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Abstract
Recordings captured by wearable microphones are a standard method for investigating young children’s language environments.
A key measure to quantify from such data is the amount of speech present in children’s home environments. To this end, the
LENA recorder and software—a popular system for measuring linguistic input—estimates the number of adult words that
children may hear over the course of a recording. However, word count estimation is challenging to do in a language- indepen-
dent manner; the relationship between observable acoustic patterns and language-specific lexical entities is far from uniform
across human languages. In this paper, we ask whether some alternative linguistic units, namely phone(me)s or syllables, could
be measured instead of, or in parallel with, words in order to achieve improved cross-linguistic applicability and comparability of
an automated system for measuring child language input. We discuss the advantages and disadvantages of measuring different
units from theoretical and technical points of view.We also investigate the practical applicability of measuring such units using a
novel system called Automatic LInguistic unit Count Estimator (ALICE) together with audio from seven child-centered daylong
audio corpora from diverse cultural and linguistic environments. We show that language-independent measurement of phoneme
counts is somewhat more accurate than syllables or words, but all three are highly correlated with human annotations on the same
data. We share an open-source implementation of ALICE for use by the language research community, enabling automatic
phoneme, syllable, and word count estimation from child-centered audio recordings.
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Introduction

The use of (day)long child-centered audio recordings from
children’s natural environments is becoming one of the stan-
dard methods for studying child language acquisition of spo-
ken languages. By using a wearable recorder to capture what

children hear in their daily lives, researchers can characterize
the quality and quantity of language input and infant–
caregiver interaction that children experience, and analyze
how such factors may relate to later developmental outcomes
(e.g., Gilkerson et al., 2018; Romeo et al., 2018; Suskind et al.,
2016; Caskey et al., 2014; Ramírez-Esparza, García-Sierra, &
Kuhl, 2014; Weisleder & Fernald, 2013). However, the
amount of audio data collected with wearable recorders from
a population of learners easily surpasses the capacity of any
single research lab to comprehensively manually annotate the
data for all variables of interest. This means that automatic or
semiautomatic tools are essential for processing and analyzing
such recordings (see Casillas & Cristia, 2019, for a review).

One key measure of interest is the amount of linguistic
input that a child hears within a given time period (e.g., spe-
cific time of the day, within the full day, or in a specific
environment such as daycare or at home). The existing stan-
dard solution to collecting and analyzing child-centered re-
cordings is the widely adopted LENA system (Xu et al.,
2008; Gilkerson & Richards, 2009). It consists of a physical
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recording device and associated software for automatically
analyzing a number of variables from the data, including esti-
mation of the number of words spoken by adults in the vicinity
of the child, in addition to detecting child vocalizations and
conversational turns. However, LENA is proprietary and ex-
pensive, and its core technology is aging with respect to the
cutting edge in automated speech processing. In addition,
LENA is optimized for American English, which means that
its absolute word count estimates tend to be more accurate for
English than for other languages (though relative counts in
within-corpus comparisons are still usually reliable; see
Räsänen et al., 2019, for a summary). In order to address these
shortcomings of LENA, an open-source alternative for auto-
matic word count estimation was proposed by Räsänen et al.
(2019) (hereafter referred to as “WCE-R”). Instead of using a
single static model for word count estimation, WCE-R can be
adapted to any target language of interest by using a few hours
of orthographically transcribed child-centered audio. As a re-
sult, WCE-R outperformed LENA on three out of four tested
dialects of English, and achieved similar performance on mul-
tiple languages other than English (see Räsänen et al., 2019,
for details). However, while theWCE-R adaptation procedure
improves the cross-linguistic performance of the system, the
requirement of transcribed domain-specific data also greatly
limits the practical usability of WCE-R as a standardized tool
for developmental research, not least since its performance
ultimately depends on the quality and representativeness of
the adaptation data used for the domain of interest.

A fundamental challenge with both WCE-R and LENA is
that accurate word count estimation in any given language
necessarily requires at least some knowledge of the lexicon
and phonology of that language. Integrating such knowledge
into the system for all of the world’s approximately 7000
languages (number from Coupé et al., 2019) is simply not
feasible. This is especially true for low- resource languages,
for which orthographically transcribed data may be sparse or
may not exist at all. LENA’s only way to cope with this issue
is to simply assume that all speech is American English,
whereas WCE-R uses the data-driven adaptation discussed
above. Arguably, neither of the approaches is ideal from the
cross-corpus (cross-linguistic) analysis point of view, where
sensitivity and accuracy of the unit count estimates would
ideally be similar across different datasets.

An independent, but equally important issue is whether
words are the linguistic units that we should be counting in
the first place. While a great deal of current developmental
theory has built up around children’s vocabulary development,
including the implications of vocabulary growth for syntactic
development (e.g., Frank et al., in prep; Brinchmann, Braeken,
& Lyster, 2019;Marchman,Martínez-Sussmann, &Dale 2004;
Bates & Goodman, 1997; Lieven, Pine, & Baldwin, 1997), the
predictive value of input word count for long-term language
development is still unclear, and has been primarily limited to

studies of English (e.g., Gilkerson et al., 2018; Caskey et al.,
2014; Weisleder & Fernald, 2013; Hurtado, Marchman, &
Fernald, 2008; Hoff & Naigles, 2002; Hart & Risley, 1995).
Considering, too, the basic fact that human languages vary in
how words are composed (e.g., carrying one or multiple mor-
phemes), it is apparent that word count is far from optimal when
trying to compare input rates cross-linguistically. One could
instead measure other linguistic units such as phones (or
phonemes), syllables (or morphemes), utterances, or even sim-
ply the total duration of speech (cf., DeAnda et al., 2016).
However, we know even less about how these units relate to
child language development, so it is not obvious whether they
adequately serve as meaningful substitutes for words.

Coming back to technical concerns of automated detection,
it is also unclear whether these alternative units can be mea-
sured robustly despite the noisy soundscapes of typical day-
long audio recordings, and with similar accuracy across lan-
guages and cultural settings (e.g., (sub)urban post-industrial
vs. rural subsistence farming). Notably, within a single lin-
guistic population, phoneme, syllable, and word counts are
likely to be highly correlated on the time scales typically used
in linguistic input analyses (e.g., multiple hours), thereby
allowing cumulative counts of one type of unit to be obtained
from another through simple linear scaling. Our point for pres-
ent purposes, however, is that it is not at all obvious whether
one generic linguistic unit estimator can perform equally well
across languages, or whether the estimator’s output could be
directly compared between languages.

In order to tackle these questions, the present paper con-
siders whether more cross- linguistically reliable measures of
spoken child language exposure could be established by using
linguistic units other than words. More specifically, we inves-
tigate how much the use of phonemes, syllables, or words as
the basic units of language input makes sense from linguistic,
developmental, and technological viewpoints. We focus espe-
cially on the cross-linguistic comparability and compatibility
of the measures as well as the accuracy at which phoneme,
syllable, and word counts can be derived from child-centered
daylong audio recordings when using language-dependent
and language-independent approaches. As a part of this work,
we present our open-source system, Automatic LInguistic unit
Count Estimation (ALICE1), and use it to investigate the fea-
sibility of estimation for the different units on seven different
child-centered audio corpora from various language
environments.

We start with theoretical and technical considerations for
measuring syllables versus words (the next section. Following
the earlier work on LENA (Xu et al., 2008) and WCE-R
(Räsänen et al., 2019), we then describe our system for esti-
mating phoneme, syllable, and word counts from acoustic
speech (Methods). Performance of the system is then

1 https://github.com/orasanen/ALICE
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evaluated in within- and across-language linguistic unit count
estimation tasks (Experiments), including a comparison and
combination of different intermediate signal representations in
the estimation tasks. Finally, we discuss the implications of
our results.

Measuring phone(me)s, syllables, and words

The overall aim of this paper is to investigate which linguistic
units one should be measuring for spoken input, when the
ultimate goal of research is to characterize both (a) the lan-
guage input that children hear in their daily environments, and
(b) how that input relates to other variables of interest in the
child’s development. An ideal solution has all the following
desiderata: 1) the quantity of the chosen units is highly rele-
vant to the learning mechanisms linking linguistic input to
language development, 2) the units have a meaningful and
interpretable relationship to linguistic theory, 3) the units of
interest can be measured automatically from child-centered
daylong audio with comparable accuracy across languages,
and 4) the automatic measurement system operates out-of-
the-box on any given dataset. Additional desired characteris-
tics include 5) reasonable computational requirements so that
an actual implementation of the system can be operated in
typical computing environments, and 6) public availability
of the required components to openly disseminate the system
for researchers in the field, improving reproducibility as well
as comparisons across studies. Finally, there has to be 7) a
gold-standard reference available for the units of interest on
relevant data in order to benchmark and validate an automatic
system for their estimation.

Starting from these considerations, we chose three candi-
date units of interest: phonemes, syllables, and words. Since
our primary interest is in speech from language-proficient
adult caregivers, the remainder of the paper will use the term
“adult linguistic unit counts” (ALUC) to refer to any of these
three unit types interchangeably. This section first discusses
the technical factors in measuring such units from real-world
audio data, and then brings up a number of theoretical consid-
erations with respect to their analysis and use in quantifying
child language input.

Technical considerations

One of the main challenges in developing a unit count estima-
tor for daylong audio recordings is the complexity and noisi-
ness of the acoustic data on which the analyses are conducted.
The microphone worn by the child captures all types of
sounds in their vicinity, including various types of stationary
and non-stationary background noises, overlapping speech,
and far-field and reverberant speech that can be difficult to
comprehend even for a human listener. For instance,

Räsänen et al. (2019) reported an average speech signal-to-
noise ratio (SNR) of 0 dB across the same set of naturalistic
daylong corpora used in the present study (see Methods),
which is substantially lower than the noise conditions for
which speech technology algorithms are typically optimized
(e.g. SNR of ~10–40 dB). There is also substantial variability
in many other properties of the recordings, including signal
conditions and the amount of speech versus non-speech audio,
both between individual children and across different corpora.
The second main challenge is that the speech within the re-
cordings and across corpora can contain different languages,
whereas tools related to linguistic unit detection, such as au-
tomatic speech recognition (ASR), are normally tailored for
one language at a time.

Another central characteristic of the automatic linguistic
unit count estimation process is that the variable of interest
is a cumulative sum of individual tokens across a period of
time (e.g., total number of words heard at daycare vs. home).
This means that accurate identification of individual tokens
(e.g., lexemes) is not necessary. Instead, the problem can be
solved by finding a set of audio signal descriptors that accu-
mulate approximately linearly as a function of the number of
units of interest, checking that this property is satisfied at the
time scales of interest. Once such correlates are found, they
can be mapped to an expected value of the desired unit count
using a simple linear model, a strategy utilized in all existing
work on ALUC, including LENA (Xu et al., 2008; Ziaei et al.,
2016; Räsänen et al., 2019). For instance, LENA does not
recognize individual spoken words, but simply calculates the
number of vowels, consonants, and silences in the input, as
detected by an automatic phone recognizer trained for
American English. These counts are then mapped to the most
likely corresponding word count using a linear model, also
tuned for American English. The WCE-R system by
Räsänen et al. (2019) performs a similar process but using
syllables instead of phones as the basic unit of measurement,
and using a linear model trained separately for each language
of interest. In the same way, features such as total duration of
speech could be mapped onto the expected number of linguis-
tic units simply by considering the average speaking rate of
the given units in that language. Even though this would ig-
nore speaker-dependent differences in the speech rate, the
estimate would still be very highly correlated with the true
unit counts, as any short-term variations in the speaking rate
would tend to average out across a measurement period of
anything from several minutes to several hours (see also
Räsänen et al., 2019).

What the above means from a technical point of view is
that the unit of measurement would ideally be directly recog-
nizable from the acoustic signal in a language-independent
manner. Alternatively, the unit should be strongly linearly
correlated with measurable characteristics of acoustic speech,
and this correlational relationship should not change across
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languages, dialects, speakers, or speaking conditions.
Additionally, the acoustic measurement process should be ro-
bust against noise overlapping with speech, but also against
any non-overlapping non-speech sounds, as it is not currently
technically feasible to carry out perfectly accurate speech seg-
mentation and speaker identification from naturalistic audio
recordings (e.g., Sun et al., 2018; Sell et al., 2018; Ryant et al.,
2019; Sahidullah et al., 2019; Cristia et al., 2020).

From this perspective, the main disadvantages of word
counting are that direct words cannot feasibly be estimated
across all languages and that indirect word count estimates
are not comparable across languages. First, direct measure-
ment of word counts requires a full automatic speech recog-
nition (ASR) system, which is not necessarily feasible or ac-
curate for low-resource or even unwritten languages (i.e., the
vast majority of the world’s languages). Even if we did have
sufficient annotated data for each of the world’s languages,
integrating all these language-specific ASR systems into a
common one such that performance and output were compa-
rable across languages would be an immense technical chal-
lenge. Note that these same restrictions apply to morphologi-
cal analysis, which would otherwise be a much better ap-
proach for cross-linguistic comparability in number of
expressed units of meaning (see Allen & Dench, 2015, for a
discussion). The only feasible choice, then, is to indirectly
estimate word (or morpheme) counts on the basis of other
acoustic cues. As far as we know, the relationship between
measurable correlates of words (e.g., automatically detected
phone(me)s or syllables) and the corresponding word counts
themselves is relatively systematic within language, especially
at larger time scales, as demonstrated by LENA and WCE-R.
However, the exact relationship is also necessarily dependent
on the language in question, as there are no universal acoustic
or perceptual cues for words or word boundaries. For instance,
LENA AWCs are optimized for American English, but the
absolute word count accuracy varies for other languages. On
the other hand, LENA-based relative AWCs within a corpus
are still quite systematic, and are therefore useful for analyses
within the given corpus (see Räsänen et al., 2019, for a
summary)

In contrast to words, syllables are potentially easier to de-
tect across languages. This is because the basic syllabic
structure—temporal alternation of low- and high-sonority
speech sounds—is generally present in all spoken languages
as the physical consequence of articulatory sequencing. Since
the fluctuation of sonority can be operationalized in terms of,
e.g., speech amplitude or loudness modulations, automatic
syllabification of speech can be performed in a language-
independent manner (e.g., Mermelstein, 1975), with a number
of algorithms reaching relatively comparable accuracy across
different languages (Räsänen, Doyle, & Frank, 2018a;
Seshadri & Räsänen, 2019). However, one problem is that
the amplitude modulations of speech can be easily confused

with similar modulations in other sounds, making the
sonority-based algorithms potentially susceptible to noisy au-
dio. Nevertheless, this downside of “traditional” syllabifica-
tion algorithms can potentially be tackled with machine learn-
ing approaches. By training the system using a large number
of syllables from different languages (potentially from differ-
ent noise conditions), a machine learning algorithm may learn
a general solution for syllable counting that tolerates non-
speech audio content better than the traditional signal process-
ing approaches (e.g., Räsänen, Seshadri, & Casillas, 2018b;
Seshadri & Räsänen, 2019). This makes syllables a potential
candidate unit that could be estimated directly from speech
instead of using correlated features such as speech duration
or phone counts as linear correlates of syllable counts. Still,
due to the granularity of syllables as basic units of detection,
individual missing or inserted syllables can lead to large rela-
tive errors in the estimated counts of short utterances.
However, if the syllabification errors are unbiased (i.e., the
insertions and deletions are equally frequent) and infrequent
enough, the errors may average out harmlessly at larger ana-
lyzed time scales (e.g., multiple hours).

Finally, phone (or phoneme) counting has certain theoret-
ical technical advantages over words. Even though different
spoken languages have different phoneme and phone inven-
tories, they can be seen as subsets of a larger set of possible
spoken segments used in human language (Ladefoged &
Maddieson, 1996). In addition, if the primary goal is to count
the units, not to identify them precisely, an automatic phone
recognizer trained on any language should be reasonably good
at identifying the vowel and consonant segments even if the
exact narrow phonetic category is not correctly recognized (cf.
LENA phone recognition front-end). When training the rec-
ognizer on more languages, the system should also become
more sensitive to vowel-to-vowel and consonant-to-
consonant transitions, even if the input corresponds to a lan-
guage with mismatching phonology to any of the training
languages. This could then enable language-independent pho-
ne(me) counting. Since phones are smaller units than sylla-
bles, individual insertions or deletions in the detection process
are not as harmful to the overall estimate as at the syllabic
level. If the errors are unbiased, they also tend to average
out over time similarly to syllable detection.

To summarize, there are certain technical factors that could
make language-independent measurement of phone(me)s and
syllables easier than measurement of words, at least in theory.
In contrast, measurement of linguistic units such as mor-
phemes or input characteristics such as syntactic complexity
is more difficult to automate in a language-independent man-
ner due to their high dependency on the linguistic character-
istics of the language in question. However, the practical fea-
sibility of phone(me)s and syllables also greatly depends on
the quality of the available speech technology solutions to
identify such units from child-centered recordings. This
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potential limitation is amplified by the fact that the existing
training data for automatic phone or syllable recognition sys-
tems comes mostly from audio corpora with very different
acoustic and speaker characteristics from those of child-
centered audio recordings. In addition, the question is not only
of what can be measured, but what should be measuredwhen
child language development is of interest.

Linguistic and developmental considerations

Accurate estimates of how much language children encounter
are critical to outlining the quantity and types of linguistic
evidence needed to support language learning. On the level
of daylong recordings, one can theoretically combine average
input quantity measures with independently estimated average
rates for a given linguistic phenomenon (e.g., syntactic word
types) to infer how much exposure children typically have to
that phenomenon (but see Bergelson et al., 2019, for
warnings). On the level of individual utterances, unit estimates
serve as an index of utterance complexity, which itself has
been suggested as a predictive measure of later language out-
comes (e.g., Vasilyeva, Waterfall, & Huttenlocher, 2008;
Huttenlocher et al., 2007). As these two examples demon-
strate, quantity measures can, in principle, be linked to
contentful, quality-like features of children’s language envi-
ronments while also preserving comparable quantitative esti-
mates across children.

It is not yet known what linguistic units are most relevant
for measuring the quantity of children’s language input during
development, either across human languages or within a sin-
gle language (i.e., given a language’s particular structural
properties). Current standard practice is to estimate children’s
linguistic input in words (e.g., 7000 words per day/440 words
per hour). This practice gained popularity after Hart and
Risley’s landmark (1995) study of children’s at-home speech
environments and was later amplified by its inclusion in the
LENA system’s automated analysis (Xu et al., 2008;
Gilkerson & Richards, 2009). The current dominance of word
counts in measuring linguistic input is then arguably due, in
large part, to convenience.

As mentioned above, an ideal ALUC measure should per-
form well in at least two critical dimensions: it should closely
relate to later language outcomes, and it should be as compa-
rable as possible across languages. Note, however, that in
choosing a linguistic unit for analysis, these two features
may be weighed against each other differently. As we will
see, the research question, type of data being used, and popu-
lations under study are all relevant considerations in focusing
on a unit type. That aside, given these two core desiderata, we
briefly consider the advantages and disadvantages of four
measures of input quantity: words, syllables, segments, and
duration. These four measures are, by nature, highly

correlated with each other within languages but, as we will
see, differ in their cross-linguistic and developmental
applicability.

Words are meaning-bearing units, and are therefore tempt-
ing as a measure of the quantity of meanings that the child has
encountered. Vocabulary knowledge and speed of lexical re-
trieval are some of the most commonly used indices of overall
language development in observational, experimental, and
questionnaire-based studies, and linguistic input count in
words makes a convenient parallel for considering the acqui-
sition of these phenomena.Word counts have also been linked
to later language development in English and Spanish
(Gilkerson et al., 2018; Caskey et al., 2014; Weisleder &
Fernald, 2013; Hurtado, Marchman, & Fernald, 2008; Hoff
& Naigles, 2002; Hart & Risley, 1995), fulfilling the first of
our two desiderata above. A major issue with word counts,
however, is that they are not meaningful for broad cross-
linguistic comparisons. For instance, synthetic languages such
as Finnish tend to have words composed of multiple bound
morphemes, while analytic languages like English typically
communicate the same meaning using multiple words (e.g.,
“Menisimmekö?”, “Shall we go?"”, or “Käsittääksemme”, “In
order for us to unders tand” /“According to our
understanding”). Finally, early on in development, infants
are unlikely to be perceiving the speech stream in “words,”
at least in its entirety (Bergelson & Aslin, 2017; Bergelson &
Swingley 2012); therefore, a different measure of input may
be appropriate at these initial stages of linguistic knowledge.

Syllables are an attractive alternative to words in measuring
linguistic input. Syllables are less theoretically loaded than
words, and may therefore more easily apply cross-linguistical-
ly. Consider again the case of Finnish and English
(“Menisimmeköhän?” vs. “I wonder if we shall go”); the
English realization of the utterance has five more words, but
only one more syllable than the Finnish one (see also Allen &
Dench, 2015, for consideration of these issues with respect to
child-produced speech). The comparative advantages of syl-
lables over words are similarly obvious for multilingual
speech environments. Syllables are also the minimal unit on
which prosodic structure is carried, meaning they carry critical
weight in the recognition of lexical and syntactic boundaries.
And while young infants do not yet know many words, they
could use syllables to segment words and infer syntactic struc-
tures from the speech stream. Experimental evidence also sug-
gests that syllables are available as a perceptual unit to new-
borns, possibly even more so than phonological segments
(e.g., Jusczyk & Derrah, 1987; Bertoncini et al., 1988;
Bijeljac-Babic et al., 1993; Swingley, 2005; see also
Räsänen, Doyle, & Frank, 2018a). Perhaps for this reason,
many current computational models assume that infants use
syllables as the basis for speech segmentation and non-
adjacent dependency learning (e.g., Poletiek et al., 2018;
French, Addyman, & Mareschal, 2011; Swingley, 2005;
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Perruchet & Vinter, 1998). Indeed, infants and adults alike
have been shown to segment strings and learn structures in a
number of experimental studies, all theoretically based on
computations over syllables (Saffran et al., 1996, 1997;
Pelucchi et al., 2009; Black & Bergmann, 2017). That said,
infants’ ability to learn non-adjacent dependencies is difficult
to accomplish on the basis of syllable information alone, and
benefits from the addition of phonological cues (Newport &
Aslin, 2004), suggesting that their predictive weight as a per-
ceptual unit for learning may be more limited than initially
assumed. Syllables are also more subject to deletion than are
whole words in fluent speech, though they are more resistant
to deletion than individual phonological segments
(Greenberg, 1999). Regardless, variation in the likelihood of
syllable deletion across languages may cause trouble for the
applicability of syllables as a central measure of linguistic
input.

Phonological segments are even smaller units available to
infants, though perhaps their availability as distinct perceptual
units comes later than it does for syllables (see Swingley,
2005, for a review). Segments are minimally theoretically
loaded and so could be argued to be the most fair linguistic
estimate type across diverse recording contexts and languages.
As mentioned above, distributional phonological cues have
also been shown to be useful in computational modeling
(Monaghan & Christiansen, 2010), corpus analysis
(Hockema, 2006), and experiments (Newport & Aslin,
2004) to aid infants’ ability to extract strings and structures
from running speech. In speech segmentation, phonological
cues derived from segment-level distributions such as vowel
and consonant harmony are used by infants to extract strings
(e.g., Kabak et al., 2010; Mintz et al., 2018). For a number of
languages, including English, Turkish, Mandarin, Dutch,
French, and Japanese, phonological features and syntactic
classes correspond such that, even at the segmental level, in-
fants may already get a limited view into syntactic structure
(Sereno and Jongman, 1995; Shi et al., 1998; Monaghan,
Christiansen, & Chater, 2007). However, of all the linguistic
units discussed so far, segments are the most likely to be
deleted in reduced speech (Greenberg, 1999). The effects of
reduction on segments compared to syllables or words may
also vary cross-linguistically. Developmentally, it is unclear
whether children come to the world perceiving segments as
privileged units (as opposed to, e.g., syllables; see above). At
the same time, segments are quite far removed from commu-
nicative meanings, and their standalone explanatory power for
later language outcomes is yet to be determined.

Speech duration is the least theoretically loaded approach
to quantifying the input and therefore optimally serves the
goal of minimizing bias across languages, but also comes at
the cost of having very little explanatory depth and, perhaps
also, minimal predictive power when it comes to later
language outcomes. That said, speech duration can be more

simply and reliably measured from the speech signal
compared to the other units discussed so far. Duration can
also yield surprising insight if prior estimates exist regarding
information transfer. For example, Coupé et al. (2019) found
that the average information rate of speech recorded from
read-aloud texts was approximately the same (~39 bits/s)
across 17 different languages. This suggests that duration of
speech could, in fact, reliably index how much information
(“meaning”) is being transferred. That said, it is worth bearing
in mind that the results were based on read-aloud texts and not
on spontaneous child-directed speech and that the broad con-
clusions hide significant between-speaker variability. Even if
these results held up robustly for child-directed speech, we
might still encounter the problem that children’s ability to
perceive and compute different linguistic units may change
as they get older; in other words, the interpretable bitrate
might also change with development.

In sum, an ideal ALUCmeasure for language development
should relate to later language outcomes and should be usable
in comparative cross-linguistic or multilingual input work.
The four options we considered here vary in their utility given
what assumptions we canmake about the child’s developmen-
tal state, their validity for direct comparison across linguistic
contexts, their likely value in illuminating the underlying
mechanisms of language learning, and their correspondence
to existing tools and models independently designed to assess
the process and outcomes of language learning. Therefore,
when we consider the development of an ALUC estimator,
the best approach may be one that provides an array of op-
tions, rather than focusing on a single one (e.g., adult word
counts).

Methods

Our system for ALUC estimation is called Automatic
LInguistic unit Count Estimator (ALICE). The basic architec-
ture of ALICE is shown in Fig. 1. ALICE is conceptually
based on the earlier systems in Räsänen et al. (2019), Ziaei
et al. (2016), and the LENA system (Xu et al., 2008), fusing
many of their ideas into a common publicly available open-
source pipeline. ALICE also extends the child- centered
diarization pipeline called DiViMe described in Le Franc
et al. (2018), but operates in a generic Python environment
instead of a Linux virtual machine. ALICE also uses a more
powerful speech detection and speaker diarization front-end
than the earlier DiViMe-system.

The ALICE pipeline consists of three main components: 1)
a module responsible for speech detection and speaker
diarization, 2) feature extraction from detected speech seg-
ments from talkers of interest, and 3) mapping of features into
linguistic units of interest using a set of linear models, one
model for each unit type. The main processing strategy
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undertaken in ALICE is to utilize language- independent fea-
ture extractionmodules for ALUC estimation. For the purpose
of the present experiments, ALICE will be presented with
several parallel feature extractionmodules in order to compare
their usefulness in the ALUC estimation tasks. In the open-
source distribution of ALICE, only the best compromise be-
tween ALUC estimation performance and computational
speed is provided, as defined in the final discussion.
Different system modules are described in more detail in the
following subsections.

In our earlier work, we also investigated the use of speech
enhancement as a preprocessing step to alleviate the impact of
unwanted noise in child-centered recordings (Mital, 2019;
Mital & Räsänen, submitted). However, the performance
gains from enhancement were found to be very minor when
combined with detectors and classifiers that can be directly
trained to operate on the noisy child-centered data.
Therefore, no dedicated speech enhancement module is in-
cluded in ALICE.

Broad class diarization

The first stage of ALICE consists of a broad class diarization
module. The goal of the module is to extract speech segments
and the corresponding talker type information from an input
audio waveform that contains all sounds in the surroundings
of the child wearing the microphone. In the present context,
broad class diarization refers to classification of speech seg-
ments into one of four talker categories: 1) female adult
(“FA”), 2) male adult (“MA”), 3) key child (“KCHI”), and
4) other children (“CHI”). FA andMA speakers together form
the main category of interest for estimation of adult speech
heard by a child. KCHI includes speech by the child wearing
the microphone, and CHI covers other children. After
diarization, all non-speech segments and speech from unde-
sired talkers (CHI and KCHI when measuring adult input) are
discarded.

The diarization system that ALICE uses is called voice type
classifier (Lavechin et al., (in press) submitted; Lavechin,
2020), which originates from large-scale collaborative devel-
opment efforts carried out at the JSALT 2019 workshop
(Garcia et al., 2020). Technically speaking, it is based on a

neural network architecture called SincNet (Ravanelli &
Bengio, 2018), and the model is trained on approximately
200 hours of daylong child-centered audio recordings from a
number of languages, including data from Minnan Chinese,
Ju|’hoan, Greek, Japanese, American English, French,
Tsimane’, and others (and excluding any data used in the
present experiments). Implementation of the voice type clas-
sifier is based on the pyannote-audio library (Bredin et al.,
2020). Since the diarizer operates directly on the audio wave-
form, it involves a large amount of computation. However, the
voice type classifier supports graphics processing unit (GPU)
computing (when available), providing substantial speed-up
for the algorithm.

In Lavechin et al. (in press), the voice type classifier was
evaluated on a LENA-collected subset of child-centered data
also used in the present study. The system achieved
diarization F-scores (harmonic mean of precision and recall)
of 63.4 for female adult and 42.9 for male adult speech,
whereas the corresponding LENA diarizer F-scores were
42.6 and 37.2 for females and males, respectively. In other
words, the voice type classifier outperforms the LENA
diarization algorithm by a large margin, and can therefore be
considered as the state of the art for the present purposes.

Speech feature extraction

After the audio signal has been segmented into utterances, a
number of signal features are extracted from each utterance i
in order to characterize their structure with a single feature
vector fi.

Phone recognition

Similarly to LENA (Xu et al., 2008), we explore the use of
automatic phone recognition as a feature extractor for ALUC
estimation. For this purpose, we use Allosaurus2, a language-
independent phone recognizer (Li et al., 2020). Allosaurus is a
multilayer Long Short-TermMemory (LSTM) neural network
model trained on 12 different languages for phone and pho-
neme recognition. Its output consists of a “universal” phone

2 Allosaurus is available for Python as a pip package called ipa-recognizer.
This paper uses version 0.0.3 of the system.

Fig. 1 Block schematic of ALICE for automatic linguistic unit count estimation. The current example demonstrates a use case where only adult speech is
measured, i.e., speech detected from children (CHI) is ignored in the process
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layer with an inventory of phone units that are shared among
all training languages, followed by language-dependent map-
pings from the detected (allo)phones to language-dependent
phonemes.

The present system uses an Allosaurus configuration that
first produces the most likely string of universal phones and
silent breaks for a given input utterance, and then, for dimen-
sionality reduction, maps them onto English phoneme catego-
ries that best match with the phone activations. Output pho-
neme strings are then converted into ternary vowel/consonant/
silence categories, and then the total number of vowels, con-
sonants, silent segments, and total of CV and VC alternations
are extracted as four numerical features fi,1 … fi,4 describing
the linguistic characteristics of each input utterance i.

Syllable count estimation

In addition to using language-independent phone recogni-
tion features, we also investigated the use of language-
independent syllabification of speech. For this purpose,
we utilize the SylNet algorithm (Seshadri & Räsänen,
2019)—an end-to-end neural network syllable count esti-
mator. In short, SylNet is trained to map an input acoustic
signal directly onto the corresponding syllable count
using training data with known syllable counts, and with-
out manually specifying any intermediate representations
between the inputs and outputs. The model architecture
consists of 24-dimensional log-Mel spectrum input,
followed by a hierarchy of convolutional layers with in-
creasing temporal receptive field sizes, each extracting
increasingly complex nonlinear features from the signal.
Each intermediate layer and the deepest convolutional
layer feed into a shared integrator module (“PostNet”)
with a recurrent layer that is responsible for transforming
the inputs from the convolutional layers into a final syl-
lable count estimate (see Seshadri & Räsänen, 2019, for
details). The output of SylNet is the estimated number of
syllables in each input utterance, and this number is di-
rectly used as a feature figd,5 in ALUC estimation.

ALICE uses the SylNet baseline model from the original
paper that is trained on approximately 10 hours of hand-
annotated Estonian and Korean speech, but further adapting
the model to the present daylong child-centered data using
the standard adaptation procedure of the algorithm (see
Experimental Setup for details). In our initial experiments
on child-centered audio, SylNet was also compared to
syllabifiers from Wang and Narayanan (2007), Räsänen,
Doyle, and Frank (2018a), and Räsänen, Seshadri, and
Casillas (2018b). Since SylNet systematically showed su-
perior performance to the tested alternatives, we only report
ALICE performance, with SylNet as the chosen syllable-
based feature extractor.

Signal-level features

Besides measuring phone and syllable counts, utterance dura-
tion, total signal energy, and the total number of waveform
zero-crossings (ZC) were included as additional low-level sig-
nal features fi,6… fi,8. Apart from duration, which is a strong
correlate with all types of linguistic unit counts, the other two
low-level features were expected to potentially provide com-
plementary information regarding the amount of speech in the
input. Total energy was measured simply as the squared sum
of signal waveform amplitudes, and ZC was measured as the
total number of sign changes in the waveform. Initial tests also
revealed that all three measures were correlated with the tested
ALUCs (r = 0.68–0.71 for duration, r = 0.42–0.44 for total
energy, and r = 0.52–0.54 for ZC across the three unit types of
interest).

Mapping of features into ALUCs

The final stage in the pipeline consists of a linear mapping
from features figd to the corresponding ALUCs, where a sep-
arate model is used for each linguistic unit of interest. In prin-
ciple, phone and syllable counts from the feature extraction
modules could be directly used as estimates for phonemes and
syllables in the data. However, the use of an intermediate
linear mapping allows the system to correct any systematic
under- or over-estimation in the feature extractor modules,
especially since the extractors were not originally optimized
for child-centered data. In addition, linear mapping enables
the automatic weighted combination of multiple features,
which may still be beneficial, given the highly complex and
noisy data.

In ALICE, the linear model for word count estimation is
obtained simply as a least squares solution βW = F-1w, where
w represents the word counts of the training utterances, F is a
matrix containing the corresponding feature vectors for each
utterance (+ a constant term), and F-1 denotes a regular
Moore-Penrose pseudoinverse of F. As a result, any new ut-
terance with features fi can be mapped into estimated word
counts as wi = βWTfi. In a similar manner, separate linear
models βP for phonemes and βS for syllables are obtained
from a set of training samples.

Experiments

The overall goal of the experiments was to 1) investigate the
overall performance of the proposed system configurations for
measuring infant language exposure, and 2) compare the reli-
ability of the phoneme, syllable, and word count estimation
approaches. The experiments were conducted in two basic
scenarios: within-corpus generalization and cross-corpus
(cross-language) generalization experiments. The former
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describes how accurately each system variant can perform
when adapted to the language or dialect represented by the
corpus—a process that requires representative audio data with
annotated phoneme/syllable/word counts (cf. WCE-R)—and
then tested on a previously unseen participant from the same
corpus. The latter scenario describes how well the system
performs “out- of-the-box” on any given corpus of any lan-
guage (cf. LENA). While the corpus-specific setup may pro-
vide baseline ALUC performance attainable with the given
approach (constrained by the given amount of domain-
matching training data), the corpus-independent system repre-
sents the user- friendly use case, and hence is also the most
likely use scenario of ALICE in practical child language re-
search, particularly in the case of low-resource languages.

In addition, ALICE was evaluated using two conditions for
broad class speaker diarization: 1) oracle diarization based on
annotated ground truth speaker IDs and utterance boundaries
(i.e., manually annotated speech segments), and 2) automatic
diarization using the voice type classifier. The former evalu-
ates the accuracy at which different linguistic units can be
measured from child- centered recordings using the present
feature extractors and the linear mapping approach, assuming
perfect speaker diarization. The latter, more realistic condition
reflects the expected performance of ALICE when it is being
used on raw audio out of the box; in other words, in this latter
case, the performance of different ALUCs is necessarily
intertwined with the success of the diarization algorithm on
the given data.

Data

The data for our experiments consisted of seven child-
centered daylong audio recording corpora. These include the
Bergelson corpus (“BER”) from US English-speaking fami-
lies from New York state (Bergelson, 2016), the LuCiD
Language 0–5 corpus (“L05”) consisting of UK English-
speaking families from Northwest England (Rowland et al.,
2018), the Casillas Tseltal corpus (“TSE”) of Tseltal-speaking
families from a rural Mayan community in Southern Mexico
(Casillas, Brown, & Levinson, 2017a), the McDivitt and
Winnipeg corpora (so-called McDivitt+; here “MCD”) of
Canadian English-speaking families (McDivitt &
Soderstrom, 2016), the Warlaumont corpus (“WAR”) of US
English-speaking families from central California
(Warlaumont et al., 2016), the Rosemberg corpus (“ROS”)
of Argentinian Spanish-speaking families from the Buenos
Aires metropolitan area (Rosemberg et al., 2015), and the
Casillas Yélî corpus (“YEL”) of Yélî Dnye- speaking families
from a remote island community in Papua New Guinea
(Casillas, Brown, & Levinson, 2017a).

The data consist of 4–16-hour at-home recordings from
microphones worn by children under age three from diverse
linguistic and socioeconomic contexts. BER, MCD, L05, and

WAR recordings were collected with the LENA recorder,
while the Casillas corpora (TSE and YEL) were recorded with
an Olympus WS-382 or WS-852 recorder, and ROS was re-
corded with a mix of Olympus, Panasonic, Sony, and LENA
recorders.

In our experiments, we use the subset of each corpus that
has been sampled and manually annotated as a part of the
ACLEW project (Bergelson et al., 2017). From each corpus,
daylong recordings of 10 target children between the ages of 0
and 36 months with a representative spread of assigned sex
and maternal education were chosen for manual annotation.
Fifteen 2-minute non- overlapping segments were randomly
sampled from each daylong audio for manual annotation (i.e.,
300 minutes of audio per corpus), except Tseltal, for which
nine 5-minute clips and Yélî Dnye for which nine 2.5-minute
clips were randomly extracted. This translates to a total of
36.25 hours of annotated audio, with an approximate average
of 10 minutes of annotated speech per target child on all but
the TSE corpus, where there is approximately 50% more an-
notated audio per target child. For MCD, one participant was
sampled twice due to an error (but using recordings from two
different days). MCD contains small amounts of French,
WAR and TSE contain small amounts of Spanish, and YEL
contains small amounts of English, all because of bilingual
child language environments or linguistic borrowing.

All sampled 2-, 2.5-, and 5-minute segments were manual-
ly annotated for utterance boundaries, speaker identity, ad-
dressee information (adult vs. child-directed), and vocal ma-
turity of child vocalizations using exactly the same annotation
protocol specifically developed for the present type of daylong
child-centered data (Casillas et al., 2017b). Each corpus was
annotated by a person proficient in the target language, and all
annotators were trained to transcribe speech corresponding to
what was actually said instead of the canonical lexical forms.
In addition, before they could take part in the annotation of
actual data, annotators had to prove that they could transcribe
at the highest standard, with a high degree of similarity to a
representative set of age- and difficulty-variable gold- stan-
dard annotation clips.

Gold-standard phoneme and syllable counts were obtained
by automatic phonemization and syllabification of the hand-
annotated orthographic transcripts. First, the transcripts were
cleaned of all non-lexical entries such as incomprehensible
speech, non-linguistic communicatives and other non-speech
sounds (e.g., &=yawns), and paralinguistic markers (e.g.,
<hello> [=! sings] to denote singing while speaking). The
resulting word strings were then converted into sequences of
phonemes either using the Phonemizer tool3 (for English) or
using hand-crafted letter sequence-to-phoneme conversion
rules that, while not reflecting a one-to-one-match between
letters and phones, preserved the phonotactic constraints for

3 https://github.com/bootphon/phonemizer
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syllable onsets in each non-English language tested (Spanish,
Tseltal, Yélî Dnye). Finally, phoneme strings were syllabified
either using the Festival toolkit4 tokenizer (for English corpo-
ra) or using the maximum onset principle (see, e.g., Kahn,
1976) with language-specific lists of valid syllable onsets,
again hand-crafted to work with the phone-converted text
(for Spanish, Tseltal, and Yélî Dnye). Gold-standard word
counts were derived from the cleaned-up transcripts using
white spaces as word boundaries.

Some recordings in BER, and all recordings in TSE, YEL,
MCD, andWAR are available from the HomeBank repository
(VanDam et al., 2016).

Evaluation metrics

The performance of the ALUC estimation process was evalu-
ated using two complementary metrics. The first metric is
standard linear correlation r ∈ [−1, 1] between gold-standard
adult phoneme/syllable/word counts Nref,s and estimated cor-
responding counts Nhypo,s for each speech segment s. The
second metric was the median absolute relative error
(ERRmedian) across the speech segments (Räsänen et al.,
2019), defined as

ERRmedian %ð Þ ¼ Median
Nhypo;s−N ref ;s
�
�

�
�

N ref ;s

� �

*100 ð1Þ

Median was used instead of mean, as the absolute relative
error distribution can be highly skewed (Räsänen et al., 2019).
For both metrics, each segment s corresponded to an annotat-
ed continuous 2-minute audio clip from the given corpus. In
ERRmedian calculation, segments without any annotated sylla-
bles or words were ignored to avoid zeros in the denominator.

In short, correlation describes whether the ALUC estima-
tion algorithm is sensitive to relative differences in ALUCs
across the given pool of test subjects, but does not show
whether the absolute unit counts are accurate. In contrast,
ERRmedian reveals whether the absolute counts are accurate,
but is not as descriptive of the relative increases in estimated
counts with an increasing amount of true counts across the full
range of possible values. Since ALICE and both metrics are
deterministic for any given data set, we report the numbers
without measures of uncertainty (all reported correlations be-
ing p < .001).

Experimental setup

The basic procedure was leave-one-subject-out (LOSO)
cross-fold evaluation for within-corpus evaluations, and
leave-one-corpus-out (LOCO) for cross-corpus evalua-
tions. In both cases, all but one of the target children’s
recordings (LOSO; or corpora for LOCO evaluations)
were used to estimate the linear models for the ALUCs

of interest using the diarized speech segments from adult
talkers and their linguistic unit counts as the training data.
Training was done by using the hand- annotated utterance
boundaries and speaker IDs, as this was found to lead to
slightly higher performance than using diarization-based
training segments. The resulting models were then applied
to the diarized data on the left-out target child (LOSO; or
corpus for LOCO) to get the ALUC estimates for each
signal in that fold. The ALUC estimates from all diarized
segments corresponding to each 2-minute annotated clip
were then summed, and compared to the gold standard
according to the metrics described above. The reported
results correspond to the average performance across the
folds. For overall performance measures comparing dif-
ferent ALICE feature extractor configurations and units
to be estimated, the results from the four varieties of
English (BER, SOD, WAR, LUC) were first averaged to
have one summary performance metric for English
(“ENG” ) . The mean per formance across ENG,
Argentinian Spanish (“SPA”), Tseltal (“TSE”), and Yélî
Dnye (“YEL”) was then calculated. This procedure was
utilized in order to avoid biasing the metrics towards
English, as four of the seven corpora were different vari-
eties of English. Corpus- specific results are also reported
separately using a full set of signal features.

The performance of ALICE was also compared to
LENA adult word counts (AWCs) when possible. LENA
AWCs were only available for MCD, BER, L05, and
WAR corpora (all English), as TSE, ROS, and YEL had
been recorded with a mix of other recorders. Note that the
2-minute clips chosen for the manual annotation do not
neatly correspond to adult segments detected by LENA,
for which LENA calculates corresponding AWCs.
Reference LENA AWCs for the clips were derived from
the LENA outputs as follows: First, it was assumed that
the words detected by LENA were uniformly spaced
across the duration of the corresponding adult segment.
The words of the segment were then assigned to the 2-
minute clip in proportion to their overlap with the clip.
For instance, if 50% of a LENA-detected adult segment
with 10 LENA-estimated words overlapped with the clip,
5 words were added to the LENA AWC estimate for that
clip. Also note that a substantial majority of the LENA
segments were fully within the annotated clip limits, as
typical adult segments are much shorter than the annotat-
ed clips in question, and therefore this approximation af-
fects only 1.3% of all adult segments.

SylNet features were calculated after adapting the baseline
SylNet model to the training data of each fold using the gold-
standard syllable counts as the reference and following the
adaptation procedure described in Seshadri and Räsänen
(2019). Allosaurus was used as provided in the original
Python library.
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Results

Experiment #1: Within-corpus generalization performance

Figure 2 shows the overall ALICE performance across the
three tested languages when training and testing data come
from the same corpus (but different recorded participants).
The results are shown as a function of signal features used in
the estimation process, and separately for the three types of
linguistic units, to estimate phonemes, syllables, and words.
Performance metrics are shown separately for the case of or-
acle diarization (top panels) and algorithm-based diarization
(bottom panels). Figure 3 shows the performance metrics for
each of the seven tested corpora separately and using the full
set of tested features (labeled “all” in the X-axes of Fig. 2),
again using the same corpus for training and testing.

Discussion of experiment #1

The first experiment tested the ability of ALICE to predict
phoneme, syllable, and word counts on a language that
ALICE had been previously adapted to (using data from nine
subjects). The first finding from the experiment is that all
tested feature combinations perform at a similar level. When
exact utterance boundaries and talker identities are available
(Fig. 2 top panels), correlations between estimated and true
ALUCs are highly similar between different feature

configurations. While basic signal features are slightly below
SylNet in performance, and with Allosaurus features being the
best ones, the differences are generally minor. In addition,
there are no meaningful differences in the accuracy at which
different linguistic units can be estimated. Relative error
(ERRmedian) measures follow the same trend. When compar-
ing the different corpora (Fig. 3, top panels), there are some
differences in terms of MCD and WAR being more challeng-
ing than the others in terms of correlation (for WAR) and
ERRmedian (for MCD). While the exact reason for this is un-
clear, they are both corpora where some of the speech is in a
different language (French for MCD and Spanish for WAR)
from the majority language (English), which may impact the
performance. However, TSE and YEL also contain some sec-
ond language speech (Spanish and English, respectively) but
show no noticeable disadvantage in performance. Overall, the
experiment shows that if utterances can be accurately extract-
ed and a language-specific ALUC predictor can be trained, all
three investigated linguistic unit types are equally measurable.

As expected, when ideal speaker diarization is replaced
with an actual diarization algorithm, the accuracy of ALICE
decreases across the board (Figs. 2 and 3 bottom panels).
While the feature sets are still performing at a comparable
level, corpus-specific differences are more prominent. This
is likely due to varying diarization performance in different
recording environments of different corpora. The average cor-
relation between estimated and true units is r = 0.80 and

Fig. 2 Results from within-corpus experiments for different feature sets
and the three types of linguistic units to estimate phonemes, syllables, and
words (denoted with different color bars). Results shown are averages
across English, Spanish, Tseltal, and Yélî Dnye specific scores. Top
panels: oracle diarization based on manual annotation. Bottom panels:
actual diarization with an automatic algorithm. Left panels: correlation

between gold-standard and estimated linguistic unit counts. X-axis de-
notes the different signal features and their combinations used by
ALICE (phn = Allosaurus universal phoneme recognition, syl = SylNet
syllable counting, basic = basic signal-level features, all = all features
together). Error bars denote ±1 standard error across the seven corpora
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ERRmedian = 42.31% for phonemes, r = 0.80 and ERRmedian =
41.05% for syllables, and r = 0.80 and ERRmedian = 42.39%
for words when using the full feature set. Comparing these
figures to LENA AWC performance (Fig. 3, bottom panels),
ALICE has lower or comparable ERRmedian on three of the
four English corpora with LENA baselines. ALICE’s correla-
tion is also substantially higher on BER and L05 but is lower
on MCD and WAR. Again, there are no observable differ-
ences in performance for measuring different linguistic units.
Overall, the results highlight the fact that inaccuracies in
speaker diarization have a huge impact on system perfor-
mance. In addition, when data from only nine subjects are
used in the LOSO adaptation procedure for each language,
we can speculate that the overall performance may be sensi-
tive to outlier subjects, for which the diarizer may perform
very differently compared to the overall population (see also
Räsänen et al., 2019, for analyses with voice activity
detection).

Experiment #2: Cross-corpus generalization performance

While experiment #1 was focused on models adapted to a
specific corpus, experiment #2 tested how well ALICE gen-
eralizes to new corpora when trained on a number of different
corpora consisting of different languages. Figure 4 shows the
corresponding results for different feature sets when measured
across all four languages, and Fig. 5 shows corpus-specific
performance measures when using the full set of ALICE fea-
tures. In addition, Fig. 5 illustrates system performance when
using SylNet and basic signal-level features, as this combina-
tion is used in the publicly distributed version of ALICE
(see Concluding Remarksfor motivation). Again, top panels

of both figures indicate performance with oracle diarization
while bottom panels show the performance with the actual
diarization algorithm. Finally, Table 1 summarizes the overall
cross-language performance (from Fig. 4) for easier
comparison.

Discussion of experiment #2

The first finding (shown in Fig. 4) is that there is a consistent
pattern in the accuracy at which different linguistic units can
be estimated cross-linguistically. The error rates are generally
lowest for phonemes, followed by syllables, with words hav-
ing the highest errors. Looking at corpus-specific performance
with real diarization (Fig. 5, bottom panels), one can see that
the advantage for phonemes and syllables comes primarily
from the non-English corpora, where phoneme and syllable
estimation in terms of ERRmedian is more accurate for Spanish
and Yélî Dnye than the corresponding word estimation accu-
racies. For English, the results are more mixed, but there is
generally a small advantage for phonemes and words over
syllables, especially on MCD and WAR. Since at least half
of the training data was always English, this demonstrates that
ALICE generalization towards novel languages is slightly bet-
ter for phonemes and syllables, likely since their measurable
surface characteristics, including duration, are more universal
than those of words (see the second section). However, the
overall average differences in different linguistic units are very
small.

The second main finding from the second experiment is
that there is no significant performance drop from the
corpus-specific models of the first experiment. In fact,
correlation-based performance on all English corpora (BER,

Fig. 3 Within-corpus performance of ALICE for different corpora using the full feature set of ALICE. Top panel: oracle diarization. Bottom panel:
algorithm-based diarization. LENA adult word count estimation performance is also shown as a reference with violet bars
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MCD, WAR, L05) and on YEL improves compared to the
within-corpus training, and average ERRmedian also improves
on all but YEL. The average correlation between estimated
and true units is r = 0.80 and ERRmedian = 32.90% for pho-
nemes, r = 0.80 and ERRmedian = 34.42% for syllables, and r =
0.80 and ERRmedian = 36.15% for words when using the full
feature set with the diarization algorithm. This implies that
whatever is lost in performance due to lack of language-
specific information is compensated by the larger pool of sub-
jects available to linear model estimation (60 multi-language
vs. 9 language-specific recordings). Comparison to LENA on

English corpora (Fig. 5) also shows how ALICE outperforms
LENA in all cases and on both metrics. As for the features
used (Fig. 4 and Table 1), there are again no major differences
in the performance of different feature sets, except that SylNet
performs worse than the others when used in isolation. In
terms of correlation, even the basic signal-level features
(duration, total energy, total zero-crossings) are competitive
with the more sophisticated phone recognition and syllable
counting models. In terms of relative errors with algorithmic
diarization, the best individual feature extractor is the
Allosaurus phone recognizer. However, as a drawback,

Fig. 4 Results from cross-corpus experiments for the different feature
sets and the three types of linguistic units to estimate: phonemes, sylla-
bles, and words (denoted with different colored bars). Results shown are
averages across English, Spanish, Tseltal, and Yélî Dnye specific scores.
Top panels: oracle diarization based on manual annotation. Bottom
panels: actual diarization with an automatic algorithm. Left panels:

correlation between gold-standard and estimated linguistic unit counts.
X-axis denotes the different signal features and their combinations used
by ALICE (phn = Allosaurus universal phoneme recognition, syl =
SylNet syllable counting, basic = basic signal-level features, all = all
features together). Error bars denote ±1 standard error across the seven
corpora

Table 1 Language-independent ALUC estimation performance of
ALICE across English, Tseltal, Argentinian Spanish, and Yélî Dnye
using different feature sets (rows) and for different linguistic units as

targets of estimation (columns). Correlation (r) and median relative error
rate (ERRmedian) metrics are shown for each of the combinations

Phonemes Syllables Words

r ERR median % r ERR median % r ERR median %

SylNet 0.77 41.63 0.77 41.76 0.77 44.98

Allosaurus 0.81 33.91 0.81 36.03 0.80 34.41

Basic 0.80 36.66 0.80 37.72 0.80 38.98

SylNet+
Allosaurus

0.81 33.83 0.81 35.81 0.80 34.72

SylNet+Basic 0.80 37.31 0.80 37.72 0.80 39.49

Allosaurus+Basic 0.81 33.11 0.81 34.34 0.80 36.06

All together 0.81 32.90 0.81 34.42 0.80 36.15
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Allosaurus is also the most computationally expensive of all
three feature extractors.

In terms of different languages, there is some variation
in performance, with English corpora and YEL being gen-
erally more accurate to estimate (in terms of correlation).
Argentinian Spanish is the most difficult in terms of rela-
tive counts, whereas MCD and YEL are the most challeng-
ing in terms of ERRmedian. The high correlation but poor
ERRmedian on YEL also illustrates how the two metrics are
complementary to each other. Previous LENA studies have
reported correlations between gold-standard and LENA
AWCs, such as r = 0.64 for French (10-minute segments),
r = 0.67 for Swedish (5-minute segments), r = 0.99 for
Finnish (1-hour segments), r = 0.88 for Dutch (5-minute
segments), r = 0.80 for Mexican Spanish (1-hour seg-
ments), and r = 0.73 for Mandarin Chinese (15-minute
segments). The corresponding ERRmedian are 36.5% for
French, 59.5% for Swedish, 75.2% for Finnish, 42.9% for
Dutch, and 50.2% for Mexican Spanish (the Mandarin
Chinese ERRmedian is not available; see Räsänen et al.,
2019, for an overview). Since there is a general trend for
higher correlations with longer measurement windows
(Räsänen et al., 2019), the present results with 2- minute
windows (5-minute for Tseltal and 2.5-minute for Yélî
Dnye) can be considered as at least comparable to those
of LENA. In fact, when all 2-minute clips of each subject
are pooled together for an overall ALUC estimate per sub-
ject (total 30 minutes of speech; 45 minutes for Tseltal;
22.5 minutes for Yélî Dnye), ALICE output correlations

across the four languages range from r = 0.81 (ROS) to r
= 0.95 (WAR) with a mean of r = 0.90 for phoneme counts,
from r = 0.80 (ROS) to r = 0.96 (MCD and WAR) with a
mean of r = 0.90 for syllables, and from r = 0.81 (ROS) to r
= 0.96 (MCD and WAR) with a mean of r = 0.91 for
words.

As for error analysis, the difference between oracle and
algorithm-based diarization (Fig. 5 top and bottom rows) re-
veals that corpus-specific differences in ALUC estimation ac-
curacy are again primarily driven by differences in diarization
performance on these corpora. In the case of ideal diarization,
all corpora would have r > 0.89 and ERRmedian < 23% for all
three units of interest. In reality, the diarization performance
may depend on corpus- and infant-level factors such as the
distribution of acoustic environments (busy indoor spaces,
noisy cars, quiet rural landscapes, etc.) and their influence
on the amount and type of electronic speech present in the
recordings, the average proportion of overlapping speech in
the surroundings, and more. Despite the 200 hours of training
data used for the current diarizer, it is still impossible to create
a system that generalizes perfectly to all kinds of acoustic
environments potentially encountered in naturalistic record-
ings across variable cultural groups, economies, social envi-
ronments, and lifestyles (see also Lavechin et al., in press).

Overall, the results show that ALICE is competitive with
LENA directly out-of-the-box, with comparable performance
to previous literature reports, and clearly outperforms LENA
in all cases where direct comparison on the same data was
possible in our experiments.

Fig. 5 Cross-corpus performance of ALICE for different corpora using
the full feature set of ALICE (bars) and using the SylNet+basic features
combination used in the final open-source version of the system (black

crosses). Top panel: oracle diarization. Bottom panel: algorithm-based
diarization. LENA adult word count estimation performance is also
shown as a reference with violet bars
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Conclusions and limitations

This work started by asking what type of linguistic units are
the most meaningful measures of child language input, espe-
cially when developmental, linguistic, and technical consider-
ations are taken into account. We discussed a number of po-
tential cross-linguistic advantages and disadvantages in mea-
suring phonemes or syllables over words. We also presented a
new open-source algorithm for linguistic unit count estimation
called ALICE, and then used it to test automatic estimation of
all three candidate units with data from seven different corpora
of child-centered daylong audio recordings.

The main finding from the experiments was that
language-independent phoneme count estimation is some-
what more accurate than estimation of syllable or word
counts, and that syllables are also somewhat more accurate
to estimate than words. The advantage for smaller linguis-
tic units is greater for languages that differ substantially
from the training data, such as generalizing from English-
dominated training data to Yélî Dnye or Argentinian
Spanish. As shown in the second section, phonemes and
syllables are better grounded to the underlying acoustic
input by having certain shared characteristics across all
languages, and these are what Allosaurus and SylNet at-
tempt to directly measure in a language-independent man-
ner. In contrast, direct measurement of words is not possi-
ble without knowing the lexicon of the language: a single
language-independent mapping from signal features to
word counts is agnostic to whether the input consists of
mostly monosyllabic and relatively short-duration words
(English) or multisyllabic longer words. The disadvantage
of words does not disappear even if we had a representative
set of training data from all of the world’s languages, as the
resulting model would still tend towards cross-linguistic
averages instead of the specific characteristics of any given
language. However, the overall differences in the accuracy
of the different units with respect to ground truth are small,
and hence selection of one unit over the others could also
be done based on developmental or experimental consid-
erations . This flexibility offered by ALICE is critical, par-
ticularly considering that the type of linguistic units that
most robustly predict language development outcomes
cross-linguistically are still yet to be substantiated.
Similarly, unit flexibility benefits future work correlating
unit types with input “quality” measures across grammati-
cally diverse languages, e.g., number of estimated syllables
vs. words per utterance as an index of syntactic complex-
ity. Finally, ALICE’s word count estimation was shown to
be very competitive with LENA’s—this in addition to its
ability to estimate syllable and phoneme counts contributes
to the attractiveness of ALICE as an open-source, flexible
alternative for automatically measuring the amount of
speech in child-centered audio recordings.

Limitations

Syllable and phoneme counts in the present study were de-
rived from orthographic transcripts using automated pipelines.
While we manually specified phonemization and syllabifica-
tion rules, thereby providing relatively systematic phoneme
and syllable counts for the given transcripts, the resulting
phonology-based syllable counts should not be taken as a
purely error-free gold standard of the syllabic structure of
what was actually said (phonetic syllables). Information re-
garding the detailed style of speech (rhythm, timing, and pro-
nunciation) is lost in the speech-to-transcript and transcript-
to-phonemes conversions of the present pipeline, even if the
annotators were asked to transcribe what was actually said
instead of the corresponding canonical lexical forms. This
adds some noise to the gold-standard phoneme and syllable
counts, which impacts some of the detailed findings on how
accurately they can be measured. However, manual phonetic
annotation of the present data from the seven different corpora
was beyond the scope of the present efforts, and would require
coordinated and sustained effort from a large team of trained
annotators.

Another limitation of the study is that, while seven different
child-centered corpora were utilized, the data were still strong-
ly biased towards English and contained only three other lan-
guages: Argentinian Spanish, Tseltal, and Yélî Dnye.
Comparison to a larger set of languages with different charac-
teristics would have provided more information on the cross-
linguistic applicability of ALICE and on measurement of dif-
ferent linguistic units. However, our four languages are still
relatively distinct: UK/US English, an analytic language, has a
large proportion of monosyllabic words (Greenberg, 1999),
while Argentinian Spanish, Tseltal, and Yélî Dnye more often
use multisyllabic and/or multi-morphemic words (the first two
are synthetic: the former fusional and the latter mildly
polysynthetic; Polian, 2013; the third’s clitic system and fre-
quent suppletion defies traditional categorization, but 60% of
words have two or more syllables; Levinson, under review).
The primary reason for using the current set of corpora was
that they had all been annotated using exactly the same anno-
tation protocol (Casillas et al., 2017b), ensuring maximal mu-
tual compatibility and comparability in our experiments. We
also took some steps to mitigate the impact of English-heavy
distribution in our experiments by measuring the overall
ALICE performance with an equal weight on the four unique
languages. In addition, we experimented with frequency-
balanced training of ALICE to see whether that would impact
the cross-language generalization performance of the system,
but it did not lead to any performance gains over the baseline
approach (not reported separately).

Finally, direct performance comparison to LENA was not
possible in three of the four tested languages. This was be-
cause LENA analysis software outputs were only available for
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the English corpora, as Tseltal, Argentinian Spanish, and Yélî
Dnye data were collected with non-LENA audio recorders;
LENA software only accepts audio files that are recorded with
the LENA recorder. However, this limitation also underscores
the need for free open-source software that can be used for the
automatic analysis of linguistic units in child-centered
recordings.

Concluding remarks

The current work focused on theoretical considerations
and practical feasibility of measuring phonemes, syllables,
and words from child-centered daylong recordings as au-
tomatic measures of child language input. However, we
did not test the developmental predictive power of these
units, but such experiments could be conducted in the
future work using ALICE on recordings of child language
input together with measurements of language develop-
ment outcomes; given the cross- linguistic suitability of
ALICE, this kind of study with diverse comparative sam-
ples is now more feasible.

The shared open-source distribution of ALICE is config-
ured to use SylNet and basic features as the feature extractors.
This choice was ultimately motivated by SylNet’s substantial-
ly lower computational demands compared to Allosaurus, es-
pecially on platforms without support for GPU- based com-
puting, even though this comes at a slight performance cost on
some of the tested corpora (see Fig. 5 in Results). The linear
models used for ALUC estimation will also be the average
models across the four languages in the present study, but can
also be customized for language-specific mappings if needed,
as documented with the tool.
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