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S1. Evaluation of the transient absorption

To evaluate the transient absorption (∆α) from the measured di�erential transmittance

(∆Tν/Tν), we applied a common approach known in the literature.1 Speci�cally, we per-

formed a Kramers-Kronig constrained variational analysis2 to extract the complex dielectric

function (ε = ε1 + iε2) from the static transmittance Tν . The results we obtain are consistent

with those reported in previous studies.3 We then used the dielectric function to obtain the

absorbance α, as reported previously.1 We applied this procedure for all the acquired data at

di�erent THz pump �eld strengths. Finally, at each �eld strength, we performed a Lorentz

analysis of the absorption spectra in order to estimate the parameters for the exciton res-

onances. The results of the �ts are superposed as solid lines over the experimental data in

Fig. S6. While the oscillator strength and the exciton peak energy are essentially unchanged

under THz excitation, the resonance linewidth undergoes a signi�cant modi�cation with in-

creasing �eld strength, as shown in Fig. 4(b). Only at the maximum THz �eld strength,

there is a small shift of the A exciton peak energy, which is likely due to the dynamic Franz-

Keldysh e�ect.4 This observation suggests that at the highest THz �eld strengths used in

our study, the system is entering a non-perturbative regime of excitation. We believe that

exciton B may also undergoes a similar spectral shift, but this could be obscured by its

broader lineshape. The small shift detected at the maximum THz �eld strength is incidental

to the conclusions of our study.

S2. Theoretical modeling with the Franz-Keldysh e�ect

The time-resolved results show that the �eld-induced broadening of the excitonic peaks oc-

curs only during the presence of the THz �eld. This observation points towards an adiabatic

e�ect which could be interpreted in terms of a static �eld. We propose that the static

Franz-Keldysh e�ect plays a relevant but indirect role. The textbook manifestation of the

Franz-Keldysh e�ect is the formation of a �nite in-gap density of states with an exponential
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tail from the electronic bandgap. If such a tail extended far enough to shift and broaden

the excitonic resonances, it would result in an asymmetric shape of the A and B excitonic

resonances (as the energies of the two resonances are di�erent). Another possibility is that

the electric �eld of the THz pulse induces direct dissociation of the excitons, consequently

reducing their lifetimes and broadening their lineshapes. However, according to previous

studies,5,6 the required �eld magnitude for direct dissociation should be much higher than

those utilized in our experiments and the scaling would be di�erent than that observed in

our data.

Here, we propose an indirect role of the Franz-Keldysh e�ect through the modi�cation of

particle-hole continuum. Speci�cally, the Franz-Keldysh e�ect provides a larger number of

particle-hole states below the electronic gap, thus opening additional scattering channels for

the excitons and increasing the broadening of their resonances. The scattering of the exciton

into a continuum state has to be mediated by the environment (e.g., thermal phonons) and

is more favorable if the energy di�erence between the exciton and the �nal continuum state

is smaller, which is the case for the in-gap states created by the Franz-Keldysh e�ect.

In the following paragraphs, we analyze the above scenario with a simple model based

on the Franz-Keldysh e�ect and the Red�eld equation.

A. Franz-Keldysh e�ect in 2D systems

Here, we derive the particle-hole continuum density of states, also referred to as the joint

density of states, of a two-dimensional material (2D) under the in�uence of a static electric

�eld. This derivation represents the extension of the Franz-Keldysh e�ect to the 2D case.

Let us start from the time-dependent expression for the density of states as in Eqs. (2) and

(3) of Jauho and Johnsen.4

ρ(ω, T ) =
1

2π

∑
k

Ã(k, ω, T ), (1)
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Ã(k, ω, T ) =

∫
drdτeiw

∫
dp× exp

{
−i
∫ T+τ/2

T−τ/2
dt1ε [p−A(t1)]

}
, (2)

where A(t) is the vector potential, and w is de�ned as

w ≡ τω − r · k−
∫ T+τ/2

T−τ/2

dt1
τ
r ·A(t1). (3)

In the following, we consider only a static electric �eld E0, which can be described by

the following vector potential

A(t) = −E0 × (t− T ), (4)

which, according to Eq. (3) gives

w ≡ τω − r · k, (5)

and Eq. (2) can be rewritten as

Ã(k, ω) =
1

(2π)2

∫ ∞
−∞

dτeiωτ × exp

{
−i
∫ T+τ/2

T−τ/2
dt1ε [k−A(t1)]

}
. (6)

We assume a parabolic band dispersion for particle-hole pairs, which reads

ε(k) = εg +
1

2µ
k2, (7)

where εg is the electronic band gap of the crystal, and µ is the reduced electron-hole mass.

Under this assumption, the dynamical phase factor in Eq. (6) can be evaluated as

∫ T+τ/2

T−τ/2
dt1ε [k−A(t1)] =

∫ τ/2

−τ/2
dt1ε

[
εg +

1

2µ
(k + E0τ)2

]
=

(
εg +

k2

2µ

)
τ +

E2
0

8µ

τ 3

3
. (8)
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Inserting Eq. (8) into Eq. (6), we have:

Ã(k, ω) =
1

(2π)d

∫ ∞
−∞

dτ exp

{
−i
[(
εg +

k2

2µ
− ω

)
τ +

E2
0

8µ

τ 3

3

]}
(9)

Employing the Airy function, Ai(x), de�ned as

Ai(x) =
1

2π

∫ ∞
−∞

ei(t
3/3+tx) =

1

2π

∫ ∞
−∞

cos
[
t3/3 + tx

]
=

1

π

∫ ∞
0

cos
[
t3/3 + tx

]
, (10)

the spectral function Ã(k, ω) in Eq. (9) can be rewritten as

Ã(k, ω) =
1

(2π)2

2π

β
Ai

(
εg + k2

2µ
− ω

β

)
, (11)

where we introduced β as

β ≡
(
E2

0

8µ

)1/3

. (12)

The spectral function we just obtained corresponds to Eq. (7) of Ref.4

We proceed with the evaluation of the joint density of states by inserting Eq. (11) into

Eq. (1),

ρ2D(ω) =
1

2π

∫
dk

1

(2π)2

2π

β
Ai

(
εg + k2

2µ
− ω

β

)

=
1

2π

1

β

∫ ∞
0

dk · k · Ai

(
εg + k2

2µ
− ω

β

)
. (13)

Applying the variable transformation, x = k2/2µβ, Eq. (13) can be rewritten as

ρ2D(ω) =
µ

2π

∫ ∞
0

dxAi

(
εg − ω
β

+ x

)
=

µ

2π

∫ ∞
−ω−εg

β

dyAi(y), (14)
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where we further transformed the integration variable y = x+ (εg − ω)/β.

We can readily see that, in the weak �eld limit, β → 0 (E0 → 0), the joint density of

state expression above becomes a Heaviside step function that is typical of 2D systems

ρ2D(ω) ≈ µ

2π
Θ (ω − εg) . (15)

Figure S7 shows how the 2D joint density of states is a�ected by the external electric

�eld with di�erent magnitudes. We can distinguish a typical exponential tail for energies

below and an oscillatory behavior above the electronic gap, similar to the three-dimensional

case.

B. Theoretical analysis of �eld enhanced decay of excitons

Here, we derive an expression for the �eld-induced enhancement of the exciton decay by

employing the modi�ed density of states in Eq. (14). We consider a system that consists of

a sub-system and a bath described by the Hamiltonian

HTot = HS +HB +HSB, (16)

where HS is the subsystem Hamiltonian, HB is the bath Hamiltonian, and HSB is the

coupling between the subsystem and the bath. Furthermore, we assume that the bath

consists of a series of harmonic oscillators as

HB =
∑
a

[
P̂ 2
a

2Ma

+
1

2
MaΩaR̂

2
a

]
, (17)

where Ma is mass of a harmonic oscillator, Ωa is its eigenfrequency, P̂a is its momentum

operator and R̂a is its position operator. In this work, we consider the following linear
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coupling form for the coupling Hamiltonian HSB as

HSB = g
∑
a

Â⊗ R̂a, (18)

where g is a coupling constant and Â is a sub-system operator.

According to Ref.,7 under the Born and Markov approximations, one can derive the

Red�eld equation in the interaction picture,

dρ(t)

dt
= −g2

∑
a

∫ t

0

dτ {Baa(τ) [A(t), A(t− τ)ρ(t)] + h.c.} , (19)

with Baa(τ) is the correlation function of the a harmonic oscillator, which reads

Baa(τ) = Tr
{
R̂a(0)R̂a(−τ)ρB

}
=

1

2MaΩa

[
e−iΩaτ +

2

eβh̄Ωa − 1
cos Ωaτ

]
, (20)

where ρB is the bath density matrix in thermal equilibrium, and β corresponds to the inverse

temperature, β ≡ 1/kBT . Then, we introduce the total correlation function of the bath as

B(τ) = g2
∑
a

Baa(τ) =

∫ ∞
0

dΩJ(Ω)

[
e−iΩτ +

2

eβh̄Ω − 1
cos(Ωτ)

]
, (21)

where the bath spectral density J(Ω) is given by

J(Ω) ≡
∑
a

δ(Ω− Ωa)
g2

2MaΩa

. (22)

Employing this bath correlation function, Eq. (21) can be rewritten as

dρ(t)

dt
= −

∫ t

0

dτB(τ) [A(t), A(t− τ)ρ(t)] + h.c. (23)

We then proceed with the evaluation of the population transfer rate from the excitonic

state |e〉 to a �nal state |f〉 (a continuum particle-hole state) via the interaction with the
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bath as

γf =
〈f |ρ(T )|f〉 − 〈f |ρ(0)|f〉

T

= − 1

T
Tr

{
|f〉〈f |

∫ T

0

dt

∫ t

0

dτB(τ) {[A(t), A(t− τ)ρ(t)] + h.c.}
}

≈ − 1

T
Tr

{
|f〉〈f |

∫ T

0

dt

∫ ∞
0

dτB(τ) {[A(t), A(t− τ)ρ(t)] + h.c.}
}
, (24)

where, in the last step, we changed integration limits assuming that the period T is much

longer than the decay time of the correlation function B(τ). We further assume that the

system is initially in the exciton state, ρ(0) = |e〉〈e| and that the subsystem-bath coupling

is weak. As a result, one can evaluate the leading term of the scattering rate as

γf ≈ − 1

T
Tr

{
|f〉〈f |

∫ T

0

dt

∫ ∞
0

dτB(τ) {[A(t), A(t− τ)|e〉〈e|] + h.c.}
}

=

∫ ∞
0

dτB(τ)|〈f |A|e〉|2e−i(εf−εe)τ + c.c., (25)

where εe and εf are the energy of the exciton and the �nal state, respectively. In the last line

of Eq. (25), we used the de�nition of the operator A(t) ≡ eiHStAe−iHSt. Inserting Eq. (21)

into Eq. (25), the following expression is obtained:

γf = 2π|〈f |A|e〉|2J(Ω)
1

eβh̄Ω − 1

∣∣∣∣∣
h̄Ω=εf−εe

, (26)

where εf − εe > 0 is assumed.

By adding contributions from all possible �nal states, the decay rate of the exciton via

the environment can be evaluated as γ =
∑

f γf . Further assuming that matrix elements

|〈f |A|e〉|2 do not depend on the �nal states, |〈f |A|e〉| = M2, one can evaluate the decay

rate as

γ =
∑
f

2πM2J(Ω)
1

eβh̄Ω − 1

∣∣∣∣∣
h̄Ω=εf−εe

= 2πM2

∫ ∞
0

dΩJ(Ω)nB(Ω)ρD(Ω), (27)
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where nB(Ω) is the Bose-Einstein distribution, nB(Ω) = (eβh̄Ω − 1)−1, and the density of

states of the �nal system ρD(ω) is introduced as

ρD(ω) =
∑
f

δ(εf − εe − ω). (28)

A standard assumption for harmonic oscillator bath is to assume an Ohmic spectral

density,

J(Ω) = ηΩe−Ω/Ωc , (29)

where η is a coupling strength parameter, and Ωc is the cuto� frequency. Further assuming

the high-temperature limit, h̄Ωc/kBT � 1, for the Bose-Einsten distribution, the decay rate

in Eq. (27) is described as

γ = 2πηkBTM2

∫ ∞
0

dω exp

[
− ω

Ωc

]
ρD(ω). (30)

Employing Eq. (14) as the density of states of 2D materials under an electric �eld, the

decay rate γ can be evaluated as

γ =
γ0

Ωce−εe/Ωc
2π

µ

∫ ∞
0

dωe−
ω
Ωc ρ2D(ω), (31)

where γ0 is the intrinsic decay rate without the applied electric �eld, which is recovered in

the limit of E0 → 0.

Furthermore, if the external �eld is not strong enough to induce direct ionization, the

decay rate of Eq. (31) can be approximated as

γ ≈ γ0

Ωce−εe/Ωc
2π

µ

∫ ∞
−∞

dωe−
ω
Ωc ρ2D(ω) = γ0 exp

[
E2

0

8µ

1

3Ω3
c

]
. (32)

From this expression we can explicitly evaluate the e�ect of the external electric �eld on
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the excitonic linewidth.

Finally, from Eq. (32), one can clearly see that in the weak �eld limit the enhancement

of the decay rate is proportional to the square of the electric �eld strength,

γ = γ0 exp

[
E2

0

8µ

1

3Ω3
c

]
≈ γ0

[
1 +

E2
0

8µ

1

3Ω3
c

]
, (33)

This �nding is consistent with the experimental evidence that the broadening is linear in the

�eld intensity as shown in the main text.

To evaluate the transient absorption and the exciton linewidth in Fig. 4(c,d) in the

main text with Eq. (33), we set the intrinsic excitonic linewidth γ0 to γA0 = 67 meV and

γB0 = 157 meV for the A and B excitons, obtained from Lorentz �ts of the absorption spectra

in equilibrium. Furthermore, for the best �ts to experimental results, the cuto� frequencies

Ωc were set to ΩA
c = 49 meV/h̄ and ΩB

c = 66 meV/h̄ for the A and B excitons, respectively.

We used the common excitonic mass µ = 0.24me for the A and B excitons.8

C. Alternative scenarios behind the observed exciton broadening.

In this paragraph, we consider other mechanisms that can contribute to the exciton broad-

ening. The main observation is that the broadening occurs only during the photoexcitation

process and it follows the time pro�le of the THz electric �eld (< 1 ps). This behavior

allows us to readily exclude all the dissipative phenomena that can occur upon photoexci-

tation of a semiconductor, as these phenomena give rise to responses that last for tens or

hundreds of ps. They include THz-activated defect-site scattering,9�11 defect-assisted Auger

scattering, THz-driven exciton generation via either direct valence-to-conduction band or

trapped-carrier liberation, and impulsive dephasing due to exciton-exciton scattering. Con-

cerning the last process, we note that the density of excitons produced by our probe light is

extremely low (< 1010 cm−2), so most excitons will be too far apart to interact signi�cantly

with each other. Therefore, we believe that the mechanism proposed in the previous para-
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graphs, based on the Franz-Keldysh e�ect, is the microscopic e�ect governing the observed

change in the exciton coherent lifetime.

S3. Evaluation of the electro-optic coe�cients

In this section, we provide an estimate of the electro-optic coe�cients characterizing our

monolayer MoS2 �lm under the in�uence of intense THz �elds. When irradiating the material

with a THz �eld strength of 420 kV/cm, near 1.90 eV we observe that the real part of

the refractive index is modulated by ∼2.2% (Fig. S8). From this value, we can extract

the electro-optic coe�cient rij by using the relation ∆(1/n2)i =
∑
j

rijEj, where Ej is the

applied electric �eld and i, j represents x, y and z. Formally, rij is a tensor. However, in our

experiment, we can simplify it to a scalar value reff by considering that our monolayer MoS2

�lm has randomly oriented domains.12 Since the electric �eld screening needs to be taken into

account in the practical performance of a phase modulator, the value of the (quasi-static)

dielectric permittivity εDC becomes an important parameter. Therefore, the performance of a

material is measured through the unitless quantity n3reff/εDC .
12 Due to the 2D con�nement

in the monolayer limit, the value of εDC in MoS2 is several times larger than that of traditional

ferroelectric electro-optic materials. Thus, in an exciton-based electro-optic modulator made

out of monolayer MoS2, the phase modulation capability is much higher than that o�ered by

traditional materials used in electro-optical modulators. For example, evaluating n3reff/εDC

at the He-Ne laser wavelength of 633 nm yields a factor of 5 compared to other materials

(see Fig. S9). At 650 nm, the increase would be by more than an order of magnitude

(n3reff/εDC = 150). The time evolution of the THz-induced modulation of the excitons

in MoS2 also demonstrates that an exciton-based electro-optic modulator made out of this

material possesses an ultrabroad bandwidth of several THz. Similar conclusions can be

drawn when considering the THz-induced modulation of the absorption coe�cient, which is

relevant for the development of electroabsorption modulators. In an experiment utilizing the
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transmission geometry like ours, the electroabsorption performance of a material subjected

to in-plane electric �eld can be characterized by the absorption modulation depth. At a

�eld strength of 420 kV/cm, monolayer MoS2 shows switching from 89.58% transmission to

90.48% around 1.90 eV, which corresponds to an absorption modulation depth around 0.05

dB/nm.

Author Contributions

4 These authors contributed equally to this work.
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Figure S1: Atomic force microscope image of the surface of CVD-grown MoS2. The imaged
region is 20 µm wide and the color bar refers to the surface roughness. We estimate the
domain size in our sample to be 5-10 µm on average. A boundary between two domains and
a second layer are indicated. The probe spot size is approximately 50 µm. Therefore, our
signal is an averaged response of multiple domains.
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tween the energies of the E1

2g and A1g phonons indicates that the sample is a monolayer. (b)
Room temperature steady-state absorption spectrum of monolayer MoS2 showing the A and
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probe signal is present after the THz excitation pulse is over.
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Figure S4: Peak signal |∆α|max as a function of the white light probe polarization angle φ
(while keeping the THz polarization direction �xed). The data presented in the paper are
obtained by using a horizontally-polarized white light probe beam and a vertically-polarized
THz pump beam. The error bars are measured by the deviation of multiple traces of ∆α
spectrum obtained. We observed no dependence of the signal on the polarization angle.
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eV) normalized to the zero-�eld absorbance area. The vertical error bars are based on the
experimental uncertainties given by the standard deviations from ten datasets taken under
the same experimental conditions.
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comprises two Lorentz oscillators centered around excitons A and B, as well as a high-energy
Lorentz oscillator whose parameters remain �xed at every THz �eld strength.
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Figure S9: Comparison between the electro-optic properties of several materials and those
of monolayer MoS2.
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