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Nonreciprocal transport based on cavity Floquet modes in optomechanics

Laure Mercier de Lépinay,"[f] Caspar F. Ockeloen-Korppi,! Daniel Malz,? and Mika A. Sillanp#a!

LQTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
2 Mag-Planck-Institut fir Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany

Directional transport is obtained in various multimode systems by driving multiple, non-
reciprocally-interfering interactions between individual bosonic modes. However, systems sustaining
the required number of modes become physically complex. In our microwave-optomechanical exper-
iment, we show how to configure nonreciprocal transport between frequency components of a single
superconducting cavity coupled to two drumhead oscillators. The frequency components are pro-
moted to Floquet modes and generate the missing dimension to realize an isolator and a directional
amplifier. A second cavity left free by this arrangement is used to cool the mechanical oscillators
and bring the transduction noise close to the quantum limit. We furthermore uncover a new type
of instability specific to nonreciprocal coupling. Our approach is generic and can greatly simplify
quantum signal processing and the design of topological lattices from low-dimensional systems.

Introduction.— While lattices with a high level of com-
plexity exist in nature, building these in a bottom-up
fashion while aiming on specific functionalities remains
challenging. Doing so, however, would be highly desir-
able in order to utilize topological phenomena in applica-
tions. The construction of artificial lattices has therefore
been investigated in cold atoms [, photonics [2], super-
conducting circuits [8H5], and cavity optomechanics [6} [7].
An intriguing possibility that has received attention re-
cently to demonstrate complex functionalities in a phys-
ically low-dimensional system is to complement it with
synthetic dimensions [§]. Initially, atoms’ internal de-
grees of freedom were identified as lattice sites [9] aligned
along a non-spatial, synthetic dimension supplementing
existing spatial dimensions. Floquet quasienergy levels
that emerge in a periodically driven nonlinear system
[T0HI6], as well as multiple or degenerate resonant modes
[12, 17, 18] have also been considered as lattice sites in
additional dimensions. Interestingly, nontrivial topology
can be designed in these synthetic dimensions just as in
spatial dimensions, which, among many other phenom-
ena, can lead to nonreciprocal transport [19].

We focus on microwave cavity optomechanics [20], [21]
where microwave resonators interact with mechanical
vibrations. Microwave-optomechanical signal process-
ing either reciprocal [22H25] or nonreciprocal [26H30]
shows some advantages over Josephson-junctions-based
processing [31H39]: saturation powers are orders of mag-
nitude higher and superconductivity is not fundamen-
tally necessary. Multimode optomechanical nonrecip-
rocal devices have recently been suggested [26] [40-46]
and demonstrated [47H52]. Progress in this direction has
nonetheless been hindered by the difficulty of fabricating
devices with multiple mechanical modes coupled equiv-
alently and strongly enough to multiple electromagnetic
modes. The use of a single cavity mode for several si-
multaneous operations has been considered for passive
detection of stronger processes [53H55]. Kerr-type non-
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linearities have also been shown to promote coupling be-
tween Floquet modes [56]. However, exciting a single
cavity mode so that driven Floquet components actively
participate in the dynamics has received little attention,
with the notable exception of Ref. [57] where the phase
difference of two components of a single cavity field is
used to realize nonreciprocal mechanical noise transport.

In this work, we show that configurable and directional
electromagnetic-signal transmission can be obtained in
an optomechanical system by designing a loop of inter-
actions in the synthetic plane generated by driven Flo-
quet modes on one hand and multiple mechanical modes
on the other hand to realize a microwave isolator and
a directional amplifier. The use of Floquet modes thus
demonstrated provides a way to simplify these nonrecip-
rocal devices and alleviate practical requirements.

Principle.— Let us first consider a multimode cavity
optomechanical system as shown on Fig. (a) similar to
the ones used in a number of directional transduction
demonstrations [27H30]. It has two mechanical oscilla-
tors that are both coupled to two cavity modes. Both
cavities are excited with several coherent pumping tones.
Each set of tones enhances one mechanically-mediated
coupling mechanism between the cavities, and the rel-
ative phase of pump tones controls the interference be-
tween these two coupling processes.

We demonstrate that this physical system can be re-
cast into the one on Fig. b) where different frequency
components of one of the cavity fields belonging to a
driven Floquet system play the role of the two cavity
modes. The second cavity is left available for auxiliary
optomechanical manipulations. The mediating mechan-
ical modes still participate at their respective resonance
frequencies [see Fig. (c)] and their narrow bandwidths
play an essential role by restricting the number of Flo-
quet manifolds coupled together.

Let us first consider the configuration of the Flo-
quet directional amplifier. The pertaining pump an-
gular frequencies are as schematized in Fig. d):
{we £ (i +6; +A)}i_; - We define w./2m the fre-
quency of the cavity, Q;/27 of the mechanical oscillator
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FIG. 1. Principle of Floquet nonreciprocal devices. (a) Physical scheme of a four-mode system used to implement nonreciprocal
transduction. (b) Physical scheme of a simplified system exhibiting nonreciprocal transport between off-resonant components of
a single cavity field. An auxiliary cavity mode can be used to sideband-cool mechanical modes by pumping once again away from
exact sidebands not to induce parasitic coupling between mechanical oscillators. (c) Scheme of the dual mechanically-mediated

coupling between Floquet modes lattice sites represented in the generated synthetic dimensions.

Filtering by mechanical

susceptibilities restrict the coupling picture to the central plaquette. (d) Drive frequencies used to build an optomechanical
directional amplifier. The auxiliary cavity pumping scheme is not represented [58]. (e) Similar driving scheme to build an
isolator. (f) Optical micrograph of the pair of micromechanical drum oscillators.

i, the linewidths ~; of the oscillators and the detuning of
the pumps A much larger than the mechanical linewidth
but smaller than the cavity linewidth x. The mechani-
cal damping rates ; are here assumed to already include
auxiliary optical damping. The detunings J; are compa-
rable to y; and allow to drive mechanical susceptibilities
out of resonance.

To realize instead a Floquet-mode isolator, all four
pump tones are placed close to the red sidebands and
the pumps angular frequencies become [see Fig. [If(e)]
{we = (i +6; £A)},_, 5. In both devices, the pumps
drive components of the cavity field +A away from res-
onance. The frequency ranges around these detunings
play the roles of the two ports of either device instead
of cavity modes [see Fig. [I[{d)]. The equations of evolu-
tion for electromagnetic and mechanical operators, lin-
earized and with fast rotating terms ignored, display
time-dependencies that cannot be eliminated by moving
to a rotating frame. For example, for the isolator in the
frame rotating with Hy = hw.a'a + > (S + 5i)b;-rbi
where at, a are photonic creation and annihilation oper-
ators, and b;r, b; analogous phononic operators for oscil-
lator ¢, the Langevin equation read:

. . . s K

a = zzj: (Gj_eZAt + Gjte ZAt) b; — 50 + Qdrive

Z.)j = Z(s]bj + 'L‘Z(G;_eiiAt + G;+€iAt) a— ’y?] + bjdrivc'
J

(1)
Gj+ = gjoj+ is the enhanced optomechanical coupling
for the pump detuned by +A associated to mechanical
mode j, where g; is the single-photon optomechanical
coupling of mode j to the cavity and o+ the cavity field
amplitude at the frequency of the corresponding pump.

The terms adrive = /K@, ++/Kiaf, and bjdrive = \/ijj,in
model respectively the fluctuating and coherent probe
drives of the cavity and the fluctuating drive of me-
chanical oscillator j. The total cavity linewidth is the
sum of the external and internal loss rates Kk = k. + K;.
We introduce cooperativities for each pump {Cj+},=12
and the only relevant phase degree of freedom ¢ [20]
between pumps, such that Gi_ = /ykC,_/4et/?,
Go = /720y J4e /2 and G = /7;jxCj /4 for
7 = 1,2. The phase ¢ is a crucial parameter as it de-
termines the nonreciprocal nature of the coupling and
therefore the directionality of the transduction. Since
74 is by far the smallest frequency scale of the system,
narrow mechanical susceptibilities restrict the number of
relevant harmonics to two only at detunings —A and +A
from the cavity resonance frequency [58]. These Floquet
components define the two ports of the device, thereafter
named respectively port 1 and 2.

Eliminating phononic operators from Fourier trans-
formed Egs. (1)), it follows that a 2-vector of cavity
operators is invariant under the evolution equations:
Aw) = (a(w—A) a(w+ A))T in the case of the iso-
lator and A(w) = (a(w —A) af(w— A))T in the case
of the amplifier. Defining a global cavity susceptibil-
ity 2 x 2 matrix x(w) [58], the vector A is related to
similarly-defined drive vectors Af, and A! by: A(w) =
x(w) [\/EeAL () + /Fi Al (w)]. Using an analogous def-
inition for the cavity output rate Ay, the input-output
relation reads Aoy, = Af, — /keA. Therefore, the scat-
tering matrix S defined by Aoy = S AL (temporarily
omitting noise terms) is S(w) = Iy — kex(w). The ele-
ments S;; of this matrix define the scattering parameters
between ports j and 4.

Ezperiment.— An on-chip microwave LC' circuit
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FIG. 2. Microwave isolator. (a) Scattering parameters Si2 (solid red line) and Sa; (light green solid line) for ¢ = 55° and fits
(darker dashed lines). The dashed grey line marks the optimal working frequency. Inset: reflection Si1 on isolated port. (b)
Same as (a) for ¢ = —55°. Inset: reflection Sz2 on isolated port. (c) Schematic of the paths taken by noise from mechanical
oscillator 1 to port 1. (d) Same as (c) for noise from mechanical oscillator 1 to port 2. (e) For ¢ = +55°, noise at port
1 (solid red) corresponding to backward-propagating noise for the isolator with this phase and at port 2 (solid light green)

corresponding to forward-propagating noise.

lithographied in aluminum sustains two electromagnetic
cavity modes. We coin these “primary” and “auxiliary”
modes. The former is used to establish nonreciprocal
transfer and the latter to sideband-cool the mechanical
modes [59] in order to reduce noise and broaden the band-
width. The cavity modes have respective frequencies
we/2m = 4.98GHz and w?/2m = 6.62GHz, and inter-
nal and external decay rates k./2m = 1.3 MHz, «; /27 =
190kHz and x%/2m = 900kHz, «¢/2m = 580kHz. The
circuit includes two vacuum-gap capacitors [see Fig. [I[f)]
whose top plate is allowed to move freely, materializ-
ing two mechanical oscillators of frequencies /27 =
6.60MHz and Q3/27 = 9.03MHz and intrinsic decay
rates 7{/2r = 55Hz and +9/2m = 110Hz. The chip
is mounted in a dilution cryostat to be operated at a
temperature of 10 mK.

Isolator.— We now discuss the configuration shown
in Fig. e) that employs only red-sideband tones. The
global susceptibility matrix in the basis defined by A is
modified by a coupling matrix 7"

X Hw) = <§ - i(BU e 5 i(g - A)) N (%1 TTZ> '

(2)
Diagonal coupling terms T1; (T52) account for standard
backaction of mechanical modes on Floquet cavity modes
from the two pumps detuned by —A (4+A). Off-diagonal
terms T;; (¢ # j) also involve one contribution from each
mechanically-mediated coupling path between Floquet
cavity modes:

Ti2(w) = G1—Gi4Xm1(w) + G2—GaoyXm2(w)
To1(w) = GI_Glixm1(w) + G5_G3iXm2(w)

where X, ; is the susceptibility of mechanical mode j,
centered on —d;: Xm,;(w) = [v;/2 —i(w —|—6j)]71. Off-
diagonal elements of the scattering matrix Sis and So;
are proportional to T and Ts; respectively [58]. There-
fore, to obtain e.g. isolation of port 1 (S12 = 0), it suf-
fices to cancel out T12. In order to maintain simultaneous

3)

transfer in the other direction, one must ensure that Soq,
and therefore T5;, is concurrently as high as possible.
This asymmetry is made possible thanks to the phase-
shift of each coupling path provided by the off-resonance
participation of either mechanical oscillator [58].

The experiment is prepared by sideband-cooling me-
chanical oscillators through the auxiliary cavity down
to nier =~ 4.0 and noeg =~ 8.9 quanta. Correspond-
ing effective mechanical linewidths are v, /27 ~ 1.7kHz
and 79/2m ~ 1.9kHz. The primary cavity is pumped
with detuning A/27 = 30kHz, much larger than the
effective mechanical damping rates. With cooperativi-
ties {le, Cl+, CQ,, C2+} = {39, 257 37, 24} and ad-
ditional detunings 6;/2m = —d2/27 = 1kHz, we show
on Fig. 2(a) an optimal isolation for ¢ = +455° of
|S12]? ~ —39.3dB with |S21|*> ~ —1.3dB insertion loss.
We also demonstrate for the opposite phase ¢ = —55° a
device working in the reversed direction on Fig. b) with
|Sa1|* ~ —24.5dB isolation and |Sis|? ~ —1.2dB inser-
tion loss. The bandwidth around 3kHz is comparable
to the effective mechanical linewidths. Due to relatively
small mechanical frequency separation, pumps also ex-
cite the mechanical mode they are not intended to drive,
leading to dynamical backaction taken into account in
the theoretical fits presented throughout the paper.

The noise in the device arises mainly from mechani-
cal thermal noise [26] which propagates through 3 paths
as indicated on Fig. c): path “a” is the direct conver-
sion of phonons into the same amount of cavity photons.
The two others (“b” and “c”) follow the same route as
signals across the device and interfere destructively at
the isolated port. Therefore, only path “a” contributes
to the backward-propagating noise which is thus sim-
ply half of the mechanical oscillators’ total occupation:
Nback = %(nl + ng + 1) in the limit of high coopera-
tivities and ideal cavity. Here we maintain this noise
around npack =~ 2.5 quanta [see Fig. 2[e)]. By compar-
ison, without sideband-cooling, the expected input-port
noise is 35 photons in the ideal case. At the other port
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FIG. 3. Directional amplification. (a) Scattering parameters
S12 (solid red line) and S21 (solid blue line) for ¢ = +48°
and fits with expressions of the text (darker dashed lines).
Inset: reflection Si1 (solid line) on isolated port and fit
(darker dashed line). (b) Same as (a) for the opposite phase
¢ = —48°. Inset: reflection S on isolated port (solid line)
and fit (darker dashed line).

[see Fig. [d)], direct path “a” interferes somewhat de-
structively with the sum of the indirect paths “b” and
“c” and mitigates total fluctuations, which results in very
small output noise of thermal origin, and thus ngy; =~ 0.6
quanta [see Fig. [2[(e)].

Directional amplifier.— Owing to blue-sideband driv-
ing, the S-parameters of the amplifier relate a(w — A) to
af(w—A): they exchange quadratures between input and
output ports. This translates the phase-preserving but
phase-conjugating nature of the device [60] and entails
that signals sent at a frequency w. — A — v are converted
at we. + A + v [30], that is, the output frequency is mir-
rored around the port’s central frequency. As long as the
detunings A are small compared to s, the gain G in the
limit of ideal cavities and large cooperativities remains
the same as for separate-cavity amplifiers [26], 30} 58]:

G= -Cu (4)
(Ci— — C1y)?

With similar pre-cooling of mechanical modes (n; ~
2.9, ng ~ 8.1, v1/27 ~ 1.6kHz, v5/27 ~ 0.9kHz) and
same detuning A as for the isolator, we use coopera-
tivities {C1_, C14, Co_, Coy} ~ {4.2,3.2,5.3, 2.6} to
demonstrate in Fig. a) for ¢ = +48° a maximum am-
plification gain of G ~ |Ss1|? ~ 20.3dB and a simultane-
ous isolation of |S12|? ~ —11.7dB. The amplification and
the isolation bandwidths 1.5kHz and 1kHz respectively
are again comparable to the mechanical linewidths, but
lower than those of the isolator since they are not en-
hanced by parasitic coupling [58]. Fig. b) also shows
a gain of |S12|? ~ 18.5dB and a simultaneous isolation
of |S21|? ~ —4.7dB with the opposite phase p = —48°.
However, contrary to the case of the isolator, only one
port can be impedance-matched to the transmission line
due to the asymmetric pumping of red sidebands of one
Floquet mode and blue sidebands of the other [58]. As
a result of this asymmetry, regardless of the phase, port
1 displays low reflectivity |S11|? and port 2 a large one
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FIG. 4. Noise and phase-dependent instability. (a) Backward-
propagating noise for optimal phase ¢ = +48°, corresponding
to noise at port 1 (solid red) and theory superimposed (darker
dashed line). (b) Added noise for optimal phase ¢ = +48°
(solid blue) and theory (darker dashed line). (c) Noise at
port 1 as a function of frequency and pump phase. Grey
dashed area: unstable region. Optimal phases ¢ = +48° are
shown as white horizontal dashed lines. (d) Same as (c) but
at port 2. Dashed vertical white line: frequency of optimal
directionality. (e) Calculated real-parts of the optical eigen-
susceptibilities at zero frequency (solid and dashed grey lines,
right-side scale). The lower real-part is negative for || > 55°,
causing the instability. Noise at optimal frequency [cut of (d)
along dashed vertical line] at port 2 (blue dots, left-side scale)
diverges at the onset of the instability, as does noise at port
1 (red dots, left-side scale) although noise paths’ destructive
interference at ¢ = +48° limits the maximum measured noise.

|Sa2]? [see insets to Fig. a) and (b)]. The optimal con-
figuration is therefore ¢ = +48° which suppresses power
reflected on the input port by [S1]?> ~ —7.4dB.

In contrast to the isolator, fluctuations propagating
across the amplifier are amplified, which results in a gen-
erally high noise. However, we measure in this config-
uration only mp.ck =~ 3.8 quanta at port 1 when it is
isolated at ¢ = +48° [see Fig. [[c)]. Indeed, ampli-
fied paths “b” and “c” again interfere destructively and
only the non-amplified noise from direct path “a” con-
tributes to the backwards noise which is again, in the

high cooperativities limit, half of the total mechanical



occupancy and is reduced thanks to active cooling. Out-
put noise results from the same three-path interference
as in the isolator and at phase ¢ = +48° the added
noise is Nada = Nout/G =~ 2.1 photons [see Fig. b)],
close to the quantum limit of 0.5 photons. On the other
hand, for ¢ = —48°, port 2 which displays high reflective
gain Ses outputs a backward-propagating noise reaching
Npack =~ 360 quanta even with aggressive auxiliary cool-
ing. This asymmetry between noise at phases ¢ = +48°
is visible on Fig. [d{(c) and (d). This represents a second
reason, together with asymmetric impedance-matching,
for which the behavior of the device is not inverted by
simply changing the sign of the phase.

Phase-dependent instability.— Nonreciprocal amplifi-
cation furthermore reveals a type of instability for a range
of phases. Contrary to optomechanical instability, it does
not arise directly from a strong blue-sideband driving but
is related to the emergence of an unstable eigenmode of
the coupling matrix . Figures C) and (d) show the
amplifier noise for a limited range of phase parameters
|p] < 55° because the device is unstable for the rest of
the 360° range. As shown in Fig. e), the onset of the
instability coincides with the phase at which one of the
eigenvalues of the electromagnetic susceptibility matrix
acquires a negative real-part, which is tantamount to a
negative damping rate. Figure e) furthermore shows
that the noise diverges at these phases. In the isola-
tor case, on the other hand, the eigenvalue with lower
real-part is stabilized by dynamical backaction and never
crosses zero. The observed instability is therefore specific
to nonreciprocally coupled, non-stabilized multimode de-
vices. As such, it relates to the instability observed in

other phase-preserving nonreciprocal coupling cases [61].

Conclusion.— We have theoretically and experimen-
tally demonstrated a new archetype of nonreciprocal op-
tomechanical devices based on the interference of Floquet
modes in a single cavity. This physical simplification al-
lows to accommodate auxiliary optomechanical manipu-
lations of mechanical oscillators to closely approach the
quantum limit of the transduction. We foresee that this
approach can greatly simplify signal processing in other
physical platforms involving resonators. Finally, we un-
covered a class of instability arising in nonreciprocally-
coupled systems provided they are not stabilized by dy-
namical backaction.
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