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One of the foundational questions in relativistic fluid mechanics concerns the properties of the
hydrodynamic gradient expansion at large orders. Studies of expanding systems arising in heavy-
ion collisions and cosmology show that the expansion in real space gradients is divergent. On the
other hand, expansions of dispersion relations of hydrodynamic modes in powers of momenta have a
non-vanishing radius of convergence. We resolve this apparent tension finding a beautifully simple
and universal result: the real space hydrodynamic gradient expansion diverges if initial data have
support in momentum space exceeding a critical value, and converges otherwise. This critical value
is an intrinsic property of the microscopic theory, and corresponds to a branch point of the spectrum
where hydrodynamic and nonhydrodynamic modes first collide.

Introduction— The goal of relativistic hydrodynamics
is to provide an effective description of long-lived, long
wavelength degrees of freedom — hydrodynamic modes —
which are generally expected to dominate nonequilibrium
dynamics of collective states of quantum field theories at
macroscopic scales and sufficiently late times [I]. Un-
derstanding what exact scales and times these are has
been a very active field of research of the past decade in
connection with studies of collective phases of strong in-
teractions in relativistic heavy-ion collisions at RHIC and
LHC [2, B]. In these settings, relativistic hydrodynam-
ics is the framework translating between the spectrum
of low-energy particles observed in detectors and micro-
scopic features such as information about initial state,
equation of state and interaction strength [, B]. Re-
lated recent developments in relativistic hydrodynamics
go well beyond the realm of nuclear physics and extend
also to astrophysics [6Hg], as well as to studies of strong
gravity [9], [10].

Much progress on the emergence of relativistic hydro-
dynamics has occurred recently thanks to, one one hand,
viewing hydrodynamics as an effective field theory for-
mulated in a spacetime derivative expansion [11] and, on
the other, using insights from linear response theory [12].

The effective field theory approach expresses expecta-
tion values of conserved currents in terms of derivatives
of local classical fields. For the energy-momentum ten-
sor (T"") these can be chosen as the energy density &
and a normalized fluid velocity U*. The energy momen-
tum tensor is represented as a sum of all possible terms
graded by the number of derivatives, starting with the
perfect fluid contribution. The foundational importance
of this expansion is that at a formal level it is unique and
well defined in any system which is known to equilibrate.
By comparing this formal series to the analogous gradi-
ent expansion calculated in a microscopic theory one can
express the parameters appearing in the hydrodynamic

series — transport coefficients — in terms of microscopic
quantities. Interestingly, the gradient series evaluated on
a solution of the evolution equations can have a vanish-
ing radius of convergence at least in the case of highly-
symmetric flows describing rapidly expanding matter, as
was discovered in AdS/CFT calculations [I3HI5], hydro-
dynamic models [T6HI§|] and kinetic theory [19] 20].

In linear response theory [21], the response of the sys-
tem is governed by sums of harmonic contributions with
complex frequencies which encode Fourier space singu-
larities of retarded correlators [22]. Imaginary parts of
these frequencies capture effects of dissipation. Terms as-
sociated with frequencies which vanish at small momen-
tum correspond to shear and sound mode hydrodynamic
excitations, while the rest represents transient phenom-
ena [2]. The gradient expansion of the hydrodynamic
constitutive relations translates here into series in spa-
tial momentum for shear and sound mode frequencies. In
Ref. [23] and later in Refs. [24], 25] it was observed that
such a series has a finite non-zero radius of convergence,
which is governed by the presence of nonhydrodynamic
modes. This parallels the fact that the Borel transform of
the gradient expansion in an expanding plasma similarly
reveals information about the nonhydrodynamic sectors.
These transient excitations are present in all relativistic
models which do not violate causality.

The present Letter combines these two lines of re-
search [26] in a novel way, which allows us to make for
the first time rather generic statements about the con-
vergence of the hydrodynamic gradient expansion across
microscopic theories and models. In particular, we show
that the convergence of the real space gradient expan-
sion of the constitutive relations in the linearized regime
is governed by the same mechanism that yields a finite ra-
dius of convergence of series expansions of hydrodynamic
mode frequencies at small momentum.



Hydrodynamics— The expectation value of the con-
served energy-momentum tensor can be expressed as the
perfect-fluid part plus corrections IT#¥

(TH) = (E+P)UU” + Pg™ + 1. (1)

In hydrodynamics, II* is represented in terms of deriva-
tives of the hydrodynamic fields which we take as the en-
ergy density £ and flow velocity U* with U-U = —1. The
pressure P is related to £ via an equation of state [2] [3].

We consider flat d-dimensional spacetime and use the
Landau frame where U,II"" = 0. We focus on confor-
mal and parity-invariant theories. Conformal symmetry
forces 1Y, = 0 and P = £/(d —1). Under these con-
ditions, the most general hydrodynamic II*¥ takes the
form [27] 28]

" = —no* + 7, Dot” —
1
— 501 Da D" — 65 DUDIDUY + ..., (2)

where the ellipsis denotes terms higher than third order in
derivatives and we display only terms which contribute at
the linearized level. The angle-brackets in Eq. denote
the tensors made symmetric, transverse and traceless,
D =U*"0, and D* = (g"” + UMU") 0, are respectively a
comoving and a transverse derivative, o"* = 2D UV de-
notes the shear tensor and 7 is the shear viscosity, 7, the
Israel-Stewart relaxation time and 61, 65 are third order
transport coefficients.

We focus on small perturbations away from thermal
equilibrium, i.e., we consider

Ut =(1u)H* and E£=E& +e¢ (3)

with |e/El, [uiu!| < 1. We denote spatial indices with
Latin letters and spatial vectors with bold font. It is
useful to work in Fourier space with a plane-wave Ansatz

’Ll,l(t, X) _ ﬂl(k) efiwt#»i k»x7 G(t,X) _ g(k) efiwt+i k<x. (4)

The perturbations can be decomposed into shear and
sound channel components [I], labelled here by L and ||
subscripts. They are given by

an = k-a

1=

with é = 0 vanishing in the shear channel. With no loss
of generality, due to rotational invariance, we take

k=(0,...,0,k). (6)

Conservation of the energy-momentum tensor together
with the hydrodynamic constitutive relation deter-
mines the frequencies w appearing in Eq. as functions
of k. The dispersion relations take the form [27 28]

k, aL=1a-q. (5)
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where the tilde means that these are frequencies in the
hydrodynamic theory rather than in a microscopic the-
ory. In the above equation, T" and s are the temperature
and entropy density associated with &, ¢; = 1/4/(d — 1)
is the speed of sound, and I"' = (d —2) /(d — 1)n/(sT). As
is clear from these expressions, hydrodynamic excitations
of arbitrarily small momentum are arbitrarily long-lived.

Calculations in holography [23H25] reveal that the se-
ries have a finite and non-zero radius of convergence,
with evidence that goes to back to the studies of causal
second order hydrodynamics in Ref. [T1]. In physically
interesting cases, linear response theory shows that apart
from the hydrodynamic modes, there are additional exci-
tations that are short-lived, i.e. whose complex frequency
w(k) has a non-vanishing imaginary part even as k — 0
[111, 12} 29} [30]. Explicit calculations in several represen-
tative cases show that the radius of convergence of hy-
drodynamic dispersion relations is set by the magnitude
k. of a (possibly complex) momentum for which the fre-
quency of a hydrodynamic mode coincides with that of a
nonhydrodynamic one at a branch point of w(k) [23H25].

Constitutive relations— Our goal is to understand the
properties of the gradient expansion in linearized hy-
drodynamics in real space that would facilitate compari-
son with earlier studies of nonlinear evolution in expand-
ing plasma systems. To this end, we propose a novel way
of parametrizing II*”, involving only spatial derivatives.
We find that the most general form of II# in this set-
ting can be constructed from three elementary tensorial
structures that are first, second and third order in gradi-
ents and linear in the hydrodynamic fluctuations. These
are respectively

2
ajl = (aj’l,tl + 8lu] — dl(s_jlarur) 5 (8)
€ 1 2
7le = 8]81 - ﬁ 'la €, (9)
1

With no loss of generality we write the constitutive rela-
tions in the form
I = —A(@?) 0 — B 7 — C(@) 5, (11)

where A, B and C' are infinite series in spatial Laplacians,
(oo}

A=) a, (-0%)", (12)
n=0

and the a, are transport coefficients, with similar ex-
pressions for B and C' involving transport coefficients b,,
and ¢,. The remaining components are II;; = II;; = 0 by
the Landau frame condition. In principle, A, B and C
could also depend on 9, but in the hydrodynamic gradi-
ent expansion one can use the conservation equations to



replace temporal derivatives by spatial ones in a system-
atic way [31].

It follows from Eq. that each even order in gradi-
ents introduces one new transport coefficient, while each
odd order higher than one introduces two. We find it
remarkable that such a simple argument implies that the
number of independent transport coefficients at a given
order in the gradient expansion of linearized hydrody-
namics does not grow with the order, but is limited.

An analogous situation occurs in the series expansions
of wy, wf around k£ = 0. Since wﬁ', w[ obey the relation
wﬁr(kj) = —w (k)*, their series coefficients are not inde-
pendent. These coefficients are real for odd powers of k,
and purely imaginary for even powers of k. w, is given
by a series expansion in k? with purely imaginary coeffi-
cients. Therefore, each even order in Eq. introduces
two new real parameters, while each odd order introduces
just one. This counting matches the number of indepen-
dent transport coefficients in Eq. , and suggests that
it is possible to express a,, b, and c,, see Eq. (12)), in
terms of the hydrodynamic dispersion relations

Matching— We now show explicitly that there is a direct
relation between A, B and C' defined in Eq. and the
hydrodynamic dispersion relations @ Any observable
can be used to perform matching, and here we choose to
match to the microscopic shear and sound mode disper-
sion relations, in turn.

For the shear mode, with the wave vector choice we
made in @, the only non-zero components of oj; are

O1,d—1 = 0g—1,1 = tkuy (13)

where we have taken u = (u1,0,...,0) with no loss of
generality due to rotational invariance. 7}; and 75, vanish
identically for this mode since d;u’ = € = 0.

The conservation of the energy-momentum tensor ,
in combination with the hydrodynamic constitutive rela-
tion , predicts the following dispersion relation

Gy(k) = —i—= Y ank® 2. (14)

Demanding that @, (k) agrees with the microscopic shear
hydrodynamic mode w; at every order in an expansion
around k2 = 0 fixes the a,, coefficients to be

an = [K*" ] (isTw,), (15)

where the notation [k?] (f) denotes the coefficient of kP
in the series expansion of f around k = 0.

With A(9?) fixed, we determine B(9%) and C(9?) by
considering the sound mode. Now u = (0,...,0,u4—1),
€ # 0 and

u

1
= —§k2ajl. (16)

Furthermore, the only non-zero components of o and
€
w5, are

Ujj:—d 1ikud,1, j:].d—2, (173,)
2(d—2
Od—1,d—1 = % ) kud,1 (17b)
1
s = ﬁkﬁ €, j=1.d—2, (17¢)
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g =k 17d
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In the end, the conservation equations reduce to
—idwe+iksTug_1 =0, (18a)
1
—twsTug_1+ 1 ket
L4z2 i@a — b)) K+
d—1 o] n n—1 —1
d—2 & 2n+3
. n _ 1
+d—1nz:;)wnk e=0, (18b)
where we have introduced b_; = 0 for brevity. Note

that the conservation equation (|18a)) does not depend
on transport coefficients as a result of our frame choice.

Eqgs. has two solutions, d)ﬁr(k) and &[(k), given as
series expansions around k£ = 0, whose coefficients de-
pend on a,,b, and ¢,. Demanding that these quanti-
ties agree with the microscopic sound modes wﬁ'(k) and

w (k), the matching conditions for b,, and ¢, are

by = [K2"] (72% sT (wﬁ +w|T) +2isTwL) ,(19a)
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(19b)

The coefficients a,, b, and ¢, are directly related to the
transport coefficients defined in the standard way. Up to
third order in gradients one has

e 1 21 Tx
a =1, a1 =" — 501, = A1) s T’
2(d—3)n* 7,
bp =03 — ———— 2
0= (d—1)sT (20)

The explicit relation between hydrodynamic dispersion
relations and hydrodynamic constitutive relations as
encapsulated by Egs. and is our main result.
Its importance stems from the fact that it connects well-
studied hydrodynamic dispersion relations as series in
small k with real space hydrodynamic constitutive re-
lations which previously have only been tested at large
orders for expanding plasma systems. In the rest of the
paper, we explore the implications of this relation on the
radius of convergence of the hydrodynamic gradient ex-
pansion in real space.



Large order behaviour— The analytic properties of the
dispersion relations can be used to constrain the growth
of transport coefficients. We expect that in a microscopic
theory which respects relativistic causality, the hydrody-
namic dispersion relations w (k) and wﬁt (k) have at least
one branch-point singularity in the complex k-plane. One
justification for this expectation is of empirical nature,
as it is realized in theories of causal hydrodynamics and
holography. In the Supplemental Material we provide
an additional argument in favour of it. Importantly, it
implies that w, (k) and wj(k) cannot be polynomials in
k, so the hydrodynamic gradient expansion following
from the matching conditions and must contain
an infinite number of terms. Moreover, the transport co-
efficients a,, b, and ¢, grow geometrically in a manner
controlled by the position of the branch points closest to
k=0 [32]

Tim o, |7 = [kSY] 72, (21)

where |k£A)| denotes the modulus of the branch point
location, and analogous expressions hold for b,, and c,.
Note that |k£A)|, |k£B)|, |k£0)| correspond to the closest
branch point between w, and w) as dictated by Eqgs.
and (19). The power appearing on the right hand side of
Eq. is due to the fact that the transport coeflicients
are coefficients of a Taylor series in k2.

Convergence— The convergence properties of the se-
ries depend on the behavior of the transport co-
efficients a,,, b, and ¢, as well as on the particular solu-
tion € and u. In this Section we show that the support
in momentum space of the latter plays a crucial role in
determining the radius of convergence of the gradient ex-
pansion. We will focus on square-integrable functions,
thus excluding trivial cases for which the gradient ex-
pansion truncates at a finite order.

We start by assuming that the flow is homogeneous
in the 2!, ..., 2% 2 directions, and define z = 2%~!. Fur-
thermore, we take the Fourier transforms of (¢, ) and
ui(t, ), é(t, k) and 4'(t, k), to vanish for |k| > |kmaz|. In
the linearized regime, the support is time-independent
and thus this condition is a restriction on the support of
the initial data.

According to the Paley-Wiener theorem [33], the
Fourier transform of a square-integrable function f (k)
supported in |k| < |kyaz| is an entire function of expo-
nential type |kmaz| [34]. In particular, it follows that

lim sup \f(") (z)] W= |kmaz|- (22)

n—0o0

Let us consider now the A-contribution to . For a
compactly-supported ', o;;(t,2) will be of exponential
type |kmaz| for all times. Hence,

7 = |kmaz|>- (23)

limsup |02"0j(t, x)
n—oo

Applying the root test results in the following conver-
gence criterium for the A-contribution to

|kmaa: |2

2

limsup |a, 02" 0 (t, x)|% = <1 (24)

n—oo

Analogous arguments apply to the remaining pieces
of , with the conclusion that the gradient expansion
of the constitutive relations will be a convergent series if
and only if the support of the hydrodynamic perturba-
tions and their time-derivatives at ¢ = 0 does not exceed
the smallest of |k£A) l, \kiB)| and \kic)|.

The condition for the convergence of the gradient ex-
pansion spelled out above applies to arbitrary longitudi-
nal fluid flows. Note that previous real space statements
about the convergence or divergence of the hydrodynamic
expansion were based on case studies of comoving flows
in simple expanding spacetimes. Our analysis here covers
a large class of models and does not make any simplifying
symmetry assumptions about the longitudinal spacetime
dependence.

Even if divergent, the partial sums of the gradient ex-
pansion only grow geometrically as long as the support
of the initial data in k-space does not extend to infinity.
If it does, this geometric divergence is enhanced to the
factorial one known from the studies of expanding geome-
tries [I3], I6H20, B5]. The ambiguity of the sum is then
related to the multi-sheeted structure of the dispersion
relations w(k) for |k| > |k.| [23H25] and requires contri-
butions from nonhydrodynamic modes to be resolved.

For a flow without any symmetry restrictions, we can
argue heuristically that the same convergence conditions
hold. Let us focus again on the A-contribution to (L1).
Truncating the series to N-th order results in

N

B ST PR
Rd*l

n=0

where we have interchanged the order of summation and
integration. According to Eq. , the partial sums ap-
pearing in Eq. are convergent as N — oo, provided
that they are evaluated at |k| < |k£A)|. Outside this
(d — 1)-dimensional sphere we get a non-convergent se-
ries. Hence, it seems natural to assume that the condition
for Eq. to converge as N — oo is that the hydro-
dynamic variable Gt does not have support past |k;£A)|.
Analogous arguments would hold also for the B- and C-
pieces, supporting the fact that the convergence criterion
spelled out before is fully general.

An illustrative example— For illustration, we now con-
sider a shear channel perturbation in the Miiller-Israel-

Stewart (MIS) theory of hydrodynamics [36H38],

e=0, u=(ui(t,x),0,...,0). (26)



The only tensor structure contributing to Eq. is the
shear tensor and the only nontrivial independent compo-
nent of the constitutive relations is

Mgt z) = — Z an(—l)nagnﬂul(ta T). (27)
n=0

The a, transport coefficients can be computed in closed
form, since the shear hydrodynamic mode is known ex-
actly [11],

_ ol VI—ADT R

wy (k) = (28)

27T,

where D = n/(sT) = (d —1)/(d — 2)T is the diffusion
constant. MIS contains also a single nonhydrodynamic
shear mode which differs from Eq. by the sign of the
square root. The final result for the a,, coefficients is

Ay = sTCnDn+lT7?, (29)

where C,, are the Catalan numbers. Therefore,

—1/2
16| = (nmsup|an|i) =1/\/AD7,,  (30)

n—roo

which is also the location of the branch points of
Eq. , where the hydrodynamic and the nonhydro-
dynamic mode collide.

The initial state of the system is fully specified
by u1(0,2) and dyuq (0, z). We take u1(0,z) = 0 and

1

at'&l(oa k) - 567%72]@2@(163““ - k2)> (31>

where © is the Heaviside step function. As seen in
Fig. [, the real space gradient expansion is conver-

gent for k2, < 1/(4Dr,), geometrically divergent for
1/4D7,) < k2,, < oo, and factorially divergent for

Kkmaz — 00. This is exactly what is expected on the
basis of our general analysis.

Discussion and outlook— We have shown that the ra-
dius of convergence of the real space hydrodynamic gra-
dient expansion evaluated on a solution of the evolution
equations is determined by the momentum space sup-
port of the initial data. This represents a major step for-
ward beyond earlier studies of expanding systems. Any
statement about the convergence of the derivative series
should thus be viewed as pertaining to the asymptotics
of specific solutions and does not impact the definition of
hydrodynamics which rests on its ability to match these
asymptotics to those of underlying microscopic theories.

The applicability of hydrodynamics is connected with
the radius of convergence of the gradient expansion only
in the sense that both issues reflect the presence of a reg-
ulator sector consisting of transient, nonhydrodynamic
modes required by causality. The regime of applicabil-
ity of hydrodynamics is determined by the scale where
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FIG. 1. Main plot: Ratio test applied to the gradient expan-
sion , where 9,, denotes the n-th contribution. We use
v=0.1and consider t =1,z =05 withs=T=n=7, =1,
in such a way that [k{*| = 0.5. From top to bottom,
kmaz = 0.55,0.51,0.49,0.45. The gradient expansion is con-
vergent for kmaz < |kiA)| and geometrically divergent oth-
erwise, as expected. Inset: root test applied to §, when
kmaz — 00. The geometric divergence of the gradient ex-
pansion is enhanced to a factorial one, manifest here in the
asymptotic linear growth of \6n|% with n.

specific calculations begin to be sensitive to the nonhy-
drodynamic mode spectrum [39].

It is very important that complete information about
the nonhydrodynamic sector is encoded in the gradient
series itself. In the case of an expanding plasma this is
very beautifully expressed by the phenomenon of resur-
gence [40], which makes it possible to extract the form of
the full solution from the asymptotic series [16], 18] 4T].
The integration constants necessary to describe any com-
plete solution enter that procedure as transseries param-
eters. An analogous encoding of nonhydrodynamic data
in the hydrodynamic sector is seen in the analytic con-
tinuation of dispersion relations [23]. Generalizations of
these ideas based on developments reported in this Letter
are the subject of ongoing research [42].
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Supplementary material

Our main objective in this appendix is to provide addi-
tional arguments in favor of the two hypothesis regarding
the behavior of the hydrodynamic dispersion relations
put forward in the main text:

1. w(k) has at least one singularity in the complex
k-plane.

2. This singularity is a branch point.

We start by recalling that, under a metric fluctuation
nt* — " 4+ ¥ the response of the energy-momentum
tensor expectation value in the thermal state is controlled
by the retarded two-point function

GHv-oB (t, X) _ —i@(t)< [Tu,l/(t, X)7 7B (O, O)} > (A.32)

as
o(TH (t,x)) =
1
= _7/ dt’ d?x’ G* B (t — 1 x — x'Vhap(t', X).
2 Rl,d—l

The expectation values are taken in the background ther-
mal state. Defining

ot = |

R1.d—1

dw dd—lk e—iwt-&-ikxéuy,aﬁ (w7 k)7

(A.33)
and similarly for h*”, Eq. (A.33) can be written as

2(2m) 745 (TH (t, %)) =

== [ et e G o K0, ),

Hydrodynamic and nonhydrodynamic frequencies appear
as poles of G"”’“ﬁ(m k) which, due to rotational invari-
ance, only depend on k* [48]. To discuss the interplay
between relativistic causality and the analyticity proper-
ties of these frequencies, we consider the following setup:
we imagine that our metric fluctuation is only active at

t = 0 and, furthermore, we also assume that it only de-
d—1

pends on x =z,
R (t,x) = 6(t) f*Y (). (A.34)
In momentum space,
A 1 ~
M (w, k) = gé(kl)...é(kd_g)f””(k), (A.35)

where we have also defined k = k4_1. Hence,
2(2m) 4 (TH (¢, 2)) =

S dw dk e~ @tk GrvaB (0.0, k) fus ().
]Rl,l

Perfoming the integral with respect to w, we obtain

Ng
ST (k) = &u (k)eaiq
q=0

+ ) E (k)M L be, (A.36)

In writing the spectral decomposition , we have
deformed our original integration contour along the real
w-axis to isolate the contributions coming from the sin-
gularities of G#**F (w, k) in the lower half of the complex
w-plane. Npg, Nypg refer respectively to the number of
hydrodynamic w, and nonhydrodynamic €2; modes ex-
cited by the metric fluctuation, while the excitation co-
efficients £/ and =" are determined by the residues of
the retarded correlator at its poles and the initial data.
Finally, b.c. denotes the continuous contributions com-
ing from the branch cuts that might be present. These
contributions are absent in theories of causal relativistic
hydrodynamics and AdS/CFT in the semiclassical limit,
but do appear in kinetic theory.

As a final comment about Eq. , note that we
have also assumed that any remaining contribution com-
ing from an integral around infinity can be neglected.
This is justified in the case in which our microscopic the-
ory is a CFT and t > 0: for |w| — oo the retarded cor-
relator should reduce to the vacuum result, which does
not grow exponentially fast in the same limit.

Imagine now that f#¥(x) is a square-integrable func-
tion supported only for || < R. Relativistic causality
demands that, at ¢ > 0, the support of §(T*¥ (¢, x)) is
at most R+ t. Let us assume that 6(T""(t,x)) is also
square-integrable at all times. Then, the Paley-Wiener
theorem [33] tells us that the spatial Fourier transform of
(T (t,x)y, 6(T*"(t,k)), is an entire function of expo-
nential type at most R + ¢, also square-integrable along
the real k-axis. We remind the reader that an entire func-
tion f(z) is a function analytic everywhere in the complex
z-plane, and that an entire function of exponential type
o is an entire function obeying the bound

|f(z)] < CeFl vzeC, CeRF. (A.37)

In the light of the Paley-Wiener theorem, and when the
spectral decomposition holds, property 1 follows
by contradiction: if the frequency w(k) were entire, its
Laurent series expansion

w(k) = i wp k" (A.38)

would be convergent Vk € C, and the bound , as
applied to §(T*¥(t,k)), would be violated. This result is
in line with the conclusions of Ref. [49]. Since w is given
by a Taylor series in k2, while wﬁt are series in k, the only



possible exception to this behavior would be the case in
which w; =0, |wﬁ| o |k|, which corresponds precisely to
ideal hydrodynamics.

On the other hand, property 2 can be justified as fol-
lows: if w(k) had a pole, §(T*(t, k)) would develop an
essential singularity at the pole location, thus failing to
be entire. Furthermore, as argued in Ref. [49], for sys-
tems with a finite number of modes a pole in some disper-
sion relation entails that the initial value problem does

not have a unique solution.

A final consequence of property 2 is that nonhydrody-
namic modes must exist in a theory that respects rela-
tivistic causality. These modes, which in principle could
be absent if the singularities in the hydrodynamic dis-
persion relations were poles, appear naturally when ana-
lytically continuing these functions past the branch cuts
that are actually present.
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