- **1** Supplementary Information for:
- 2 **Drought-modulated allometric patterns of trees in semi-arid forests**
- 3

4 Supplementary Figures

5 Supplementary Figure 1

6

7 Supplementary Figure 1 (a) Two-tailed Pearson correlation and (b) partial

8 correlation among tree morphological traits.

9 The size and color of the circles show the correlation coefficients, while the asterisk 10 indicates the significance: *, P < 0.1; **, P < 0.05; ***, P < 0.01. For abbreviations, 11 plant height (*Height*), ratio of height under crown and tree height (*CLR*), breast height 12 diameter (*DBH*), trunk dominance ratio (*TDR*), canopy area (*CA*), leaf area index 13 (*LAI*), ratio of second- and first- order branch length (*Sl/Fl*) and count (*Sc/Fc*), leaf 14 area (*LAI*), specific leaf area (*SLA*), leaf tissue density (*LTD*), leaf main vein length 15 (*LV*). For a detailed explanation of the plant traits, refer to Supplementary Table 3.

17 Supplementary Figure 2

19 Supplementary Figure 2 A diagrammatic illustration for calculating 'trunk

- 20 dominant ratio (TDR)'
- 21 A greater *TDR* score indicates larger basal ramification.
- 22

23 Supplementary Figure 3

24

25 Supplementary Figure 3 The relationship between leaf morphology and leaf

26 water-use efficiency

Principal component analysis (PCA) to reduce the dimensionality of leaf morphological traits showed that the first component (*PCA1*) explained 76.5% of the total variance. Higher *PCA1* score of the plots indicate the leaves to have smaller leaf tissue density (*LTD*) and bigger leaf area (*LA*), greater specific leaf area (*SLA*) and longer leaf vein length (*LV*) averagely. A significant negative linear correlation was found between *PCA1* and leaf $\delta^{I3}C$ values (*P* = 0.099) indicating that leaves with bigger area and lower tissue density tend to have lower $\delta^{I3}C$ values.

 $\delta^{I3}C$ value is an effective proxy index for leaf water use efficiency. A higher value of $\delta^{I3}C$ indicates a stronger limitation of stomatal conduction to the intensity of photosynthesis caused by reduced water potential^{1, 2, 3}. The formula used for calculating the $\delta^{I3}C$ isotope is shown in equation:

38
$$\delta^{13}C = [{}^{13}C/{}^{12}C(sample) - {}^{13}C/{}^{12}C(standard)/{}^{13}C/{}^{12}C(standard)] \times 1000$$

39 where ${}^{13}C/{}^{12}C$ (sample) represents the ${}^{13}C/{}^{12}C$ ratio of our samples and 40 ${}^{13}C/{}^{12}C$ (standard) represents the ratio of the international standard material Pee Dee 41 Belemnite (PDB). The measurement error is $0.45\% \pm 0.08\%^2$.

53 • Supplementary Tables

54 Supplementary Table 1 Partial correlation tests for tree height (*Height*), canopy area
55 (*CA*), diameter at breast height (*DBH*) and the environmental factors that correlated

56 with them.

Controlled variable	Variables	Partial correlation index	Significance	
DBH	MAP-CA	-0.246	0.154	
DBH	AET-CA	0.156	0.371	
DBH	Altitude-CA	-0.324	0.057	
Height	MAP-CA	-0.391	0.020	
Height	AET-CA	0.122	0.486	
Height	Altitude-CA	-0.183	0.292	
DBH	MAP-Height	0.835	0.000	
DBH	Radiation-Height	-0.621	0.000	
DBH	AET-Height	0.497	0.002	
DBH	Altitude-Height	-0.382	0.023	
DBH	Cover-Height	0.558	0.001	
СА	MAP-Height	0.845	0.000	
СА	Radiation-Height	-0.597	0.000	
СА	AET-Height	0.487	0.003	
CA	Altitude-Height	-0.285	0.098	
СА	Cover-Height	0.643	0.000	

57

58

60 Supplementary Table 2 The summary information for each study site, including the

61 location, average tree age, mean annual precipitation (MAP) and mean annual

62	temperature	(MAT).
----	-------------	--------

Sites	Plot ID	Longitude	Latitude	Altitude	Slope	Aspect	Average tree	MAT	MAP
		(°N)	(°E)	(m a.s.l.)	(°)	(NE°)	age (a)	(°C)	(mm)
	BJ1	116.77	42.99	1167	38	215	47		
BJ	BJ2	115.48	40.02	1737	35	165	55	5.1	498
	BJ3	115.48	40.02	1742	37	200	53		
	HY1	105.81	36.14	1951	36	339	65		
HY	HY2	105.81	36.14	2032	25	290	67	5.5	438
	HY3	105.81	36.14	2028	25	110	69		
	HHT1	111.97	41.02	1661	20	265	68		
HHT	HHT2	111.97	41.02	1657	27	220	68	2	355
	HHT3	111.23	40.82	1364	25	270	57		
	JY1	112.07	35.25	1287	10	25	31		
JY	JY2	112.08	35.25	1340	36	340	59	10.5	634
	JY3	112.08	35.25	1341	33	0	44		
	JT1	125.8	43.95	309	24	183	60		
JT	JT2	125.8	43.95	279	29	50	60	4.7	644
	JT3	125.8	43.95	319	23	343	60		
	KQ1	116.77	42.99	1399	5	285	49		
KQ	KQ2	116.77	42.99	1403	5	50	44	1.3	375
	KQ3	116.77	42.99	1400	5	195	43		
	MP1	121.75	37.24	824	25	175	66		
MP	MP2	121.76	37.24	803	30	0	51	11.1	670
	MP3	121.77	37.24	897	25	340	56		
	TJ1	117.55	40.2	829	34	50	54		
TJ	TJ2	117.55	40.2	825	30	98	55	8.5	610
	TJ3	117.55	40.2	825	36	284	69		
	WD1	126.74	43.58	306	40	215	55		
WD	WD2	125.25	41.94	751	35	170	56	4	903
	WD3	125.25	41.94	751	20	330	58		
	WQ1	125.81	43.95	350	33	65	57		
WQ	WQ2	126.74	43.58	319	10	129	58	3.6	710
	WQ3	126.74	43.58	306	5	350	53		
	WC1	117.44	42.17	1298	0	37	80		
WC	WC2	117.44	42.17	1306	32	260	87	1	465
	WC3	117.44	42.17	1358	30	290	72		
	WLH1	121.21	46.65	566	23	345	54		
WLH	WLH2	121.20	46.65	574	27	115	53	1.5	444
	WLH3	121.20	46.65	531	28	107	69		

Attributes	Abbreviation	Unit	Efficiency		
Plant height	Height	m	Allometric growth and biomass		
			accumulation ^{4, 5}		
Ratio of height under crown	CLR	-	Adjusting leaf self-shading extent ⁶		
and tree height					
Breast height Diameter	DBH	cm	Allometric growth ⁴		
Trunk dominance ratio	TDR	-	Redundancy effect of ramification ⁷		
Ratio of second- and first-	Sl/Fl	-	Maximize tree light capture and		
order branch length			biomass production ⁶		
Ratio of second- and first-	Sc/Fc	-	Maximize tree light capture and		
order branch count			biomass production ⁶		
Leaf area index	LAI	$m^2 m^{-2}$	Plant gas, water, carbon, and energy		
			exchange ⁷		
Canopy area	CA	m ²	Maximize tree light capture and		
			biomass production ⁶		
Leaf area	LA	cm ²	Leaf resource capture ⁸		
Specific leaf area	SLA	$\mathrm{cm}^2\mathrm{g}^{\text{-1}}$	Leaf resource capture ⁸		
Leaf tissue density	LTD	g cm ⁻³	Leaf resource capture ⁸		
Leaf main vein length	LV	cm	Leaf resource capture ⁸		

Supplementary Table 3 Morphological traits chosen in the study.

66 Supplementary References

67	1.	Farquhar, G. D., Oleary, M. H. & Berry, J. A. On the relationship between carbon isotope
68		discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust. J. Plant Physiol.
69		9, 121-137 (1982).
70	2.	Qiu, S., Liu, H., Zhao, F. & Liu, X. Inconsistent changes of biomass and species richness along a
71		precipitation gradient in temperate steppe. J. Arid Environ. 132, 42-48 (2016).
72	3.	Poorter, H. & Farquhar, G. D. Transpiration, intercellular carbon-dioxide concentration and carbon-
73		isotope discrimination of 24 wild-species differing in relative growth-rate. Aust. J. Plant Physiol. 21,
74		507-516 (1994).
75	4.	Sumida, A., Miyaura, T. & Torii, H. Relationships of tree height and diameter at breast height
76		revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand.
77		<i>Tree Physiol.</i> 33 , 106-118 (2013).
78	5.	Tao, S. L., Guo, Q. H., Li, C., Wang, Z. H. & Fang, J. Y. Global patterns and determinants of forest
79		canopy height. <i>Ecology</i> 97, 3265-3270 (2016).
80	6.	Sterck, F. J., Bongers, F. & Newbery, D. M. Tree architecture in a Bornean lowland rain forest:
81		intraspecific and interspecific patterns. Plant Ecol. 153, 279-292 (2001).
82	7.	Hernandez-Calderon, E., Mendez-Alonzo, R., Martinez-Cruz, J., Gonzalez-Rodriguez, A. & Oyama,
83		K. Altitudinal changes in tree leaf and stem functional diversity in a semi-tropical mountain. J. Veg.
84		<i>Sci.</i> 25 , 955-966 (2014).
85	8.	Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338-1347
86		(2010).