Supplementary Information for:

Drought-modulated allometric patterns of trees in semi-arid forests

Supplementary Figures

Supplementary Figure 1

(b)
 correlation among tree morphological traits.

The size and color of the circles show the correlation coefficients, while the asterisk indicates the significance: ${ }^{*}, P<0.1 ;{ }^{* *}, P<0.05 ;{ }^{* * *}, P<0.01$. For abbreviations, plant height (Height), ratio of height under crown and tree height (CLR), breast height diameter $(D B H)$, trunk dominance ratio $(T D R)$, canopy area $(C A)$, leaf area index ($L A I$), ratio of second- and first- order branch length $(S l / F l)$ and count $(S c / F c)$, leaf area $(L A)$, specific leaf area $(S L A)$, leaf tissue density $(L T D)$, leaf main vein length $(L V)$. For a detailed explanation of the plant traits, refer to Supplementary Table 3.

Supplementary Figure 2

Supplementary Figure 2 A diagrammatic illustration for calculating 'trunk dominant ratio (TDR),

A greater $T D R$ score indicates larger basal ramification.

Supplementary Figure 3

Supplementary Figure 3 The relationship between leaf morphology and leaf

water-use efficiency

Principal component analysis (PCA) to reduce the dimensionality of leaf morphological traits showed that the first component (PCA1) explained 76.5\% of the total variance. Higher PCA1 score of the plots indicate the leaves to have smaller leaf tissue density ($L T D$) and bigger leaf area ($L A$), greater specific leaf area (SLA) and longer leaf vein length $(L V)$ averagely. A significant negative linear correlation was found between $P C A 1$ and leaf $\delta^{13} C$ values $(P=0.099)$ indicating that leaves with bigger area and lower tissue density tend to have lower $\delta^{13} C$ values.
$\delta^{13} \mathrm{C}$ value is an effective proxy index for leaf water use efficiency. A higher value of $\delta^{13} \mathrm{C}$ indicates a stronger limitation of stomatal conduction to the intensity of photosynthesis caused by reduced water potential ${ }^{1,2,3}$. The formula used for calculating the $\delta^{13} C$ isotope is shown in equation:
$\delta^{13} \mathrm{C}=\left[{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\left(\right.\right.$ sample) $-{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}($ standard $) /{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}($ standard $\left.)\right] \times 1000$
where ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ (sample) represents the ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio of our samples and ${ }^{13} C /{ }^{12} C$ (standard) represents the ratio of the international standard material Pee Dee Belemnite (PDB). The measurement error is $0.45 \% \pm 0.08 \%{ }^{2}$.

Supplementary Figure 4

Supplementary Figure 4 Morphological traits variation along the regional solar irradiation (Radiation) gradient are shown by scatter plots and linear regression. Each dot represents a site. The blue line represents the linear regression, while the gray shaded region represents the confidence interval of fitting. For abbreviations, plant height (Height), ratio of height under crown and tree height (CLR), breast height diameter $(D B H)$, trunk dominance ratio $(T D R)$, canopy area $(C A)$, leaf area index ($L A I$), ratio of second- and first- order branch length $(S l / F l)$ and count $(S c / F c)$, leaf area $(L A)$, specific leaf area (SLA), leaf tissue density ($L T D$), leaf main vein length $(L V)$. For a detailed explanation of the plant traits, refer to Supplementary Table 3.
with them.

Controlled variable	Variables	Partial correlation index	Significance
DBH	MAP-CA	-0.246	0.154
DBH	AET-CA	0.156	0.371
DBH	Altitude-CA	-0.324	0.057
Height	MAP-CA	-0.391	0.020
Height	AET-CA	0.122	0.486
Height	Altitude-CA	-0.183	0.292
DBH	MAP-Height	0.835	0.000
DBH	Radiation-Height	-0.621	0.000
$D B H$	AET-Height	0.497	0.002
$D B H$	Altitude-Height	-0.382	0.023
$D B H$	Cover-Height	0.558	0.001
$C A$	MAP-Height	0.845	0.000
$C A$	Radiation-Height	-0.597	0.000
$C A$	AET-Height	0.487	0.003
$C A$	Altitude-Height	-0.285	0.098
$C A$	Cover-Height	0.643	0.000

57
58
59
Supplementary Table 1 Partial correlation tests for tree height (Height), canopy area $(C A)$, diameter at breast height $(D B H)$ and the environmental factors that correlated

60 Supplementary Table 2 The summary information for each study site, including the 61 location, average tree age, mean annual precipitation (MAP) and mean annual 62 temperature (MAT).

Sites	Plot ID	Longitude $\left({ }^{\circ} \mathrm{N}\right)$	Latitude $\left({ }^{\circ} \mathbf{E}\right)$	$\begin{aligned} & \text { Altitude } \\ & \text { (m a.s.l.) } \end{aligned}$	Slope $\left({ }^{\circ}\right)$	Aspect $\left(\mathrm{NE}^{\circ}\right)$	Average tree age (a)	MAT ($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { MAP } \\ & (\mathrm{mm}) \end{aligned}$
BJ	BJ1	116.77	42.99	1167	38	215	47	5.1	498
	BJ2	115.48	40.02	1737	35	165	55		
	BJ3	115.48	40.02	1742	37	200	53		
HY	HY1	105.81	36.14	1951	36	339	65	5.5	438
	HY2	105.81	36.14	2032	25	290	67		
	HY3	105.81	36.14	2028	25	110	69		
HHT	HHT1	111.97	41.02	1661	20	265	68	2	355
	HHT2	111.97	41.02	1657	27	220	68		
	HHT3	111.23	40.82	1364	25	270	57		
JY	JY1	112.07	35.25	1287	10	25	31	10.5	634
	JY2	112.08	35.25	1340	36	340	59		
	JY3	112.08	35.25	1341	33	0	44		
JT	JT1	125.8	43.95	309	24	183	60	4.7	644
	JT2	125.8	43.95	279	29	50	60		
	JT3	125.8	43.95	319	23	343	60		
KQ	KQ1	116.77	42.99	1399	5	285	49	1.3	375
	KQ2	116.77	42.99	1403	5	50	44		
	KQ3	116.77	42.99	1400	5	195	43		
MP	MP1	121.75	37.24	824	25	175	66	11.1	670
	MP2	121.76	37.24	803	30	0	51		
	MP3	121.77	37.24	897	25	340	56		
TJ	TJ1	117.55	40.2	829	34	50	54	8.5	610
	TJ2	117.55	40.2	825	30	98	55		
	TJ3	117.55	40.2	825	36	284	69		
WD	WD1	126.74	43.58	306	40	215	55	4	903
	WD2	125.25	41.94	751	35	170	56		
	WD3	125.25	41.94	751	20	330	58		
WQ	WQ1	125.81	43.95	350	33	65	57	3.6	710
	WQ2	126.74	43.58	319	10	129	58		
	WQ3	126.74	43.58	306	5	350	53		
WC	WC1	117.44	42.17	1298	0	37	80	1	465
	WC2	117.44	42.17	1306	32	260	87		
	WC3	117.44	42.17	1358	30	290	72		
WLH	WLH1	121.21	46.65	566	23	345	54	1.5	444
	WLH2	121.20	46.65	574	27	115	53		
	WLH3	121.20	46.65	531	28	107	69		

Supplementary Table 3 Morphological traits chosen in the study.

Attributes	Abbreviation	Unit	Efficiency
Plant height	Height	m	Allometric growth and biomass accumulation ${ }^{4,5}$
Ratio of height under crown and tree height	CLR	-	Adjusting leaf self-shading extent ${ }^{6}$
Breast height Diameter	DBH	cm	Allometric growth ${ }^{4}$
Trunk dominance ratio	TDR	-	Redundancy effect of ramification ${ }^{7}$
Ratio of second- and firstorder branch length	Sl/Fl	-	Maximize tree light capture and biomass production ${ }^{6}$
Ratio of second- and firstorder branch count	$S c / F c$	-	Maximize tree light capture and biomass production ${ }^{6}$
Leaf area index	LAI	$\mathrm{m}^{2} \mathrm{~m}^{-2}$	Plant gas, water, carbon, and energy exchange ${ }^{7}$
Canopy area	CA	m^{2}	Maximize tree light capture and biomass production ${ }^{6}$
Leaf area	LA	cm^{2}	Leaf resource capture ${ }^{8}$
Specific leaf area	SLA	$\mathrm{cm}^{2} \mathrm{~g}^{-1}$	Leaf resource capture ${ }^{8}$
Leaf tissue density	LTD	$\mathrm{g} \mathrm{cm}^{-3}$	Leaf resource capture ${ }^{8}$
Leaf main vein length	LV	cm	Leaf resource capture ${ }^{8}$

Supplementary References

1. Farquhar, G. D., Oleary, M. H. \& Berry, J. A. On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121-137 (1982).
2. Qiu, S., Liu, H., Zhao, F. \& Liu, X. Inconsistent changes of biomass and species richness along a precipitation gradient in temperate steppe. J. Arid Environ. 132, 42-48 (2016).
3. Poorter, H. \& Farquhar, G. D. Transpiration, intercellular carbon-dioxide concentration and carbonisotope discrimination of 24 wild-species differing in relative growth-rate. Aust. J. Plant Physiol. 21, 507-516 (1994).
4. Sumida, A., Miyaura, T. \& Torii, H. Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 33, 106-118 (2013).
5. Tao, S. L., Guo, Q. H., Li, C., Wang, Z. H. \& Fang, J. Y. Global patterns and determinants of forest canopy height. Ecology 97, 3265-3270 (2016).
6. Sterck, F. J., Bongers, F. \& Newbery, D. M. Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecol. 153, 279-292 (2001).
7. Hernandez-Calderon, E., Mendez-Alonzo, R., Martinez-Cruz, J., Gonzalez-Rodriguez, A. \& Oyama, K. Altitudinal changes in tree leaf and stem functional diversity in a semi-tropical mountain. J. Veg. Sci. 25, 955-966 (2014).
8. Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338-1347 (2010).
