four (Tsir-

igos et al., 2015) transmembrane regions. To determine the to-

pology of TMEM127, and for other biochemical studies, we

used a FLAG-tagged version (Deng et al., 2018). As expected,

FLAG-TMEM127 (shown to be functional by complementation

of surface mMHCII depletion by SteD [Figures S4A and S4B])

had a punctate distribution in Mel Juso cells (Figure 4A), reflect-

ing its presence in endosomal compartments (Qin et al., 2014).

Semi-permeabilization and antibody-labelling of these cells

showed that the N-terminal domain of TMEM127 is exposed to

the cytoplasm (Figure 4A). We hypothesized that TMEM127

binds WWP2 through its PPAY sequence. GFP-WWP2 was

located diffusely in the cytosol of Mel Juso cells (Figure 4B).

Co-expression of both proteins caused a dramatic relocalisation

of GFP-WWP2 to FLAG-TMEM127-positive vesicles (Figure 4B).

This alteration was abrogated by substitution of Y236 of the

PPAY sequence of TMEM127 (Figures 4B and 4C), indicating

that the C-terminal region of TMEM127 faces the cytoplasm,

and that the protein therefore has four transmembrane domains.

In HEK293ET cells (which do not express MHCII) GFP-WWP2

and FLAG-TMEM127 interacted, and this was largely dependent

on Y236 of TMEM127 (Figure 4D). Since TMEM127 does not

display sequence similarity to NDFIP1 or NDFIP2, we conclude

that TMEM127 is a distinct type of NDFIP that requires its

PPAY sequence to interact with WWP2.

SteD Binds to TMEM127 and Promotes TMEM127-
mMHCII Interactions
The requirement for TMEM127 and WWP2 for SteD-dependent

di-ubiquitination of mMHCII suggested that SteD mediates an

interaction between a TMEM127/WWP2 complex and mMHCII,

resulting in its ubiquitination. After translocation from bacteria or

following its ectopic expression, SteD localizes at the trans-Golgi

network and in cytoplasmic vesicles that contain mMHCII

(Bayer-Santos et al., 2016). Co-expression of GFP-SteD and

FLAG-TMEM127 inMel Juso cells showed that both proteins co-

localize with mMHCII in vesicles (Figure 5A). In HEK293ET cells,
ella. Representative confocal immunofluorescencemicroscopy images of wild-

ressing WT Salmonella (red). Cells were fixed 20 h p.i. and labelled for surface

s. Scale bar, 10 mm.

oscopy images of TMEM127�/� or WWP2�/� Mel Juso cells expressing GFP-

ressing wild-type Salmonella (red). Cells were fixed 20 h p.i. and labelled for

cells. Narrow arrows show non-transfected, infected cells. Arrowheads show

cells infected withWT or steDmutant Salmonella. Cells were analysed by flow

percentage of uninfected cells in the same sample. *TMEM127 and *WWP2

d showmeans ± SD. *** p < 0.001, ns, not significant (two-way ANOVA followed

tant Salmonella were lysed and proteins were immunoprecipitated with L243

ubulin (Tub), anti-ubiquitin (Ub), and anti-DnaK (as a Salmonella marker) anti-

(unmodified b chain –29 KDa). Bandswith masses corresponding to di-, tetra-,

ctively. Protein size markers (kDa) are indicated on right.

Data are from 5 independent experiments and showmeans ± SD. ** p < 0.01, *
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See also Figure S2.
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GFP-SteD but not another tagged Salmonella effector (GFP-

SifB), coprecipitated FLAG-TMEM127, showing that they can

interact without MHCII (Figure 5B). To define region(s) of SteD

required for binding to TMEM127we used several alanine substi-

tutionmutants that are defective for depletion ofmMHCII surface

levels (Bayer-Santos et al., 2016). GFP-SteD mutants in the first

and second transmembrane segments (SteDAla11, Ala12, Ala15,

Ala16) were defective for binding to FLAG-TMEM127 (Figures

5C and 5D), despite integrating normally into host cell mem-

branes (Figure S5A). These results imply that SteD interacts

with TMEM127 through its transmembrane domains. The

reduced ability of these mutants to decrease mMHCII surface

levels and of SteDAla16 to cause di-ubiquitination of mMHCII

(Bayer-Santos et al., 2016) is therefore correlated with their

impaired binding to TMEM127.

Although SteD interacted with TMEM127 and TMEM127 was

required for both SteD-mediated ubiquitination and surface

depletion of mMHCII, microscopic analysis and co-immuno-

precipitation of mMHCII and GFP-SteD from TMEM127�/�

Mel Juso cells revealed that their vesicular colocalization and

physical interaction do not require TMEM127 (Figures S5B–

S5E). Therefore, we questioned whether mMHCII was able to

interact with TMEM127 and whether SteD was necessary for

this interaction. TMEM127 colocalized extensively with

mMHCII in vesicles, and this was not increased by co-expres-
Cell
sion of GFP-SteD (Figures 5A and 5E).

However, while immunoprecipitation of

mMHCII showed that it interacted only

weakly with TMEM127, this was strik-

ingly increased in the presence of GFP-

SteD (Figures 5F and 5G). Therefore,

while TMEM127 and mMHCII co-exist

in the same vesicles and might interact

to a small extent, their interaction is

greatly stimulated or stabilized by SteD.
Collectively these results suggest that SteD is an adaptor that

can bind to both TMEM127 and mMHCII, thereby bridging

these molecules and enabling ubiquitination of mMHCII.

TMEM127- and WWP2-Dependent Ubiquitination
of SteD
Immunoblotting of SteD-2HA that had been translocated from

bacteria into mammalian cells revealed a small proportion of

the protein migrating with greater mass. This corresponded to

mono-, di- and tri-ubiquitinated SteD (Figure 6A). Mass spec-

trometry analysis of GFP-SteD immunoprecipitated from the

lysate of Mel Juso cells expressing GFP-SteD revealed the pres-

ence of a di-glycyl remnant on SteD K24 that is characteristic of

ubiquitinated lysine residues (Figure 6B). No evidence of ubiqui-

tination was found for the only other lysine in SteD, K38. Substi-

tution of SteD K24 with arginine and expressed from bacteria in

infected Mel Juso cells, abolished ubiquitination of SteD (Fig-

ure 6A). Ubiquitination of wild-type SteD was also much reduced

in TMEM127�/� and WWP2�/� cells (Figure 6C). These results

indicate that WWP2 ubiquitinates SteD (SteD-Ub) on K24 and

that TMEM127 is essential for this.

SteD Ubiquitination Enhances Its Activity
Next we investigated the functional significance of SteD-Ub.

GFP-SteDAla5 (incorporating K24A; Figure 5C) inserted normally
Host & Microbe 28, 54–68, July 8, 2020 59



Figure 4. TMEM127 Is a NEDD4 Family-In-

teracting Protein

(A) Representative confocal immunofluorescence

microscopy images of Mel Juso cells expressing

FLAG-TMEM127 (green). Cells were completely or

semi-permeabilized with Triton X-100 (top) or

digitonin (bottom) to discriminate between luminal

and cytoplasmic epitopes, respectively. Anti-

bodies recognizing the luminal portion of TGN46 or

cytoplasmic GM130 were used as controls. Scale

bar, 10 mm.

(B) Representative confocal immunofluorescence

microscopy images of TMEM127�/� Mel Juso

cells expressing GFP-WWP2 (green) and FLAG-

TMEM127 or FLAG-TMEM127Y236A. Cells were

fixed and labelled for FLAG-TMEM127 (anti-FLAG

antibody, red) and DAPI (blue). Representative

image shows relocalization and colocalisation of

GFP-WWP2 in cells expressing FLAG-TMEM127

but not in cells expressing FLAG-TMEM127Y236A.

Arrow indicates diffuse cytoplasmic signal of GFP-

WWP2 in a cell not expressing FLAG-TMEM127 or

FLAG-TMEM127Y236A. Scale bar, 10 mm.

(C) Pearson’s correlation coefficients for colocali-

zation between GFP-WWP2 and FLAG-TMEM127

or FLAG-TMEM127Y236A. Data are representative

of three independent experiments. Each dot rep-

resents the value for one cell. Error bars show

mean ± SD. *** p < 0.001 (Student’s t test).

(D) Coimmunoprecipitation of FLAG-TMEM127

but not FLAG-TMEM127Y236A with GFP-WWP2.

HEK293ET cells expressing GFP-WWP2 and

either FLAG-TMEM127 or FLAG-TMEM127Y236A

were lysed and proteins were immunoprecipitated

with GFP-trap beads. Samples were analysed by

immunoblot using anti-GFP, anti-FLAG, and anti-

tubulin (Tub) antibodies. Representative of 3 in-

dependent experiments.
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into host membranes (Figures S5A and S6A) and interacted with

TMEM127 (Figure 5D). However, Mel Juso cells infected with the

Salmonella DsteD mutant expressing and translocating HA-

tagged SteDK24R retained high surface levels of mMHCII,

compared to cells infected with Salmonella translocating HA-

tagged wild-type SteD (Figures 6D and 6E). We also constructed

a chromosomal mutation encoding SteDK24R and observed the

same phenotype (Figure S6B). This was accompanied by signif-

icantly reduced ubiquitination of mMHCII in cells infected with

Salmonella expressing SteDK24R (Figures 6F and 6G). The ubiq-

uitination of SteD is therefore important for its function in

reducing mMHCII surface levels.

SteD and mMHCII Undergo K63-Linked Ubiquitination
We used two complementary approaches to determine the type

of ubiquitin linkages associated with mMHCII and SteD. In the

UbiCRest assay (Hospenthal et al., 2015), ubiquitinated sub-

strates are incubated with a panel of linkage-specific deubiquiti-

nases (DUBs) to infer the type of chains attached to substrates.

We used Mel Juso cells stably expressing GFP-SteD and

collected mMHCII or GFP-SteD by immunoprecipitation (Fig-

ure 7A). These proteins were incubated with six DUBs with

different specificities and were subjected to SDS-PAGE and

immunoblotting using a pan-ubiquitin antibody. As expected,

the non-specific DUBs USP21 and vOTU resulted in the cleav-

age of ubiquitin chains from both GFP-SteD and mMHCII. Of

the DUBs that were active on K11-, K48-, K63-, or Met1-linked

(linear) ubiquitin molecules (Figure S7A) only associated mole-

cule with the SH3 domain of STAM (AMSH)-cleaved ubiquitin

chains associated with GFP-SteD and mMHCII (Figure 7A), indi-

cating that these proteins are modified primarily with K63-linked

ubiquitin chains. In the second approach, the same samples

were separated by SDS-PAGE, trypsinised and then subjected

to ubiquitin-AQUA (absolute quantification) mass spectrometry

(Kirkpatrick et al., 2006). This confirmed that the predominant

ubiquitin chain type on both mMHCII and GFP-SteD is K63-

linked (Figures S7B–S7E), consistent with previous work

showing that WWP2 mainly catalyzes K63-linked ubiquitination

(Jiang et al., 2015; Liao and Jin, 2010).
Figure 5. SteD Binds to TMEM127 and Enables Interaction between TM

(A) Representative confocal immunofluorescence microscopy images of Mel Juso

FLAG-TMEM127 (lower panel). Cells were fixed and labelled for total mMHCII

Magnified boxed area shows vesicular colocalization of the three proteins (arrow

(B) Coimmunoprecipitation of FLAG-TMEM127 with GFP-SteD but not GFP-SifB.

lysed and proteins were immunoprecipitated with GFP-trap beads. Samples we

antibodies. Representative of 3 independent experiments.

(C) SteD topology and location of mutants used in (D). Positions of blocks of ala

impaired for binding to TMEM127 are located in transmembrane regions (red). M

Santos et al., 2016).

(D) Coimmunoprecipitation of FLAG-TMEM127 with GFP-SteD mutants defectiv

TMEM127 and GFP-SteD alanine substitution mutants (as indicated in C) were lys

analyzed by immunoblot using anti-GFP, anti-FLAG, and anti-tubulin (Tub) antibo

(E) Mander’s overlap coefficient of the fraction of TMEM127 positive pixels that co

Data are representative of three independent experiments. Each dot represents

(F) Coimmunoprecipitation of FLAG-TMEM127 by anti-mMHCII (L243) antibody i

TMEM127 or FLAG-TMEM127 and GFP-SteD were lysed and proteins were imm

using anti-DRa (MHCII), anti-GFP, anti-FLAG, anti-transferrin receptor (TfR), and

(G) Quantification of intensity of FLAG-TMEM127 signal in immunoprecipitates (

GFP-SteD. Data show means ± SD from 5 independent experiments. *p < 0.05 (

See also Figures 4 and S3.

62 Cell Host & Microbe 28, 54–68, July 8, 2020
Lysosomal Degradation of mMHCII and SteD
K63-linked ubiquitination of membrane proteins can lead to lyso-

somal degradation of substrates (Dores and Trejo, 2019; Duncan

et al., 2006; Geetha et al., 2005). To assess lysosomal degrada-

tion of mMHCII, Mel Juso cells either expressing GFP-SteD or

not, were exposed to the lysosomal inhibitor chloroquine and

protein levels were examined 24 h later by immunoblotting. In un-

treated cells, GFP-SteD caused a strong reduction in total MHCII

(Figures 7B and 7C). This was rescued either by chloroquine or

lack of TMEM127 (Figures 7B and 7C). The amount of GFP-

SteD was not noticeably affected by chloroquine or absence of

TMEM127 (Figure 7B), possibly because of its overexpression

after transfection. Therefore, we analysed the fate of SteD-2HA

following its translocation from Salmonella in Mel Juso cells. At

24 h post-invasion bacteria were killed with tetracycline and cells

containing dead bacteria were then mock-treated or exposed to

chloroquine for a further 24 h. In mock-treated cells, SteD-2HA

was virtually undetectable, but chloroquine (Figure 7D) or the

absence of TMEM127 (Figures 7E and 7F) rescued a large frac-

tion from degradation. Since TMEM127 is required for ubiquiti-

nation of SteD, SteD-Ub-induced ubiquitination of mMHCII and

reduction of surface mMHCII (Figures 6E and 6F), we conclude

that ubiquitination of SteD not only results (directly or indirectly)

in its own lysosomal degradation, but importantly, enhances its

activity.

DISCUSSION

MHCII surface levels in DCs are normally suppressed by the

RING E3 ligaseMarch-1 (Cho et al., 2015). Based on RNA knock-

down and co-immunoprecipitation experiments, we previously

proposed that in Mel Juso cells, SteD co-opts its homologue

MARCH8 to ubiquitinate MHCII, thereby leading to its degrada-

tion (Bayer-Santos et al., 2016). However, in the current study,

use of MARCH knockout cells failed to provide support for

this, suggesting that the results in our previous study may have

been caused by off-target effects of RNA interference. There-

fore, it is not clear whether the direct or indirect interaction

between SteD and MARCH8 is physiologically significant
EM127 and mMHCII

cells expressing FLAG-TMEM127 and GFP-SteD (white; upper panel) or only

(L243 antibody, green), FLAG-TMEM127 (anti-FLAG, red), and DNA (DAPI).

heads). Scale bar, 10 mm.

HEK293ET cells expressing FLAG-TMEM127 and GFP-SteD or GFP-SifB were

re analyzed by immunoblot using anti-GFP, anti-FLAG, and anti-tubulin (Tub)

nine substitutions are shown as alternating blue and white stretches. Mutants

utants defective for depletion of mMHCII surface levels are shown by * (Bayer-

e for depletion of mMHCII surface levels. HEK293ET cells expressing FLAG-

ed and proteins were immunoprecipitated with GFP-trap beads. Samples were

dies. Representative of 3 independent experiments.

localise with mMHCII positive pixels in the absence or presence of GFP-SteD.

the value for one cell. Error bars show mean ± SD.* p < 0.05 (Student’s t test).

n absence or presence of GFP-SteD. Mel Juso cells stably expressing FLAG-

unoprecipitated with L243 antibody. Samples were analysed by immunoblot

anti-tubulin (Tub) antibodies.

F) relative to immunoprecipitated MHCII (DRa), in the absence or presence of

Student’s t test).
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(Bayer-Santos et al., 2016). These findings led us to conduct

genome-wide mutant screens for human proteins that are

required for SteD function. Two screens revealed that

TMEM127 and WWP2 are required by SteD to deplete surface

mMHCII. One microRNA (mir-3150) was also strongly enriched

in the two screens. However, three other gRNAs in the library

targeting the same miRNA were not recovered above back-

ground level, suggesting it might be an off-target effect.

TMEM127 is involved in regulation of the mTORC1 lysosomal

machinery (Deng et al., 2018) and insulin sensitivity (Srikantan

et al., 2019) but its biochemical function was unknown. Muta-

tions in TMEM127 confer susceptibility to pheochromocytomas

and renal cell carcinomas (Qin et al., 2010, 2014). WWP2 is a

member of the NEDD4 family of HECT E3 ligases, of which there

are 9 members in humans. Among those, WWP1 and ITCH form

a very closely related subgroup with WWP2 (Jiang et al., 2015).

Therefore, it is possible that partial redundancy might exist be-

tween these ligases (Martin-Serrano et al., 2005), providing an

explanation for the finding that SteD activity was not completely

abolished in cells lacking WWP2. However, although ITCH and

WWP1 were each targeted by 6 guide RNAs in the two screens,

virtually none were present in the sorted cell populations (Table

S1). Therefore, it seems unlikely that loss of either ligase affects

SteD function in otherwise wild-type cells.

NDFIP1 and NDFIP2 are integral membrane adaptors that

interact, through their PPxY motifs, with NEDD4 E3 ligases

including WWP2, thereby promoting degradation of transmem-

brane protein substrates (Foot et al., 2017). The presence of a

PPAY sequence at the C terminus of TMEM127 and its require-

ment for binding WWP2 defines TMEM127 as a novel type of

NDFIP. Our results in Figure 4 show that TMEM127 interacts

with WWP2 in the absence of infection, but the identity of the

endogenous substrate(s) of TMEM127 are currently unknown.

One candidate is a component of the late endosomal/lysosomal

adaptor and MAPK and MTOR activator (LAMTOR) complex,
Figure 6. TMEM127- and WWP2-Dependent Ubiquitination of SteD K2

SteD variants expressed from a plasmid in steD mutant strains are indicated in b

(A) SteD is ubiquitinated following translocation by intracellular Salmonella. Mel Ju

or K24 point mutant (SteDK24R) from a plasmid. Cells were lysed 20 h p.i. and pro

antibody. Samples were analysed by immunoblot using anti-HA or anti-ubiquitin (

ubiquitinated SteD-2HA are indicated by *, **, ***, and ****, respectively. Protein s

chain. Representative of 3 independent experiments.

(B) MALDI MS/MS spectrum of a peptide obtained after trypsinization of GFP-St

beads. K24 is modified with a G-G branch (K[GG]) indicating ubiquitination at thi

(C) WWP2- and TMEM127-dependent ubiquitination of SteD. WT or mutant Me

SteDK24R from a plasmid. At 20 h p.i., proteins were separated into pellet or post-n

anti-tubulin (Tub), and anti-DnaK (as a marker for Salmonella) antibodies. Bands

cated by * and **, respectively. Protein size markers (kDa) are indicated on right.

(D) SteDK24R fails to deplete surface mMHCII. Representative confocal immunofl

Salmonella strains expressing GFP (green). Cells were fixed 20 h p.i. and surface

(blue). Arrows indicate infected cells. Scale bar, 10 mm.

(E) Quantification of mMHCII surface levels in Mel Juso cells infected with the ind

amounts of surface mMHCII are expressed as a percentage of uninfected cells

means ± SD. *** p < 0.001, ** p < 0.01, * p < 0.05, ns, non-significant (one-way A

(F) An SteDK24R chromosomal point mutant of Salmonella is defective for ubiquitin

were lysed 20 h p.i. and proteins were immunoprecipitatedwith L243 antibody. Sa

a marker for Salmonella), anti-DRa (MHCII), and anti-ubiquitin (Ub) antibodies. Ba

are indicated by * and **, respectively.

(G) Quantification of intensity of di-ubiquitinated mMHCII signal relative to wild-ty

from 3 independent experiments. ** p < 0.01 (one sample t test).

See also Figure S5.
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since the absence of TMEM127 is associated with increased

levels of LAMTOR subunits and related signalling molecules

(Deng et al., 2018). Our results raise the possibility that the higher

levels of LAMTOR subunits in cells lacking TMEM127 are due to a

reduction in their ubiquitination and lysosomal degradation. It is

noteworthy that analysis of the mode of action of a Salmonella

effector has provided a functional link between two previously un-

connected mammalian proteins—a tumour suppressor and an

oncogenic E3 ubiquitin ligase. The possibility that the broader ef-

fects resulting frommutation of the former (such as pheochromo-

cytomas in humans [Qin et al., 2010] and defects in insulin signal-

ling in mice and humans [Srikantan et al., 2019]) might be

attributable to dysregulation of the latter, clearly deserves further

investigation. Indeed, dysregulation of WWP2 has been associ-

ated with several types of cancer (Zhang et al., 2019) and

WWP2 interacts with another tumour suppressor—phosphatase

and tensin homolog (PTEN) (Maddika et al., 2011). Our results

did not provide any evidence for the involvement of TMEM127

or WWP2 in mMHCII regulation in DCs in the absence of SteD.

However, since NEDD4 family members including WWP2 are

involved in T cell function (Aki et al., 2018), it would be interesting

to determine whether TMEM127 has endogenous substrates that

affect antigen presentation and/or T cell activation.

Regardless of their endogenous functions, it is clear from this

study that SteD appropriates TMEM127 and WWP2 to promote

ubiquitination and degradation of both itself andmMHCII. Immu-

nofluorescence microscopy confirmed that TMEM127 localizes

within endosomal compartments (Qin et al., 2014) and estab-

lished that a substantial proportion of these contain mMHCII.

Expression of SteD did not cause a noticeable redistribution of

TMEM127, and neither was TMEM127 required for co-localisa-

tion between SteD and mMHCII, suggesting that following its

translocation from bacterial vacuoles, SteD is recruited to com-

partments that already contain bothmMHCII and TMEM127. Our

results imply that SteD and TMEM127 interact through their
4

lack. SteDK24R expressed from the chromosome is indicated in red.

so cells were infected with DsteD Salmonella expressing HA-tagged WT SteD

teins from the post-nuclear supernatant were immunoprecipitated with an HA

Ub) antibodies. Bands with masses corresponding to mono, di-, tri-, and tetra-

ize markers (kDa) are indicated on right. HC – IgG heavy chain. LC – IgG light

eD obtained from Mel Juso cells stably expressing GFP-SteD using GFP-trap

s position.

l Juso cells were infected with Salmonella expressing HA-tagged WT SteD or

uclear supernatant (PNS) fractions and analysed by immunoblot using anti-HA,

with masses corresponding to mono and di-ubiquitinated SteD-2HA are indi-

Representative of 3 independent experiments.

uorescence microscopy images of Mel Juso cells infected with the indicated

mMHCII was labelled with L243 antibody (red). Nuclei were stained with DAPI

icated Salmonella strains. Cells were analyzed by flow cytometry 20 h p.i., and

from the same sample. Data are from 3 independent experiments and show

NOVA followed by Tukey’s multiple comparison test).

ation of mMHCII. Mel Juso cells infected with the indicated Salmonella strains

mples were analyzed by immunoblot using anti-tubulin (Tub), and anti-DnaK (as

nds with masses corresponding to mono and di-ubiquitinated mMHCII b chain

pe-infected cells, from 3 experiments represented in (F). Data are means ± SD
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transmembrane regions and previous work indicates that the

cytoplasmic C-terminal domain of SteD is important for its inter-

action with mMHCII (Bayer-Santos et al., 2016). Lack of

TMEM127 did not affect interactions between SteD and

mMHCII, and lack of MHCII did not affect interactions between

SteD and TMEM127. However, SteD enhanced the interaction

between TMEM127 and mMHCII. Therefore, we conclude that

SteD is an adaptor that bridges these molecules (Figure 7G).

Analysis of SteD-induced ubiquitin linkages showed that both

mMHCII and SteD are modified predominantly by K63-linkages,

consistent with previous work on WWP2 (Jiang et al., 2019;

Mund et al., 2015; Xu et al., 2004). K11 linkages were also de-

tected by ubiquitin-AQUA mass spectrometry, suggesting the

presence of mixed K63/K11 chains. Interestingly, such mixed

chains are generated on MHCI molecules by an E3 ligase of Ka-

posi’s sarcoma-associated herpesvirus, leading to endocytosis

of MHCI (Boname et al., 2010). Our finding that degradation of

both proteins was prevented by chloroquine or absence of

TMEM127 is also consistent with other work showing that K63-

linked ubiquitin is a signal for recognition by ESCRT complex

components, internalization into multivesicular bodies (MVBs)

(Huang et al., 2013; Lauwers et al., 2009) and lysosomal degra-

dation. We showed previously that SteD induces ubiquitination

on K225 of the b chain of MHCII (Bayer-Santos et al., 2016).

Although the two lysines of SteD—K24 and K38—are both part

of the cytoplasmic N-terminal domain, TMEM127-dependent

ubiquitination occurred exclusively on K24. This selectivity im-

plies a highly specific structural organization of SteD in relation

to mMHCII and the TMEM127/WWP2 complex. The K24R point

mutant of SteDwas impaired in ubiquitination and surface deple-

tion of mMHCII, indicating that ubiquitination of SteD has an

important functional role. One possibility is that the amplified

mass of SteD-Ub (approximately 28 kDa for the di-ubiquitin spe-

cies, compared to 11 kDa for SteD) provides a scaffold that facil-

itates the arrangement of a higher order complex containing

mMHCII, SteD, TMEM127, WWP2 together with its cognate E2

conjugating enzyme, and which favours ubiquitination of

mMHCII. Alternatively, SteD-Ub might increase the localised

concentration of K63-linked ubiquitin, amplifying a signal that

leads to degradation of both mMHCII and itself. In addition to

linking TMEM127/WWP2 with a novel substrate (mMHCII),
Figure 7. mMHCII and SteD Contain K63 Ubiquitin Linkages and Are S

(A) UbiCRest assay of ubiquitinated mMHCII and GFP-SteD collected fromMel Ju

L243 antibody (mMHCII) or GFP-trap, incubated with the indicated DUBs and anal

IgG light chain. Number of * corresponds to predicted number of ubiquitin molec

(B) Mel Juso cells (wild-type or TMEM127�/�), either non-transfected or expressing

were analysed by immunoblot using anti-DRa (MHCII), anti-tubulin (Tub), and an

(C) Quantification of intensity of DRa signal from 3 experiments represented in (B),

means ± SD. * p < 0.05. ns, not significant (Student’s t test).

(D) Mel JuSo cells were infected with DsteD Salmonella expressing SteD-2HA f

concentrations of chloroquine for an additional 24 h before lysis. Cell lysates were

by immunoblot using anti-HA, anti-tubulin (Tub), or anti-DnaK (as a marker for Sa

(E) WT or TMEM127�/�Mel Juso cells were infected withDsteD Salmonella expre

20 h p.i., and the amount of SteD was analyzed at indicated time-points thereafte

Salmonella) antibodies.

(F) Quantification of intensity of SteD-2HA signal at indicated times post-Tet add

(G) Model for mechanism of mMHCII surface depletion by SteD, TMEM127, andW

PPxY motif (PY) of TMEM127 and WW domain of WWP2. SteD (green) enables

uitination of mMHCII and SteD and their subsequent lysosomal degradation.

See also Figure S6.
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SteD might also contribute to the activation of autoinhibited

WWP2 (Chen et al., 2017; Mund et al., 2015). Addressing these

questions will probably require a cell-free assay for SteD activity

and deeper mechanistic insights will necessitate structural anal-

ysis of SteD together with relevant regions of other proteins.

It is remarkable that degradation of mMHCII can be controlled

endogenously by a MARCH RING E3 ligase and exogenously by

a NEDD4 HECT E3 ligase, and that the latter process involves

ubiquitination of the inducing bacterial effector, augmenting

both its activity and (either directly or indirectly) its degradation.

Very little is known about processes through which bacterial

pathogens interfere directly with antigen presentation. The fact

that Salmonella evolved an effective mechanism that depletes

peptide-loaded surface MHC class II molecules shows that

CD4+ T cell-mediated adaptive immunity has exerted a strong

selective pressure on this pathogen and suggests that other so-

phisticated mechanisms remain to be discovered in other bacte-

ria whose virulence is controlled by antigen presentation and

T cell responses.
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Trowsdale, J., and Kelly, A.P. (2009). Salmonella regulates polyubiquitination

and surface expression of MHC class II antigens. Proc. Natl. Acad. Sci. USA

106, 14052–14057.
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Antibodies

Mouse monoclonal anti-HLA-DR (cloneL243) Sigma-Aldrich Cat#SAB4700731

Mouse monoclonal anti-HLA-DR alpha chain

(clone TAL.1B5)

DAKO Cat#M0746; RRID: AB_2262753

Mouse monoclonal anti-DnaK (clone 8E2/2) ENZO Cat#ADI-SPA-880-F; RRID: AB_10619012

Goat polyclonal anti-Common Salmonella Antigens KPL Cat#01-91-99

Rabbit Monoclonal anti-GFP Invitrogen Cat#G10362

Mouse monoclonal anti anti-ubiquitin (clone P4D1) Santa Cruz Cat#sc-8017; RRID: AB_628423

Mouse monoclonal anti-tubulin DSHB Cat#E7

Rabbit polyclonal anti-actin Sigma-Aldrich Cat#A2066; RRID:AB_476693

Mouse monoclonal anti-CRISPR-Cas9 Novus Biological Cat#NBP2-36440

Mouse monoclonal anti-Golgin97 (clone CDF4) eBioscience Cat#14-9767-82

Mouse monoclonal anti-Transferrin

receptor (H68.4)

Zymed (S. Meresse) Cat#13-6800

Mouse monoclonal anti-FLAG (clone M2) Merck Cat#F3165-2MG

Rabbit polyclonal anti-FLAG Merck Cat#F7425

Mouse monoclonal anti-HA11 (clone 16B12) Biolegend Cat#901502; RRID: AB_2565007

Rabbit polyclonal anti-TMEM127 Bethyl laboratories Cat#A303-450A; RRID: AB_10952702

Rabbit polyclonal anti-WWP2 Abcam Cat#ab103527; RRID: AB_10710285

Mouse monoclonal anti-MHCII-APC (clone M5/

114.15.2)

Miltenyi Biotec Cat#130-102-898; RRID: AB_2660057

Hamster monoclonal anti-CD11c-VioBlue

(clone N418)

Miltenyi Biotec Cat#130-102-797; RRID: AB_2660157

Rat monoclonal anti-CD4-PerCP-Cy5.5 (clone

RM4-5)

BD Biosciences Cat#550954; RRID: AB_393977

Hamster monoclonal anti-CD3ε-PE-Vio770

(145-2C11)

Miltenyi Biotec Cat#130-102-794; RRID: AB_2660399

Bacterial and Virus Strains

Salmonella enterica serovar Typhimurium 12023 NCTC NCTC 12023

Salmonella enterica serovar Typhimurium 12023

DsteD::km

Bayer-Santos et al., 2016 N/A

Salmonella enterica serovar Typhimurium 12023

DsteD::km + pSteD-2HA-SrcA

Godlee et al., 2019 N/A

Salmonella enterica serovar Typhimurium 12023 +

pFCcGi

This study N/A

Salmonella enterica serovar Typhimurium 12023

DsteD::km + pFCcGi

This study N/A

Salmonella enterica serovar Typhimurium 12023

DsteD::km + pSteD-2HA-SrcA + pFCcGi

This study N/A

Salmonella enterica serovar Typhimurium 12023

DsteD::km + pSteDK24R-2HA-SrcA

This study N/A

Salmonella enterica serovar Typhimurium 12023

DsteD::SteDK24R

This study N/A

E. coli DH5a Thermo Fisher Scientific Cat#18265017

Chemicals, Peptides, and Recombinant Proteins

Chloroquine diphosphate salt Sigma-Aldrich Cat#C6628-25G; CAS: 50-63-5

Enzymes for UbiCRest Hospenthal et al., 2015 N/A

(Continued on next page)
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Blasticidin S Merck Cat#15205-25MG; CAS: 3513-03-9

Puromycin dihydrochloride Sigma-Aldrich Cat#P8833-25MG; CAS: 58-58-2

Carbenicillin disodium salt Sigma-Aldrich Cat#C1389-5g; CAS: 4800-94-6

Chloramphenicol Merck Cat#C0378-25G; CAS: 56-75-7

Kanamycin sulfate from Streptomyces

kanamyceticus

Sigma-Aldrich Cat#K1377-5g; CAS: 25389-94-0

5(6)-Carboxyfluorescein diacetate N-

succinimidyl ester

Sigam-Aldrich Cat#21888-25MG-F; CAS: 150347-59-4

Ovalbumin (323-339) (chicken, Japanese quail) Sigam-Aldrich Cat#O1641-1MG

Experimental Models: Cell Lines

Hek293T Provided by F. Randow N/A; RRID: CVCL_0063

Hybridoma L243 Provided by S. Meresse N/A; RRID: CVCL_4533

MelJuSo Provided by J. Neefjes N/A; RRID: CVCL_1403

MelJuSo CRISPR/Cas9 MARCH8 KO This study N/A

MelJuSo CRISPR/Cas9 TMEM127 KO This study N/A

MelJuSo CRISPR/Cas9 WWP2 KO This study N/A

MutuDCs Provided by A. Orbea Fuertes Marraco et al., 2012

MutuDCs CRISPR/Cas9 MARCH1 KO Provided by J. Mintern Wilson et al., 2018

MutuDCs CRISR/Cas9 TMEM127 KO This study N/A

MutuDCs CRISR/Cas9 WWP2 KO This study N/A

Experimental Models: Organisms/Strains

OT-II mice Charles River C57BL/6-Tg(TcraTcrb)425Cbn/Crl; RRID:

IMSR_CRL:643

Oligonucleotides

See Table S2 for primer sequences N/A N/A

Recombinant DNA

Plasmid: GFP-SteD Bayer-Santos et al, 2016 N/A

Plasmid: pMD-GAGPOL Provided by F. Randow Randow and Sale, 2006

Plasmid: VSVG Provided by F. Randow Randow and Sale, 2006

Plasmid: lentiCas9-Blast Sanjana et al, 2014

Gift from Feng Zeng

Addgene Plasmid #52962

Plasmid: psPAX2 Gift from Didier Trono Addgene Plasmid #12260

Plasmid: pMD2.G Gift from Didier Trono Addgene Plasmid #12259

Plasmid: lentiguide-puro Sanjana et al, 2014

Gift from Feng Zhang

Addgene Plasmid #52963

Pooled plasmid library: Human CRISPR knockout

Pooled Library (GeCKO v2)

Sanjana et al., 2014

Gift from Feng Zhang

Addgene Plasmid #1000000048

WWP2 gene sequence Genscript OHu14116

TMEM127 gene sequence genscript OHu10702

Software and Algorithms

Biopython Biopython https://biopython.org

Count_spacers.py Sanjana et al, 2014 https://github.com/fengzhanglab/

Screening_Protocols_manuscript/blob/master/

count_spacers.py

CRISPRAnalyzer CRISPRAnalyzeR http://crispr-analyzer.dkfz.de/

CRISPR Design Tool Dharmacon https://horizondiscovery.com/en/products/tools/

CRISPR-Design-Tool

Prism v8 GraphPad https://www.graphpad.com/scientific-

software/prism/

FIJI ImageJ https://fiji.sc/

(Continued on next page)
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Coloc 2 ImageJ plugin ImageJ http://imagej.net/Coloc_2

Image Lab BioRad https://www.bio-rad.com/en-uk/product/image-

lab-software?ID=KRE6P5E8Z

FlowJo v10 BD Life Sciences https://www.flowjo.com/

Other

Laser Scanning Microscope 710 Zeiss N/A

BD LSRFortessa� BD Biosciences N/A

BD FACSAria� III BD Biosciences N/A

Dionex Ultimate 3000 HPLC system Thermo Fisher Scientific N/A

Q Exactive� Thermo Fisher Scientific N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David W.

Holden (d.holden@imperial.ac.uk).

Materials Availability
Cell lines, plasmids and Salmonella strains generated in this study are freely available by requests directed to the lead contact.

Data and Code Availability
The published article includes all datasets generated or analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains
Bacteria were grown in Luria–Bertani (LB) medium supplemented with carbenicillin (50 mg mL-1), kanamycin (50 mgmL-1) or chloram-

phenicol (30 mg mL-1) as appropriate. See Key Resources Table for all bacterial strains.

Cell Culture
HEK293ET cells and human Mel Juso cells were maintained in Dulbecco’s modified eagle medium (DMEM; Sigma) supplemented

with 10% heat-inactivated fetal calf serum (FCS; Gibco, Life Technologies) at 37�C in 5% CO2. MutuDCs (Fuertes Marraco et al.,

2012) and March1-/- MutuDCs were maintained in IMDM-glutamax (GIBCO 31980), supplemented with 8–10% heat inactivated,

endotoxin-free FCS, 10 mM HEPES pH 7.4, 50 mM b-mercaptoethanol and 50 U mL-1 of penicillin and 50 mg mL-1 streptomycin.

T cells expressing OVA-specific T cell receptor were isolated from cell suspensions of spleens and lymph nodes of female OT-II

(C57BL/6-Tg(TcraTcrb)425Cbn/Crl) mice (Charles River) bymagnetic sorting of CD4+ cells (Miltenyi Biotec) and labeled with Carbox-

yfluorescein succinimidyl ester (CFSE) as described previously (Quah and Parish, 2010).

Cell Infection
For infection of Mel Juso cells, overnight Luria broth (LB) cultures of S. Typhimurium strains were diluted 1:33 in LB and incubated

with shaking at 37�C for 4 h before being added to cells at an MOI of 100:1 for 30 min. Cells were washed 3 times with PBS and incu-

bated in fresh medium containing gentamicin (100 mg mL-1) for 1 h to kill extracellular bacteria. After 1 h, the antibiotic concentration

was reduced to 20 mgmL-1, and cells were processed 20 h post-invasion (p.i.). For infection ofMutuDCs,S. Typhimurium strains from

overnight cultures were added to cells at an MOI of 20:1, cells were centrifuged at 110 g for 5 min and incubated at 37�C for 30 min.

Cells were washed 3 times with PBS and incubated in fresh medium containing gentamicin (100 mg mL-1) for 1 h to kill extracellular

bacteria. After 1 h, the antibiotic concentration was reduced to 20 mg mL-1, and the cells were processed 20 h post-invasion (p.i.).

Mouse Strain
Female C57BL/6 OT-II mice (Charles River) were housed as 5 mice per ventilated cage under Specified Pathogen Free conditions.

T cells were extracted from spleens and lymph nodes of 8-12 week old animals.
Cell Host & Microbe 28, 54–68.e1–e7, July 8, 2020 e3
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Mouse Ethics Statement
Experiments involving cells from OT-II mice were conducted in accordance with European Directive 2010/ 63/EU regulations with

approval from Imperial College London, Animal Welfare and Ethical Review Body (ICL AWERB) under the Personal Project license

of David Holden.

METHOD DETAILS

Plasmid Construction
See Table S2 for all primer sequences. DNA sequences encoding WWP2 and TMEM127 genes were obtained from Genscript

(#OHu14116D and #OHu10702D respectively). GFP-WWP2-, GFP-TMEM127- and FLAG-TMEM127-expressing plasmids were ob-

tained as follows: TMEM127 was amplified by PCR using TMEM127-BsmBI_NcoI_Flag-F and TMEM127-BsmBI_NotI-R primers or

TMEM127-BsmBI_PciI_F and TMEM127-BsmBI_NotI-R primers. PCR fragments were then digested by BsmBI and ligated into M6P

or GFP-M4P lentiviral plasmids, respectively, following their digestion with NcoI/NotI or PciI/NotI.WWP2 was amplified by PCR with

primers WWP2-BsmBI_PciI_F and WWP2-BsmBI_NotI-R. PCR fragments were then digested by BsmBI and ligated into M5P lenti-

viral plasmid (Randow and Sale, 2006) following its digestion with NcoI/NotI. Flag-TMEM127 Y236A was obtained using TMEM127_

PY_BsmBI_NotI-R primer containing the mutation. The steD mutation encoding K24R was introduced in plasmid pSteD-2HA-SrcA

(Godlee et al., 2019) by overlapping PCR (Heckman and Pease, 2007). Two PCR fragments were obtained using primers ovK24R-F/

SteD-Sac-R and ovK24R-R/SteD-Hind-F respectively. A second PCR was then done with the two amplicons as templates using

primers SteD-Sac-R and SteD-Hind-F. The resulting DNA fragment and pSteD-2HA-SrcA were digested with HindIII and SacI before

ligation and transformation in DH5a.

Lentiviral plasmids expressing gRNAs for directed CRISPR/Ca9 mutagenesis were obtained by ligation of duplexed DNA primers

(sequences are shown in Table S2). For the generation of MARCH8-/-, TMEM127-/- and WWP2-/- Mel JuSo cells, duplexed

primers were introduced into lentiguide-puro (Addgene #52963) by ligation following its digestion by Esp3I. For the generation of

Tmem127-/- and Wwp2-/- MutuDCs, duplexed primers were introduced in lentiCRISPRv2 (Addgene #52961) by ligation following

its digestion by Esp3I.

Transfection and Virus Production
HEK293ET cells were seeded 24 h before transfection. DNA transfection procedures were carried out using Lipofectamine 2000 ac-

cording to themanufacturer’s protocol (Life Technologies). Plasmids and lipofectamine 2000were incubated in OptiMEM for 5min at

room temperature. Both solutions were combined and incubated for 20 min at room temperature before being added to cells. For

coimmunoprecipitation experiments, HEK293ET cells were seeded in 6-well plates and were transfected with 0.5 mg DNA and

2 mL lipofectamine per well. Cells were then incubated for 24 h at 37�C, 5% CO2 before lysis.

Lentiviruses for transduction were produced in HEK293ET cells by cotransfection. The lentiviral expression vector M6P encoding

FLAG-TMEM127 or FLAG-TMEM127Y236A and the lentiviral expression vector M4P encoding GFP-SteD, GFP-WWP2 or GFP-

TMEM127 were cotransfected together with the packaging plasmids VSVG and GagPol. The lentiviral expression vector lenti-

guide-puro (Addgene #52963), lentiCas9-Blast (Addgene #52962) or lentiCRISPRv2 (Addgene #52961) were co-transfected together

with the packaging plasmids psPAX2 and pMD2.G. In both cases, the culture medium was replaced 24 h after transfection and the

supernatant containing viruses was collected 48 h after transfection and filtered.

Generation of Stable Cell Lines
To generate Mel JuSo cells stably expressing FLAG-TMEM127, FLAG-TMEM127Y236A, GFP-SteD, GFP-WWP2 or GFP-TMEM127,

lentiviruses were added to Mel JuSo cells together with polybrene at 8 mg mL-1. At 24 h post transduction, cells were either selected

with puromycin (0.8 mg mL-1), hygromycin (750 mg mL-1) or sorted by flow cytometry for the GFP constructs.

CRISPR/Cas9 Genome-Wide Mutant Screen
A clonal Mel JuSo cell line stably expressing GFP-SteD was first isolated and expanded. This cell line was transduced with lenti-

Cas9-Blast lentivirus at an MOI of 0.3. Two days post-transduction, Blasticidin selection was carried out at 5 mg mL-1. A clonal pop-

ulation of GFP-SteD-, Cas9-expressing Mel JuSo cells was then selected and Cas9 expression was confirmed by immunoblot using

anti-N-Terminal CRISPR-Cas9 antibody. The gRNA GeCKO v2.0 plasmid libraries (A and B pooled) (Addgene #1000000049, gener-

ated by the Feng Zhang laboratory) was packaged in lentivirus by co-transfection in HEK293ET cells with pMD2.G and psPAX2 (San-

jana et al., 2014). A total of approximately 108 Cas9-, GFP-SteD- expressingMel Juso cells were transduced with the lentivirus library

at a MOI of 0.3 and 48 h later puromycin selection was applied at 0.8 mg mL-1. One week later, cells were detached and labelled with

L243 antibody (1:300 dilution in sterile FACS buffer (5% FCS and 1 mM EDTA in PBS) for 30 min) and secondary anti-mouse

Alexa647 (1:300 dilution in sterile FACS buffer for 30 min). The top 1% GFPhigh/L243high cells were sorted using a FACS Aria III

high speed cell sorter. The sorting process was repeated twice after a week of expansion. Genomic DNA was extracted (Wizard,

Promega) from combined sorted cells (approximately 2 x 107 cells) and an equivalent number of unsorted mutagenized pooled cells

grown for the same amount of time. Genomic DNA from sorted or unsorted cells were used as templates for PCRs to amplify the

gRNAs using primers described by (Joung et al., 2017) (Table S2). PCR products were pooled and purified by agarose gel extraction

and subjected to deep sequencing by Illumina MiSeq at the Imperial College BRC Genomics Facility. Quantification of reads was
e4 Cell Host & Microbe 28, 54–68.e1–e7, July 8, 2020
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done using the count_spacers.py. program in Python (Joung et al., 2017) and statistical analyses were carried out using CRISPRA-

nalyzer (http://crispr-analyzer.dkfz.de/). When mMHCII is affected by SteD, Mel Juso cells grow a little more slowly, explaining the

enrichment of TMEM127 and WWP2 mutant cells in the non-sorted (control) population (Table S1).

CRISPR/Cas9 Targeted Mutant Construction
gRNAs for human MARCH8 (GGCAGGCCTGGTGCACGAAG) and mouse Tmem127 (CGTGCTGGGCTATGTAAACC) and Wwp2

(ACTGCTTTGGTGGCAGATCC) were designed using software available on the Dharmacon website (https://dharmacon.

horizondiscovery.com/gene-editing/crispr-cas9/crispr-design-tool/). The two most abundant gRNA hits from the screen targeting

human TMEM127 (HGLibB_50855 and HGLibA_58204) and WWP2 (HGLibA_62743 and HGLibA_62741) (Table S1) were selected

to create TMEM127 andWWP2 knockouts in Mel JuSo cells. Screen results were validated using knockouts made with both gRNAs.

Knockout clones made using HGLibB_50855 (TMEM127) and HGLibA_62743 (WWP2) were used for all further experiments (Fig-

ure S2). The gRNA sequences were ligated into a lentiviral plasmid as described above (plasmid construction).

To generatemutants ofMARCH8, TMEM127 andWWP2 in Mel JuSo cells, cells were first transducedwith lentiCas9-Blast viruses.

After blasticidin selection (5 mgmL-1), single clones were isolated and Cas9 expression verified by immunoblot. Cas9-expressingMel

JuSo cells were then transduced with virus encapsulating lentiGuide-puro-gRNA. After puromycin selection (0.8 mg mL-1), single

clones were isolated and gene inactivation was verified by genomic DNA sequencing and (with exception of MARCH8, for which

a specific antibody was not available) immunoblot using rabbit polyclonal anti-TMEM127 or anti-WWP2 antibodies. To generate

Tmem127 and Wwp2 MutuDC mutants, cells were transduced with virus encapsulating lentiCRISPRv2-gRNA (encoding both

Cas9 and corresponding gRNAs). After puromycin selection, single clones were isolated and gene inactivation was verified by

genomic DNA sequencing and immunoblot.

Immunofluorescence Microscopy
Cells were seeded onto coverslips and infected as described above. At 20 h p.i. cells were washed in PBS, fixed in 3% paraformal-

dehyde in PBS for 15 min at room temperature, then the paraformaldehyde was quenched by incubation with 50 mM NH4Cl for

10 min. For surface labelling of mMHCII, primary and secondary antibodies were diluted in 10% horse serum (Sigma) and coverslips

were washed in PBS. For intracellular labeling all antibodies were diluted in 10% horse serum and 0.1% saponin in PBS and cov-

erslips were washed in 0.1% saponin in PBS. Coverslips were incubated with appropriate primary antibodies for 1 h at room tem-

perature, washed in PBS, then incubatedwith secondary antibodies for 1 h at room temperature. Finally, where used, coverslipswere

incubated with DAPI for 5 min, washed in PBS then mounted onto glass slides using Aqua-Poly/Mount (Polysciences). For selective

permeabilisation, digitonin treatment was carried out on live cells. Coverslips were placed on ice, washed with KHM buffer (110 mM

KOAc, 20 mM HEPES, 2 mM MgCl2, pH 7.3) and incubated for 5 min with 25 mg/mL digitonin diluted in KHM. Coverslips were then

washed and incubated with primary antibodies diluted in 10% FCS in PBS for 30min on ice. After washes, cells were fixed. For Triton

X-100 permeabilisation cells were fixed and then incubated with 0.1% Triton X-100 for 5min at room temperature prior to labelling for

30 min with primary antibodies diluted in 10% FCS in PBS. For both detergent treatments coverslips were incubated with secondary

antibodies at room temperature under standard procedures. Coverslips were imaged using an LSM 710 inverted confocal laser-

scanning microscope (Zeiss GmbH).

Image Analysis
Image analyses were done with ImageJ software. Pearson’s correlation coefficient was used to quantify the colocalisation of GFP-

WWP2 to FLAG-TMEM127 (wild-type or mutant). The extracellular background was subtracted from images using the Background

Subtraction function in ImageJ, with a rolling ball radius equal to 200 pixels or 26.4 mm. Pearson’s correlation coefficient values were

obtained from individual cells using the Coloc 2 ImageJ plugin (http://imagej.net/Coloc_2).

Manders’ colocalization coefficient was used to measure the proportion of colocalising pixels between two punctate signals. The

extracellular background was subtracted from images using the Background Subtraction function in ImageJ, with a rolling ball radius

equal to 200 pixels or 26.4 mm. Local background was corrected by subtracting the median intensity of a 10 x 10 pixel region sur-

rounding each pixel. Non-specific fluorescence was then subtracted using values measured from unlabelled cells. The images

were then converted to binary and the Manders’ colocalization coefficient was measured from individual cells using the Coloc 2 im-

ageJ plugin.

Flow Cytometry
Surface levels of mMHCII or MHCII on Mel Juso or MutuDC cells respectively, were measured following infection as described pre-

viously (Bayer-Santos et al., 2016), with minor modifications. In brief, Mel Juso cells were detached from cell culture plates using

2 mM EDTA in PBS. All antibodies were diluted in FACS buffer. Cells were labelled with mouse anti-mMHCII primary antibody (clone

L243 for Mel Juso) or anti-MHCII (I-A/I-E, clone M5/114, APC-conjugated for MutuDC) at 1:300 dilution for 30 min on ice, washed in

cold PBS, then labelled with donkey anti-mouse secondary antibody (no secondary antibody for MutuDC) at 1 :300 dilution for 30 min

on ice. After washing with cold PBS, cells were fixed in 3.7% paraformaldehyde for 1 h at room temperature. Data were acquired

using a Fortessa flow cytometer (BD Biosciences) and analysed using FlowJo v10 software. Surface levels of mMHCII and MHCII

were calculated as median fluorescence of infected cells /median fluorescence of non-infected cells 3 100.
Cell Host & Microbe 28, 54–68.e1–e7, July 8, 2020 e5

http://crispr-analyzer.dkfz.de/
https://dharmacon.horizondiscovery.com/gene-editing/crispr-cas9/crispr-design-tool/
https://dharmacon.horizondiscovery.com/gene-editing/crispr-cas9/crispr-design-tool/
http://imagej.net/Coloc_2


ll
OPEN ACCESS Article
Proliferation of OVA-specific CD4+ T cells was measured after incubation with anti-CD3ε (clone 145-2C11), anti-CD4 (clone RM4-

5), anti-CD11c (clone N418) and anti-MHCII (I-A/I-E, clone M5/114) antibodies for 30 min on ice. All antibodies were diluted 1:200.

Gates were set up to distinguish between MutuDC (CD11chigh, CD3ε-) and CD4+ T cells (CD11clow, CD3ε+, CD4+). Infection rates

and surface levels of MHCII were measured on MutuDCs as described above. Proliferation of CD4+ T cells was calculated as %

of CFSElow CD4+ T cells upon normalization to control sample containing no OVA peptide.

Membrane Fractionation
Membrane fractionation was carried out as previously described (Bayer-Santos et al., 2016). Mel Juso cells expressing GFP-tagged

SteD variants were collected and lysed in homogenization buffer (250 mM sucrose, 3 mM imidazole (pH 7.4), and 1 mM PMSF) by

mechanical disruption using a Dounce homogenizer. The post-nuclear supernatant was collected after centrifugation at 1,800 g for

15 min. The membrane fraction was pelleted by centrifugation at 100,000 g for 1 h at 4�C. To remove peripherally-associated pro-

teins, the pellet was resuspended in 2.5 M urea and incubated for 15 min on ice followed by centrifugation at 100,000 g for 1 h at 4�C.
This yielded a second pellet containing integral membrane proteins and a supernatant containing peripherally-associatedmembrane

proteins. Pellets were resuspended in homogenisation buffer and all samples were analysed by SDS-PAGE and immunoblotting

using anti-HLA-DR alpha chain, anti-GFP, anti-Golgin97 and anti-actin antibodies. The MHCII a chain was used as an integral mem-

brane protein control. Actin was used as a soluble protein control. Golgin97was used as a peripherally-associatedmembrane protein

control.

Coimmunoprecipitations
HEK293ET or Mel Juso (wild-type or knockout) expressing GFP-SteD, GFP-WWP2, GFP-SifB, FLAG-TMEM127 or infected with Sal-

monella strains as indicated were resuspended in PBS containing 5 mM EDTA and washed once in PBS. Cells were lysed in lysis

buffer (150 mM NaCl, 50 mM Tris pH 7.4, 5 mM EDTA, 0.5% Triton X100, 5% glycerol, 10 mM iodoacetamide and protease inhibitor

cocktail tablets (Roche) for 10 min at 4 �C. The post-nuclear supernatant was isolated by centrifugation at 16,000 g for 15 min. Pro-

teins were immunoprecipitated by incubation with CNBr sepharose-coupled L243 antibody, anti-HA sepharose beads (Pierce) or

anti-GFP-Trap beads (ChromoTek) for 2 h at 4�C. Immunoprecipitates were washed four times with lysis buffer and boiled in SDS

buffer at 95 �C for 5 min before analysis by SDS-PAGE and immunoblotting using anti-HLA-DR alpha chain, anti-GFP, anti-tubulin,

anti-transferrin receptor, anti-HA, anti-TMEM127, anti-WWP2, and anti-FLAG antibodies. For ubiquitin immunoblots immunoprecip-

itates were eluted with 100 mM glycine (pH 3.0) and probed with mouse monoclonal anti-ubiquitin antibody. Immunoblots were vi-

sualised using ECL detection reagents (GE Healthcare, Thermo Scientific) on a ChemidocTM Touch Imaging System (Bio-Rad) and

densitometry measurements were carried out using Image Lab software (Bio-Rad).

Construction of SteDK24R Chromosomal Mutation
See Table S2 for primer sequences. Chromosomal allelic exchange was used to construct the steDK24R Salmonellamutant. The sui-

cide plasmid pGP704-steDK24R was constructed by overlap PCR (Heckman and Pease, 2007) using primers pGP704-steD-R and

ovK24RF, pGP704-steD-F and ovK24RR then ligated into pGP704 (Miller and Mekalanos, 1988). To insert the I-SceI recognition

site into the steD ORF, the pWRG100 plasmid (Blank et al., 2011) was used as a template to amplify I-SceI recognition site along

with the chloramphenicol resistance cassette using primers pWRG100_dsteD_F and pWRG100_dsteD_R. The PCR product was

transformed into pKD46-containing S. Typhimurium 12023 expressing l Red recombinase by electroporation (Datsenko and

Wanner, 2000) to make strain S. Typhimurium 12023 (SteD I-SceI). Plasmid pGP704-steDK24R was transferred by conjugation

from E. coli S17-1 l pir to S. Typhimurium 12023 (SteD I-SceI). Exconjugants were selected by growth on chloramphenicol and car-

benicillin. Successful recombinants were selected by expression of I-SceI endonuclease (Blank et al., 2011) and lack of growth on

chloramphenicol and carbenicillin. Positive clones were verified by sequencing.

Preparation of UbiCRest Deubiquitinases
DUBs used in the UbiCRest analysis were expressed and purified as in (Hospenthal et al., 2015). Briefly, USP21 (196-565 in pOPIN-

S), vOTU (1-183 in pOPIN-K), Cezanne (53-446 in pOPIN-K), OTUB1* (UBE2D2-OTUB1 fusion protein (Hospenthal et al., 2015;

Michel et al., 2015) in pOPIN-B), AMSH* (STAM2-AMSH fusion protein (Michel et al., 2015) in pOPIN-B), inactive AMSH* (E280A mu-

tation), and OTULIN (1-352 in pOPIN-B) were transformed into Rosetta2 (DE3) pLacI E. coli. The resulting transformants were used to

inoculate 2 x TY media and grown at 37�C until an optical density at 600 nm of 0.6-0.8 was reached, at which point the cultures were

cooled to 18�C and induced with 0.2 mM IPTG for 18 h of expression. Cells were harvested, resuspended, and lysed by sonication.

Purification was carried out according to manufacturer’s suggestions using either HisPur Cobalt resin (Thermo Fisher) for pOPIN-B

and pOPIN-S constructs or Glutathione Sepharose 4B (GE Healthcare) for pOPIN-K constructs. Vector-encoded tags were released

using either 3C protease for pOPIN-B and pOPIN-K constructs or SENP1 for pOPIN-S constructs. Proteins were further purified using

size exclusion chromatography on a HiLoad 16/60 Superdex 75 column (GE Healthcare), concentrated and stored at -80�C.

UbiCRest
Ubiquitinated mMHCII or GFP-SteD were purified fromMel JuSo cells stably expressing GFP-SteD (using L243 antibody or GFPTrap

beads respectively). After washes, beads were resuspended in dilution buffer (25 mM Tris pH 7.5, 150 mM NaCl) and 12 mL samples

(corresponding to 2 x 106 cells) were aliquoted per tube. DUBs were thawed and diluted in buffer (25 mM Tris pH 7.5, 150 mM NaCl,
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10mMDTT) at 5 x working concentration (5 mMUSP21, 5 mM vOTU, 5 mMCezanne, 5 mMOTUB1, 5 mMAMSH, 0.5 mMOtulin). Ubiq-

uitinated substrates (12 mL of GFP-SteD ormMHCII), 1.75 mL 10 x reaction buffer (500mMTris pH 7.5, 500mMNaCl, 50mMDTT) and

3.5 mL of 5 x DUBs were mixed in Eppendorf tubes at 37
�
C for 45 min. SDS-PAGE loading buffer was added and samples boiled

before SDS PAGE and immunoblotting for ubiquitin using P4D1 antibody.

Standard Mass Spectrometry of GFP-SteD
GFP-SteD was obtained from Mel Juso cells stably expressing GFP-SteD using GFP-trap beads. The protein was subjected to an

‘‘on-the-beads digestion’’ procedure in which proteins were reduced with 50 mM TCEP (for 60 min at 60 �C), alkylated with

200mMmethyl methanethiosulfonate (45min at room temperature) and digested overnight with trypsin (sequencing GradeModified

Trypsin - Promega V5111). Peptide mixtures were analyzed by LC-MS-MS/MS (liquid chromatography coupled to tandem mass

spectrometry) using Nano-Acquity (Waters) LC system and Orbitrap Velos mass spectrometer (Thermo Electron Corp., San Jose,

CA). Prior to the analysis, the peptide mixture was applied to RP-18 precolumn (nanoACQUITY Symmetry� C18 – Waters

186003514) using water containing 0.1% TFA as mobile phase and then transferred to nano-HPLC RP-18 column (nanoACQUITY

BEH C18 - Waters 186003545) using an acetonitrile gradient (5% - 35% AcN) in the presence of 0.05% formic acid with the flowrate

of 250 nL/min. Column outlet was directly coupled to the ion source of the spectrometer working in the regime of data dependent MS

to MS/MS switch. A blank run ensuring lack of cross contamination from previous samples preceded each analysis.

Acquired raw data were processed by Mascot Distiller followed by Mascot Search (Matrix Science, London, UK, on-site license)

against NCBInr database (version May, 2016) restricted to bacterial sequences. Search parameters for precursor and product ions

mass tolerance were 30 ppm and 0.1 Da, respectively, enzyme specificity: trypsin, missed cleavage sites allowed: 1, fixedmethylthio

modification of cysteine and variablemodification of ubiquitination andmethionine oxidation. Peptides withMascot Score exceeding

the threshold value corresponding to < 5% expectation value, calculated by Mascot procedure, and with the Mascot score above 30

were considered to be positively identified.

AQUA Mass Spectrometry
Immunoprecipated samples were resolved on 4-12% NuPAGE Bis-Tris gels (Invitrogen) and stained with Instant Blue (Expedeon).

Regions of the gel above the mass of the unmodified substrate were separated into two fractions. The light and heavy chain protein

bands from the mMHCII immunoprecipitation were avoided. Gel samples were sliced into 1 mm3 cubes and subjected to in-gel tryp-

sinization at 37 �C for 16 hr. To each trypsinized sample, 2 pmoles of isotopically-labeled ubiquitin standards were added according

to (Kirkpatrick et al., 2006). Following lyophilization, the samples were resuspended in 25 mL of reconstitution buffer (7.5% acetoni-

trile, 0.5% trifluoroacetic acid, 0.01% H2O2). Methionine-containing peptides were oxidized according to (Phu et al., 2011). 10 mL of

each sample was injected onto a Dionex Ultimate 3000 HPLC system and peptides bound to a nanoEase MZ Symmetry trap (C18,

5 mM, 100 Å, 180 mm x 20 cm; Waters, Milford, MA) at a flow rate of 300 nL/min. Prior to ionization, peptides were further separated

using an nanoEase MZ HSS T3 column (1.8 mm, 100 Å, 75 mm x 25 cm; Waters). Mass analysis was performed on a Q Exactive

(Thermo Scientific) using a parallel reaction-monitoring assay. Skyline software (MacLean et al., 2010) was used to quantify transition

ions from the unlabeled and AQUA peptides. Analysis of each gel fraction independently revealed the vast majority of ubiquitin mod-

ifications corresponded to 98 kDa or below, and these regions were pooled for subsequent analysis.

T Cell Proliferation Assay
MutuDCs that had been exposed to scrambled control gRNA and Tmem127-/- MutuDC were infected at an MOI of 20:1 in IMDM-

treated Petri dishes, cells were centrifuged at 110 g for 5 min and incubated at 37�C in 5% CO2 for 30 min. Cells were washed 3

times with PBS and incubated in fresh medium containing gentamicin (100 mg mL�1) for 1 h to kill extracellular bacteria. After 1 h,

the antibiotic concentration was reduced to 20 mg mL�1 and cells were detached using 1mM EDTA inn PBS. Cells (5 x 104) were

seeded in 96-well plates and incubated with OVA peptide (ISQAVHAAHAEINEAGR) for 1 h in 5 mM in IMDM containing 10% FCS

and 20 mg mL�1 gentamicin. After 20 h of infection, cells were transferred to RPMI 1640 medium and incubated with T cells in 96-

well plates. T cells expressing OVA-specific T cell receptor (TCR) were isolated from cell suspensions of spleens and lymph nodes

of OT-II mice by magnetic sorting of CD4+ cells (Miltenyi Biotec) and labeled with CFSE as described previously (Quah and Parish,

2010). CD4+ T cells were incubated with DCs at a ratio of 3:1 in a final volume of 200 mL of RPMI 1640medium containing 20mgmL-1

gentamicin. After 72 h, cells were centrifuged and resuspended in 50 mL FACS buffer containing antibodies and subjected to Flow

Cytometry (see above).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significancewas calculated using two-way ANOVA, one-way ANOVA followed by Tukey’smultiple comparison test or one-

or two- sample T test correction as indicated in figure legends. All statistical analysis was carried out using GraphPad Prism v8

software.
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