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Abstract. Gaussian kernels can be an efficient and accurate tool for multivariate interpolation.

For smooth functions, high accuracies are often achieved near the flat limit where the inter-
polation matrix becomes increasingly ill-conditioned. Stable evaluation algorithms for isotropic

Gaussians (Gaussian radial basis functions) have been proposed based on a Chebyshev expansion

of the Gaussians by Fornberg, Larsson & Flyer and based on a Mercer expansion with Hermite
polynomials by Fasshauer & McCourt. In this paper, we propose a new stabilization algorithm

for the multivariate interpolation with isotropic or anisotropic Gaussians for arbitrary number

of dimensions derived from the generating function of the Hermite polynomials. We also derive
and analyze a new analytic cut-off criterion for the generating function expansion that allows to

automatically adjust the number of the stabilizing basis functions.

1. Introduction

Multivariate interpolation is a topic that is relevant for a vast number of applications. Gaussian
radial basis functions (Gaussian RBFs) are a class of functions for which interpolation generalizes
to higher dimensions in a simple way while yielding spectral accuracy [5]. However, it is known
that rather small values of the shape parameter ε > 0 (the width of the Gaussians) are often
required. In this case, the Gaussians become increasingly flat, and the interpolation matrix becomes
ill-conditioned. This problem has been extensively studied in the literature (see the review [8]
by Fornberg & Flyer and [22] for Tarwater’s description of this phenomenon in 1985). It has
been quantified by Fornberg & Zuev [13], that the eigenvalues of the interpolation matrix are
proportional to powers of the shape parameter, causing the notorious ill-conditioning in the flat
limit regime ε→ 0.

A direct collocation solution of the interpolation problem, referred to as RBF-Direct in the liter-
ature, computes the expansion coefficients of the Gaussian interpolant by inverting the collocation
matrix and then evaluating the expansion. Several algorithms have been proposed to stabilize
this procedure in the flat limit regime, see [12, 11, 9, 7, 17, 19, 6, 10, 21, 24]. A common idea of
many of the stabilization algorithms—including the one proposed in this paper—is to evaluate the
interpolant in a sequence of well-conditioned steps by a transformation to a different basis so that
the ill-conditioning is isolated in a diagonal matrix that can be inverted analytically.

1.1. The new HermiteGF stabilization approach. In this paper, we propose a stabilizing
expansion of isotropic Gaussian functions, later referred to as HermiteGF expansion, built on
the exponential generating function of the classic Hermite polynomials. For certain classes of
functions, anisotropic Gaussians yield improved accuracy as shown in [2]. To include these cases
in our description, we use an anisotropic generating function recently obtained by Dietert, Keller,
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& Troppmann [4] as well as by Hagedorn [15] and generalize our HermiteGF expansion to the
anisotropic case. We also propose and analyze a novel cut-off criterion, that contrary to the existing
ones does not only account for the diagonal contributions of the stabilization but measures the
impact of the full stabilization basis.

1.2. Previous stabilization approaches. The first stabilization method was the Contour–Padé
approximation proposed by Fornberg & Wright for multiquadrics [12]. The authors later enhanced
it to the RBF-RA stabilization algorithm [24], which has a wide applicability but is limited to a
small number of nodes. Later Fornberg & Piret [11] proposed the so-called RBF-QR method for sta-
ble interpolation with Gaussians on the sphere by expanding the Gaussians in spherical harmonics.
The method has been extended to more general domains in one to three dimensions by Fornberg,
Larsson, & Flyer [9]. This expansion is based on a combination of Chebyshev polynomials and
spherical harmonics. This method will be referred to as Chebyshev-QR in this paper. The tech-
nique has also been used for the stable computation of RBF-generated finite differences by Larsson,
Lehto, Heryudono, & Fornberg [17]. Fornberg, Lehto, & Powell [10] developed an alternative sta-
bilization technique for the same problem. To treat complex domains, the Chebyshev-QR method
has been combined with a partition-of-unity approach by Larsson, Shcherbakov, & Heryudono [18].
Fasshauer & McCourt [7] have developed another RBF-QR method, called Gauss-QR, that relies
on a Mercer expansion of the Gaussian kernel. The basis transformation involves scaled Hermite
polynomials. De Marchi and Santin [19] considered a different construction of a stable basis based
on a factorization of the kernel matrix for general radial kernels. Our new basis is similar to the
one in [7] with the difference that it can be extended to the interpolation with anisotropic Gaus-
sians. Moreover, the generating function framework enables us to derive a new cut-off criterion
that accounts for the full Hermite basis effect. We note that a multiscale analysis as provided by
Griebel, Rieger, & Zwicknagl [14] might allow to estimate the tail of the Mercer expansion of a
Gaussian kernel and subsequently to derive an alternative Mercer series based truncation criterion
(see [6, Remark 13.12]).

1.3. Organization of the paper. The paper is organized as follows: In section 2, we introduce
our HermiteGF expansion of isotropic and anisotropic Gaussians and derive important properties of
the HermiteGF basis. In section 3, we propose a new RBF-QR method based on the HermiteGF
basis. A cut-off criterion for the new HermiteGF expansion is derived in section 4. Numerical
results show the accuracy of our method in section 5 and finally, section 6 concludes the paper.

2. HermiteGF expansion

In this section, similarly to the earlier stabilization approaches [11, 9, 7], we propose an expansion
of the anisotropic Gaussians in a “better” basis, that spans the same space, but avoids instabilities
related to the flat limit. For the sake of simplicity, we first derive the expansion for Gaussians in
1D. We then extend our expansion to the case of multivariate anisotropic Gaussians.

2.1. Interpolation problem. Before introducing our expansion of the Gaussian basis, let us
briefly define the interpolation problem. Given a set {φk(·)}Nk=1 of expansion functions and the
values f = {fi}Ni=1 of the function f : Rd → R at collocation points {xcol

i }Ni=1 we seek to find an
interpolant of the form,

(2.1) s(x) =

N∑
k=1

αkφk(x),

such that it satisfies the N collocation conditions,

s(xcol
i ) = fi for i = 1, . . . , N.

The direct approach is to find the coefficients α = {αk}Nk=1 as a solution of the linear system,

(2.2) Φcolα = f , with Φcol
ij = φj(x

col
i ).
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The matrix Φcol ∈ RN×N is called collocation matrix. Then, after solving the linear system
eq. (2.2), the interpolant eq. (2.1) can be evaluated at any point of the domain. In this paper, we
consider Gaussian radial basis functions (isotropic Gaussians)

φk(x) = exp(−ε2‖x− xk‖2)

with center points Xcen = {xk}Nk=1, shape parameter ε > 0 and anisotropic Gaussians

φk(x) = exp(−(x− xk)TETE(x− xk))

with invertible shape matrix E ∈ Rd×d.

2.2. HermiteGF expansion in 1D. Let {h`}`≥0 be the Hermite polynomials in the physicists’
version, that satisfy the recurrence relation,

h`+1(x) = 2xh`(x)− 2`h`−1(x), h0(x) = 1, h−1(x) = 0.

The following upper bound holds for the magnitude of the Hermite polynomials [1, Expr. 22.14.17]:
There exists a positive constant c ≈ 1.086435 such that

|h`(x)| ≤ e x2

2 c
√

2``!

for all ` ≥ 0 and all x ∈ R. The combinatorial factors
√

2``! grow very fast with `. Therefore,
in order to avoid overflow for large `, we work with a scaled version of the Hermite polynomials,

1√
2``!

h`. We introduce three parameters,

ε > 0, γ > 0, t ∈ (0, 1),

that is, the usual shape parameter ε > 0, a scaling parameter γ > 0 for varying the evaluation
domain of the Hermite polynomials to improve conditioning, and a truncation parameter t ∈ (0, 1)
for controlling the truncation error of the stabilization expansion. We then define the following
basis functions,

Hγ,ε,t
` (x) =

t`/2√
2``!

h`(γx)e−ε
2x2

,

that we refer to as HermiteGF functions.
Based on the generating function theory, we derive an infinite expansion of the one dimensional

Gaussian RBFs in the new HermiteGF basis {Hγ,ε,t
` }`≥0.

Proposition 2.1 (HermiteGF expansion (1D)). For all parameters ε > 0, γ > 0, t ∈ (0, 1), and
for all shifts x0 ∈ R, we have a pointwise expansion

(2.3) φk(x) = e−ε
2(x−xk)2 = exp

(
ε2∆2

k

(
ε2

γ2
− 1

))∑
`≥0

ε2`
√

2`

γ`
√
t``!

∆`
kH

γ,ε,t
` (x− x0),

for all k = 1, . . . , N , where ∆k = xk − x0. The RBF interpolant s(x) can then be pointwise
computed as

(2.4) s(x) =

N∑
k=1

αk exp

(
ε2∆2

k

(
ε2

γ2
− 1

))∑
`≥0

ε2`
√

2`

γ`
√
t``!

∆`
kH

γ,ε,t
` (x− x0).

Proof. The Hermite polynomial’s generating function is given by (see e.g. [1, Expr. 22.9.17]),

e2ba−a2 =
∑
`≥0

a`

`!
h`(b), ∀a, b ∈ R.

Choosing a = ε2∆k

γ and b = γ(x− x0), we obtain

(2.5)
∑
`≥0

ε2`

γ``!
∆`
kh`(γ(x− x0)) = exp

(
2ε2∆k(x− x0)− ε4∆2

k

γ2

)
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Hence, we get

exp

(
ε2∆2

k

(
ε2

γ2
− 1

))∑
`≥0

ε2`
√

2`

γ`
√
t``!

∆`
kH

γ,ε,t
` (x− x0)

= exp

(
ε2∆2

k

(
ε2

γ2
− 1

))∑
`≥0

ε2`

γ``!
∆`
kh`(γ(x− x0))e−ε

2(x−x0)2 (2.5)
= e−ε

2(x−xk)2 ,

which proves expansion (2.3). Using expansion (2.3) in the interpolant (2.1), we get the represen-
tation (2.4). �

Remark 2.1 (Basis centering). Hermite polynomials are symmetric with respect to the axis x = 0.
Due to its growth behavior, it is advantageous to have the basis centered around this point of
symmetry, that is, to use the translation x0 = B−A

2 , where [A,B] is the interval of interest for
evaluating the function f .

Remark 2.2 (The parameter γ). The parameter γ > 0 in the basis {Hγ,ε,t
` }`≥0 allows control

over the evaluation domain of the Hermite polynomials. When choosing it, one has to consider
two counteracting effects: For small values of γ, ill-conditioning appears since the values of the
basis functions at the collocation points are too similar. On the other hand, Hermite polynomials
take very large values on large domains which can lead to an overflow. An optimal balance depends
on the particular function and the number of basis functions. The parameter plays a similar role
to that of the “global scale parameter” α in [7].

2.3. Multivariate HermiteGF expansion of anisotropic Gaussians. The HermiteGF ex-
pansion can be easily extended to higher dimensions for the case of isotropic Gaussians, using
tensor products of 1D physicists’ Hermite polynomials,

h`(x) = h`1(x1) · · · · h`d(xd), ` ∈ Nd, x ∈ Rd.

However, finding a stable interpolant for anisotropic Gaussian functions of the type

φq(x) = exp(−(x− q)TETE(x− q)), x,q ∈ Rd,

is a more challenging task. A similar question was raised in [7, § 8.5], however, without further
investigation. McCourt & Fasshauer [20] considered anisotropic Gaussians with diagonal shape
matrix E using Mercer expansion theory, but this result has not been extended to the case of
arbitrary E. Analogously to the 1D case, we define the multivariate version of our HermiteGF
functions by

HG,E,t
` (x) =

t|`|/2√
2|`|`!

h`(G
Tx) exp(−xTETEx),

where G,E ∈ Rd×d are arbitrary invertible matrices.

Proposition 2.2 (HermiteGF expansion of anisotropic Gaussians). Let q ∈ Rd and E,G ∈ Rd×d
be invertible matrices. Consider the anisotropic Gaussian φq(·). Then, for any shift x0 ∈ Rd the
following relation holds pointwise in x ∈ Rd:

(2.6) φq(x) = exp(∆T
q (G̃− ETE)∆q) ·

∑
`∈Nd

(G−1ETE∆q)`
√

2|`|√
t|`|`!

HG,E,t
` (x− x0),

where ∆q = q− x0, G̃ = ETEG−TG−1ETE.

Proof. We use the following anisotropic Hermite generating function (see [4, Lemma 5] or [15,
Theorem 3.1] with A = Idd):

(2.7)
∑
`∈Nd

a`

`!
h`(b) = exp(2bTa− aTa), ∀a,b ∈ Rd.
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We denote b = GT (x− x0) and a = G−1ETE∆q. Then, using (2.7), we get∑
`∈Nd

(G−1ETE∆q)`

`!
h`(G

T (x− x0)) = exp(2(x− x0)TETE∆q −∆T
q G̃∆q).

We observe that

2xTETEq = 2(x− x0)TETE∆q + 2xTETEx0 + 2xT0 E
TE∆q,

−xTETEx = −(x− x0)TETE(x− x0)− 2xTETEx0 + xT0 E
TEx0.

Putting everything together we arrive to (2.6). �

This expansion provides a new powerful tool for dealing with anisotropic approximation. Note
that the standard multidimensional isotropic Gaussian interpolation corresponds to the following
matrix E:

Eisotropic = εIdd.

2.4. Mehler’s formula (nD). In this section, we investigate the behavior of the HermiteGF
basis functions with large index ` approaching infinity. To be able to decide where to cut the
HermiteGF expansion for numerical purposes, it is useful to quantify the size of the tail of the
truncated expansion. For that, we take a look at the magnitude of the values of the HermiteGF
basis. We consider the infinite-dimensional vector that contains the values of all basis functions
HG,E,t
` (x) at a certain point x ∈ Rd. Its Euclidean norm can be computed analytically using a

multivariate extension of Mehler’s formula for Hermite polynomials.

Theorem 2.1 (Bilinear generating function). The following relation holds for all t ∈ (0, 1) and
all x,y ∈ Rd

(2.8)

∞∑
|`|=0

t|`|h`(x)h`(y)

2|`|`!
=

exp
(

t
1−t2 (xTy + yTx)− t2

1−t2 (‖x‖22 + ‖y‖22)
)

(1− t2)d/2
.

Proof. We extend the 1D proof proposed by Watson in [23, p. 4] to multiple dimensions. Applying

the inverse Fourier transform to the Fourier transform of a normal distribution with σ = 1/
√

2Idd,
we get

e−x
Tx = πd/2

∫
Rd

e2πixT ξe−π
2ξT ξdξ = π−d/2

∫
Rd

e2ixT ξe−ξ
T ξdξ.

Hence,

h`(x) = ex
Tx(−∇)`e−x

Tx =
(−2i)|`|

πd/2
ex

Tx

∫
Rd

ξ`e2ixT ξ−ξT ξdξ,

where we used the Rodrigues formula for multivariate tensor-product Hermite polynomials (see [4,
Expr. 11] with M = Id). Then,

∞∑
|`|=0

t|`|h`(x)h`(y)

2|`|`!
=

=
ex

Tx+yTy

πd

∞∑
|`|=0

(−2t)|`|

`!

∫
Rd

∫
Rd

ξ`xξ
`
ye2i(xT ξx+yT ξy)e−ξ

T
x ξx−ξ

T
y ξydξxdξy

=
ex

Tx+yTy

πd

∫
Rd

∫
Rd

e−2tξTx ξye2i(xT ξx+yT ξy)e−ξ
T
x ξx−ξ

T
y ξydξxdξy,(2.9)

where we used the Taylor series of the exponential function. Recall the following formula for a
bivariate Gaussian Fourier integral (see [23, p. 4]):

(2.10)

∫ ∞
−∞

∫ ∞
−∞

g(x,y)(u, v)dvdu =
πe−(x2+y2)/2

√
1− t2

exp

(
x2 − y2

2
− (x− yt)2

1− t2

)
.
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with

g(x,y)(u, v) = exp(−u2 − 2tuv − v2 + 2ixu+ 2iyv).

Using (2.10) d times for the integral (2.9) together with the algebraic identity

− 1
2 (x2 + y2) + 1

2 (x2 − y2)− (x− yt)2

1− t2
=

2txy − x2 − y2

1− t2

yields (2.8).
�

With the help of the multidimensional Mehler’s formula we can now compute the square of the
Euclidean norm

HG,E,t
lim (x) :=

∞∑
|`|=0

HG,E,t
` (x)2 =

∞∑
|`|=0

t|`|

2|`|`!
h2
`(G

Tx) exp(−2xTETEx)

of the infinite vector containing the values of all basis functions HG,E,t
` (x) with ` ∈ Nd at some

point x ∈ Rd. Indeed,

(2.11) HG,E,t
lim (x) =

exp
(
−2xTETEx +

2t‖GTx‖22
1+t

)
(1− t2)d/2

.

We take a look if this value matches our numerical result. One can see in Figure 1 that for the
square domain the limit value is matched for different values of ε, t.

0 20 40 60 80 100
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2

10
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10
8

10
10
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12

(a) ε = 0.01, t = 0.4.
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10
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10
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10
8
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10

(b) ε = 1, t = 0.4.

Figure 1. Frobenius norm of the matrix H of values of the basis functions at
100 Halton nodes xk on a square domain [−1, 1] × [−1, 1]. The solid line is the
value corresponding to only the basis functions with a degree up to jmax. The *

corresponds to the analytically computed value.

3. Stabilization of the RBF interpolation

In this section, we derive a numerical stabilization algorithm for RBF interpolation based on
the HermiteGF expansion. The main idea is to represent the RBF interpolant in the more sta-

ble basis {HG,E,t
` }`≥0. For appropriately chosen parameters G and t, we expect it to be better

conditioned. We now first derive the HermiteGF-QR algorithm in 1D and then generalize it to a
multidimensional form.
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3.1. HermiteGF-QR (1D). In 1D we denote by

Φ(x,Xcen) =
(
φ1(x), . . . , φN (x)

)
the vector of Gaussians with center points Xcen evaluated at x ∈ R and write the stabilization
expansion (2.3) as an infinite matrix-vector product

(3.1) Φ(x,Xcen) = Hγ,ε,t(x− x0)B(ε, γ, t,Xcen)

where the vector

Hγ,ε,t(x− x0) =
(
Hγ,ε,t

0 (x− x0), Hγ,ε,t
1 (x− x0), . . .

)
contains all the elements of the polynomial basis {Hγ,ε,t

` }`≥0 evaluated in the translated point
x− x0 and

B(ε, γ, t,Xcen)`k = exp

(
ε2∆2

k

(
ε2

γ2
− 1

))
ε2`
√

2`

γ`
√
t``!

∆`
k

is an∞×N matrix. The major part of the ill-conditioning is now confined in the matrix B. Since
B is independent of the point x where the basis function is evaluated, both the evaluation and
interpolation matrix can be expressed in the form (3.1) with the same matrix B.

We follow the RBF-QR approach and further split

BT = CD

into a well-conditioned full N ×∞ matrix C and an infinite diagonal matrix D, where all harmful
effects are confined in D. In the case of expansion (2.3), the following setup follows naturally from
the Chebyshev-QR theory [9, § 4.1.3],

Ck` = exp

(
ε2∆2

k

(
ε2

γ2
− 1

))
∆`
k

L`
, D`` =

ε2`
√

2`

γ`
√
t``!

L`.

Here we also divide each coefficient by the radius of the domain L containing the center points
in order to avoid ill-conditioning in C coming from taking high powers of xk. That might be
dangerous when the domain is too large, however, it still extends the range of domain diameters
possible.

The goal is now to find a basis {ψj} spanning the same space as {φk} but yielding a better
conditioned collocation matrix. In particular, we need an invertible matrix X such that X−1Φ(x)T

is better conditioned. Let us perform a QR-decomposition on C = QR. Then we get,

Φ(x)T = CDHγ,ε,t(x− x0)T = Q
(
R1 R2

)(D1 0
0 D2

)
Hγ,ε,t(x− x0)T

where R1 and D1 are N × N matrices containing the upper (left) block of the infinite matrices
R and D, respectively, while R2 and D2 assemble the remaining entries. Consider X = QR1D1.1

The new basis Ψ(x)T := X−1Φ(x)T can be formed as,

Ψ(x)T = D−1
1 R−1

1 QHΦ(x)T

= D−1
1 R−1

1 QHQ
(
R1D1 R2D2

)
Hγ,ε,t(x− x0)T

=
(
Id D−1

1 R−1
1 R2D2

)
Hγ,ε,t(x− x0)T .

To avoid under/overflow in the computation of D−1
1 R−1

1 R2D2, we form the two matrices R̃ =

R−1
1 R2 and D̃ with elements

D̃i,j =

(
ε2L

γ

√
2

t

)N+j−i√
i!

(N + j)!
, 1 ≤ i ≤ N, j ≥ 1,

1We assume that the matrix X is invertible. If this is not the case, then column pivoting in the QR decomposition

has proved to be effective (see [9, § 5]).
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and compute their Hadamard product, R̃. ∗ D̃. Despite the harmful effects contained in D, the
resulting term D−1

1 R−1
1 R2D2 = R̃. ∗ D̃ is then harmless.

3.2. Multivariate anisotropic HermiteGF-QR. In this section, we derive an analog of the
HermiteGF-QR algorithm for the multivariate case. Since we are now dealing with matrices, in
the general case, it is impossible to separate E from xk in (Exk)` as we did before. Therefore, the
flow of the HermiteGF-QR does not apply directly. However, it is still possible to tackle some part
of the ill-conditioning analytically. Consider the following splitting of the matrix G−1ETE ∈ Rd×d:

G−1ETE = Diag + Rem,

where Diag is the d × d diagonal matrix containing the diagonal elements of G−1ETE and Rem
contains the remaining off-diagonal terms. Denote

vk = (Id + Diag−1Rem)∆k and ∆k = xk − x0.

Then, it holds that

(G−1ETE∆k)` = ((Diag + Rem)∆k)` =
(
Diag

(
(Id + Diag−1Rem)(xk − x0)

))`
=

d∏
i=1

(Diagii(vk)i)
`i =

d∏
i=1

Diag`iii (vk)`ii =

(
d∏
i=1

Diag`iii

)
v`k,

where Diag−1Rem can be computed analytically. Denote dvec = diag(Diag). Then, the generating
function expansion (2.6) can be written as:

φk(x) = exp(−∆T
kE

TE∆k + ∆T
k G̃∆k)

∑
`∈Nd

(G−1ETE∆k)`
√

2|`|√
t|`|`!

HG,E,t
` (x− x0)

= exp(−∆T
kE

TE∆k + ∆T
k G̃∆k)

∑
`∈Nd

d`vecv
`
k

√
2|`|√

t|`|`!
HG,E,t
` (x− x0).

As before, we can write the expansion above as the infinite matrix-vector product

Φ(x) = HG,E,t(x− x0)B(E,G, t,Xcen)

with

B(E,G, t,Xcen)`k = exp(−∆T
kE

TE∆k + ∆T
k G̃∆k)

d`vecv
`
k

√
2|`|√

t|`|`!
.

As before, we write the transpose of the infinite matrix B as a product CD with

(3.2) Ck` = exp(−∆T
kE

TE∆k + ∆T
k G̃∆k)v`k, D`` =

d`vec

√
2|`|√

t|`|`!
.

The d × d matrix product Diag−1Rem contained in the vectors vk can be computed analytically.
The diagonal part of the matrix G−1ETE, that is now in the matrix D can be handled in the
exact same fashion as it has been done in 1D. In particular, we perform the QR-decomposition of
the matrix C = QR, block decompose

R =
(
R1 R2

)
, D =

(
D1 0
0 D2

)
,

such that the entries related to the first N stabilizing basis functions are contained in the N ×N
matrices R1 and D1, and consider the preconditioner X = QR1D1. Hence, analogously to the
HermiteGF-QR case, the new basis can be formed as

Ψ(x)T := X−1Φ(x)T =
(
Id D−1

1 R−1
1 R2D2

)
HG,E,t(x− x0)T .
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The action of D−1
1 and D2 can again be computed as the Hadamard product with

(3.3) D̃ij =
Dj+N,j+N

Dii
with i ∈ {1, . . . , N}, j ≥ 1.

Remark 3.1. When the magnitude of vk gets too large, the matrix C can also become ill-
conditioned. To avoid that, one can increase the magnitude of the elements of G. Alternatively,
one can add a scaling in C which should then be compensated in the matrix D, similarly to the
scaling with the domain size L in the 1D version.

3.2.1. Isotropic HermiteGF-QR. In the isotropic case, when E = εIdd and G = γIdd, the expres-
sions for the matrices C and D can be written in a simpler way. In particular, in this case, we
have

Diag = γ−1ε2Idd, Rem = 0d, and vk = xk − x0 = ∆k.

Hence, the diagonal vector simplifies to dvec = γ−1ε2(1, . . . , 1) and the elements of the matrices C
and D take the form

Ck` = exp

(
ε2

(
ε2

γ2
− 1

)
‖∆k‖2`2

)
∆`
k, D`` =

(
√

2γ−1ε2)|`|√
t|`|`!

.

3.3. HermiteGF interpolant. In the new basis, we can write the equivalent formulation of the
interpolant (2.1) as

s(x) = Ψ(x)(Ψcol)−1f with Ψcol
ij = ψj(x

col
i ).

To compute the interpolant in the new formulation numerically, we have to cut the infinite expan-
sion (2.6). We discuss the cut-off strategy in section 4.

3.4. Alternative splitting based on the Vandemonde matrix. Instead of using a QR-
decomposition of the matrix C ∈ RN×∞ one could also split it as C = ĒW , where Ē ∈ RN×N is
a diagonal matrix for the exponential part and W ∈ RN×∞ accounts for the polynomial contribu-
tions,

(3.4) Ēkk = exp(−∆T
kE

TE∆k + ∆T
k G̃∆k) and Wk` = v`k.

We now decompose the original basis using this splitting,

Φ(x)T = C

(
D1 0
0 D2

)
HG,E,t(x− x0)T

= Ē
(
W1 W2

)(D1 0
0 D2

)
HG,E,t(x− x0)T

= Ē
(
W1D1 W2D2

)
HG,E,t(x− x0)T ,

where W1 ∈ RN×N and W2 ∈ RN×∞. With the preconditioner XV = ĒW1D1, the new basis reads
as

ΨV (x)T =
(
Id D−1

1 W−1
1 W2D2

)
HG,E,t(x− x0)T .

One can see that

XV = ĒW1D1 = C1D1 = QR1D1 = X,

where C1 is the first N × N block of C. Therefore, in exact arithmetic Ψ and ΨV are the same,
however, in floating-point arithmetic the values of the bases might differ. However, we will use this
alternative splitting for the derivation and analysis of a suitable cut-off criterion for the HermiteGF
basis in the next section.
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10 -15

10 -10

10 -5

10 0

(a) Larger ε = 1.2.
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Basis function index

10 -90

10 -50

10 0

(b) Smaller ε = 0.01.

Figure 2. For ε = 0.01 the elements of D behave very similarly for all cases. For
a larger value of ε, the elements of D in HermiteGF method show larger magnitude
of oscillations which leads to higher jmax.

4. Cut-off of the expansion

To make the RBF-QR methods usable for numerical computations, one has to cut the expansion
(2.6) at a certain polynomial degree jmax ∈ N which in 1D also corresponds to the number of
stabilizing basis functions M . In the multivariate setting, the number of basis functions M equals

M =

(
jmax + d

d

)
.

However, choosing an efficient cut-off degree jmax is not a trivial task. We first derive a criterion
that is analogous to the state-of-the-art criteria for other RBF-QR methods ([9, Expr. 5.2], [7,
Expr. 4.10]). However, especially in the HermiteGF case, it turns out to be inefficient, i.e. it
overestimates the number jmax. For the HermiteGF ansatz, we can derive a new cut-off criterion
based on the theoretical framework presented in the previous sections. This new criterion allows
to directly control the approximation error of the stable basis which is more efficient while still
being effective.

4.1. State-of-the-art criterion. Similarly to [9, Expr. 5.2], [7, Expr. 4.10] we take a look at the

matrix D̃ that contains the effects of D−1
1 and D2. Recall that for the QR methods in section 3.1

the matrix D̃ is then multiplied element-wise with the matrix R̃. We stop once all elements of the
new block of D̃ are below machine precision, i.e.

(4.1) max
i=1...N,|j|≥jmax+1

D̃ij < εmach.

The criterion (4.1) guarantees that all additional columns that could be added to D2 would yield

elements in D̃ that are below machine precision. We now take a look at the behavior of the elements
of the matrix D. Here, for the Gauss-QR method we used αGauss−QR = γ. One can see in Figure 2
that for small values of ε the behavior is very similar for all three methods. However, for large ε
the decay in D is particularly bad in our formulation. This criterion also neglects the matrix R̃
and the effect of the polynomial vector Hγ,ε,t(x − x0). In particular, we know from section 2.4
that the tail of the polynomial vector has some decay.

4.2. New HermiteGF cut-off criterion. In this section, we derive a more holistic criterion for
the cut-off in the HermiteGF expansion. We use the Vandermonde formulation of the method since
it provides an explicit expression for the elements of all matrices which simplifies the analytical
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study of the method. We cut the polynomial vector as

HG,E,t(x− x0) =
(
ĤG,E,t(x− x0) HG,E,t

∞ (x− x0)
)

with ĤG,E,t ∈ R1×M , where the number of basis functions used is larger than the number of
collocation points, that is, M ≥ N . Analogously we cut the N ×∞ Vandermonde matrix W2 and
the infinite diagonal matrix D2,

W2 =
(
Ŵ2 W∞

)
and D2 =

(
D̂2 0
0 D∞

)
with Ŵ2 ∈ RN×(M−N) and D̂2 ∈ R(M−N)×(M−N). We note that the infinite matrix W∞ contains
the columns of the full Vandermonde matrix W from column M + 1 onward, while the infinite
matrix D∞ contains the diagonal entries of the full diagonal matrix D starting from the entry
M + 1. We then rewrite the formulation of the method (see section 3.4) after the cut-off,

Ψ̂(x)T =
(
IdN×N D−1

1 W−1
1 Ŵ2D̂2

)
ĤG,E,t(x− x0)T .

We want to make sure that
δΨ(x) = Ψ(x)− Ψ̂(x)

is small for all collocation points by choosing a sufficiently large but not too large truncation
parameter jmax. For estimating δΨ(x), we need the following lemma.

Lemma 4.1 (Exponential tail). Consider y ∈ Rd with yi ≥ 0 for all i = 1, . . . , d and jmax ∈ N.
Then,

(4.2)
∑

|`|≥jmax

y`

`!
≤

∑
|`|=jmax

exp(‖y‖1)
y`

`!
,

where ‖y‖1 = |y1|+ . . .+ |yd|.
Proof. Consider the function

f(y) = exp(y1 + · · ·+ yd), y ≥ 0.

We note that the estimated sum coincides with the remainder of the Taylor series for the function
f at the point a = 0. Then, according to the multivariate Taylor’s theorem, there exists ξ ∈ [0,y]
such that ∑

|`|≥jmax

y`

`!
=

∑
|`|=jmax

∂`f(ξ)
y`

`!
.

Noting that ∂`f(ξ) = exp(ξ) ≤ exp(‖y‖1) for y ≥ 0, we arrive at (4.2). �

Before proceeding to the estimation of the truncation error ‖δΨ(x)‖2, we recall the definition
of the vectors

dvec = diag(Diag) and vk = (Id + Diag−1Rem)∆k

for k = 1, . . . , N . They will contribute to the upper bound of the following estimate. In the
isotropic case, they have the particularly simple form

dvec = γ−1ε2(1, . . . , 1) and vk = ∆k for all k = 1, . . . , N.

Theorem 4.1 (Truncation estimate). For k = 1, . . . , N we set

ωk =

N∑
i=1

(W−1
1 )2

ki > 0 and yk = Diag vk ∈ Rd,

where W1 is the upper left N × N block of the infinite Vandermonde matrix W = (v`k). For
jmax ∈ N we denote

constjmax
:=

(
N∑
k=1

ωk k! (t/2)|k|−(jmax+1)

d2k
vec(jmax + 1)!

)
·

(
N∑
i=1

exp

(
2

t
‖yi‖22

)
‖yi‖2(jmax+1)

2

)
.
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Then, the truncation error δΨ satisfies for all x ∈ Rd,

‖δΨ(x)‖22 ≤ constjmax ·

HG,E,t
lim (x− x0)−

∑
|`|≤jmax

HG,E,t
` (x− x0)2

 ,(4.3)

where HG,E,t
lim (x− x0) can be evaluated via (2.11).

Proof. We start by observing that

D−1
1 W−1

1 W2D2 = D−1
1 W−1

1

(
Ŵ2D̂2 W∞D∞

)
.

Hence, it holds that

δΨ(x)T = D−1
1 W−1

1 W∞D∞H
G,E,t
∞ (x− x0)T ,

and due to compatibility of the Frobenius norm and the 2-norm

‖δΨ(x)‖22 ≤
∥∥D−1

1 W−1
1 W∞D∞

∥∥2

F
·
∥∥HG,E,t
∞ (x− x0)

∥∥2

2
.

We further consider the two norms on the right-hand side separately. We first take a look at
the Frobenius norm. Recall that in the RBF-QR method we evaluate the effect of the impact of
D−1

1 . . . D2 analytically. We can do the same here:

D−1
1 W−1

1 W∞D∞ = D̃∞ . ∗ (W−1
1 W∞),

where .∗ denotes the Hadamard product and D̃∞ is constructed analogously to (3.3). We write
the Frobenius norm as

‖D−1
1 W−1

1 W∞D∞‖2F =

N∑
k=1

∑
`>M

D̃2
k` ·

(
N∑
i=1

(W−1
1 )kiWi`

)2


and estimate with the help of the Cauchy-Schwarz inequality,

D̃2
k`

(
N∑
i=1

(W−1
1 )kiWi`

)2

≤ ωk
D2
kk

D2
``

N∑
i=1

v2`
i ,

where ` ∈ Nd is the `-th multi-index corresponding to our basis enumeration. We used the explicit
expression of D`` as defined in (3.2) and write

ωk
D2
kk

D2
``

N∑
i=1

v2`
i =

ωk k! t|k|

d2k
vec 2|k|

2|`|

`! t|`|

N∑
i=1

(Diag vi)
2`.

We denote ỹi =
(

2
t (yi)

2
1 . . . 2

t (yi)
2
d

)
. Then, by lemma 4.1 we get

‖D−1
1 W−1

1 W∞D∞‖2F ≤
N∑
k=1

ωk k! t|k|

d2k
vec 2|k|

N∑
i=1

∑
|`|>jmax

ỹ`i
`!

≤
N∑
k=1

ωk k! t|k|

d2k
vec 2|k|

N∑
i=1

∑
|`|=jmax+1

exp (‖ỹi‖1)
ỹ`i
`!
.

Using the multinomial theorem and the fact that

‖HG,E,t
∞ (x− x0)‖22 = HG,E,t

lim (x− x0)−
∑

|`|≤jmax

HG,E,t
` (x− x0)2.

we arrive to estimate (4.3). �
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The denominator d2k
vec in expression (4.3) can take extremely small values that can lead to

underflow. To avoid this, it can be combined with ‖yi‖2(jmax+1)
2 . For this, we define the d-

dimensional index jd =
(

1
d , ...,

1
d

)
and use the following transformation

‖yi‖2 = djd
vec‖yi./(djd

vec)‖2 =: djd
vec‖yDi ‖2,

where ./ denotes component-wise division. Pulling out Diagjd the constant of the estimate (4.3)
can be rewritten as

constjmax
=

(
N∑
k=1

ωkk!
(

2
td

2
vec

)−k+(jmax+1)jd

(jmax + 1)!

)(
N∑
i=1

exp

(
2

t
‖yi‖22

)
‖yDi ‖

2(jmax+1)
2

)
.

Note, that in the isotropic case, one can simplify d
−2k+2(jmax+1)jd
vec = (ε4/γ2)jmax+1−|k|. We are

now ready to formulate our cut-off criterion.

Criterion 1. We choose jmax for the HermiteGF-QR method such that

max
k=1...N

‖δΨ(xk)‖2
‖Ψ̂(xk)‖2

≤ TOL,

where {xk}Nk=1 are the collocation points.

Since we are looking at the relative error, the tolerance TOL need not be machine precision. The
crucial difference to the state-of-the-art criterion eq. (4.1) is that now the TOL directly controls the
accuracy of the stable basis Ψ. Depending on the desired accuracy, the tolerance can be adjusted
for the specific problem.

Remark 4.1. The state-of-the-art criterion that truncates diagonal elements below machine pre-
cision does not provide an error bound on the interpolant. On the one hand, the new criterion
requires more computations for determining the cut-off degree. On the other hand, it allows to
reduce the polynomial degree jmax while still guaranteeing a given truncation error. This in turn
reduces the computational cost of the interpolation step.

4.3. Automatic detection of t. One can use the criterion above also for determining the value
of the parameter t. We scan the whole spectrum of the values of t and detect the one that yields
the minimum amount of basis functions

arg min
t∈(0,1)

jmax(t) = tauto.

Note that very small values of t can cause cancellations and should be excluded (see section 5.1.1).
Even though this introduces additional computational cost in the determination of the suitable
expansion, it could be profitable for the cases where the basis is used multiple times after having
fixed the number jmax as e.g. in a time loop.

5. Numerical results

We have implemented the HermiteGF interpolation in MATLAB. The code is available at https://
gitlab.mpcdf.mpg.de/clapp/hermiteGF. We compare the isotropic HermiteGF-based algorithm
with the existing stabilization methods, the Chebyshev-QR method2 and the Gauss-QR method3.
We evaluate the influence of different parameters, such as ε, γ, number of collocation points N
on the quality of the interpolation. For the Gauss-QR method, we take the free parameter α
to be equal to our value of γ, i.e., αGauss−QR = γ. Since there are no stabilization methods
available for fully anisotropic interpolation, we test the anisotropic HermiteGF-QR only against
the direct algorithm to verify the correctness. To determine the cut-off degree in the HermiteGF

2Code downloaded from http://www.it.uu.se/research/scientific_computing/software/rbf_qr on Septem-
ber 10, 2018.

3Code downloaded from http://math.iit.edu/~mccomic/gaussqr/ on September 5, 2018.

https://gitlab.mpcdf.mpg.de/clapp/hermiteGF
https://gitlab.mpcdf.mpg.de/clapp/hermiteGF
http://www.it.uu.se/research/scientific_computing/software/rbf_qr
http://math.iit.edu/~mccomic/gaussqr/
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method, we use the HermiteGF cut-off criterion with TOL = 10−6, unless stated otherwise. For this
tolerance, the HermiteGF-QR method provides results that match the results from Chebyshev-QR
and Gauss-QR. The parameter t is detected automatically. In all tests we evaluate the interpolant
at a set of evaluation points {zk}Nev

k=1 and look at the average error of the form [7, § 5.1, Expr.
(5.2)]:

error =
1

Nev

√√√√Nev∑
k=1

(
f(zk)− s(zk)

f(zk)

)2

.

5.1. 2D isotropic interpolation. In this section, we take a look at the two-dimensional inter-
polation with HermiteGF-QR. We take multiples of the identity for both E and G. We look at a
hyperbolic domain (see Figure 3) defined by the inequality

(5.1) 0.04 ≤ (x+ 1.2)2 − 4y2 ≤ 1

with a boundary condition x2 + y2 ≤ 1. The hyperbola of type (5.1) can then be parameterized as

(x, y) = r(t) = (c cosh(t)− 1.2, 0.5c sinh(t)), t ∈ R, c ∈ [0.2, 1].

We run the tests for the following function (f4 from [9, § 6]):

fh(x, y) = sin(x2 + 2y2)− sin(2x2 + (y − 0.5)2).

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. Hyperbolic domain.
Evaluation grid (green) and
N = 210 clustered Halton node
points (red).

We investigate the behavior of the performance of the inter-
polation with respect to the parameters γ, ε, and number
of functions N . We use γ = 3.5, ε = 0.05 and optimize
t from the set tvec = linspace(0.1, 0.99, 10), unless
stated otherwise.

We sample the collocation points from Halton points that
are clustered near the boundary to improve the conditioning
of the polynomial interpolation and are then mapped to the
hyperbolic domain. For all tests, we use Nev = 532 eval-
uation points that are sampled similarly to the collocation
points, but based on a uniform grid and without clustering.
The nodes distribution is depicted in Figure 3. This domain
and sampling strategy choice was inspired by [9, § 6.1.2].

5.1.1. The number of nodes N . Let us first look at the be-
havior of the method for different numbers of nodes, N . We take the values of N ∈ [100, 410] of the

form

(
P + 2

2

)
for some integer P , such that there are no same powers of ε present in both D1 and

D2. In Figure 4, we see that the error consistently decays for all the tested methods. Choosing
the truncation parameter t in the interval t ∈ (0.1, 1), the conditioning of the HermiteGF-QR
method is slightly worse than for the other methods, since big powers of smaller values of t yield
cancellations. Indeed, limiting the range of t to t ∈ (0.3, 1) brings the conditioning to the level of
the other methods. Using all integers in the interval [100, 410] also provided consistent results for
all three methods, however, the picture gets noisy. A snippet of that behavior can be seen in the
zoomed regions in Figure 4. This can be related to the fact that for the values of N of the form
above the limit of the RBF interpolant in the flat limit ε→ 0 is a unique polynomial of degree P
[16, §4 Theorem 4.1] whereas for other values the uniqueness is not guaranteed.

5.1.2. Sensitivity to γ. Let us take a look at the influence of the parameter γ on the interpolation
quality. We see in Figure 5 that for small N the interpolation quality is not sensitive to the value of
γ. However, for larger N the parameter γ has to be chosen with care. One can see in the Figure 5b
that the conditioning is worse for small γ. However, one should be careful while increasing γ since
it also increases the evaluation domain of the Hermite polynomials, which take very large values
on large domains which can lead to overflow. This effect becomes more pronounced as the degree
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Figure 4. For the two-dimensional isotropic test case, the interpolation quality
is the same for all three stabilization methods. The conditioning is slightly worse
for small values of t. There is small noise for all methods when the number of
radial basis functions N does not correspond to a number of all polynomials of a
degree ≤ P for a certain P .

of the Hermite polynomials increases. The optimal balance depends on the particular function and
the number of basis functions.
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(b) Conditioning.

Figure 5. Average error and condition number for the isotropic two-dimensional
test case. For small and moderate N the interpolation quality is not sensitive to
the value of γ, whereas for the larger N one should carefully choose the value of
γ.

5.1.3. Cut-off degree jmax. Next, we look at the influence of the value of TOL on the quality of the
interpolation. We compare the error only to the Gauss-QR method since the difference between the
Chebyshev-QR and Gauss-QR results is down to machine precision. One can see in Figure 6 that for
TOL = 10−6 the difference HermiteGF-QR and Gauss-QR is also down to machine precision. If we
relax the tolerance to 10−2, the error is still small compared to the magnitude of the interpolation
error, while having smaller jmax, which yields an improved computational efficiency. Also, the
figure shows a general trend that the expansion decays rather fast for small ε while an increasing
number of basis functions is needed for ε close to 1.
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Figure 6. Optimized truncation value and error differences for the two-
dimensional isotropic test case. For the coarser TOL= 10−2 we get fewer basis
functions, with truncation error still much below the interpolation error.

5.2. 2D anisotropic interpolation. To test the performance of the HermiteGF expansion for
anisotropic basis functions, we consider the function:

fa(x, y) =
1

x2 + xy + y2
+ 2, x, y ∈ [−1, 1].

As collocation points, we use Halton points clustered toward the boundaries. For the evaluation
grid we use 53 × 53 uniformly distributed points. As for the shape matrix E, we check whether
the off-diagonal elements influence the quality of the results. We choose a non-diagonal matrix G
of arbitrary pattern to demonstrate the robustness of the method. We fix E and G to be of the
following form:

E = ε

(
1 p
p 1

)
with p ∈ [0, 0.8], G = γ

(
1 0.3

0.1 1.3

)
with γ = 3.5.

We restrict t to the interval tvec = linspace(0.3, 1, 10) in order to improve the stability of the
computations. Let us take a look on how much the off-diagonal elements of the matrix E influence
the error. For our scan, we take 30 logarithmically distributed values of ε ∈ [10−3, 100.1]. One
can see from Figure 7 that certain choices of off-diagonal elements can improve the quality of the
interpolation compared to purely diagonal shape matrices. However, for larger p slight instabilities
occur which might be explained since E becomes singular for p→ 1.

5.3. Multivariate interpolation. In this section, we consider an example of the usage of HermiteGF-
QR in higher dimension. For all tests, we use the function

f(x) = cos(|x|), x ∈ [−1, 1]d,

where |x| =
∑d
i=1 xi. We use Halton collocation points and 1000 Halton points, excluding the

ones used for collocation, for the evaluation grid. We fix G = 5Idd, ε = logspace(-3, 0.1, 30),
and we again optimize the parameter t over the set tvec = linspace(0.3, 1, 10). As before, we
choose the tolerance TOL = 10−6. We first look whether the anisotropic HermiteGF-QR method
converges to the results of the direct interpolation as ε increases. We choose an arbitrary pattern
for E in order to verify that the stabilization works for a truly anisotropic interpolation,

Ea = ε

 1 0.2 0.3
0.2 1 0.15
0.1 0.3 1

 .
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Figure 7. Two-dimensional anisotropic interpolation. For a fixed value of p,
the error generally decreases with the growth of N as expected. Choosing an
anisotropic shape matrix E (p 6= 0) often improves the interpolation quality.
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(b) Isotropic interpolation in 3-5D.

Figure 8. Interpolation in dimensions 3-5D: Both the anisotropic and the
isotropic HermiteGF-QR method match the average error of the Gauss-QR
method.

In Figure 8a, we can see that HermiteGF-QR interpolation works stably even for very small values
of ε for different N . On the other hand, for larger values of ε the result matches the direct
anisotropic interpolation.

In order to validate the HermiteGF-QR method in higher dimensions against the existing meth-
ods, we compare the isotropic HermiteGF-QR method with the Gauss-QR method in 3-5D. For
that, we fix the shape matrix E and the number of interpolation points N as

E = Idd and N = 4d,

where d is the dimensionality. We choose the tolerance TOL = 10−2 since it is enough to meet
the overall accuracy of the method. One can see in Figure 8b that the HermiteGF-QR method
matches the reference Gauss-QR method in 3-5D.

6. Conclusion and Outlook

In this paper, we derive a new stabilization algorithm for Gaussian RBF interpolation in the
flat limit (ε→ 0). The main idea of “isolating” the ill-conditioning in a special matrix is the same
as in the previous approaches [11, 7, 9]. However, our new algorithmic framework draws from
generating functions that naturally extend to the interpolation with anisotropic Gaussians. We
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introduce several parameters (ε/E, γ/G, t) for the new HermiteGF basis which have a distinct
connotation: ε/E is the original shape parameter of the Gaussian basis, γ/G stands for the size of
the evaluation domain of the Hermite polynomials, and the technical basis truncation parameter
t can be chosen automatically thanks to a novel analytically derived truncation criterion. The
interpolation quality is not sensitive to the precise value of γ/G. The generic formulation of the
method essentially provides an algorithm in any dimension, and we have reported results for up to
five dimensions.

For the cut-off of the HermiteGF expansion, we derive a novel truncation criterion, generaliz-
ing Mehler’s theory for bilinear generating functions. In particular, we analytically estimate the
truncation error δΨ in the stable HermiteGF basis Ψ. This allows adjusting the number of basis
functions based on the desired accuracy in the basis Ψ.

The HermiteGF-QR algorithm has been implemented in MATLAB. For all isotropic test cases,
the accuracy of the HermiteGF-QR method is consistent with the ones of established stabilization
methods (Chebyshev-QR, Gauss-QR). For the anisotropic case, the results matches the RBF-Direct
method, where the latter is applicable.

The stability of our algorithm could be further improved by employing special algorithms for
the stable inversion of the Vandermonde type matrices. Based on the successful experience of the
automatic detection of the truncation parameter t, it could be possible to develop an algorithm of
choosing an optimal parameter matrix G defining the effective evaluation domain. We believe that
our anisotropic method could be also of interest in statistical data fitting [6, § 17] or for continental
size ice sheet simulations, see e.g. [3].
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