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Rotational misalignment or twisting of two monolayers of graphene strongly influences its electronic
properties. Structurally, twisting leads to large periodic supercell structures, which in turn can support
intriguing strongly correlated behavior. Here, we propose a highly tunable scheme to synthetically emulate
twisted bilayer systems with ultracold atoms trapped in an optical lattice. In our scheme, neither a physical
bilayer nor twist is directly realized. Instead, two synthetic layers are produced exploiting coherently
coupled internal atomic states, and a supercell structure is generated via a spatially dependent Raman
coupling. To illustrate this concept, we focus on a synthetic square bilayer lattice and show that it leads to
tunable quasiflatbands and Dirac cone spectra under certain magic supercell periodicities. The appearance
of these features are explained using a perturbative analysis. Our proposal can be implemented using
available state-of-the-art experimental techniques, and opens the route toward the controlled study of
strongly correlated flatband accompanied by hybridization physics akin to magic angle bilayer graphene in
cold atom quantum simulators.
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Novel routes to band engineering in lattice systems often
lead to fundamental questions and new material function-
alities. Different schemes of stacking two-dimensional
layers have emerged as a fruitful way of modifying material
properties through the design of supercell structures and
opened the field of so-called Van der Waals materials [1]. In
particular, twisted bilayer graphene (TWBLG) has emerged
as a tunable experimental platform hosting flatband physics
and strongly correlated phenomena, such as possibly
unconventional superconductivity, magnetism, and other
exotic phases [2–5]. This has inspired much theoretical
debate around the origin of the electronic properties of
TWBLG [6–21].
The interesting correlated phenomenology is apparently

related to moiré patterns around small twist angles, the so-
called magic angles, which lead to band flattening or
effective mass reduction already at the single-particle level

[22–26]. The geometrical moiré patterns physically
induce spatially varying interlayer couplings that are
behind the strong modification of the band structure.
As in artificial graphene systems [27], emulating this
physics beyond materials research may allow identifying
key minimal ingredients that give rise to the phenom-
enology of TWBLG while also providing additional
microscopic control. Photonic systems are particularly
suited for exploring this physics at the single-particle
level. Very recently, single-particle transport in tunable
photonic moiré lattices has been experimentally studied
[28], where two dimensional localization of light and
localization-delocalization have been experimentally
demonstrated. Ultracold atoms in optical lattices
[29,30] are also the most promising platform for exper-
imentally exploring the corresponding emerging many-
body phenomena. The experimental realization of artifi-
cial graphene geometries [31,32], lattice geometries dis-
playing flatbands like Kagome [33] and Lieb [34,35], or
quasicrystal structures [36–38], provides the building
blocks for such exploration.
One obvious approach for studying twisted bilayer

graphene physics with ultracold atoms is to directly
implement twisted bilayers using two intertwined optical
lattices, as recently proposed in Ref. [39]. Schemes for
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simulating other bilayer heterostructures have also been
put forward [40]. This direct strategy poses significant
experimental challenges, as it is difficult to stabilize the
two layers at relative small angles and simultaneously
achieve a sufficiently large lattice containing several
supercells. Here, we propose an alternative scheme that
builds on the concept of synthetic dimensions, i.e.,
reinterpreting the coherent Raman coupling between
spin states of an atom as controllable tunneling along
an artificial extra dimension [41–43]. For this, we note
that the key effect of physical twisting is to induce
spatially modulated interlayer tunnelings across the
lattice. In our scheme, the modulated interlayer tunneling
patterns are proposed to be directly imprinted on the
lattice via spatial control of the Raman couplings, thus,
amounting to twisting the system without a physical
twist. This leads to the creation of supercells with
controllable sizes and shapes. By adjusting the strength,
phase, and spatial periodicity of Ω, we show that an
exemplary bilayer square lattice system supports a broad
range of band structures. In particular, magic values of
the periodicity result in the appearance of (quasi) flat-
bands as well as Dirac cone spectra. Although we focus
in our illustrative example on a particular spatial modu-
lation, general interlayer coupling patterns can be exper-
imentally induced including quasiperiodic or moiré-like
patterns. Our proposal can be realized with fermionic
two-electron atoms, such as strontium or ytterbium,
using available experimental techniques.
Concept.—We consider a two-dimensional Fermi gas

with four internal states, indicated here generically as spin
states fm; σg ¼ �1=2. The system is loaded into a spin-
independent square optical lattice of lattice spacing d,
which lies in the x-y plane and is characterized by a real
tunneling amplitude t. We select two states to play the role
of the electron spin σ ¼ ↑, and the other two of electron
spin σ ¼ ↓. In addition, spin states corresponding to
the same σ are coupled in pairs. We label them by the
index m, and make them play the role of a synthetic
layer dimension. Since m ¼ �1=2, we obtain a bilayer
structure of synthetic layer tunneling given by the coher-
ent coupling. In order to obtain a lattice geometry with a
tunable supercell, we choose the amplitude of the syn-
thetic layer tunneling to be spatially modulated according
to Ωðx; yÞ ¼ Ω0f1 − α½1þ cos ð2πx=lxÞ cos ð2πy=lyÞ�g.
Here, lx (ly) is its periodicity along the x (y)
axis. The synthetic tunneling also induces a Peierls
phase γ · r, where γ ¼ γðx̂þ ŷÞ and r ¼ xx̂þ yŷ. This
mimics the effect of a magnetic flux that pierces the
system perpendicularly to the synthetic layer
dimension [42]. As depicted in Fig. 1(a), the complete
scheme represents a synthetic spinful bilayer structure
subjected to a magnetic field, denoted as Θðlx; lyÞ.
The Hamiltonian of the system is given by

(c)

(a)

(b)

FIG. 1. Synthetic bilayer structure with a supercell. (a) Real-
space potential of the synthetic bilayer. Each plane corresponds to
one spin state m ¼ �1=2 (orange, green), which experiences a
square lattice potential (tunneling t) and is connected to the other
layer by a spatially dependent and complex coupling Ωðx; yÞ
(vertical red lines of variable width). A top view of the lattice
indicating the unit cell of the system containing 2 × 8 sites for
lx ¼ ly ¼ 4d is shown (black line). (b) Sketch of the first
Brillouin zone, indicating the position of the high-symmetry
points, and three dimensional view of the energy spectrum in the
vicinity of E ¼ −Ω0ð1 − αÞ for Ω0α=h ¼ 20t with α ¼ 0.2 and
γ ¼ 0. It has two quasiflatbands intersecting a Dirac point. Note
that a simple square lattice supports neither flatbands nor Dirac
cones. (c) Proposed experimental realization. Top: Two retrore-
flected optical lattice beams (green) create the square lattice. Two
Raman beams of opening angle θ (red) produce complex
synthetic tunneling between the two layers. One “modulation
laser” with a spatially varying intensity distribution (blue)
modulates the amplitude of the Raman coupling. Bottom: laser
beams involved in the synthetic bilayer coupling scheme. The
single-photon detuning of the Raman beams (red arrows) is
spatially modulated with respect to its initial value Δ0=2π ∼
75 MHz using a laser beam blue detuned with respect to the
3P1 → 3S1 transition (blue arrow). It produces a light shift of
maximal amplitude 2δ=2π ∼ 30 MHz.
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H ¼ Hin þHinter ¼ −t
X

r;m;σ

½a†m;σðrþ dx̂Þ þ a†m;σðrþ dŷÞþΩðrÞ expð−iγ · rÞa†mþ1;σðrÞ�am;σðrÞ þ H:c:; ð1Þ

where we distinguish the in-layer and the interlayer
tunnelings.
To diagonalize it, we combine a gauge transformation

and a Fourier transform such that am;σðrÞ ¼P
q exp ½iðq · rþmγ · rÞ�am;σðqÞ. Here, q is the momen-

tum conjugated to r. The Hamiltonian can then be rewritten
as H ¼ P

q Hq, where the dimension of Hq is set by the
spatial periodicity of the synthetic tunneling. Figure 1(b)
sketches the Brillouin zone of the bilayer system and a
three-dimensional view of its energy spectrum for
lx ¼ ly ¼ 4d, corresponding to Θð4; 4Þ, for γ ¼ 0. In the
vicinity of E ¼ �Ω0ð1 − αÞ, it features two quasiflatbands
and a Dirac point touching them [only one of them is
represented in Fig. 1(b)]. This band structure is reminiscent
of that of magic angle twisted bilayer graphene.
Experimental proposal.—For specificity, we focus on the

realization of this scheme employing a subset of four states
out of the large nuclear spin manifold I ¼ 9=2 of 87Sr.
Note, however, that our proposal is directly transposable to
173Yb (I ¼ 5=2). Thanks to the SUðNÞ invariant inter-
actions characteristic of two-electron systems, collisional
redistribution of the atoms among the different states is
inhibited. We select two of them to play the role of the
electron spin σ ¼ ↑, and the other two of spin σ ¼ ↓. All
are subjected to a two-dimensional spin-independent opti-
cal lattice potential, created by two counter-propagating
lattice beams. We choose λL ¼ 813 nm, which is com-
monly used because it corresponds to the magic wave-
length of the clock transition 1S0 → 1P0. We set a lattice
depth 8EL, which yields t=h ¼ 107 Hz. Here, EL ¼
ℏ2k2L=2m is the lattice recoil energy, kL ¼ 2π=λL,
and d ¼ λL=2.
To create the synthetic layer tunneling, we exploit two-

photon Raman transitions between spins m ¼ �1=2 [44].
We employ a pair of Raman beams of wavelength λR ¼
689 nm near resonant to the intercombination transition
1S0 → 3P1, which produces a coupling of amplitude
Ω0 ¼ Ω1Ω2=Δ0. Here, Ω1 and Ω2 are the individual
coupling amplitudes of the Raman lasers and Δ0 the
single-photon detuning. The Raman beams propagate in
a plane perpendicular to the lattice potential, are aligned
along its diagonal, and form an angle θ with the lattice
plane [see Fig. 1(c)]. This yields an in-plane momentum
transfer per beam kR ¼ �2π cos θ=λR, with projections
kR=

ffiffiffi
2

p
along the lattice axes. Therefore, the phase of

the synthetic tunneling is γ · r ¼ γðxx̂þ yŷÞ, with
γ ¼ �2π cos θλL=ð

ffiffiffi
2

p
λRÞ. The sign is determined by the

relative detuning of the Raman lasers. Experimentally, the
simplest choice is to use counterpropagating Raman beams

(θ ¼ 0°), which yields γ ¼ 0.8 (mod 2π). However, other
magnetic fluxes can be easily realized by adjusting the
value of θ.
To implement a periodic modulation of the Raman

coupling amplitude on the scale of several lattice sites,
which is the key ingredient of our scheme, we propose to
exploit a periodic potential created by a laser
close-detuned from the excited state to excited state
transition 3P1 → 3S1 (corresponding to 688 nm [46]).
This results in a large light shift of the 3P1 excited state
of amplitude δ, leading to a detuning of the Raman beams
Δðx; yÞ ¼ Δ0 þ δ½1þ cos ð2πx=lxÞ cos ð2πy=lyÞ�. Its effect
is to modulate the Raman coupling amplitude
Ωðx; yÞ ≃Ω0½ð1 − αÞ − α cos ð2πx=lxÞ cos ð2πy=lyÞ�, with
α ¼ δ=Δ0 ∼ 0.2 for realistic experimental parameters, see
Fig. 1(c) [46,47]. Therefore, we name it modulation laser.
Band structures analogous to the one depicted in Fig. 1(b)
are obtained for large values of αΩ0=h≳ 20t ¼ 10.7 kHz
and spatial periodicities of the Raman coupling of several
lattice sites [48]. The necessary patterns can be projected by
combining a spatial light modulator and an optical system
of moderate optical resolution, ensuring a large flexibility.
Magic configurations.—The emerging band structures

are sensitive to the spatial modulation and the strength of
the laser coupling. Typically, a system with weak Raman
coupling (Ω0α=h≲ t) hosts a large number of extended
hybridized bands. Enhanced coupling strength
(Ω0α=h ≈ 10t) tends to foster band narrowing.
Remarkably, there exist magic configurations of our con-
sidered bilayer square lattice for which special band
structures emerge—quasiflatbands surrounded by disper-
sive Dirac cone spectra with controllable Dirac velocities.
We quantify flatness F of a band by the ratio between its
width and the dispersion of neighboring bands (cf. [26]).
This ratio and the emergence of quasiflatbands can be
understood and calculated in perturbation theory (see
Supplemental Material [49]).
The configuration Θð4; 4Þ corresponds to the smallest

bilayer supercell, consisting of ð2 × 8Þ sites, supporting this
band structure. Figure 1(b) shows the resulting spin
degenerate bands around E=t ¼ −Ω0ð1 − αÞ for an exem-
plary case with strong Raman coupling Ω0α=h ¼ 20t, α ¼
0.2 and vanishing flux γ ¼ 0. Increasing the flux to the
simplest experimentally attainable value of γ ¼ 0.8 shares
many of the features of the fluxless case. Narrow groups of
bands, that are well separated from each other, are formed
for sufficiently largeΩ0α at the energies�Ω0,�Ω0ð1 − αÞ,
and�Ω0ð1 − 2αÞ (see Fig. S3 in [49]). The full spectrum of
the system is symmetric around E ¼ 0, so we only discuss
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the band structure for E < 0 below. A six band manifold,
close to the energy −Ω0ð1 − αÞ and well separated from
nearest neighboring bands by energy Ω0α, is shown along
the high-symmetry points in Fig. 2 for (a) Ω0α=h ¼ 2t and
(b) Ω0α=h ¼ 20t. Within this six band manifold, the two
middle bands closest to −Ω0ð1 − αÞ become quasiflat upon
increasing Ω0α, and are surrounded by a pair of dispersive
Dirac cone spectra. The identification of quasiflatness
follows from noticing that the dispersion of the middle
bands (which is concentrated towards the edges of the
Brillouin zone) is very small ∼0.2t compared with the
bandwidth of its immediately neighboring bands (∼4t) for
Ω0α=h ¼ 20t. The flatness F of these bands, calculated in
perturbation theory, is proportional to t=ð4Ω0αÞ and equal
to ∼0.02 in the example above. Such values ofΩ0 and α are
feasible in our described experimental setup, leading to
tunable bandwidth for the quasiflatbands. Figures 2(a) and
2(b) also show the associated density of states (DOS),
which is given by DðEÞ ¼ L−d=2 P

i ½E − EðkiÞ�.
Interestingly, band structures similar to the Θð4; 4Þ case

appear when lx ¼ ly ¼ 4νd, with ν integer. This can be
explained by treating the intralayer tunneling as a pertur-
bation to the interlayer tunneling. As explained in detail in
the Supplemental Material [49], the nodal lines of the

periodic modulation determine a bilayer Lieb lattice of
sites. The two layers are energetically well separated with
on-site energies�Ω0ð1 − αÞ, respectively. The perturbation
then induces tunnelings within the Lieb lattice topology,
which at first order are composed of nearest neighbor
tunneling matrix elements within a single layer. The Lieb
lattice in its simplest form [52] is known to host a pair of
Dirac cones intersecting at a single k point on a completely
flat band, the Dirac point. The dispersion of the flatbands in
the full model described by Eq. (1) originates from higher-
order contributions in perturbation theory. More generally,
for lxðyÞ ¼ 4νxðyÞ, where νxðyÞ are positive integers, a similar
argument shows that the system can be effectively
described by super-Lieb lattices with a supercell of
2ðνx þ νyÞ − 1 sites. Changing the periodicity of the
Raman coupling in general leads to band structures without
the above combination of Dirac spectra and flatbands [49].
An additional control parameter in our system is the

artificial magnetic flux γ. It affects the band structure in a
number of ways. As earlier, we focus on the case ΘM ¼
Θð4; 4Þ and the six bands closest to E=t ¼ −Ω0ð1 − αÞ.
Increasing γ leads to strong band narrowing. More inter-
estingly, a nonzero γ opens a local gap between the two
quasiflatbands at the Γ ¼ ð0; 0Þ point in the Brillouin zone.
Moreover, the lower Dirac cone detaches from the lower
quasiflatband. This is reminiscent of the effect of a
staggered chemical potential in the Lieb lattice [53]. The
upper quasiflatband remains pinned exactly at the central
energy ½E=t ¼ −Ω0ð1 − αÞ� around the Γ point, and the
upper Dirac cone remains gapless. Typical band configu-
rations for two values of γ are shown in Fig. 3. Interestingly,
the flux γ also controls the Dirac velocity of the cone which
decreases with increasing flux. This result can be easily
obtained from the perturbative mapping to the Lieb lattice
[49] where, for small to intermediate values of γ, the
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FIG. 2. Magic configuration band structure and DOS. Band
structures around energy −Ω0ð1 − αÞ and DOS (in arbitrary
units) corresponding to Θð4; 4Þ supercell along the paths passing
through the high-symmetry points Γ;X;M;Γ;X0;M. Panels (a)
and (b) correspond to Ω0α=h ¼ 2t and 20t, respectively, with
α ¼ 0.2 and γ ¼ 0.8. In the evolution from panel (a) to (b), the six
central bands in panel (a), denoted with colors from orange to
maroon, remain close in energy (as part of one single band, see
perturbative analysis in [49]) while the remaining two bands in
panel (a) (in cyan and brown) separate in energy and do not
appear in panel (b).

FIG. 3. Gap opening and Dirac cone widening due to the
artificial flux γ. Four bands [Dirac cones (purple and red) and
quasiflatbands (green and blue)] are shown in the vicinity of
E=t ¼ −Ω0ð1 − αÞ ¼ −80, for the Θð4; 4Þ system. The param-
eters and color scale of the bands are identical to those of
Fig. 2(b), except for the magnetic flux that corresponds to
(a) γ ¼ 0 and (b) γ ¼ 0.8. The energy surfaces are rotated for
visibility, and only a small region centered at the Γ ¼ ð0; 0Þ point
in the Brillouin zone [yellow area in (c), corresponding to ∼4% of
the complete Brillouin zone] is depicted.
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dominant nearest neighbor tunneling (proportional to the
Dirac velocity) is ∼ cosðγ=2Þ. The Dirac velocity reduces to
zero in the limit γ → π and the Dirac band becomes very
narrow. Hence, both the quasiflatbands in between the
Dirac spectra, as well as the Dirac spectra themselves can
be controlled in our scheme.
Conclusions and outlook.—The basic element in the

physics of TWBLG is the creation of large unit cells by
rotating two layers with respect to each other. Around the
magic angles, small rotations have a dramatic effect on the
band structure of these systems. In this Letter, we have
discussed a versatile method to create a new class of
systems with controllable supercell structures for cold
Fermi gases trapped in optical lattices. The size of the
supercells is easily tunable and should allow addressing
whether the physics of TWBLG is uniquely related to their
macroscopic periodicity or, indeed, can be accessed for
small unit cells. An inherent advantage of our optical-
lattice-based construction is the possibility to modify, over
a wide range, the interlayer coupling, which is controlled
by a combination of optical Raman transitions and excited-
state light shifts. We have shown that a square lattice
synthetic bilayer displays a band structure that can be easily
engineered by modifying the spatial periodicity, strength
and Peierls phase imparted by the Raman lasers.As a result,
magic periodicities of the interlayer coupling lead to the
emergent quasiflatband physics.
The existence of identical scattering lengths parametriz-

ing interactions between the atoms in the four internal
states allows simulating the effect of both intralayer and
interlayer interactions in the synthetic bilayer structure.
The interacting Hamiltonian can be written as
HI ¼ U=2

P
r nðrÞ½nðrÞ − 1� where nðrÞ ¼ P

m;σ a
†
mσðrÞ

amσðrÞ, is the occupation of site ðrÞ of the square optical
lattice. The magnitude of U could be tuned by varying the
transverse confinement. In particular, choosing a value ofU
smaller thanΩ0α but much larger than the bandwidth of the
quasiflatband should allow achieving the strongly interact-
ing regime in the latter. Projection of interactions onto the
quasiflat and hybridizing bands leads to extended Hubbard
models with large on-site interactions as well as other
terms, such as correlated tunneling. In this respect, it could
be advantageous to open a hard gap between the quasiflat-
bands and neighboring dispersive Dirac bands. This can be
done via additional mechanisms, such as lattice dimeriza-
tion or spin-orbit coupling [54]. Probing such interacting
systems at partial filling could potentially shed new light
into theoretical debates on strongly correlated phenomena
in twisted materials, such as unconventional superconduc-
tivity [17,18,20,55] and topological order [21,56,57].
Finally, extending our approach to other lattice structures
represents an exciting perspective for future studies.
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