
Prepared for submission to JHEP

Basis Decompositions and a Mathematica Package
for Modular Graph Forms

Jan E. Gerken

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, DE-14476 Potsdam, Germany

E-mail: jan.gerken@aei.mpg.de

Abstract: Modular graph forms (mgfs) are a class of non-holomorphic modular forms which
naturally appear in the low-energy expansion of closed-string genus-one amplitudes and have
generated considerable interest from pure mathematicians. mgfs satisfy numerous non-trivial
algebraic- and differential relations which have been studied extensively in the literature
and lead to significant simplifications. In this paper, we systematically combine these re-
lations to obtain basis decompositions of all two- and three-point mgfs of total modular
weight w + w̄ ≤ 12, starting from just two well-known identities for banana graphs. Further-
more, we study previously known relations in the integral representation of mgfs, leading
to a new understanding of holomorphic subgraph reduction as Fay identities of Kronecker–
Eisenstein series and opening the door towards decomposing divergent graphs. We provide
a computer implementation for the manipulation of mgfs in the form of the Mathematica
package ModularGraphForms which includes the basis decompositions obtained.

ar
X

iv
:2

00
7.

05
47

6v
2

 [
he

p-
th

]
 1

3
Ju

l 2
02

0

mailto:jan.gerken@aei.mpg.de

Contents

1 Introduction 1
1.1 Summary of results 2
1.2 Outline 3

2 Modular graph forms 4
2.1 Koba–Nielsen integrals and Kronecker–Eisenstein series 4
2.2 Modular graph forms 7

3 The ModularGraphForms Mathematica package 10
3.1 Basics 11
3.2 Expanding Koba–Nielsen integrals 12

4 Graph topologies and notation 14
4.1 Two-point modular graph forms 14
4.2 Three-point modular graph forms 15
4.3 Four-point modular graph forms 16

5 Simple relations 17
5.1 Symmetries 17
5.2 Topological simplifications 21
5.3 Momentum conservation 24
5.4 Factorization 26
5.5 Taking derivatives 28

6 Holomorphic Subgraph Reduction 32
6.1 Dihedral holomorphic subgraph reduction 33
6.2 Higher-point holomorphic subgraph reduction 34
6.3 Holomorphic subgraph reduction and Fay identities 36

7 The sieve algorithm 41
7.1 Constructing identities 41

8 Divergent modular graph forms 45
8.1 Divergence conditions 45
8.2 Divergent MGFs from Koba–Nielsen integrals 49
8.3 Divergent modular graph forms from momentum conservation 51
8.4 Divergent holomorphic subgraph reduction 53

– i –

8.5 Taking derivatives of divergent graphs 55
8.6 Divergent momentum conservation and factorization 57

9 Basis decompositions 60
9.1 Systematic derivation of identities 60
9.2 Bases for modular graph forms 62

10 Conclusion and outlook 72

A Complete reference for the Modular Graph Forms package 73
A.1 Files and loading the package 73
A.2 Symbols 74
A.3 Functions 77
A.4 Example: four-gluon scattering in the heterotic string 93

B Kinematic poles in three-point Koba–Nielsen integrals 95

1 Introduction

Scattering amplitudes in string theory have in recent years experienced a rise in interest due
to the rich mathematical structures appearing in their calculation and their close relations
to field-theory amplitudes. Tree-level string amplitudes at genus zero are by now well under
control and many powerful results have been obtained for genus-one amplitudes as well.

Closed-string genus-one amplitudes are given by integrals of correlators in the worldsheet
conformal field theory (cft) over the moduli space of punctured tori. In this paper, we
systematically study relations between modular graph forms (mgfs), a class of functions of
the modular parameter τ = τ1 + iτ2, τ1, τ2 ∈ R with τ2 > 0 which make the computation
of the low-energy expansion of the integrals over the punctures algorithmic and have been
studied widely in the literature [1–31]. Genus-two generalizations of these techniques were
studied in [32–36]. The low-energy expansion is an expansion in powers of the inverse string
tension α′ or, equivalently, in the Mandelstam variables

sij = −α
′

2 ki · kj , (1.1)

– 1 –

where the ki are the momenta of the asymptotic string states. The resulting mgfs CΓ(τ),
introduced in [8], are non-holomorphic modular forms, i.e. they transform as

CΓ

(
ατ + β

γτ + δ

)
= (γτ + δ)a(γτ̄ + δ)bCΓ(τ) ,

(
α β

γ δ

)
∈ SL(2,Z) , (1.2)

where a is the holomorphic modular weight and b is the antiholomorphic modular weight
and the mgfs are labeled by Feynman-like decorated graphs Γ. Similarly to how Feynman
diagrams can be translated into nested integrals over loop momenta, we can read off the
representation of mgfs in terms of nested lattice sums from the graph Γ (the momenta are
discrete since the torus is compact). A second representation of mgfs is in terms of torus
integrals of Jacobi forms, corresponding to the position-space representation of Γ.

mgfs satisfy many non-trivial relations which are hard to see in the lattice sum- (or
integral-) representation, e.g. the mgf that was denoted by C1,1,1 in [37] satisfies the relation

C1,1,1 =
(
τ2
π

)3 ′∑
(m1,n1)∈Z2

(m2,n2)∈Z2

1
|m1τ + n1|2|m2τ + n2|2|(m1 +m2)τ + n1 + n2|2

=
(
τ2
π

)3 ′∑
(m,n)∈Z2

1
|mτ + n|6

+
∞∑
r=1

1
r3 (1.3)

= E3 + ζ3 ,

where the prime on the sums indicates that we omit the origin from the summation domains
Z2 and the non-holomorphic Eisenstein series Es are defined in (2.32). We use the notation

ζk =
∞∑
n=1

1
nk
, k ∈ N , k ≥ 2 , (1.4)

for zeta values. Identities of this type were studied extensively in the literature [3, 4, 8–11,
18, 19, 21]. Although mgfs also satisfy many non-trivial differential equations, we will focus
here mainly on algebraic relations.

1.1 Summary of results

In this paper, we derive relations between mgfs of the form (1.3) by systematically applying
known and new manipulation techniques to a large class of mgfs. In particular, we extend
known techniques for two- and three-point graphs to a complete treatment of four-point
graphs and show that in the integral representation, the well-known technique of holomorphic
subgraph reduction (hsr) [8, 19] is equivalent to Fay identities of the Kronecker–Eisenstein
series. This yields a more compact and iterative procedure for performing hsr on higher-point

– 2 –

graphs than was previously available in the literature. Furthermore, we give a first systematic
discussion of divergent mgfs and show how these can be interpreted as arising form kinematic
poles in torus integrals.

By applying these manipulations extensively to all two- and three-point graphs of total
modular weight a+b ≤ 12, we find basis decompositions for all these graphs starting from just
the two well-known decompositions of the banana graphs D3 = C1,1,1 and D5, cf. (9.1) and
(9.2). The structure of the basis (and in particular its dimension) agrees with the predictions
made previously in the literature [21, 30]. The arguments in [30] based on iterated Eisenstein
integrals show in particular that the basis elements obtained are linearly independent and
span the space of mgfs of arbitrary topology (and the corresponding modular weight). Fur-
thermore, since the Laurent polynomials of the basis elements are known [3, 11], this allows
us to easily obtain the Laurent polynomials of all the decomposed mgfs. With the help of the
Laurent polynomials, we construct the five real cusp forms in the space of mgfs at weight
(6, 6), cf. (9.8) and show that no real cusp forms exist at lower weights.

Using the basis decompositions of mgfs, we expand the generating series Y τ
~η of Koba–

Nielsen integrals defined in [30] in the basis-mgfs for two and three points up to order 12,
corresponding to mgfs of total modular weight at most 12. These expansions were crucial
in determining the dictionary between mgfs and iterated Eisenstein integrals in [30] and are
made available in an ancillary file to the arXiv submission of this paper.

Finally, we provide the Mathematica package ModularGraphForms in the ancillary files of
the arXiv submission which automatizes the manipulations discussed in this paper and con-
tains all basis decompositions for two and three-point mgfs of weight a+b ≤ 12. Furthermore,
the ModularGraphForms package can be used to automatically expand Koba–Nielsen integrals
in terms of mgfs. This package was used to obtain the expansions of the Y τ

~η mentioned above.

1.2 Outline

This paper is structured as follows: In Section 2, we review the definition of modular graph
forms and their different representations as well as some other important objects. In Sec-
tion 3, we begin the main body of the paper with a brief overview of the ModularGraphForms
package, followed in Section 4 by an introduction of the notation for mgfs which we will
be using throughout for two-, three- and four-point graphs. For these graphs, we collect a
number of simple manipulations in Section 5 which are largely known in the literature. In
Section 6 we discuss holomorphic subgraph reduction and how it is related to the Fay iden-
tity of the Kronecker–Eisenstein series. In Section 7, we review the sieve algorithm [8] and
discuss its implementation in the ModularGraphForms package. Since using the relations dis-
cussed in Section 5 can lead to divergent mgfs, even if we start out with only convergent
graphs, we discuss divergent mgfs in Section 8. All the manipulations discussed up to this
point are combined in Section 9 to obtain basis decompositions for a large class of mgfs. Sec-

– 3 –

tion 10 contains a conclusion and outlook. In Appendix A we give a complete reference to the
ModularGraphForms package and in Appendix B, we discuss further details about kinematic
poles of three-point integrals.

2 Modular graph forms

In this section, we give a brief review of the structures appearing in the evaluation of genus-one
closed-string integrals and introduce modular graph forms.

2.1 Koba–Nielsen integrals and Kronecker–Eisenstein series

After evaluating the cft correlator of the vertex operators, closed string genus-one amplitudes
can be written in terms of integrals of the form∫

Σn−1
τ

dµn−1 φ
(a,b)(~z, ~̄z, τ) KNn(~z, τ) , (2.1)

where Στ ⊂ C is the torus with modular parameter τ = τ1 + iτ2, τ1, τ2 ∈ R, parametrized
by the parallelogram spanned by the paths (0, 1) and (0, τ) with opposite edges identified.
We integrate over the puncture positions zi (collectively denoted by ~z) using the modular
invariant integration measure

dµn−1 =
n∏
k=2

d Re(zk) ∧ d Im(zk)
τ2

=
n∏
k=2

dvk ∧ duk , (2.2)

where we have fixed the origin of the coordinate system to z1 = 0. In (2.2), we also gave the
integration measure in terms of the coordinates u and v, which are aligned with the axes of
the parallelogram,

u = Im(z)
τ2

, v = Re(z)− τ1
τ2

Im(z) ⇒ z = uτ + v . (2.3)

The function φ(a,b)(~z, ~̄z, τ) in the integrand of (2.1) depends on the positions zi, their complex
conjugates z̄i and the modular parameter τ and transforms as a non-holomorphic Jacobi form
of weight (a, b) (and vanishing index), i.e.

φ(a,b)
(~z

γτ + δ
,

~̄z

γτ̄ + δ
,
ατ + β

γτ + δ

)
= (γτ + δ)a(γτ̄ + δ)bφ(a,b)(~z, ~̄z, τ) , (2.4)

where
(
α β
γ δ

)
∈ SL(2,Z). We will give more details on the form of φ shortly. The Koba–Nielsen

factor KNn(τ) in (2.1) is defined by (we will from now on drop the explicit dependence on ~z

– 4 –

and τ) [38]

KNn = exp

 n∑
1≤i<j

sijGij

 (2.5)

in terms of the Mandelstam invariants (1.1) and the Green function Gij = G(zij , τ) =
G(zi−zj , τ) on the torus which satisfies

∂z∂z̄G(z, τ) = −πδ(2)(z, z̄) + π

τ2
. (2.6)

The Green function is doubly periodic in z and can hence be written as a double Fourier-series
in this variable. In this representation, it is given by [1]

G(z, τ) = τ2
π

′∑
(m,n)∈Z2

e2πi(mv−nu)

|mτ + n|2
= τ2
π

′∑
p

e2πi〈p,z〉

|p|2
, (2.7)

where the prime again indicates that the origin is omitted from the sum and we used the
notation

p = mτ + n 〈p, z〉 = mv − nu = (pz̄ − p̄z)
2iτ2

. (2.8)

In the representation (2.7) it is manifest that the Green function is modular invariant and
hence the integral in (2.1) transforms as a non-holomorphic modular form of weight (a, b).

In order to describe the structure of φ(a,b) in more detail, consider the Kronecker–
Eisenstein series [39, 40]

Ω(z, η, τ) = exp
(

2πiη Im z

τ2

)
θ′1(0, τ)θ1(z + η, τ)
θ1(z, τ)θ1(η, τ) , (2.9)

where θ1(z, τ) is the first Jacobi theta function. Ω is doubly periodic in z and can therefore
be written as a Fourier series,

Ω(z, η, τ) =
∑
p

e2πi〈p,z〉

p+ η
, (2.10)

where we used the notation (2.8). By expanding Ω in η,

Ω(z, η, τ) =
∑
a≥0

ηa−1f (a)(z, τ) , (2.11)

– 5 –

we define the functions f (a)(z, τ) which have Fourier expansion

f (0)(z, τ) = 1 (2.12a)

f (a)(z, τ) = (−1)a−1
′∑
p

2πi〈p, z〉
pa

, a > 0 (2.12b)

f (b)(z, τ) = −
′∑
p

2πi〈p, z〉
p̄b

, b > 0 . (2.12c)

Note that for the Fourier series of f (a) with a ≤ 2 are not absolutely convergent. From this
representation, it is easy to check that the f (a) satisfy the differential equations

∂z̄f
(a)(z, τ) = − π

τ2
f (a−1)(z, τ) + πδa,1δ

(2)(z, z̄) , a ≥ 1 . (2.13)

This implies

∂zG(z, τ) = −f (1)(z, τ) , (2.14)

upon comparing (2.13) to (2.6). The Fourier representation (2.12) of the f (a)(z, τ) also man-
ifests that they transform as Jacobi forms of weight (a, 0) (and vanishing index),

f (a)
(z

γτ + δ
,
ατ + β

γτ + δ

)
= (γτ + δ)af (a)(z, τ) ,

(
α β

γ δ

)
∈ SL(2,Z) . (2.15)

The function φ(a,b)(~z, ~̄z, τ) appearing in the integral (2.1) can be written as a homogeneous
polynomial in the f (a) and f (b) evaluated at differences of the zi for any massless amplitude of
closed-string states in type-II, heterotic or bosonic theories [20, 41, 42]. For these differences,
we introduce the notation f (a)

ij = f (a)(zij , τ) = f (a)(zi−zj , τ) and similarly for f (b). We will

refer to an integral of the form (2.1) with φ a polynomial in f (a)
ij and f (b)

k` as a Koba–Nielsen
integral.

An important class of polynomials in the f (a)
ij which appears e.g. in the computation of

four-gluon scattering in the heterotic string [19] is given by the Va functions defined by

Ω(z12, η, τ)Ω(z23, η, τ) · · ·Ω(zn−1,n, η, τ)Ω(zn,1, η, τ) = η−n
∞∑
a=0

ηaVa(1, 2, . . . , n) , (2.16)

where the labels of Va refer to the order of the punctures in the product of Kronecker–
Eisenstein series. Using the expansion (2.11), the Va can be written in terms of the f (a)

ij ,

– 6 –

e.g.

V0(1, 2, . . . , n) = 1 , V1(1, 2, . . . , n) =
n∑
j=1

f
(1)
j,j+1

V2(1, 2, . . . , n) =
n∑
j=1

f
(2)
j,j+1 +

n∑
i=1

n∑
j=i+1

f
(1)
i,i+1f

(1)
j,j+1 etc,

(2.17)

where we set f (a)
n,n+1 = f

(a)
n,1 .

2.2 Modular graph forms

Modular graph forms (mgfs) are the expansion coefficients in the Mandelstam expansion of
(2.1). In order to define mgfs, consider a generalization of the sums in (2.12) and (2.7),

C(a,b)(z, τ) =
′∑
p

e2πi〈p,z〉

pap̄b
. (2.18)

These functions were previously studied in [6, 43, 44]. The Green function and the f (a) and
f (b) are special cases of the C(a,b) since

G(z, τ) = τ2
π
C(1,1)(z, τ)

f (a)(z, τ) = (−1)a−1C(a,0)(z, τ) a > 0 (2.19)

f (b)(z, τ) = −C(0,b)(z, τ) b > 0 .

Using (2.18), the expansion coefficient of (2.1) (for one monomial in φ(a,b)) at a certain order
in α′ has the form

CΓ(τ) =
∫

dµn−1
∏
e∈EΓ

C(ae,be)(ze, τ) , (2.20)

which is the integral representation of the modular graph form CΓ. The notation in (2.20) is
suggestive of the graphical representation of mgfs [8]: We can associate an n-vertex graph Γ
to the integral in (2.20) by identifying the C(a,b)

ij = C(a,b)(zij) with an edge form vertex i to
vertex j, labeled by (a, b),

C
(a,b)
ij ↔

i j
(a, b) . (2.21)

In this notation, EΓ in (2.20) is the edge set of the graph. Using the notation

|A| =
∑
e∈EΓ

ae |B| =
∑
e∈EΓ

be , (2.22)

– 7 –

the mgf in (2.20) is a non-holomorphic modular form of weight (|A|, |B|). If the holomorphic
and antiholomorphic edge labels are equal, ae = be ∀ e ∈ EΓ, the mgf can be turned into a
modular function by multiplication with τ |A|2 . In this case, we call the mgf a modular graph
function [6]. Note that also the weaker condition |A| = |B| is used to define modular graph
functions in the literature.

Since the integrand in (2.20) depends on z only through the exponential factors e2πi〈p,z〉,
we can perform this integral trivially, leading to conservation of the momenta p at the vertices.
This leads to the sum representation [8]

CΓ(τ) =
′∑
{pe}

∏
e∈EΓ

1
paee p̄

be
e

∏
i∈VΓ

δ

 ∑
e′∈EΓ

Γie′pe′

 (2.23)

of mgfs, where EΓ is the set of edges of Γ, VΓ is the set of vertices and

Γie =

1 if e is directed into i

−1 if e is directed out of i

0 if e is not connected to i

(2.24)

is the incidence matrix of vertex i.
A simple example of a modular graph function is given by a two-point graph with ` edges

with label (1, 1) each between the vertices. This mgf is denoted by D` and given by [3]

D`(τ) =
(
τ2
π

)̀ ′∑
p1,...,p`

δ(p1 + · · ·+ p`)
|p1|2 · · · |p`|2

(2.25)

in the sum representation. Here, the sum was multiplied by a suitable factor of τ2
π to make

D` modular invariant, as is customary in the literature.
If we assign arbitrary labels to the edges, the resulting mgf is called dihedral and given

by [8]

C
[a1 ··· aR
b1 ··· bR

]
=
∫

dµ1

R∏
i=1

C
(ai,bi)
12 = 1 2

(a1, b1)
(a2, b2)

...
(aR, bR)

. (2.26)

The D` from (2.25) are in this notation given by

D` =
(
τ2
π

)̀
C
[1`

1`
]
, (2.27)

– 8 –

where 1` denotes the row vector with ` entries of 1. Further special cases of (2.26) are the
modular graph functions [3]

Ca,b,c =
(
τ2
π

)a+b+c
C
[
a b c
a b c

]
(2.28)

Ca,b,c,d =
(
τ2
π

)a+b+c+d
C
[
a b c d
a b c d

]
. (2.29)

To write one-loop graphs in the notation (2.26), we need a [0
0]-column since otherwise

the omission of the origin in the sum sets the mgf to zero. Consequently, we have

C
[
a 0
b 0
]

=
′∑
p

1
pap̄b

(2.30a)

C
[
k 0
0 0
]

= Gk , k > 2 (2.30b)

C
[
s 0
s 0
]

=
(
π

τ2

)s
Es , Re(s) > 1 . (2.30c)

Here, we have introduced the holomorphic Eisenstein series Gk and their non-holomorphic
counterparts Es which are defined by

Gk(τ) =
′∑

(m,n)∈Z2

1
(mτ + n)k , k ≥ 3 ∈ N (2.31)

Es(τ) =
(
τ2
π

)s ′∑
(m,n)∈Z2

1
|mτ + n|2s

, s ∈ C , Re(s) > 1 . (2.32)

We will also use the modular, but non-holomorphic version Ĝ2 of the Eisenstein series G2,
defined by

Ĝ2(τ) = lim
s→0

′∑
(m,n)∈Z2

1
(mτ + n)2|mτ + n|s

, (2.33)

which can be written as

Ĝ2(τ) = G2(τ)− π

τ2
(2.34)

with

G2(τ) =
∑
n6=0

1
n2 +

∑
m6=0

∑
n∈Z

1
(mτ + n)2 . (2.35)

– 9 –

We will assume the regularization (2.33) for conditionally convergent mgfs throughout and
therefore have

C
[2 0

0 0
]

= Ĝ2 . (2.36)

More details on the convergence properties of (2.20) and (2.23) are given in Section 8.
The definition (2.23) of mgfs implies a number of properties [3], some of which we want

to mention here. Firstly, the modular behavior of the mgfs implies that CΓ = 0 if |A|+ |B| is
odd. Secondly, the graphs of all non-zero mgfs are one-particle irreducible vacuum bubbles.
Furthermore, two-valent vertices can be dropped by adding the labels of their edges,

i j k
(a1, b1) (a2, b2) =

i k
(a1+a2, b1+b2) . (2.37)

Finally, if a graph has connectivity one (i.e. it can be disconnected by removing one vertex),
the associated mgf factorizes,

i
...Γ1

... Γ2 = i
...Γ1 × i

... Γ2 . (2.38)

Using the definitions above, we can now discuss the basics of the Mathematica package
ModularGraphForms in the next section, which can be used to perform numerous manipula-
tions on mgfs.

3 The ModularGraphForms Mathematica package

As mentioned in the introduction, we will present a number of simplification techniques for
mgfs in this paper, which will allow us to derive basis decompositions for a large number of
mgfs, as discussed in Section 9. To make the resulting decompositions accessible, it is conve-
nient to have a computer database of them, together with an implementation for the various
techniques to be discussed. This is realized in the Mathematica package ModularGraphForms
which is included in the arXiv submission of this paper. It contains 11079 identities to de-
compose all two- and three-point mgfs of total modular weight a + b ≤ 12 into the basis
given in Section 9 and functions for basic manipulations of four-point graphs. The package
furthermore contains routines to automatically expand Koba–Nielsen integrals in terms of
mgfs. In this section, we will outline the basic usage of the package and, as we discuss the
manipulations for mgfs in the following sections, we will also describe how they are imple-
mented in the ModularGraphForms package. A complete reference of all defined symbols as
well as all functions and their options is given in Appendix A.

– 10 –

3.1 Basics

The ModularGraphForms package consists of the package itself in the ModularGraphForms.m
file and two files containing identities between two- and three-point mgfs which were generated
using the techniques presented in this paper. To load the package, copy all files into the
directory in which the current notebook is saved and run

In[1]:= Get[NotebookDirectory[] <> "ModularGraphForms.m"]

Dihedral identity file found at /home/user/DiIds.txt

Trihedral identity file found at /home/user/TriIds.txt

Loaded 1559 identities for dihedral convergent MGF.

Loaded 9520 identities for trihedral convergent MGF.

Successfully loaded the ModularGraphForms package. Have fun!

The notation used for τ is tau, τ̄ is tauBar and τ2 is tau[2]. The zeta values (1.4)
are written as e.g. zeta[3] and the holomorphic Eisenstein series (2.31) and their complex
conjugates are g[4] and gBar[4], respectively. For the modular version Ĝ2 of G2, we use
gHat[2] and gBarHat[2]. The non-holomorphic Eisenstein series (2.32) and their higher-depth
generalizations defined below in (9.5) are denoted for instance by e[2,2]. The normalizations
are as described in Section 2.

The modular weight of an expression is determined by the function CModWeight, e.g.

In[2]:= CModWeight[g[4] +++ gHat[2]2 +++
(tau[2]

π

)4
e[2,2] gBar[4] g[8]]

Out[2]= {4,0} .

Complex conjugation is performed by the function CComplexConj, e.g.

In[3]:= CComplexConj[g[4] +++ gHat[2]2 +++
(tau[2]

π

)4
e[2,2] gBar[4] g[8]]

Out[3]= G4 +
_̂
G

2

2 + E2,2 G4 G8 τ
4
2

π4 .

The most important function of the ModularGraphForms package is the function CSimplify,
which performs all known simplifications for mgfs on the expression in the argument, e.g. the
identity (1.3) is hard-coded into the package and can be used as follows,

In[4]:= CSimplify[c[1 1 1
1 1 1]]

Out[4]=
π3 E3

τ 3
2

+ π3 ζ3

τ 3
2

,

– 11 –

function definition Mathematica representation

f
(a)
ij (2.12b) fz[a, i, j]

f
(b)
ij (2.12c) fBarz[b, i, j]

Gij (2.7) gz[i, j]

C
(a,b)
ij (2.18) cz[a, b, i, j]

Va(k1, . . . , kr) (2.16) vz[k1,...,kr]

Vb(k1, . . . , kr) (2.16) vBarz[k1,...,kr]

Table 1. Various z-dependent functions defined in Section 2 and their representation in Mathematica.

where the notation for modular graph forms will be explained in Section 4 below. The function
CSimplify calls the functions DiCSimplify, TriCSimplify and TetCSimplify, which perform
simplifications on two- three- and four-point graphs, respectively.

The remaining functions in the ModularGraphForms package will be discussed in the
following sections, along with the manipulations for mgfs they implement. A complete refer-
ence for all functions and their options is given in Appendix A. Within Mathematica, short
explanations for the various objects can be obtained using the Information function, e.g.
by running ?CModWeight. A complete list of all available objects can be printed by running
?ModularGraphForms`*.

3.2 Expanding Koba–Nielsen integrals

As explained in Section 2, in string theory, modular graph forms arise as coefficients in
the expansion of Koba–Nielsen integrals. The ModularGraphForms package also contains the
function zIntegrate which performs this expansion automatically. The syntax is as follows:
zIntegrate has three arguments, the first one is the prefactor in front of the Koba–Nielsen
factor, the second one is the number of points in the Koba–Nielsen factor (2.5) and the last
one is the order in Mandelstam variables which is written in terms of mgfs. E.g. the second
order in Mandelstams of the three-point integral∫

dµ2 KN3 (3.1)

is computed by

In[5]:= zIntegrate[1, 3, 2] // Factor

Out[5]=
1
2

E2 (s2
1,2 + s2

1,3 + s2
2,3) .

– 12 –

Note that all Mandelstam variables are treated as independent, no momentum conservation
is imposed. A Koba–Nielsen factor which does not contain all Green functions and Mandel-
stam variables of (2.5) can be represented by replacing the second argument with a list of
point pairs, corresponding to the Green functions appearing in the Koba–Nielsen factor. E.g.
exp(s12G12 + s13G13) is represented by {{1,2},{1,3}}. For an integral without Koba–Nielsen
factor, we can set the second argument of zIntegrate to an arbitrary number and the third
argument to zero.

For the integrand in front of the Koba–Nielsen factor, the functions listed in Table 1 are
available. To indicate their z dependence, they all carry a suffix z. An arbitrary polynomial
in these functions can be given as the first argument to zIntegrate. E.g. the first order in
Mandelstams of the integral ∫

dµ3V2(1, 2, 3, 4) KN4 (3.2)

is computed by

In[6]:= zIntegrate[vz[2, {1, 2, 3, 4}], 4, 1] // Factor

Out[6]= −
C
[3 0

1 0
]
(s1,2 − 2 s1,3 + s1,4 + s2,3 − 2 s2,4 + s3,4) τ 2

π
.

The function zIntegrate returns mgfs in the notation introduced in Section 4 below for
mgfs with up to four points, while exploiting some basic properties of mgfs as the ones listed
in Section 2.2. If mgfs with more than four points appear in the expansion and they cannot
be reduced by using these properties, they are printed as a graph, e.g.

In[7]:= zIntegrate[gz[1,2]2gz[2,3]2gz[3,4]2gz[4,5]2gz[5,1],5,0]

Out[7]=

(1,1)
(1,1)

(1,1)

(1,1)

(1,1)
(1,1)

(1,1)

(1,1)
(1,1)

τ 9
2

π9 .

Note that if the Koba–Nielsen integral expanded using zIntegrate contains kinematic poles
due to f (1)

ij f
(1)
ij terms in the integrand, zIntegrate will contain divergent mgfs, as will be

discussed in detail in Section 8.2.
Using the function zIntegrate and the decompositions discussed in Section 9 below, the

two- and three-point generating functions for Koba–Nielsen integrals were evaluated in terms
a few basis-mgfs up to total modular weight 12.

– 13 –

4 Graph topologies and notation

The general definition (2.23) for modular graph forms depends on a graph Γ with decorated
and directed edges, where the decoration has the form (a, b) with a, b ∈ Z. Since it is incon-
venient to specify the entire graph for every mgf, we introduce commonly used notations for
graphs with up to four vertices, the only ones considered in this paper.

4.1 Two-point modular graph forms

As introduced in (2.26), dihedral graphs have two vertices and all edges directed in the same
way. They are denoted by [8]

C
[a1 ··· aR
b1 ··· bR

]
= 1 2

(a1, b1)
(a2, b2)

...
(aR, bR)

=
′∑

p1,...,pR

δ(p1 + · · ·+ pR)
pa1

1 p̄
b1
1 · · · p

aR
R p̄bRR

. (4.1)

This class of functions, as well as many special cases, were studied extensively in the literature
[3, 4, 6, 8, 11, 15, 21–23, 25, 26, 31]. Since we will frequently encounter a bundle of parallel
edges, we write

C
[
A
B

]
= C

[a1 ··· aR
b1 ··· bR

]
(4.2)

and call
[
A
B

]
a block. In graphs, we draw

1 2
[
A
B

]
= 1 2

(a1, b1)
(a2, b2)

...
(aR, bR)

. (4.3)

For |A| = |B|, (cf. (2.22)) we also introduce the antisymmetric version

A
[
A
B

]
= C

[
A
B

]
− C

[
B
A

]
, (4.4)

which is purely imaginary and was first studied in [21]. Under the transformation τ → −τ̄ ,
any mgf satisfies CΓ(−τ̄) = CΓ(τ) and hence we have that A

[
A
B

]
(−τ̄) = −A

[
A
B

]
(τ). Since τ2

is invariant under this transformation and the Laurent polynomial is mapped to its negative,
the Laurent polynomial of A

[
A
B

]
has to vanish, i.e. A

[
A
B

]
is a cusp form.

In the ModularGraphForms package, mgfs have head c, i.e. they are formally given by
the function c applied to various arguments. Dihedral mgfs have one argument which is a
2 × R matrix which can, as any other matrix, be inserted in two-dimensional form or as a
nested list,

– 14 –

In[8]:= c[1 2 3
1 1 1] +++ c[{{1,2,3},{1,1,1}}]

Out[8]= 2 C
[1 2 3

1 1 1
]
.

Imaginary cusp forms of the form (4.4) have head a,
In[9]:= a[0 2 3

3 0 2]

Out[9]= A
[0 2 3

3 0 2
]
.

4.2 Three-point modular graph forms

Trihedral graphs have three vertices. The notation we use is [8]

C
[
A1
B1

A2
B2

A3
B3

]
=

1

2

3

[
A1
B1

] [
A2
B2

]
[
A3
B3

]
(4.5)

and hence

C
[
A1
B1

A2
B2

A3
B3

]
=

′∑
{p(j)
i }

 3∏
j=1

Rj∏
i=1

1
(p(j)
i)a

(j)
i (p̄(j)

i)b
(j)
i

δ
 R1∑
i=1

p
(1)
i −

R2∑
i=1

p
(2)
i

δ
 R2∑
i=1

p
(2)
i −

R3∑
i=1

p
(3)
i

, (4.6)

where the block
[
Aj
Bj

]
has Rj columns. We will use this notation henceforth. If two vertices

are not connected by any edges, we write1

C
[
A1
B1

A2
B2

∅
]

= 1 2 3
[
A1
B1

] [
A2
B2

]
. (4.7)

In the ModularGraphForms package, the function c with three matrix-arguments is used,
In[10]:= c[1 1

1 1 ,
2 3
1 1 ,

4 5
1 1]

Out[10]= C
[1 1
1 1

2 3
1 1

4 5
1 1

]
.

The edge directions and normalization are as in (4.5) and (4.6), respectively. For empty blocks,
we use empty lists,

In[11]:= c[{} , 1 2
1 1 ,

3 4
1 1]

Out[11]= C
[

{} 1 2
1 1

3 4
1 1

]
.

1This graph factorizes according to (5.13) into C
[
A1
B1

]
C
[
A2
B2

]
.

– 15 –

4.3 Four-point modular graph forms

Due to their different symmetry properties, it is convenient to distinguish the following three
topologies among four-point graphs.

Box graphs have four edges in one cycle and are denoted by

C
[
A1
B1

A2
B2

A3
B3

A4
B4

]
=

1

2 3

4

[
A1
B1

]
[
A2
B2

]
[
A3
B3

]
[
A4
B4

]
. (4.8)

The lattice sum representation similarly to (4.6) can be read off straightforwardly from the
graph. In Mathematica, we use c with four arguments,

In[12]:= c[1 2
1 1 ,

3 4
1 1 ,

5 6
1 1 ,

7 8
1 1]

Out[12]= C
[1 2
1 1

3 4
1 1

5 6
1 1

7 8
1 1

]
.

Kite graphs have five edges: The cyclic ones from the box plus one diagonal. We write:

C[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

] = 1

2

3

4

[
A1
B1

] [
A2
B2

]

[
A3
B3

] [
A4
B4

]
[
A5
B5

]
. (4.9)

Note that the direction of the four outer edges is different from the box graph.
For kite graphs, c has five arguments,

In[13]:= c[1 2
1 1 ,

1 3
1 1 ,

1 4
1 1 ,

1 5
1 1 ,

1 6
1 1]

Out[13]= C
[1 2
1 1

1 3
1 1

1 4
1 1

1 5
1 1

1 6
1 1

]
.

Finally, the full tetrahedral graph (also known asMercedes graph) has six edges connecting
all pairs of points. The Laplace eigenvalue equations of modular graph functions of this

– 16 –

topology were studied in [12]. As will become clear in the next section, due to its symmetry
properties, it is convenient to arrange the six blocks in three columns as follows:2

C
[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
=

1

2

3

4

[
A2
B2

]

[
A6
B6

]
[
A1
B1

]
[
A4
B4

]
[
A3
B3

]

[
A5
B5

]
. (4.10)

Note that in this notation, edge bundles which do not share a common vertex correspond to
blocks written in one column.

Tetrahedral graphs are written in the ModularGraphForms package as c with six argu-
ments,

In[14]:= c[1 2
1 1 ,

1 3
1 1 ,

1 4
1 1 ,

1 5
1 1 ,

1 6
1 1 ,

1 7
1 1]

Out[14]= C

[1 2
1 1

1 3
1 1

1 4
1 1

1 5
1 1

1 6
1 1

1 7
1 1

]
.

For all four-point graphs, we will again use the symbol ∅ to denote blocks without any
edges. In Mathematica, we again use empty lists.

5 Simple relations

There are a number of relations between modular graph forms that follow directly from their
definition in terms of graphs and lattice sums. These are easy to see, yet very powerful and
already generate a lot of identities.

5.1 Symmetries

Given the graph of a modular graph form, the associated C-function as defined in the previous
section is ambiguous and this generates relations between C-functions with different labels.
In the simplest instance, permutations of the columns of a dihedral graph leave the mgf
invariant. The same is true for permutations of columns in any block of the higher-point
graphs.

2In the conventions of [12], the direction of the edges in third block is reversed.

– 17 –

If a vertex is connected to only two edge bundles, their total momenta have to agree and
hence the two bundles can be swapped without changing the lattice sum associated to the
graph [8]. For trihedral- and box graphs this implies invariance under permutations of the
blocks [8],

C
[
A1
B1

A2
B2

A3
B3

]
= C

[
A2
B2

A1
B1

A3
B3

]
= C

[
A1
B1

A3
B3

A2
B2

]
(5.1)

and similarly for block graphs.
For the same reason, kite graphs are invariant under swapping blocks 1 and 2 as well as

3 and 4. Furthermore, swapping the vertices 2 and 4 leaves the graph invariant, so in total
the symmetries are

C[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

] = C[A2
B2

A1
B1

A3
B3

A4
B4

A5
B5

]
= C[A1

B1
A2
B2

A4
B4

A3
B3

A5
B5

] = C[A3
B3

A4
B4

A1
B1

A2
B2

A5
B5

] .
(5.2)

The double-line notation was chosen to make this intuitive. Note that the vertices in kite
graphs are not all equivalent and this gives rise to the more complex symmetry properties
(5.2).

Tetrahedral graphs have an S4 permutation symmetry from relabeling the four equivalent
vertices. These 24 permutations are generated by six permutations:

• three permutations of columns: Flipping a column comprised of two (Ai, Bi)-blocks in
(4.10) with any other column produces a sign (−1)|1|+|2|+|3| where |1| + |2| + |3| =
|A1|+ |B1|+ |A2|+ |B2|+ |A3|+ |B3| is a shorthand for the combined modular weight
of the top row.3 Explicitly:

C
[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
= (−1)|1|+|2|+|3| C

[A2
B2

A1
B1

A3
B3

A5
B5

A4
B4

A6
B6

]

= (−1)|1|+|2|+|3| C
[A3
B3

A2
B2

A1
B1

A6
B6

A5
B5

A4
B4

]

= (−1)|1|+|2|+|3| C
[A1
B1

A3
B3

A2
B2

A4
B4

A6
B6

A5
B5

]
.

(5.3)

• three flips of two top/bottom pairs: Flipping the top/bottom blocks in any two columns
changes the tetrahedral graph by a sign (−1)|k|+|l|, where k and l in |k| + |l| = |Ak| +
|Bk| + |Al| + |Bl| are given by the following prescription: Permute the three columns
cyclically until the two columns in which top and bottom blocks are swapped are next

3The sign does not depend on if we take the modular weight of the top- or bottom row since the total
modular weight is even for non-vanishing mgfs.

– 18 –

to each other. The blocks in the left one of these has indices k and l. Explicitly:

C
[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
= (−1)|1|+|4| C

[A4
B4

A5
B5

A3
B3

A1
B1

A2
B2

A6
B6

]

= (−1)|2|+|5| C
[A1
B1

A5
B5

A6
B6

A4
B4

A2
B2

A3
B3

]

= (−1)|3|+|6| C
[A4
B4

A2
B2

A6
B6

A1
B1

A5
B5

A3
B3

]
.

(5.4)

The arrangement of the blocks in two rows of three columns was chosen to make these sym-
metries intuitive. For tetrahedral graphs, although all vertices are equivalent, the symmetry
of the graph is broken by the direction of the edges, i.e. it is not possible to assign the direc-
tions in such a way that every vertex has the same number of ingoing and outgoing edges.
Adjusting the edge direction when relabeling vertices leads to the signs in (5.3) and (5.4).
These signs also mean that tetrahedral graphs can vanish by symmetry although their sum
of holomorphic and antiholomorphic labels is even. E.g., according to (5.3),

C
[
A
B

A
B

A
B

A
B

A
B

A
B

]
= 0 , (5.5)

if |A| + |B| odd, although 6(|A| + |B|) is even. This form of vanishing by symmetry does
not exist for any of the other discussed graphs since no signs appear in their symmetry
transformations.

In light of the above symmetry properties it is convenient to define a canonical repre-
sentation for the graph topologies discussed so far such that graphs related by a symmetry
transformation are represented by the same arguments of the C-function. To this end, we
define an ordering on the set of two-row columns and on the set of 2×R matrices. This will
allow us to define an ordering on the mgfs of a certain topology and the smallest element in
the symmetry orbit of an mgf will be the canonical representation of that graph.

The columns within an
[
A
B

]
-block can be permuted arbitrarily for all graphs introduced

above. The canonical representation of the mgfs therefore has the columns in each block in
lexicographic order4 w.r.t. the ordering defined by

• If a1 < a2 then
[a1
b1

]
<
[a2
b2

]
.

• If a1 = a2 then
[a1
b1

]
<
[a2
b2

]
if b1 < b2.

4In lexicographic order, the sequence a1, a2, . . . , an is smaller than b1, b2, . . . , bn if ai < bi for the first i for
which ai 6= bi.

– 19 –

Given two blocks
[
A1
B1

]
and

[
A2
B2

]
with canonical column order and R1 and R2 columns,

respectively, we can define a canonical ordering of the two blocks by

• If R1 < R2 then
[
A1
B1

]
<
[
A2
B2

]
.

• If R1 = R2 then
[
A1
B1

]
<
[
A2
B2

]
if A1 < A2 in lexicographic order.

• If A1 = A2 then
[
A1
B1

]
<
[
A2
B2

]
if B1 < B2 in lexicographic order.

Using this ordering, we define

C
[A1
B1

]
< C

[A2
B2

]
if

[
A1
B1

]
<
[
A2
B2

]
(5.6)

for dihedral graphs, unless the graph at hand is a one-loop graph. In this case, we write C
[
a 0
b 0
]

instead of C
[0 a

0 b

]
, to be consistent with the previous literature. For graphs with several blocks,

we use lexicographic ordering on the set of blocks, hence

C
[
A1
B1

A2
B2

A3
B3

]
< C

[
C1
D1

C2
D2

C3
D3

]
if

([
A1
B1

]
,
[
A2
B2

]
,
[
A3
B3

])
<
([

C1
D1

]
,
[
C2
D2

]
,
[
C3
D3

])
(5.7)

in lexicographic order and similarly for all four-point graphs with the numbering of the blocks
as in Section 4.3.

For trihedral and box graphs, this just means that the canonical representation has the
blocks (and in each block the columns) in lexicographic ordering. For kite graphs, the fifth
block cannot be moved by the symmetries (5.2) and hence in the canonical representation, the
smallest block out of the remaining four comes first, fixing the second one. The third block
is the smaller one out of the remaining two, fixing the last block. Canonically represented
tetrahedral graphs have the smallest block in the upper left slot, fixing the lower left block.
The smallest block out of the remaining four blocks sits in the upper middle slot, fixing all
remaining entries. The following examples are all in their canonical representation

C
[3 0

1 0
]

(5.8a)

C
[1 2 3

7 5 4
]

(5.8b)

C
[2

2
1 1
1 1

0 0 1
2 4 1

]
(5.8c)

C[2
2

1 2 3
7 5 4

1 1
1 1

0 0 1
2 4 1

1
1] (5.8d)

C
[1

1
2
2

2 3
1 2

1 2 3
7 5 4

0 0 1
2 4 1

1 1
1 1

]
. (5.8e)

In the ModularGraphForms package, the function CSort brings mgfs into their canonical
form, using the symmetries discussed above. For the mgfs in (5.8), we have e.g.

– 20 –

In[15]:= CSort[{c[0 3
0 1], c[2 1 3

5 7 4], c[1 0 0
1 4 2 ,

2
2 ,

1 1
1 1],

c[0 0 1
4 2 1 ,

1 1
1 1 ,

3 2 1
4 5 7 ,

2
2 ,

1
1], c[2 3

1 2 ,
1 0 0
1 4 2 ,

3 2 1
4 5 7 ,

1 1
1 1 ,

2
2 ,

1
1]}]

Out[15]=
{

C
[3 0

1 0
]
, C
[1 2 3

7 5 4
]
, C
[2
2

1 1
1 1

0 0 1
2 4 1

]
, C
[2
2

1 2 3
7 5 4

1 1
1 1

0 0 1
2 4 1

1
1
]
,

C

[1
1

2
2

2 3
1 2

1 2 3
7 5 4

0 0 1
2 4 1

1 1
1 1

]}
.

The output of the function CSimplify is always in canonical form. The property, that tetrahe-
dral graphs can vanish by symmetry, as in the example (5.5), is implemented in the function
TetCSimplify. E.g., we have

In[16]:= TetCSimplify[c[1 2
2 2 ,

1 2
2 2 ,

1 2
2 2 ,

1 2
2 2 ,

1 2
2 2 ,

1 2
2 2]]

Out[16]= 0 .

5.2 Topological simplifications

For certain special cases of the graphs defined in Section 4, the mgf simplifies.
For the dihedral case, the fact that one-valent vertices lead to vanishing mgfs can be

expressed as

C
[a
b

]
= 0 . (5.9)

It is furthermore convenient to define

C
[
∅
]

= 1 . (5.10)

The property (2.37) that two-valent vertices can be dropped translates for one-loop dihedral
graphs into

C
[a1 a2
b1 b2

]
= (−1)a2+b2 C

[a1+a2 0
b1+b2 0

]
. (5.11)

For trihedral graphs, (2.37) implies

C
[a1
b1

a2
b2

A3
B3

]
= (−1)a1+b1+a2+b2 C

[a1+a2 A3
b1+b2 B3

]
(5.12)

and the factorization of one-particle reducible graphs (2.38) means that trihedral graphs with
one empty block factorize into dihedral graphs,

C
[
A1
B1

A2
B2

∅
]

= C
[A1
B1

]
C
[A2
B2

]
. (5.13)

Via (5.10), this also captures the case of two empty blocks.

– 21 –

Since two- and three-point graphs are special cases of four-point graphs, topological
simplifications of four-point graphs should allow for simplifications down to dihedral graphs.
We will provide a hierarchy of simplifications from tetrahedral graphs to box graphs which,
if applied repeatedly together with (5.9) to (5.13), allow to identify any lower-point graph
which is given as a tetrahedral mgf.

Tetrahedral graphs with one empty block are kite graphs,

C
[

∅ A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
= (−1)|A2|+|B2|+|A4|+|B4| C[A2

B2
A3
B3

A5
B5

A6
B6

A4
B4

] . (5.14)

A kite graph with one empty block is either a box graph or factorizes,

C[∅ A2
B2

A3
B3

A4
B4

A5
B5

] = (−1)|A5|+|B5| C
[A2
B2

]
C
[
A3
B3

A4
B4

A5
B5

]
(5.15a)

C[A1
B1

A2
B2

A3
B3

A4
B4

∅] = (−1)|A3|+|B3|+|A4|+|B4| C
[
A1
B1

A2
B2

A3
B3

A4
B4

]
. (5.15b)

If the two blocks in the first (or second) pair of blocks have only one column each, the vertex
2 (or 4) becomes two-valent end the kite graph simplifies into a trihedral graph,

C[a1
b1

a2
b2

A3
B3

A4
B4

A5
B5

] = (−1)|A3|+|B3|+|A4|+|B4| C
[
a1+a2 A5
b1+b2 B5

A3
B3

A4
B4

]
. (5.16)

A box graph with one (or more) empty blocks factorizes into dihedral graphs,

C
[
∅ A2

B2
A3
B3

A4
B4

]
= C

[A2
B2

]
C
[A3
B3

]
C
[A4
B4

]
(5.17)

and a box graph with two blocks of only one column each has a two-valent vertex and simplifies
is a trihedral graph,

C
[a1
b1

a2
b2

A3
B3

A4
B4

]
= C

[a1+a2
b1+b2

A3
B3

A4
B4

]
. (5.18)

Combined, the relations above show e.g. that

C
[
∅ 1

1
1
1

1
1

1
1

1
1

]
= C

[1 2 2
1 2 2

]
. (5.19)

In the Mathematica package ModularGraphForms, the dihedral relations (5.9)–(5.11) are
implement in the function DiCSimplify,

In[17]:= DiCSimplify[c[{}]c[0 3
1 0] +++ c[31]]

Out[17]= − C
[3 0

1 0
]
.

– 22 –

DiCSimplify also rewrites the special cases Ĝ2, Gk and Ek of one-loop graphs according
to (2.30b) and (2.30c), as well as (2.36), whereas the one-loop simplification (5.11) is also
performed by CSort. The function DiCSimplify has a Boolean option basisExpandG which, if
set to True, causes DiCSimplify to expand all holomorphic Eisenstein series in the ring of G4

and G6, e.g.

In[18]:= DiCSimplify[g[24], basisExpandG True]

Out[18]=
270 G6

4

66079
+ 5400000 G3

4 G2
6

151915621
+ 375 G4

6

73853
.

The default value of basisExpandG is False.
The trihedral simplifications (5.12) and (5.13) are performed by TriCSimplify,

In[19]:= TriCSimplify[c[{} , 1 2
1 1 ,

1 4
1 1] +++ c[11 , 22 , 1 3

1 1]]

Out[19]= C
[1 2

1 1
]

C
[1 4

1 1
]

+ C
[3 1 3

3 1 1
]
.

Note that the dihedral graphs in Out[19] are not simplified or canonically represented, since
TriCSimplify only acts on trihedral graphs. To simplify Out[19] further, we can apply DiCSimplify,

In[20]:= DiCSimplify[Out[19], useIds False]

Out[20]= C
[1 3 3

1 1 3
]
,

where the Boolean option useIds was set to suppress the expansion using the result in the
basis decompositions to be discussed in Section 9. The hierarchy of topological four-point
simplifications (5.14)–(5.18) is implemented in the function TetCSimplify. Combining these
functions, one can reproduce the example (5.19),

In[21]:= TetCSimplify[c[{} , 11 ,
1
1 ,

1
1 ,

1
1 ,

1
1]]

TriCSimplify[%]

CSort[%]

Out[21]= C
[2 1
2 1

1
1

1
1
]

Out[22]= C
[2 1 2

2 1 2
]

Out[23]= C
[1 2 2

1 2 2
]
.

The function CSimplify acts on mgfs of all topologies and calls
DiCSimplify, TriCSimplify and TetCSimplify. It also inherits the option basisExpandG from
DiCSimplify. We have e.g.

In[24]:= CSimplify[c[{} , 1 2
1 2 , {} , 12 ,

2
1 ,

2
2]]

Out[24]=
π8 E3 E5

τ 8
2

.

– 23 –

5.3 Momentum conservation

Momentum conservation [8] will be the central tool in our derivation of identities between
modular graph forms and can be derived in the lattice sum representation (2.23) as well as
the integral representation (2.20) of the mgf. As long as all graphs involved are convergent,
as we will assume in this section, both approaches result in the same expression. If divergent
graphs are involved, the integral representation allows one to use the tools of complex analysis
to derive meaningful results, cf. Section 8.6.

Starting from the lattice-sum representation (2.23) of an mgf with |A|+ |B| odd (hence,
a vanishing mgf), which we will refer to as the seed, we have for each j ∈ VΓ the momentum
conservation identities

0 =
∑
e′∈EΓ

Γje′
′∑
{pe}

∏
e∈EΓ

pe′

paee p̄
be
e

∏
i∈VΓ

δ

 ∑
e′′∈EΓ

Γie′′pe′′

 (5.20a)

0 =
∑
e′∈EΓ

Γje′
′∑
{pe}

∏
e∈EΓ

p̄e′

paee p̄
be
e

∏
i∈VΓ

δ

 ∑
e′′∈EΓ

Γie′′pe′′

 (5.20b)

due to the momentum conserving delta functions. We will refer to (5.20a) as the holomorphic-
and to (5.20b) as the antiholomorphic momentum conservation identity. By canceling the
momenta from the numerators, (5.20) can be expressed entirely as a manipulation of the
decorations of the graph and are therefore identities between mgfs,

0 =
∑
e∈EΓ

ΓjeCΓae→ ae−1 , 0 =
∑
e∈EΓ

ΓjeCΓbe→ be−1 , ∀ j ∈ VΓ . (5.21)

If we had chosen a seed with |A| + |B| even, the resulting mgfs would have all vanished
trivially. Note that exchanging the sums over e′ and the pe in (5.20) required all sums to be
convergent.

In the integral representation (2.20), the momentum conservation identities (5.20) corre-
spond to integration-by-parts identities w.r.t. the puncture positions. To see this, note that
due to (2.18),5

∂zC
(a,b)(z) = − π

τ2
C(a,b−1)(z) ∂z̄C

(a,b)(z) = π

τ2
C(a−1,b)(z) . (5.22)

5The a = 1, b = 0 case of ∂z̄C(a,b) is compatible with (2.13) upon using (5.33) below.

– 24 –

If the integrand in (2.20) has no poles, the integral over the total derivative w.r.t. zj for each
j ∈ VΓ vanishes and we have

0 =
∑
e′∈EΓ

Γje′
∫

dµn−1C
(ae′ ,be′−1)(ze′)

∏
e∈EΓ
e 6=e′

C(ae,be)(ze) (5.23a)

0 =
∑
e′∈EΓ

Γje′
∫

dµn−1C
(ae′−1,be′)(ze′)

∏
e∈EΓ
e 6=e′

C(ae,be)(ze) , (5.23b)

agreeing with (5.21).
For dihedral graphs, the identities (5.21) for both vertices are identical and can be written

as

0 =
R∑
i=1
C
[
A−Si
B

]
=

R∑
i=1
C
[

A
B−Si

]
, (5.24)

the jth component of the row vector Si is δij . For trihedral mgfs, the momentum conservation
identities involve two out of the three blocks and are given by

0 =
R1∑
i=1
C
[
A1−Si
B1

A2
B2

A3
B3

]
−

R2∑
i=1
C
[
A1
B1

A2−Si
B2

A3
B3

]
(5.25)

and similarly for the complex conjugated identities. For box graphs, we have

0 =
R1∑
i=1
C
[
A1−Si
B1

A2
B2

A3
B3

A4
B4

]
−

R2∑
i=1
C
[
A1
B1

A2−Si
B2

A3
B3

A4
B4

]
and c.c. (5.26)

For kite graphs, we have to distinguish the cases in which the momentum conservation of
vertex 2 or 4 is used, yielding

0 =
R1∑
i=1
C[A1−Si

B1
A2
B2

A3
B3

A4
B4

A5
B5

]−
R2∑
i=1
C[A1
B1

A2−Si
B2

A3
B3

A4
B4

A5
B5

] and c.c. (5.27)

and the case in which the momentum conservation of vertex 1 or 3 is used, resulting in the
identity

0 =
R1∑
i=1
C[A1−Si

B1
A2
B2

A3
B3

A4
B4

A5
B5

] +
R4∑
i=1
C[A1
B1

A2
B2

A3−Si
B3

A4
B4

A5
B5

]

+
R5∑
i=1
C[A1
B1

A2
B2

A3
B3

A4
B4

A5−Si
B5

] and c.c. (5.28)

– 25 –

The topology of tetrahedral graphs is completely symmetric, hence the momentum conserva-
tion identity for vertex 2,

0 =
R1∑
i=1
C
[A1−Si

B1
A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
+

R2∑
i=1
C
[A1
B1

A2−Si
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
+

R3∑
i=1
C
[A1
B1

A2
B2

A3−Si
B3

A4
B4

A5
B5

A6
B6

]
(5.29)

and its complex conjugate are related to those of all other vertices by the transformations
(5.3) and (5.4).

In the ModularGraphForms package, momentum conservation for dihedral and trihedral
graphs is implemented in the functions DiHolMomConsId and TriHolMomConsId and their anti-
holomorphic versions DiAHolMomConsId and TriAHolMomConsId. In the dihedral case (5.24), the
function DiHolMomConsId takes the seed as its only argument and we have e.g.

In[25]:= DiHolMomConsId[c[1 1 2
1 1 1]]

Out[25]= C
[0 1 2

1 1 1
]

+ C
[1 0 2

1 1 1
]

+ C
[1 1 1

1 1 1
]

== 0 .

For trihedral momentum conservation (5.25), we have to specify which of the three vertices
we use and hence which pair of blocks has its labels changed. The list of these blocks is passed
as a second argument to TriHolMomConsId, e.g.

In[26]:= TriHolMomConsId[c[1 2
1 1 ,

1 3
1 1 ,

1 4
1 1], {2,3}]

Out[26]= C
[1 2
1 1

0 3
1 1

1 4
1 1

]
+ C

[1 2
1 1

1 2
1 1

1 4
1 1

]
− C

[1 2
1 1

1 3
1 1

0 4
1 1

]
− C

[1 2
1 1

1 3
1 1

1 3
1 1

]
== 0 .

Note that the functions discussed here do not apply CSort to the resulting equation, so
that it is more transparent which exponents were lowered. E.g. Out[25] simplifies to

In[27]:= CSort[Out[25]]

Out[27]= 2 C
[0 1 2

1 1 1
]

+ C
[1 1 1

1 1 1
]

== 0 .

5.4 Factorization

Consider a modular graph form with a (0, 0)-edge. In this case, the graph factorizes [8]. To see
this, consider two vertices x and y and an edge from x to y with momentum p and decoration
(0, 0). Furthermore assume that all other edges connected to x are directed away from x and
have momentum sum px and all other edges connected to y are directed away from y and
have momentum sum py ,

x y(0, 0)
p

...px

 ...

 py , (5.30)

– 26 –

where the (0, 0)-edge is not necessarily the only edge between x and y. In the sum represen-
tation, the momentum p only appears in the momentum-conserving delta functions for the
vertices x and y. Isolating this contribution, we get

′∑
p

δ(px+p)δ(py−p) =
∑
p

δ(px+p)δ(py−p)− δ(px)δ(py) = δ(px+py)− δ(px)δ(py) , (5.31)

where we added p = 0 to the sum to evaluate the deltas. When (5.31) appears in the nested
lattice sum of an mgf, the first term gives rise to the original mgf with the vertices x and y
identified, whereas the second term can be associated to the original mgf with the (0, 0)-edge
removed. Schematically, if the edge e between vertices x and y carries decoration (0, 0), we
have

CΓae=be=0 = CΓx=y − CΓ\e . (5.32)

If the vertices x and y are connected by more edges than just e, these will factorize as one-loop
graphs in the first term of (5.32).

In the integral representation, a (0, 0)-edge is represented by a factor C(0,0)(z) in the
integrand, which as special case of (2.18) can be simplified to

C(0,0)(z) =
∑

m,n∈Z
e2πi(mv−nu) − 1 = δ(v)δ(u)− 1 = τ2δ

(2)(z, z̄)− 1 , (5.33)

where we used (2.3). Note that (5.33) is not the a = 0 case of (2.19), since f (0)(z) = 1, but is
implied by the a = 1, b = 0 case of (5.22) and (2.13). The interpretation of (5.33) is exactly as
in the sum representation: The delta identifies the two vertices connected by the (0, 0) edge
and in the second term the (0, 0) edge is removed. In this way, we get again (5.32).

For dihedral mgfs, (5.32) implies6

C
[0 A

0 B
]

=
R∏
j=1
C
[aj 0
bj 0

]
− C

[
A
B

]
(5.34)

for higher-point graphs we have

C
[0 A1

0 B1
A2
B2

A3
B3

]
= (−1)|2| C

[A2 A3
B2 B3

] R1∏
i=1
C
[a(i)

1 0
b
(i)
1 0

]
− C

[
A1
B1

A2
B2

A3
B3

]
(5.35)

C
[0 A1

0 B1
A2
B2

A3
B3

A4
B4

]
= C

[
A2
B2

A3
B3

A4
B4

] R1∏
i=1
C
[a(i)

1 0
b
(i)
1 0

]
− C

[
A1
B1

A2
B2

A3
B3

A4
B4

]
(5.36)

6For one-loop graphs C
[
a 0
b 0

]
, (5.34) is trivial upon using (5.9).

– 27 –

C[0 A1
0 B1

A2
B2

A3
B3

A4
B4

A5
B5

] = (−1)|2|+|5| C
[
A2 A5
B2 B5

A3
B3

A4
B4

] R1∏
i=1
C
[a(i)

1 0
b
(i)
1 0

]
− C[A1

B1
A2
B2

A3
B3

A4
B4

A5
B5

]
(5.37)

C[A1
B1

A2
B2

A3
B3

A4
B4

0 A5
0 B5

] = (−1)|1|+|3| C
[A1 A2
B1 B2

]
C
[A3 A4
B3 B4

] R5∏
i=1
C
[a(i)

5 0
b
(i)
5 0

]
− C[A1

B1
A2
B2

A3
B3

A4
B4

A5
B5

]
(5.38)

C
[0 A1

0 B1
A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
= (−1)|2| C

[
A2 A6
B2 B6

A3 A5
B3 B5

A4
B4

] R1∏
i=1
C
[a(i)

1 0
b
(i)
1 0

]
− C

[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
, (5.39)

where we used the abbreviation |i| = |Ai|+ |Bi| as above. Note that the rhss have one vertex
less in the first term and one loop order less in the second term and hence (5.34) to (5.39)
are powerful identities to simplify mgfs. Together with the momentum conservation identities
from Section 5.3, these identities form the backbone of all the simplifications we will carry
out in the following.

In the ModularGraphForms package, factorization of (0, 0)-edges for dihedral and trihedral
graph is also done by the functions DiCSimplify and TriCSimplify. E.g. in the trihedral case
(5.35), we have

In[28]:= TriCSimplify[c[0 2 1
0 1 2 ,

1 2
1 1 ,

1 4
1 1]]

Out[28]= − C
[1 0

2 0
]

C
[2 0

1 0
]

C
[2 2 1 4

1 2 1 1
]
− C

[1 2
2 1

1 4
1 1

2 2
1 2

]
.

If several (0, 0)-edges are present, the factorization is repeated until no more (0, 0)-edges in
the respective topology appear. E.g. we have

In[29]:= TriCSimplify[c[0 2 1
0 1 2 ,

0 2 2
0 1 2 ,

1 4
1 1]]

Out[29]= C
[2 0

1 0
]

C
[2 0

2 0
]

C
[1 2 1 4

2 1 1 1
]
− C

[1 0
2 0

]
C
[2 0

1 0
]

C
[0 2 2 1 4

0 1 2 1 1
]

+ C
[1 2
2 1

1 4
1 1

2 2
1 2

]
,

where the remaining dihedral factorization can be preformed by applying DiCSimplify.

5.5 Taking derivatives

On top of momentum conservation and factorization, another way to obtain new identities
for mgfs is by taking derivatives of known identities w.r.t. τ .

In order to take derivatives of modular functions and -forms, we use the Maaß opera-
tors [45]

∇(a) = 2iτ2∂τ + a ∇(b) = −2iτ2∂τ̄ + b . (5.40)

– 28 –

When these act on modular forms of weight (a, b) they transform them into modular forms
of shifted modular weight according to

∇(a) : (a, b)→ (a+ 1, b− 1) ∇(b) : (a, b)→ (a− 1, b+ 1) . (5.41)

These operators satisfy a product rule when acting on a product fg of modular forms f and
g of holomorphic modular weights a and a′, respectively,

∇(a+a′)(fg) = (∇(a)f)g + f(∇(a′)g) and c.c. . (5.42)

For later convenience, we introduce the notation

∇(a)n = ∇(a+n)∇(a+n−1) · · · ∇(a) ∇(b)n = ∇(b+n)∇(b+n−1) · · · ∇(b) (5.43)

for higher derivatives. We will also use the operators

∇0 = τ2∇(0) = 2iτ2
2∂τ ∇0 = τ2∇(0) = −2iτ2

2∂τ̄ , (5.44)

which act on modular forms of vanishing holomorphic and antiholomorphic modular weight,

∇0 : (0, b)→ (0, b− 2) ∇0 : (a, 0)→ (a− 2, 0) . (5.45)

Using these operators, we will now discuss derivatives of identities between mgfs. Note that
since the Maaß operators change the modular weight, one obtains an identity between mgfs
of different weights.

Consider the action of ∇(|A|) and ∇(|B|) and on an mgf of weight (|A|, |B|) in its lattice
sum representation (2.23). Using the product rule (5.42) and

∇(a)
(1
pa

)
= a

1
pa+1p̄−1 ∇(b)

(1
p̄b

)
= b

1
p−1p̄b+1 , (5.46)

the derivatives are given by [8]

∇(|A|)CΓ =
∑
e∈EΓ

aeCΓ(ae,be)→ (ae+1,be−1) ∇(|B|)CΓ =
∑
e∈EΓ

beCΓ(ae,be)→ (ae−1,be+1) . (5.47)

In the integral representation, ∇(|A|) and ∇(|B|) act on the Jacobi forms C(a,b)(z, τ) given
in (2.18). According to (5.46), we have

∇(a)C(a,b)(z, τ) = aC(a+1,b−1)(z, τ) ∇(b)C(a,b)(z, τ) = bC(a−1,b+1)(z, τ) (5.48)

and using this together with the product rule (5.42), we obtain again (5.47).

– 29 –

For a dihedral mgf, (5.47) implies [8]

∇(|A|) C
[
A
B

]
=

R∑
i=1

ai C
[A+Si
B−Si

]
∇(|B|) C

[
A
B

]
=

R∑
i=1

bi C
[A−Si
B+Si

]
, (5.49)

where the jth component of Si is δij as above. A special case of (5.49) is the important relation

∇n0 Ek = τk+n
2
πk

(k + n− 1)!
(k − 1)! C

[k+n 0
k−n 0

]
, (5.50)

where ∇0 is defined in (5.44). Since (5.47) does not depend on the topology of the graph,
the higher-point versions of (5.49) are completely analogous, so for trihedral graphs, we have
e.g. [8]

∇(|A|) C
[
A1
B1

A2
B2

A3
B3

]
=

R1∑
i=1

a
(i)
1 C

[
A1+Si
B1−Si

A2
B2

A3
B3

]
+

R2∑
i=1

a
(i)
2 C

[
A1
B1

A2+Si
B2−Si

A3
B3

]
+

R3∑
i=1

a
(i)
3 C

[
A1
B1

A2
B2

A3+Si
B3−Si

]
and c.c. , (5.51)

where in the complex conjugation, we swap all a and b labels everywhere and replace Si →
−Si. Similar identities hold for all four-point graphs.

When taking the Cauchy–Riemann derivative of a holomorphic Eisenstein series, one
obtains

∇(2k)G2k = 2k C
[2k+1 0
−1 0

]
, k ≥ 2 , (5.52)

which cannot be simplified further with the methods presented so far. However, the τ̄ -
derivative of the weight (2k + 2, 0) modular form

π

τ2
C
[2k+1 0
−1 0

]
+ G2kĜ2 , k ≥ 2 (5.53)

vanishes, and hence it can be expanded in the ring of holomorphic Eisenstein series. To this
end, we calculate the q expansion (q = e2πiτ)

1
2k∇

(2k)G2k = 2ζ2k −
4ζ2k
B2k

∞∑
n=1

σ2k−1(n)(2k − 4πnτ2)qn , k ≥ 1 , (5.54)

by taking the Cauchy–Riemann derivative of the q expansion of G2k. Now, by comparing a
finite number of terms, we can expand (5.52) in the ring of G4 and G6. Since for low weights

– 30 –

this ring is one-dimensional, we can give a closed formula in these cases,

C
[2k+1 0
−1 0

]
= τ2
π

(2ζ2ζ2k
ζ2k+2

G2k+2 −G2kĜ2

)
, k = 2, 3, 4 . (5.55)

For the non-holomorphic but modular version Ĝ2 = G2 − π
τ2

of G2, we obtain

∇(2)Ĝ2 = 2 C
[3 0
−1 0

]
= τ2
π

(
5G4 − Ĝ2

2

)
, (5.56)

as can be verified by explicitly comparing the q expansions term by term. Note that (5.56)
and (5.55) for k = 2, 3 are equivalent to the classic Ramanujan identities

q
dG2
dq = G2

2 − 5G4
4π2 (5.57a)

q
dG4
dq = 2G2G4 − 7G6

2π2 (5.57b)

q
dG6
dq = 21G2G6 − 30G2

4
14π2 . (5.57c)

Since the expressions above allow to write the derivative of any holomorphic Eisenstein series
back into a polynomial in holomorphic Eisenstein series, we can iterate these expressions and
simplify arbitrarily high derivatives of holomorphic Eisenstein series. E.g. we have

C
[4 0
−2 0

]
= 1

6∇
(3)∇(2)Ĝ2 =

(τ2
π

)2(35
3 G6 − 5G4Ĝ2 + 1

3Ĝ3
2

)
(5.58a)

C
[6 0
−2 0

]
= 1

20∇
(5)∇(4)G4 =

(τ2
π

)2(
G4Ĝ2

2 − 7G6Ĝ2 + 5G2
4

)
. (5.58b)

In the ModularGraphForms package, the Cauchy–Riemann derivatives (5.47) are imple-
mented in the function CHolCR for the holomorphic case and CAHolCR for the antiholomorphic
case. For clarity, the result is returned as it comes out of the action (5.47) of ∇(a) hence, to
obtain the derivative in canonical representation, we have to apply CSort, e.g.

In[30]:= CHolCR[c[1 1
1 1 ,

1 1
1 1 ,

1 1
1 1 ,

1 1
1 1 ,

1 1
1 1]]//CSort

Out[30]= 8 C
[1 1
1 1

1 1
1 1

1 1
1 1

1 2
1 0

1 1
1 1

]
+ 2 C

[1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 2
1 0

]
.

The functions CHolCR and CAHolCR can also be used to calculate derivatives of holomorphic
Eisenstein series,

In[31]:= CHolCR[g[4]]
CHolCR[%]

CHolCR[gHat[2]]

Out[31]= 4 C
[5 0

-1 0
]

– 31 –

Out[32]= 20 C
[6 0

-2 0
]

Out[33]= 2 C
[3 0

-1 0
]
.

The simplifications of these expressions by means of the Ramanujan identities (5.55), (5.56)
and (5.58) and higher-weight generalizations is performed by the function DiCSimplify, if the
option basisExpandG is set to True, e.g.

In[34]:= DiCSimplify[Out[31], basisExpandG True]
DiCSimplify[Out[32], basisExpandG True]

DiCSimplify[Out[33], basisExpandG True]

Out[34]=
14 G6 τ 2

π
− 4 G4 Ĝ2 τ 2

π

Out[35]=
100 G2

4 τ
2
2

π2 − 140 G6 Ĝ2 τ
2
2

π2 + 20 G4 Ĝ
2
2 τ

2
2

π2

Out[36]=
5 G4 τ 2

π
− Ĝ

2
2 τ 2

π
.

Using the techniques outlined above, DiCSimplify can decompose any mgf of the form C
[
k 0
−n 0

]
or C

[−n 0
k 0

]
with k, n ∈ N0 and k > n into the ring of holomorphic Eisenstein series and powers

of Ĝ2 and τ2
π (or c.c.).

6 Holomorphic Subgraph Reduction

Using the relatively straightforward techniques discussed in the previous section, many identi-
ties between mgfs can be derived. However, an important class of identities is still missing to
decompose all relevant mgfs into the basis to be presented in Section 9, namely holomorphic
subgraph reduction. In this section, we will review hsr as it was introduced first for dihedral
graphs [8] and the extension of this technique to higher-point graphs [19].7

The basic idea behind hsr is the following: If an mgf has a closed subgraph (i.e. a
subgraph which forms a loop) in which all edges have only holomorphic momenta (i.e. the
decorations are all of the form (a, 0)), then one can apply the partial-fraction decomposition

1
pa(q − p)b =

a∑
k=1

(
a+ b− k − 1

a− k

)
1

pkqa+b−k +
b∑

k=1

(
a+ b− k − 1

b− k

)
1

qa+b−k(q − p)k (6.1)

to the summand and perform the sum over the loop momentum explicitly. Since for certain
values of a, b this sum is only conditionally convergent, it has to be supplied with a summation

7In the references, a different convention for mgfs was used, which differs from the one used here by factors
of τ2 and π.

– 32 –

prescription, which we will choose to be Eisenstein summation, to be defined below in (6.4).
This procedure however breaks the modular transformation properties at the level of the
individual contributions. As shown in [8] for two-point graphs and in [19] for general graphs,
the terms with incorrect modular properties cancel out in the final expression and one obtains
a decomposition of the original mgf into terms which all have at least one loop order less.

As an example, consider the trihedral graph C
[1 2

0 1
1 2
0 1

1 2
0 1
]
, which has a closed three-point

holomorphic subgraph. Using the techniques discussed in this section, it can be decomposed
into

C
[1 2

0 1
1 2
0 1

1 2
0 1
]

= 6 C
[2

1
1 2
0 1

2 2
0 1
]
− 3 C

[2 3 4
1 0 2

]
+ 3 C

[1 2 4
0 1 2

]
Ĝ2 + π

τ2
C
[2 2 4
−1 1 2

]
− 2 π

τ2
C
[2

1
1 2
−1 1

1 2
0 1
]
.

(6.2)

6.1 Dihedral holomorphic subgraph reduction

Dihedral graphs with a holomorphic subgraph have the form C
[a+ a− A

0 0 B

]
. The edges with labels

(a+, 0) and (a−, 0) form the holomorphic subgraph and the sum over the loop momentum
associated to this subgraph can be isolated using the partial-fraction decomposition (6.1).
This sum takes the form

Qk(p0) =
′∑

p 6=p0

1
pk
, k ≥ 1 (6.3)

which is not absolutely convergent for k = 1, 2. Using the Eisenstein summation prescription

∑
E

p 6=r+sτ
f(p) = lim

N→∞

N∑
n=−N
n6=s

 lim
M→∞

M∑
m=−M

f(m+ nτ)

+ lim
M→∞

M∑
m=−M
m6=r

f(m+ sτ) , (6.4)

we assign the values

Q1(p0) = − 1
p0
− π

2τ2
(p0 − p̄0) (6.5a)

Q2(p0) = − 1
p02 + Ĝ2 + π

τ2
(6.5b)

Qk(p0) = − 1
p0k

+ Gk k ≥ 3 (6.5c)

to the sums (6.3). Note that the terms π
τ2
p0 in (6.5a) and π

τ2
in (6.5b) do not the have modular

weight we associate to the corresponding lhss. However, these terms cancel out in the final

– 33 –

result and we obtain [8]

C
[a+ a− A

0 0 B

]
= (−1)a+Ga0 C

[
A
B

]
−
(
a0
a−

)
C
[
a0 A
0 B

]
+

a+∑
k=4

(
a0 − 1− k
a+ − k

)
Gk C

[
a0−k A

0 B

]
+

a−∑
k=4

(
a0 − 1− k
a− − k

)
Gk C

[
a0−k A

0 B

]
(6.6)

+
(
a0 − 2
a+ − 1

){
Ĝ2 C

[
a0−2 A

0 B

]
+ π

τ2
C
[a0−1 A
−1 B

]}
.

For instance, the two-loop graph C
[1 2 2

0 0 1
]
is decomposed into one-loop graphs by (6.6),

C
[1 2 2

0 0 1
]

= 3 C
[5 0

1 0
]
− Ĝ2 C

[3 0
1 0
]
− π

τ2
G4 . (6.7)

In the ModularGraphForms Mathematica package, the dihedral hsr (6.6) is performed
by the function DiCSimplify. With the default options, DiCSimplify also applies all known
dihedral basis decompositions to the result and uses momentum conservation to remove neg-
ative entries where possible as will be detailed in Section 7.1. Both features can be disabled
by setting the Boolean options momSimplify and useIds to False (they are True by default).
Hence, in order to get just the result of the formula (6.6), we can run e.g.

In[37]:= DiCSimplify[c[2 2 3 6
1 2 0 0], momSimplify False, useIds False]

Out[37]= − 84 C
[2 2 9

1 2 0
]

+ 6 C
[2 2 5

1 2 0
]

G4 + C
[2 2 3

1 2 0
]

G6 + 21 C
[2 2 7

1 2 0
]

Ĝ2 +
21 π C

[2 2 8
1 2 -1

]
τ 2

.

The function DiCSimplify applies the formula (6.6) always to the two leftmost holomorphic
columns. It also performs antiholomorphic subgraph reduction by applying the complex con-
jugate of (6.6) to graphs with a closed antiholomorphic subgraph. In order to deactivate
dihedral hsr in DiCSimplify or CSimplify, one can set the Boolean option diHSR to False (the
default is True).

6.2 Higher-point holomorphic subgraph reduction

In [19], hsr for higher-point graphs was worked out. Again, we can separate the sum over the
loop momentum of the holomorphic subgraph using partial-fraction decomposition. However,
as a novelty from three points onward, on top of sums of the form

Qk(p1, . . . , pn) =
′∑

p6=p1,...,pn

1
pk
, k ≥ 1 , (6.8)

– 34 –

which are a straightforward generalization of the sums (6.3), also shifted lattice sums of the
form

′∑
p 6=p1,...,pn

1
pi − p

(6.9)

appear. Due to a subtlety in the Eisenstein summation prescription, we cannot just shift the
expressions on the rhs of (6.5a) and add the additional excluded points. Accounting for this,
we have for k ≥ 2

Q2(p1, . . . , pn) = Ĝ2 + π

τ2
−

n∑
i=1

1
p2
i

(6.10a)

Qk(p1, . . . , pn) = Gk −
n∑
i=1

1
pki
, k ≥ 3 . (6.10b)

and for k = 1, we replace

′∑
p 6=p1,...,pn

1
p
→ Q1(p1, . . . , pn)

′∑
p 6=p1,...,pn

1
pi − p

→ Q1(pi, pi − p1, . . . , pi − pn︸ ︷︷ ︸
omit pi − pi

) (6.11)

and set

Q1(p1, . . . , pn) = −
n∑
i=1

1
pi
− π

(n+ 1)τ2

n∑
i=1

(pi − p̄i) . (6.12)

With the expressions (6.10) and (6.12), any modular graph form with an n-point holomor-
phic subgraph can be decomposed. In particular, in [19], a closed expression for three-point
hsr was derived, cf. e.g. (6.2). For this case, we illustrate a general feature of higher-point
hsr: Since there are several ways in which the partial-fraction decomposition can be done, dif-
ferent expressions for the decomposition can be obtained. For instance the graph C

[1
0

1 1
0 1

1 2
1 0
]

can be decomposed into

C
[1

0
1 1
0 1

1 2
1 0
]

= C
[3 0

1 0
]2 + C

[1 2 3
1 0 1

]
− 3 C

[1 2 3
1 1 0

]
+ Ĝ2 C

[1 1 2
0 1 1

]
+ π

τ2
C
[1 2 2

1 −1 1
]

(6.13)

as well as into

C
[1

0
1 1
0 1

1 2
1 0
]

= 4 C
[6 0

2 0
]
−Ĝ2 C

[4 0
2 0
]
+3 C

[1 1 4
0 1 1

]
−C
[1 2 3

1 1 0
]
−Ĝ2 C

[1 1 2
0 1 1

]
− π
τ2
C
[5 0

1 0
]
− π
τ2
C
[1 1 3

0 1 0
]
,

(6.14)

by changing how the partial-fraction decomposition is executed [19].

– 35 –

Performing the hsr using the expressions for the Qi derived in this section is laborious
and it may be challenging to write the final expression back into mgfs in the general case.
For this reason, we provide a different procedure to compute n-point hsr in Section 6.3.

In the Mathematica package ModularGraphForms, the trihedral two-point hsr formula
from [19] is implemented in the function TriCSimplify. Again, with the default options, neg-
ative entries are removed via momentum conservation and identities from the database are
applied, so in order to just apply hsr, we run

In[38]:= TriCSimplify[c[2 2 1
0 0 1 ,

1 1
1 1 ,

1 1
1 1], momSimplify False, useIds False]

Out[38]= C
[2 2

0 0
]

C
[1
1

1 1
1 1

1 1
1 1

]
− 6 C

[1 1
1 1

1 1
1 1

1 4
1 0

]
+ 2 C

[1 1
1 1

1 1
1 1

1 2
1 0

]
Ĝ2 +

2 π C
[1 1
1 1

1 1
1 1

1 3
1 -1

]
τ 2

.

The three-point hsr detailed in [19] is also performed by the function TriCSimplify. For
instance,

In[39]:= DiCSimplify[TriCSimplify[c[1 1
1 0 ,

1 2
1 0 ,

1
0]], momSimplify False, useIds False]

Out[39]= C
[3 0

1 0
]2 + C

[1 2 3
1 0 1

]
− 3 C

[1 2 3
1 1 0

]
+ C

[1 1 2
0 1 1

]
Ĝ2 +

π C
[1 2 2

1 -1 1
]

τ 2
,

reproducing (6.13). TriCSimplify performs hsr on the first suitable holomorphic subgraph.
It first performs the two-point version, then the three-point version, also antiholomorphic
subgraphs are simplified. With the Boolean option triHSR, trihedral hsr can be deactivated
(its default value is True) and with the Boolean options tri2ptHSR and tri3ptHSR, the two-
and three-point versions can be deactivated individually.

6.3 Holomorphic subgraph reduction and Fay identities

The discussion of holomorphic subgraph reduction has so far been exclusively in terms of the
sum representation of the mgfs. In the integral representation, hsr corresponds to certain
identities for products of the f (n)(z, τ) (2.12b). These descend from the Fay identity of the
Kronecker–Eisenstein series [40, 46]

Ω(z1, η1, τ)Ω(z2, η2, τ) = Ω(z1−z2, η1, τ)Ω(z2, η1+η2, τ) + Ω(z2−z1, η2, τ)Ω(z1, η1+η2, τ)
(6.15)

– 36 –

by means of the expansion (2.11) and are given by [42]

f
(a1)
12 f

(a2)
13 = (−1)a1−1f

(a1+a2)
23 +

a1∑
j=0

(
a2 + j − 1

j

)
f

(a1−j)
32 f

(a2+j)
13

+
a2∑
j=0

(
a1 + j − 1

j

)
f

(a1+j)
12 f

(a2−j)
23 ,

(6.16)

where a1, a2 ≥ 0. According to (2.19), a factor f (a)
ij in a Koba–Nielsen integral corresponds

to a (holomorphic) (a, 0)-edge. Hence, when (6.16) is applied in a Koba–Nielsen integrand, it
generates an identity between modular graph forms with holomorphic edges.

6.3.1 Holomorphic subgraphs with more than two vertices

Consider an mgf with an n-point holomorphic subgraph (n > 2) given by a Koba–Nielsen
integral over C(a1,0)

12 C
(a2,0)
13 = ±f (a1)

12 f
(a2)
13 and n−2 further factors C(ak,0)

ij , as well as additional
non-holomorphic edges. In this case, by focusing on the holomorphic edges, the mgf-identity
implied by (6.16) can be written graphically as

1

2

3

(a1,0)

(a2,0)

= (−1)a1 2 3(a1+a2,0)

−
(
a1+a2−1

a1

)
1

2

3(a1+a2,0)

−
(
a1+a2−1

a2

)
1

2

3

(a1+a2,0) (6.17)

+
a1−1∑
j=0

(
a2+j−1

j

)
1

2

3

(a1−j,0)

(a2+j,0)

+
a2−1∑
j=0

(
a1+j−1

j

)
1

2

3

(a1+j,0) (a2−j,0) ,

where the ellipsis denotes a sequence of holomorphic edges such that the lhs forms a closed
n-point holomorphic graph. The full mgf has additional non-holomorphic edges which can in
general connect any vertices and are not drawn in (6.17). In going from (6.16) to (6.17), we
have separated the contributions form f (0) = 1 since f (0) 6= −C(0,0), according to (5.33). In
the representation (6.17) it is clear that on the rhs each term has either one edge less than
the lhs (terms two and three) or the closed holomorphic subgraph has one edge less (terms
four and five) or both (the first term). If a term on the rhs has an edge less than the lhs,
the associated mgf has one loop order less when accounting for the non-holomorphic edges
suppressed in (6.17) as well. Hence, the Fay identities (6.16) allow to reduce n-point hsr to
(n− 1)-point hsr plus graphs of lower loop order.

– 37 –

As an example, consider the tetrahedral graph

C
[1

0
1
0

1
1

1
0

1
0

1
1

]
=

1

2

3

4
(1, 0)

(1, 0)
(1, 1)

(1, 0)

(1, 0)
(1, 1)

, (6.18)

which has a four-point holomorphic subgraph and appears in the four-gluon amplitude in
the heterotic string at the order α′2 [20]. By applying (6.17) to the two holomorphic edges
connected to vertex 4, we obtain the decomposition (with the graphs not yet in their canonical
representation)

C
[1

0
1
0

1
1

1
0

1
0

1
1

]
= −C

[1
0 ∅ 1 2

1 0
1
0

1
0

1
1

]
− C

[1
0 ∅ 1

1
2
0

1
0

1
1

]
− C

[1
0

2
0

1
1

∅ 1
0

1
1

]
+ C

[1
0 ∅ 1 1

0 1
1
0

1
0

1
1

]
− C

[1
0

1
0

1 1
0 1

∅ 1
0

1
1

]
.

(6.19)

In this expression, every graph has one empty block and can be simplified using the topological
simplifications of Section 5.2 to

C
[1

0
1
0

1
1

1
0

1
0

1
1

]
= 2 C

[1 2 3
0 1 1

]
+ 2 C

[1
0

1 1
0 1

1 2
0 1
]
. (6.20)

In this way, the four-point hsr in the original graph was reduced to three-point hsr. The
three-point hsr can be performed either via another Fay identity or using the formula from
[19]. Together with the basis decompositions to be discussed in Section 9, we obtain the final
result

C
[1

0
1
0

1
1

1
0

1
0

1
1

]
= 2 C

[6 0
2 0
]
− 4 C

[3 0
1 0
]2 + 2Ĝ2 C

[4 0
2 0
]
− 12 π

τ2
C
[5 0

1 0
]

+ 4 π
τ2

Ĝ2 C
[3 0

1 0
]

+ 4
(
π

τ2

)2
G4 .

(6.21)

In general, the closed holomorphic subgraph is of course not necessary for the identity
(6.16) to hold. Hence, if we remove the edges between vertices 2 and 3 from (6.17), this gener-
ates identities between modular graph forms which have at least two non-parallel holomorphic

– 38 –

edges both connected to the same vertex. For trihedral graphs, we have e.g.

C
[
A1 a1
B1 0

A2 a2
B2 0

A3
B3

]
= (−)a1+a2 C

[
A1
B1

A2
B2

A3 a1+a2
B3 0

]
+ (−)a1+1

(
a1+a2−1

a1

)
C
[
A1
B1

A2 a1+a2
B2 0

A3
B3

]
+ (−)a2+1

(
a1+a2−1

a2

)
C
[
A1 a1+a2
B1 0

A2
B2

A3
B3

]
+ (−)a1

a1−1∑
j=0

(
a2+j−1

j

)
C
[
A1
B1

A2 a2+j
B2 0

A3 a1−j
B3 0

]
+ (−)a2

a2−1∑
j=0

(
a1+j−1

j

)
C
[A1 a1+j
B1 0

A2
B2

A3 a2−j
B3 0

]
.

(6.22)

This identity will be a key ingredient in deriving the basis decompositions for all dihedral and
trihedral modular graph forms of total modular weight at most 12 is Section 9. If the

[
A3
B3

]
-

block contains a holomorphic edge, (6.22) is a reduction of three-point hsr to two-point hsr
and graphs of lower loop order. In this case, the Fay identity could be used on any pair of non-
parallel holomorphic edges and this choice corresponds to the different ways to perform the
partial-fraction decomposition in Section 6.2, leading to interesting identities between mgfs
in general. As an example, consider the graph C

[1
0

1 1
0 1

1 2
1 0
]
which was decomposed using the

traditional hsr method in Section 6.2. Applying (6.22) to the first two holomorphic columns
of this graph leads to

C
[1

0
1 1
0 1

1 2
1 0
]

= C
[
∅ 1

1
1 2 2
1 0 0

]
− C

[
∅ 1 1

0 1
1 1 2
0 1 0

]
+ C

[
∅ 1 2

1 0
1 2
1 0
]
− C

[1
0

1
1

1 1 2
0 1 0

]
+ C

[1
1

2
0

1 2
1 0
]
,

(6.23)

which can be shown to be equal to the decomposition (6.13) upon using the topological
simplifications from Section 5.2 and the dihedral hsr formula (6.6). On the other hand, we
can also apply (6.22) to the second and third holomorphic edges, yielding

C
[1

0
1 1
0 1

1 2
1 0
]

= C
[1

0
1
1

1 3
1 0
]
− C

[1
1

1
1

1 3
0 0
]

+ C
[1

1
1 1
0 1

1 2
0 0
]
. (6.24)

This can be simplified to (6.14) by topological identities.

6.3.2 Holomorphic subgraphs with two vertices

The restriction of (6.17) to holomorphic edges which are not parallel arises because the Fay
identity for Kronecker–Eisenstein series (6.15) involves the three different z1, z2 and z1−z2.

– 39 –

As discussed in Appendix A of [29], by taking the limit z1 → z2 we obtain the Fay identity

f (a1)(z)f (a2)(z) = (−1)a2Θ(a1+a2−4)Ga1+a2 +
(
a1+a2
a2

)
f (a1+a2)(z)

−
a1∑
k=4

(
a1+a2−1−k

a2 − 1

)
Gkf

(a1+a2−k)(z)−
a2∑
k=4

(
a1+a2−1−k

a1 − 1

)
Gkf

(a1+a2−k)(z)

−
(
a1+a2−2
a2 − 1

)(
Ĝ2f

(a1+a2−2)(z) + ∂zf
(a1+a2−1)(z)

)
, (6.25)

where a1, a2 > 0 and Θ is the Heaviside step-function

Θ(x) =

1 if x ≥ 0

0 if x < 0
. (6.26)

Integrating (6.25) against a suitable product of C(a,b) functions yields two-point hsr upon
using that

∂zf
(a1+a2−1)(z) = (−1)a1+a2+1 π

τ2
C(a1+a2−1,−1)(z) (6.27)

according to (5.22). E.g. when (6.25) for a1 + a2 ≥ 3 is integrated against
∏R
i=1C

(ai,bi), we
obtain the dihedral hsr identity (6.6).

Together, (6.16) and (6.25) allow to perform holomorphic subgraph reduction of holo-
morphic subgraphs with arbitrarily many vertices in a compact way. Note that when using
Fay identities, we circumvent the need to evaluate conditionally convergent sums with the
Eisenstein summation prescription as shown in Section 6.2. For trihedral three-point hsr, it
was checked explicitly in many cases that a combination of (6.22) and two-point hsr yields
an equivalent expression to the one obtained from the formula in [19].

In the ModularGraphForms package, the trihedral Fay identities (6.22) are implemented in
the function TriFay which returns an equation. The first argument of this function is the trihe-
dral mgf to be decomposed, the second (optional) argument has the form {{b1,c1},{b2,c2}},
where b1 and b2 are the blocks of the (anti)holomorphic edges to be used and c1 and c2 are
the columns of those edges. If the second argument is omitted, the first suitable pair of
(anti)holomorphic edges is selected automatically. As an example, we will consider the de-
composition of the graph C

[1
0

1 1
0 1

1 2
1 0
]
as discussed around (6.23) and (6.24). In order to apply

(6.22) to the first two holomorphic columns and then simplify the result to obtain (6.13), we
run

In[40]:= TriFay[c[10 , 1 1
0 1 ,

1 2
1 0], {{1, 1}, {2, 1}}]

DiCSimplify[TriCSimplify[%[[2]]], useIds False, momSimplify False]

– 40 –

Out[40]= C
[1
0

1 1
0 1

1 2
1 0

]
== C

[
{} 1

1
1 2 2
1 0 0

]
− C
[

{} 1 1
0 1

1 1 2
0 1 0

]
+ C
[

{} 1 2
1 0

1 2
1 0

]
− C
[1
0

1
1

1 1 2
0 1 0

]
Out[41]= C

[3 0
1 0

]2 + C
[1 2 3

1 0 1
]
− 3 C

[1 2 3
1 1 0

]
+ C

[1 1 2
0 1 1

]
Ĝ2 +

π C
[1 2 2

1 -1 1
]

τ 2

reproducing (6.13). Similarly, (6.14) can be obtained by changing the second argument of
TriFay in In[40] to {{2, 1}, {3, 2}} and replacing the option momSimplify False of DiCSimplify
by diHSR False.

As mentioned above, trihedral three-point hsr is performed by the function TriCSimplify,
which implements the formula from [19]. If the Boolean option tri3ptFayHSR (which is in-
herited by CSimplify), is set to True (the default is False), the three-point hsr is instead
performed using the Fay identity (6.22) and subsequent two-point hsr. The results of apply-
ing the two techniques may look different, if the basis decompositions from Section 9 are not
applied, but they are in fact equivalent.

7 The sieve algorithm

With the techniques described in the last two sections, many valuable identities between
modular graph forms can be derived. However, if one is interested in simplifying a particular
mgf, e.g. one which has appeared as an expansion coefficient of a Koba–Nielsen integral, it
is not always clear which techniques to combine to obtain the desired decomposition. In this
situation, the sieve algorithm, first introduced in [8], can be used: It allows for a systematic
decomposition (up to an overall constant) of arbitrary mgfs, as long as the basis for the
decomposition and all mgfs of lower total modular weight a+ b are known.

7.1 Constructing identities

As a starting point, assume that we have a combination F of mgfs of homogeneous modular
weight (|A|, |B|) and we want to check whether or not it vanishes. The idea behind the sieve
algorithm is to repeatedly take derivatives of F using the Maaß operator ∇(|A|) defined in
(5.40). Due to an intricate interplay between momentum conservation identities and hsr, de-
scribed in detail in [8], every derivative can be expressed as a linear combination of products of
holomorphic Eisenstein series, mgfs with non-negative antiholomorphic labels for each edge,
τ2 with non-positive exponent, mgfs of the form C

[
k 0
−n 0

]
with k > n and modular invariant

factors. After taking |B| derivatives, the antiholomorphic modular weight vanishes according
to (5.41) and hence each term in the derivative has to factorize, since any unfactorized mgfs
would have to have vanishing antiholomorphic labels and therefore be amenable to hsr, lead-
ing to a factorized expression. Using the generalized Ramanujan identities from Section 5.5,
the factors of the form C

[
k 0
−n 0

]
can be decomposed as well. Since each term is factorized, the

total modular weight a+ b of every leftover mgf is strictly less than |A|+ |B| and if we know

– 41 –

all identities between mgfs of lower total modular weight, it is manifest if the |B|th derivative
of F vanishes or not. If F has |A| = |B|, then Lemma 1 in [8] guarantees that if the derivative
vanishes, F = 0 up to an overall constant. If |A| 6= |B| and F can be written as the derivative
of an expression with |A| = |B|, this primitive vanishes up to a constant, so F = 0 as well.
We conjecture that the same is true if F cannot be written as the derivative of an expression
with |A| = |B|, in line with all cases we tested. In this way, we can generate identities at
progressively higher total modular weight.

The Cauchy–Riemann derivative of a holomorphic Eisenstein series has the form C
[2k+1 0
−1 0

]
,

i.e. it is a graph with one edge with negative antiholomorphic weight. In this case, momentum
conservation (and hsr) cannot be used to remove the negative entry and in the original ver-
sion published in [8], this fact was used to sieve the space of mgfs for identities: After taking a
derivative and trading negative antiholomorphic entries for holomorphic Eisenstein series, one
subtracts the same derivative of an mgf in such a way that all holomorphic Eisenstein series
cancel. Then, one can take the next derivative of the combined expression without generating
irremovable negative antiholomorphic labels. After having taken |B| derivatives, the result
is purely holomorphic (and still modular), so we can expand it in the ring of holomorphic
Eisenstein series. By subtracting one final mgf such that this derivative vanishes, one has
constructed an identity up to an overall constant. In fact, if a combination of modular graph
forms vanishes, then the holomorphic Eisenstein series have to cancel out in every derivative.
This can however only be verified, if the prefactors of the holomorphic Eisenstein series are
linearly independent. Since they carry lower total modular weight than the complete expres-
sion, this means that we need to know all identities between graphs of lower total modular
weight.

In general, finding mgfs with the correct Cauchy–Riemann derivatives to cancel the
holomorphic Eisenstein series can be challenging but if we want to find a decomposition of an
mgf into a set of basis mgfs, we can just take the derivatives of a linear combination of the
basis elements and adjust the coefficients so that the holomorphic Eisenstein series cancel.
This is what is done in the implementation of the sieve algorithm in the ModularGraphForms
package.

Instead of canceling holomorphic Eisenstein series in every derivative as described above
and in [8], one can also use the generalized Ramanujan identities discussed in Section 5.5 to
perform the derivatives of the holomorphic Eisenstein series. In this way, the highest derivative
of any mgf can be written in terms of holomorphic Eisenstein series and mgfs of lower total
modular weight for which we assume that the relations are known, hence identities can be
found explicitly.

– 42 –

Consider e.g. the weight-(4, 4) mgf C
[1 1 2

1 2 1
]
. The fourth derivatives of this graph and the

weight-(4, 4) basis elements C1,1,2, E2
2 and E4 are

∇(4)4 C
[1 1 2

1 2 1
]

= 120E2G4Ĝ2
2 − 840E2G6Ĝ2 + 600E2G2

4 − 360G2
4

+ 840G6
τ2
π
C
[3 0

1 0
]
− 240G4Ĝ2

τ2
π
C
[3 0

1 0
] (7.1a)

∇(4)4 C
[1 1 2

1 1 2
]

= 288G2
4 + 48G4Ĝ2

τ2
π
C
[3 0

1 0
]
− 168G6

τ2
π
C
[3 0

1 0
]

(7.1b)

∇(4)4
((

π

τ2

)2
E2

2

)
= 240E2G4Ĝ2

2 − 1680E2G6Ĝ2 + 1200E2G2
4 + 216G2

4

− 384G4Ĝ2
τ2
π
C
[3 0

1 0
]

+ 1344G6
τ2
π
C
[3 0

1 0
] (7.1c)

∇(4)4
((

π

τ2

)4
E4

)
= 180G2

4 , (7.1d)

where we used the notation (5.43) and simplified all derivatives of holomorphic Eisenstein
series using the techniques from Section 5.5. Setting a linear combination of these four ex-
pressions to zero and requiring the coefficients of the various terms on the rhs to vanish
leaves

∇(4)4
(
C
[1 1 2

1 2 1
]

+ C
[1 1 2

1 1 2
]
− 1

2

(
π

τ2

)2
E2

2 + 1
2

(
π

τ2

)4
E4

)
= 0 (7.2)

as the only solution. If no solution had existed, the four mgfs in (7.1) would have been proven
to be linearly independent. Lemma 1 in [8] now states that this implies

C
[1 1 2

1 2 1
]

+ C
[1 1 2

1 1 2
]
− 1

2

(
π

τ2

)2
E2

2 + 1
2

(
π

τ2

)4
E4 =

(
π

τ2

)4
const. (7.3)

with some τ -independent constant.8 Using the techniques discussed in the previous sections,
one can also decompose C

[1 1 2
1 2 1

]
directly and finds that the constant vanishes in this case (as

expected since there is no single-valued mzv at the expected transcendental weight 4).
In the ModularGraphForms package, the removal of edge labels −1 for dihedral and trihe-

dral graphs is done by the functions DiCSimplify and TriCSimplify, if the option momSimplify

is set to True (the default). The sieve algorithm itself is implemented in the function CSieveDecomp,
which uses the traditional method of canceling holomorphic Eisenstein series in every step. If
no further options are given, this function tries to decompose the graph given in its argument

8Due to our normalization conventions, the graphs with equal total holomorphic and antiholomorphic edge
labels are not modular invariant, hence the integration constant is multiplied by a suitable power of π

τ2
.

– 43 –

into the basis discussed in Section 9, e.g. for the graph C
[1 1 2

1 2 1
]
we considered above, we can

run

In[42]:= CSieveDecomp[c[1 1 2
1 2 1]]

Out[42]= − C
[1 1 2

1 1 2
]

+ π4 E2
2

2 τ 4
2
− π4 E4

2 τ 4
2

+
π4 intConst

[1 1 2
1 2 1

]
τ 4

2
,

reproducing (7.3). The last term in the output is an undetermined integration constant,
labeled by the exponent matrix of the original graph. Such a constant is added for all graphs
with equal holomorphic and antiholomorphic weight. Setting the Boolean option verbose of
CSieveDecomp to True prints a detailed progress report into the notebook with the expressions
appearing in each derivative and the prefactors of the holomorphic Eisenstein series which
are set to zero. For instance, the output for the third derivative in the computation above is

3rd derivative:

− 168 C
[7 0

1 0
]
− 108 bCoeff[1] C

[7 0
1 0

]
− 120 bCoeff[2]C

[7 0
1 0

]
+

12 C
[3 0

1 0
]

G4 + 12 bCoeff[1] C
[3 0

1 0
]

G4

(Anti-)holomorphic Eisenstein series:

{G4}

Coefficients that should be zero:{
12 C

[3 0
1 0

]
+ 12 bCoeff[1] C

[3 0
1 0

]}
Find solution for all{

C
[3 0

1 0
]}

Solutions:

{{bCoeff[1] − 1}} .

As one can see, CSieveDecomp forms a linear combination of the basis elements with coefficients
bCoeff and subtracts it from the mgf which is decomposed. Then, derivatives are taken and
in each step the coefficients of the holomorphic Eisenstein series are set to zero by fixing some
of the bCoeff.

The basis used for the decomposition is determined by the option basis of CSieveDecomp.
If basis is an empty list (the default), the basis is determined by the function CBasis, to be
discussed in more detail in Section 9. Otherwise, one can also supply a list of mgfs of the
same weight as the mgf to be decomposed. E.g. we can reproduce the momentum conservation
identity of the seed C

[1 2 2
1 2 1

]
(up to an overall constant) by running

– 44 –

In[43]:= CSieveDecomp[c[1 1 2
1 2 1], basis {c[0 2 2

1 1 2], c[1 1 2
1 1 2]}]

Out[43]= − C
[0 2 2

1 1 2
]
− C

[1 1 2
1 1 2

]
+
π4 intConst

[1 1 2
1 2 1

]
τ 4

2
.

If not all coefficients can be fixed (e.g. because the basis provided is not linearly indepen-
dent), bCoeff will appear in the output. For further options and the meaning of various error
messages, cf. Appendix A.

8 Divergent modular graph forms

So far, we have not discussed the convergence properties of the lattice sum (2.23) of mgfs,
but, of course, if the edge labels become too low, the sum (2.23) is not absolutely convergent
any more. Interestingly, conditionally convergent or divergent sums can arise even when one
applies the techniques above only to convergent sums. Sometimes, the divergence cannot be
avoided, e.g. when using the sieve algorithm to find decompositions of certain convergent
graphs. When deriving identities, one way to deal with this phenomenon is to just disregard
all identities in which divergent graphs appear. This is the approach taken in Section 9 for
(convergent) dihedral and trihedral modular graph forms of weight a + b ≤ 10. However, in
this way, one misses many valuable identities and hence it is desirable to have at least a partial
understanding of how to interpret divergent mgfs. In this section, we will describe concrete
results which go in this direction. Below, we will use these divergent techniques to obtain all
dihedral and trihedral (convergent) basis decompositions for a+ b = 12.

8.1 Divergence conditions

In this section, we will give simple power-counting arguments to determine if a particular mgf
is absolutely convergent or not, building on the behavior of holomorphic Eisenstein series, for
which we know that

Ga =
′∑
p

1
pa

(8.1)

is absolutely convergent for a ≥ 3, conditionally convergent for a = 2 and divergent for a ≤ 1.
Accordingly, we will call an mgf convergent if all momenta in the sum (2.23) have at least
three powers in the denominator (adding powers of p and p̄) and divergent if any momentum
appears with two or less powers in the denominator.9

In order to determine the total powers with which a momentum can appear, one has
to perform some of the sums first by using the momentum-conserving delta functions (cf.

9Note that this simple power-counting criterion does not constitute a proof of the convergence or divergence
of the lattice sum of the mgf. In fact, as we will discuss below, this argument tends to underestimate the
convergence of the sum since possible cancellations are not accounted for.

– 45 –

e.g. (4.1)). Of course, there is considerable freedom in which sums we choose for this, hence
different final expressions can result, with different total powers of the momenta. These ex-
pressions correspond to different rotations of the coordinate axes in the lattice spanned by
the momenta. Since by counting the total exponents, we only test the convergence proper-
ties along the coordinate axes, we pick the representation with the lowest total power. To
illustrate this, consider the dihedral graph

C
[1 1 2

0 0 2
]

=
′∑

p1,p2,p3

δ(p1 + p2 + p3)
p1p2|p3|4

. (8.2)

We can use the delta function to perform either the p3 sum or the p2 sum, yielding the
expressions

C
[1 1 2

0 0 2
]

=
′∑

p1,p2

1
p1p2|p1 + p2|4

= −
′∑

p1,p3

1
p1(p1 + p3)|p3|4

. (8.3)

In the first of these expressions, p1 and p2 both come with a power of 5 in the denominator,
hence according to our criterion above, C

[1 1 2
0 0 2

]
should be convergent. In the second expression

in (8.3) however, p1 comes with a power of 2, hence, C
[1 1 2

0 0 2
]
should be divergent. The reason

that the first expression seems to be convergent is that the divergence lies in the direction of
p1 + p2 = const., whereas by counting the powers of p1 and p2, we only probed the directions
along those two momenta. Therefore, C

[1 1 2
0 0 2

]
is divergent.

To summarize, an mgf is only convergent if the powers of all momenta are at least three,
in all possible ways to solve the delta functions. We will translate this in the following into
conditions on the labels of the two-, three- and four-point graphs introduced in Section 4.

In dihedral graphs, if we perform the sum over momentum p with the delta function,
we will increase the total powers of all other momenta by the total power of p. Hence, our
divergence criterion for dihedral graphs, taking into account that we can use any of the
momenta to solve the delta function, is

C
[
A
B

]
convergent ⇔ min

i,j
i 6=j

(ci + cj) > 2 , (8.4)

where ci = ai+ bi and i, j run over all edges. The basic criterion (8.4) will have to be satisfied
for all edge bundles in higher-point graphs as well, but the global structure of these graphs
adds further criteria.

In general, solving delta functions is equivalent to assigning loop momenta consistently
to the edges of the graph. Hence, by going through the topologically distinct assignments, we
can see to which edges a certain momentum can propagate and hence what the convergence
conditions for this graph should be. When considering graphs with edge bundles between the

– 46 –

vertices (like the graphs introduced in Section 4), we first assign the total momenta of the
bundles consistently. Then, in a bundle of total momentum p, with edges carrying momenta
p1, . . . , pR, we can choose any edge to solve the momentum conservation constraint, e.g. we
can drop momentum p1 and assign momentum p−

∑R
i=2 pi to this edge. For the convergence

conditions, the implications of this are twofold: First, each momentum can appear in any
other edge of the same bundle, implying the condition (8.4) for each bundle. Second, the
total momenta of the edge bundles can appear in any edge, hence we should count the lowest
total power for each edge bundle when determining the convergence condition due to the total
momenta. We will go through this procedure for the three-point and all four-point graphs in
Section 4 in the following.

For trihedral graphs, there is just one way to assign the bundle momenta, namely

1

2

3

p p

p

, (8.5)

i.e. the graph C
[
A1
B1

A2
B2

A3
B3

]
is convergent iff

min
i,j
i 6=j

(
c

(k)
i + c

(k)
j

)
> 2 ∀ k ∈ {1, 2, 3} and č1 + č2 + č3 > 2 , (8.6)

where c(k)
i = a

(k)
i + b

(k)
i for i = 1, . . . , Rk in the notation of (4.6) and čk = mini(a(k)

i +b(k)
i),

where i runs over all edges in block k. As described above, the first condition is due to
the individual momenta in the edge bundles, whereas the second condition is due to the
total bundle momentum p. If C

[
A1
B1

A2
B2

A3
B3

]
carries only non-negative edge labels and does

not contain a (0, 0)-edge (i.e. is not factorizable), then ci ≥ 1 for all edges and the second
condition in (8.6) is always satisfied. The same will be true for all other conditions on top of
(8.4) for every block in the following.

As a straightforward extension of the trihedral result, the box graph C
[
A1
B1

A2
B2

A3
B3

A4
B4

]
is

convergent iff

min
i,j
i 6=j

(
c

(k)
i + c

(k)
j

)
> 2 ∀ k ∈ {1, 2, 3, 4} and č1 + č2 + č3 + č4 > 2 , (8.7)

with the same notation as in (8.6).

– 47 –

In kite graphs, there are two topologically distinct ways of assigning the total momenta
of the edge bundles. They are

1

2

3

4

p1 p1

p2

−p1 − p2 −p1 − p2

1

2

3

4

p1 p1

−p1 − p2

p2 p2

, (8.8)

implying that C[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

] is convergent iff

min
i,j
i 6=j

(
c

(k)
i + c

(k)
j

)
> 2 ∀ k ∈ {1, 2, 3, 4, 5}

and či + čj + č5 > 2 ∀ (i, j) ∈ {(1, 2), (3, 4)}

and č1 + č2 + č3 + č4 > 2 .

(8.9)

For tetrahedral graphs, there are again two topologically distinct ways to assign the three
independent total edge-bundle momenta,

1

2

3

4

p1

p2

p3

p2−p3

−p1−p3

p1+p2 1

2

3

4

p1

p2

p3p2+p3

−p1−p2

p1+p2+p3

. (8.10)

This implies that the tetrahedral graph

C
[A1
B1

A2
B2

A3
B3

A4
B4

A5
B5

A6
B6

]
(8.11)

– 48 –

is convergent iff

min
i,j
i 6=j

(
c

(k)
i + c

(k)
j

)
> 2 ∀ k ∈ {1, 2, 3, 4, 5, 6} (8.12)

and či+čj+čk > 2 ∀ (i, j, k) ∈ {(1, 2, 6), (1, 3, 5), (2, 3, 4), (4, 5, 6)}

and či+čj+čk+č` > 2 ∀ (i, j, k, `) ∈ {(1, 2, 4, 5), (1, 3, 4, 6), (2, 3, 5, 6)} .

Here, the penultimate line corresponds to all closed three-point subgraphs, the last line cor-
responds to all closed four-point subgraphs.

The convergence conditions discussed so far only depend on the sums of the holomorphic
and antiholomorphic labels of the edges. That this view tends to underestimate the con-
vergence of the sum can be seen by considering the two one-loop graphs C

[1 0
0 1
]
and C

[1 1
0 0
]
.

According to our condition (8.4), both graphs should be equally divergent. But of course,
while the sum C

[1 0
0 1
]
is divergent, the sum C

[1 1
0 0
]
is only conditionally convergent and we

regularize it by introducing additional powers of the momentum as in (2.33), yielding Ĝ2. In
general, graphs containing a [1 1

0 0] subblock can be simplified using the divergent hsr discussed
in Section 8.4.

In the integral representation, this can be seen as follows: f (1)(z, τ) ∼ 1
z is the only one

out of the f (a) which has a pole. The fact that C
[1 1

0 0
]
is conditionally convergent is reflected in

the fact that the integral of 1
z2 over a ball around the origin vanishes, whereas the divergence

of C
[1 0

0 1
]
is reflected in the divergence of the integral of |f (1)(z)|2 ∼ 1

|z|2 .
In the ModularGraphForms package, the function CCheckConv checks for convergence of

the argument using the criteria (8.4) and (8.6) on dihedral and trihedral graphs. The return
value is either True for convergent mgfs or False for divergent mgfs, e.g.

In[44]:= CCheckConv[c[0 1 2
1 0 2]]

CCheckConv[c[-1 2
0 2 ,

1 1
0 1 ,

1 1
0 1]]

Out[44]= False

Out[45]= False .

On top of dihedral and trihedral graphs, CCheckConv also checks for Ek, Gk and Gk with k < 2,
all other expressions are treated as convergent. As soon as any divergent object is detected
in the argument, CCheckConv returns False.

8.2 Divergent modular graph forms from Koba–Nielsen integrals

We study mgfs in order to expand Koba–Nielsen integrals comprising the Koba–Nielsen factor
(2.5) and a polynomial in the functions f (a)(z, τ) and f (b)(z, τ) given in (2.12b) and (2.12c). If

– 49 –

this polynomial contains a factor |f (1)
ij |2 (where f (1)

ij = f (1)(zi−zj)), the mgfs in the expansion
of the Koba–Nielsen integral are all divergent since |f (1)

ij |2 leads to a [1 0
0 1] subblock, which

violates the criterion (8.4).
However, the Koba–Nielsen factor regulates this divergence: Since the Jacobi theta func-

tion satisfies θ1(z, τ) ∼ z for small z, exp(sijGij) ∼ |zij |−2sij for small zij . Using integration-
by-parts identities for the Koba–Nielsen integral, one can in fact show that a Koba–Nielsen
integral with a |f (1)

ij |2 prefactor has a pole in the Mandelstams. Hence, the appearance of
divergent mgfs is merely a signal that one has tried to Taylor-expand around a pole.

As an example, consider the two-point Koba–Nielsen integral∫
dµ1

∣∣f (1)
12
∣∣2 KN2 , (8.13)

whose naive α′ expansion

π

τ2
E1 − s12

τ2
π
C
[0 1 1

1 0 1
]
− 1

2s
2
12

(
τ2
π

)2
C
[0 1 1 1

1 0 1 1
]

+O(s3
12) (8.14)

exhibits divergent mgfs at every order in s12. In order to make the pole in s12 manifest,
consider the derivative [29]

∂z̄2
(
f

(1)
12 KN2

)
. (8.15)

We now use (2.13) and

∂zj KNn =
∑
i 6=j

sijf
(1)(zij , τ) KNn , (8.16)

which follows from (2.14), to evaluate (8.15). With this, we obtain

∂z̄2
(
f

(1)
12 KN2

)
=
(
π

τ2
− πδ(2)(z12, z̄12)

)
KN2 +s12

∣∣f (1)
12
∣∣2 KN2 . (8.17)

Integrating over z2 and solving for (8.13) yields (since KN2 → 0 for z12 → 0 the term with
the delta function does not contribute)∫

dµ1
∣∣f (1)

12
∣∣2 KN2 = − 1

s12

π

τ2

∫
dµ1 KN2 , (8.18)

making the pole in s12 explicit. The remaining Koba–Nielsen integral in (8.18) has an ex-
pansion in convergent mgfs. Variations of this technique to expose the kinematic poles in
Koba–Nielsen integrals can be found in countless examples in the literature.

– 50 –

At two points, the integral (8.18) is the only Koba–Nielsen integral with a pole in the
Mandelstams and it is associated to the collision of the two punctures. At three point, several
different pole structures can appear, including nested poles incorporating the three-particle
Mandelstam variable

s123 = s12 + s13 + s23 (8.19)

due to the collision of all three punctures. The rewriting of all relevant three-point integrals
making the pole structure manifest and reducing divergent expansions to convergent ones as
above, is summarized in Appendix B.

In general, we can use the Fay identity (6.16) to rewrite the f (1)
ij contributions to the

integrand in terms of f (a)
ij with a > 1 and derivatives of the Koba–Nielsen factor as in

(8.16). When integrating these expressions by parts, we make one pole explicit and obtain an
expression with poles of lower multiplicity.

8.3 Divergent modular graph forms from momentum conservation

Apart from the expansion of Koba–Nielsen integrals, divergent modular graph forms can also
appear in momentum-conservation identities of convergent graphs. In the sum representation
(5.20) of momentum conservation, this means that the exchange of the sum over edges e′

and the sum over momenta pe is not allowed in this case. Performing it anyway leads to the
decomposition of a convergent series into a sum of divergent series. As an example, consider
the convergent seed C

[0 1 2
1 1 2

]
, whose antiholomorphic momentum-conservation identity is

C
[0 1 2

1 0 2
]

+ C
[0 1 2

1 1 1
]

+
(
π

τ2

)3
(E1E2 − E3) = 0 , (8.20)

after factorization. The graph C
[0 1 2

1 0 2
]
and the Eisenstein series E1 are both divergent.

When dealing only with convergent mgfs, momentum-conservation identities involving
divergent graphs should be discarded. However, as we will discuss shortly, it is sometimes
desirable to have identities between divergent mgfs and momentum-conservation identities
involving divergent mgfs can be used to define those divergent mgfs. In this framework, we
treat the divergent non-holomorphic Eisenstein series E1 as a basis element for divergent mgfs
and find decompositions in the same way as we did for convergent mgfs. E.g. (8.20), together
with the (convergent) identity

C
[0 1 2

1 1 1
]

= −1
2

(
π

τ2

)3
(E3 − ζ3) , (8.21)

– 51 –

can be used to decompose the divergent graph C
[0 1 2

1 0 2
]
,

C
[0 1 2

1 0 2
]

=
(
π

τ2

)3(3
2E3 − E1E2 + 1

2ζ3
)
. (8.22)

Note that this does not extend to momentum-conservation identities of divergent seeds which
have to be treated separately, cf. Section 8.6 below.

In particular, momentum-conservation identities involving divergent graphs can appear
in the sieve algorithm, when removing entries of −1 as described in Section 7.1. As an example
for this phenomenon, consider the graph C

[0 1 2 3
1 1 2 0

]
, whose Cauchy–Riemann derivative is given

by

∇(6) C
[0 1 2 3

1 1 2 0
]

= 3 C
[0 1 2 4

1 1 2 −1
]

+ 2 C
[0 1 3 3

1 1 1 0
]

+ C
[0 2 2 3

1 0 2 0
]
. (8.23)

The −1-entry in the first term can be removed by a momentum-conservation identity which
yields, after factorization and divergent hsr (to be discussed below in Section 8.4),

C
[0 1 2 4

1 1 2 −1
]

= 5 C
[0 2 5

1 2 0
]

+ C
[1 2 4

1 2 0
]
− C

[0 1 2 4
1 1 1 0

]
−G4 C

[0 1 2
1 0 2

]
− Ĝ2 C

[0 2 3
1 2 0

]
+ π

τ2

(
C
[0 2 4

1 1 0
]
− C

[6 0
2 0
])

+
(
π

τ2

)3
(E2 − E1E2) G4 .

(8.24)

As explained in Section 7.1, when constructing identities with the sieve algorithm, we seek to
cancel holomorphic Eisenstein series by adding suitable mgfs. In order to do this consistently,
we need to know all relations for the mgfs in the prefactor of the holomorphic Eisenstein series.
In the example (8.24), however, the prefactor of G4 is

−C
[0 1 2

1 0 2
]

+
(
π

τ2

)3
(E2 − E1E2) (8.25)

and hence in particular involves divergent mgfs. I.e. in this case, we need to know the de-
composition (8.22) to see explicitly that the divergence cancels out and to continue with the
sieve algorithm.

In general, since (according to (5.47)) the action of the Cauchy–Riemann operator on
modular graph forms leaves the sum of holomorphic and antiholomorphic labels for each
edge invariant and the divergence conditions in Section 8.1 are all functions of this sum only,
each term in the derivative of an mgf CΓ will have the same convergence properties as CΓ.
Momentum conservation however increases the sum of the labels in one edge and decreases
it in another edge in each term, therefore changing the convergence properties. But since the
mgf decomposed in this way is convergent, the divergences have to cancel out upon plugging
in identities for the divergent graphs.

– 52 –

For the remainder of this discussion, we will restrict to dihedral graphs, where the edge
labels are written as columns in one block, but the arguments generalize straightforwardly to
higher-point graphs. In [8], where the sieve algorithm was introduced, the authors restricted
to the case of strictly positive holomorphic labels and non-negative antiholomorphic labels.
In this case, the column sum for all edges is at least 2, with at most one (1, 0) edge since
we assume that hsr is already performed. After taking the Cauchy–Riemann derivative,
momentum conservation is only necessary in the term in which the (1, 0) edge is replaced by
a (2,−1) edge. In the momentum conservation identity, this edge will become a (2, 0) edge in
each term, hence the column sum for each edge is again 2 with at most one edge of sum 1,
i.e. each term is convergent. In this way, the problem of divergent mgfs in the sieve algorithm
is avoided in [8] and the present discussion can therefore be regarded as an extension of the
previously known techniques.

8.4 Divergent holomorphic subgraph reduction

On top of momentum conservation and factorization, holomorphic subgraph reduction is
a central technique to derive identities for modular graph forms. It is therefore desirable
to extend hsr to divergent graphs. To this end, we will distinguish the case in which the
divergence appears within the holomorphic subgraph, i.e. the sum of the labels of the edges
forming the holomorphic subgraph is at most 2, from the case in which the divergence appears
outside the holomorphic subgraph, i.e. the sum of labels within the holomorphic subgraph is
at least 3, but the entire mgf is still divergent.

In the case of a divergence outside the holomorphic subgraph, the sum over the loop
momentum, which is performed when doing hsr, is convergent. I.e. the divergence acts merely
as a spectator and the formulas for two- and three-point hsr discussed in Section 6 are still
valid. E.g. dihedral graphs in which the divergence lies outside the holomorphic subgraph
are given by C

[0 1 a A
1 0 0 B

]
with a ≥ 2 and all column sums in

[
A
B

]
at least two. In this case,

we can apply the two-point hsr formula (6.6) and obtain results consistent with momentum
conservation. For the graph C

[0 1 a A
1 0 0 B

]
with a ≥ 3 we can see this explicitly by using the

holomorphic momentum-conservation identity of the convergent seed C
[1 1 a A

1 0 0 B
]
,

C
[0 1 a A

1 0 0 B
]

= −C
[1 1 a−1 A

1 0 0 B

]
−

R∑
i=1
C
[1 1 a A−Si

1 0 0 B

]
+ C

[1 a A
1 0 B

]
− π

τ2
E1Ga

R∏
i=1
C
[ai 0
bi 0

]
, (8.26)

and applying the hsr formula (6.6) to the two convergent graphs on the rhs. Similar calcu-
lations can be done at three point and the extension of the hsr formulas to divergent graphs
in this way was checked empirically for many cases.

If the holomorphic subgraph itself is divergent, the sum over the loop momentum which
we perform when doing hsr is not convergent any more and hence we cannot use the usual

– 53 –

hsr formulas in this case. If we restrict to only non-negative edge labels and assume that
the graph under consideration has already been factorized (i.e. it does not contain any (0, 0)
edges), then holomorphic subgraphs with more than two edges cannot be divergent. For this
reason, we will restrict to the case of divergent two-point holomorphic subgraphs. In the sum
representation, in which the two-point hsr formula (6.6) was derived first, it is unclear how
to proceed in the case of divergent sums. In the integral representation, however, in which
the two-point hsr formula was derived from the coincident limit (6.25) of the Fay identity, it
is straightforward to generalize (6.6) to divergent holomorphic subgraphs: We can just take
the a1 = a2 = 1 case of (6.25),

(
f (1)(z)

)2 = 2f (2)(z)− Ĝ2 − ∂zf (1)(z) (8.27)

and integrate it against a product of C(a,b)(z) functions, as defined in (2.18), yielding

C
[1 1 A

0 0 B
]

= −2 C
[2 A

0 B
]
− Ĝ2 C

[
A
B

]
+ π

τ2
C
[1 A
−1 B

]
. (8.28)

Note that (6.6) has an additional term Ĝ2 C
[0 A

0 B
]
when naively extended to a+ = a− = 1.

Empirically, we found that (8.28) is compatible with momentum conservation in a large
number of cases. Furthermore, (8.28) agrees with the special cases

C
[1 1 a

0 0 b

]
= −2 C

[
a+2 0
b 0

]
+ π

τ2
C
[a+1 0
b−1 0

]
(8.29)

C
[1 1 1 1

0 0 1 1
]

= −2 C
[4 0

2 0
]
−
(
π

τ2

)2
Ĝ2(E2 + 2) + 4 π

τ2
C
[3 0

1 0
]

(8.30)

which were obtained in [20], where (8.27) was derived in a different way than from the coin-
cident limit of Fay identities.

The divergent two-point hsr identity (8.28) has a straightforward generalization to tri-
hedral (and higher-point graphs),

C
[1 1 A1

0 0 B1
A2
B2

A3
B3

]
= −2 C

[2 A1
0 B1

A2
B2

A3
B3

]
− Ĝ2 C

[
A1
B1

A2
B2

A3
B3

]
+ π

τ2
C
[1 A1
−1 B1

A2
B2

A3
B3

]
. (8.31)

The only kind of divergent hsr which cannot be treated in this way occurs if the holomorphic
subgraph has a higher-point divergence, since this necessarily means that the holomorphic
subgraph involves negative labels.

One might be tempted to also extend the trihedral Fay identity (6.22) to divergent graphs.
However, this was found to lead to contradictions, as illustrated in the following: Consider
the divergent trihedral graph C

[1
0

0 1
1 0

0 1
2 0
]
and simplify it once by performing three-point hsr

and once by applying (6.22) to the first column and to the second column of the third block,

– 54 –

yielding the decompositions

C
[1

0
0 1
1 0

0 1
2 0
] ?= Ĝ2 C

[1 0
3 0
]

+ 1
2

(
π

τ2

)3
(E1(E1 − 4E2 + 2)− 3E2 + 5E3 − ζ3) (8.32a)

C
[1

0
0 1
1 0

0 1
2 0
] ?= Ĝ2 C

[1 0
3 0
]

+ π

τ2
C
[0 1 1

1 −1 2
]

+ 1
2

(
π

τ2

)3
(4E1E2 − 5E3 + ζ3) . (8.32b)

Applying the Fay identity (6.22) to any other pair of holomorphic or antiholomorphic columns
also leads to (8.32a). Together, (8.32a) and (8.32b) imply

C
[0 1 1

1 −1 2
] ?= 1

2

(
π

τ2

)2
(E2

1 + 2E1 − 3E2) . (8.33)

Next, consider the divergent trihedral graph C
[0

1
0 1
2 0

1 1
0 0
]
which can be decomposed via two-

point hsr and Fay into

C
[0

1
0 1
2 0

1 1
0 0
] ?= −

(
π

τ2

)3
(E1 − 2E2 + E3 − ζ3) (8.34a)

C
[0

1
0 1
2 0

1 1
0 0
] ?= − π

τ2
C
[0 1 1

1 −1 2
]

+ 1
2

(
π

τ2

)3
(E2

1 − 2E1 + E2 − 2E3 + 2ζ3) , (8.34b)

respectively, yielding the identity

C
[0 1 1

1 −1 2
] ?= 1

2

(
π

τ2

)2
(E2

1 − 3E2) , (8.35)

differing form (8.33) by a term π
τ2

E1. For this reason, we will not apply the Fay identity (6.22)
to divergent graphs.

In the Mathematica package ModularGraphForms, divergent hsr is implemented in the
functions DiCSimplify and TriCSimplify, along with the convergent hsr. If divergent hsr is
performed or not, is controlled by the Boolean option divHSR. Dihedral and trihedral hsr can
be activated and deactivated individually with the Boolean options diDivHSR and triDivHSR.
The default values of all these options are True.

8.5 Taking derivatives of divergent graphs

It would be desirable to apply the sieve algorithm discussed in Section 7 also to divergent
mgfs to derive decompositions of divergent mgfs which are e.g. useful to perform the sieve
algorithm on convergent mgfs. In order to do this, we have to take derivatives of diver-
gent mgfs. Unfortunately, this is not straightforward and, if done naively, contradictions to
momentum-conservation identities can arise. As above, we will restrict in this section to two-

– 55 –

point divergences occurring within one edge bundle since higher-point divergences are only
relevant for graphs with negative entries.

Empirically, we found that taking derivatives of divergent mgfs using the formula (5.47)
is consistent with momentum conservation if the divergence has the form [1 0

0 1], however, a
complete understanding of the structure of derivatives of these divergences is still lacking. If
the divergence has the form [1 1

0 0], we can first apply the divergent hsr formula (8.28), leading
to a modification of the usual derivative expression (5.47). E.g. consider the graph C

[0 0 A
1 1 B

]
with all column sums in

[
A
B

]
at least 2. Using divergent hsr (8.28), it can be rewritten to

C
[0 0 A

1 1 B
]

= −2 C
[0 A

2 B
]
− Ĝ2 C

[
A
B

]
+ π

τ2
C
[−1 A

1 B

]
. (8.36)

Taking the derivative via (5.49) and using (8.28) to write the result back into a graph with a
holomorphic subgraph yields

∇(|A|) C
[0 0 A

1 1 B
]

=
R∑
i=1
C
[0 0 A+Si

1 1 B−Si
]
− π

τ2

R∏
i=1
C
[ai 0
bi 0

]
, (8.37)

with an additional term as compared to a naive application of (5.49) on C
[0 0 A

1 1 B
]
.

Aside from hsr, this additional term can also be understood as arising from the derivative
of the regularization term implicitly contained in C

[0 0 A
1 1 B

]
. To see this, we first write the

regularization term explicitly,

C
[0 0 A

1 1 B
]

= lim
s→0
C
[

s 0 A
s+1 1 B

]
(8.38)

and exchange the limit and the differential, resulting in

∇(|A|) C
[0 0 A

1 1 B
]

= lim
s→0

s C
[
s+1 0 A
s 1 B

]
+

R∑
i=1
C
[0 0 A+Si

1 1 B−Si
]
. (8.39)

Next, we rewrite the first term using the momentum-conservation identity of the seed-mgf
C
[s+1 0 A
s+1 1 B

]
, which is convergent for all s ≥ 0, and factorization, yielding

lim
s→0

s C
[
s+1 0 A
s 1 B

]
=− lim

s→0
s
(
C
[s+1 0 A
s+1 0 B

]
−

R∑
i=1
C
[s+1 0 A
s+1 0 B−Si

])

=− lim
s→0

s

((
π

τ2

)s+1
Es+1

R∏
i=1
C
[ai 0
bi 0

]
−C
[s+1 A
s+1 B

]
−

R∑
i=1
C
[s+1 0 A
s+1 0 B−Si

])
. (8.40)

– 56 –

The last two terms in (8.40) are convergent for all s ≥ 0 and hence drop out after taking the
limit. E1 however is divergent and with the first Kronecker limit formula

Es+1 = 1
s

+O(s0) , (8.41)

we obtain

lim
s→0

s C
[
s+1 0 A
s 1 B

]
= − π

τ2

R∏
i=1
C
[ai 0
bi 0

]
. (8.42)

Plugging this into (8.39) yields (8.37), the result previously obtained from divergent hsr.10

Similarly to (8.37), we take the derivative of terms of the form C
[1 1 A

0 0 B
]
by first applying

the formula (8.28) and then the usual expression (5.49) for the derivative. The generalization
to higher-point graphs with two-point divergences is straightforward.

Since the techniques outlined in this section to take derivatives of divergent mgfs are
conjectural and subtle, in the implementation in the ModularGraphForms package, a warning
is issued whenever the functions CHolCR and CAHolCR encounter a divergent graph in their
argument. If the Boolean option divDer of these functions is set to False (the default is
True), Nothing is returned if it is divergent. If divDer is set to True, divergent derivatives are
treated exactly like convergent ones, only (divergent) hsr is performed on the input before
the derivative is taken.

8.6 Divergent momentum conservation and factorization

Naively performing momentum conservation of divergent seeds and factorization leads to
inconsistencies, e.g. consider the holomorphic momentum-conservation identity of the seed
C
[1 1 2

0 0 3
]
which is naively11

C
[1 1 1

0 0 3
] ?= −2 C

[0 1 2
0 0 3

] ?= −2 C
[1 0

0 0
]
C
[2 0

0 3
]
− 2

(
π

τ2

)3
E3

?= −2
(
π

τ2

)3
E3 , (8.43)

where the first term vanishes due to odd label sums in both mgfs. The divergent hsr formula
(8.28) however (and also momentum conservation of the convergent seed C

[1 1 2
0 3 0

]
) leads to

C
[1 1 1

0 0 3
]

=
(
π

τ2

)3
(E2 − 2E3) , (8.44)

10Note that, to find this agreement, it is crucial that we do not simplify (8.36) using C
[

2 0
0 0

]
= Ĝ2 before

taking the derivative, since this contains a regularization term again, whose derivative we would have to take
into account.

11We will see below that the first two equalities are not correct for divergent graphs. The last equality
is too naive because C

[
1 0
0 0

]
is conditionally convergent and can yield infinity, depending on the summation

prescription used.

– 57 –

contradicting (8.43). In this section, we will discuss some of the phenomena that arise in
divergent momentum conservation and factorization but leave a complete understanding to
the future.

The additional term in (8.44) can be understood in the integral representation of the
mgf as follows: Consider the graph

C
[0 1 A

0 0 B
]

=
∫

Σ

d2z

τ2
C(0,0)(z)f (1)(z)

R∏
i=1

C(ai,bi)(z) , (8.45)

where
[
A
B

]
contains no [1

0], [0
1] or [1

1] columns. We saw in (5.33) that C(0,0)(z) = τ2δ(z, z̄)−1,
leading to the usual factorization rule. In (8.45), the delta function instructs to take the z → 0
limit of f (1)(z)

∏R
i=1C

(ai,bi)(z). But since f (1)(z) has Laurent expansion

f (1)(z) = 1
z
− zĜ2 − z̄

π

τ2
+O(z, z̄)3 (8.46)

and in particular a pole at 0, we have to expand the product to first order to obtain

lim
z→0

f (1)(z)
R∏
i=1

C(ai,bi)(z) =
(
∂z

R∏
i=1

C(ai,bi)(z)
)
z=0

= − π
τ2

R∑
i=1

R∏
j=1
C
[aj 0
bj−δij 0

]
, (8.47)

using (5.22) and the fact that the product vanishes at zero since |A|+ |B| is odd if C
[0 1 A

0 0 B
]

is non-trivial. This yields the modified factorization rule

C
[0 1 A

0 0 B
]

= − π
τ2

R∑
i=1

R∏
j=1
C
[aj 0
bj−δij 0

]
− C

[1 A
0 B

]
. (8.48)

If more [1
0] columns are present, higher derivatives of the remaining graphs have to be taken.

If
[
A
B

]
contains a [1

1] column, corresponding to a Green function in the integral, we have to
iterate this procedure, since the derivative of the Green function is f (1) (cf. (2.14)) and hence
contains again a pole. In this way we obtain for the mgf C

[0 1 1n A
0 0 1n B

]
, where 1n is the row

vector with n entries of 1, the factorization rule

C
[0 1 1n A

0 0 1n B
]

=
(
π

τ2

)n+1 R∑
i=1

R∏
j=1
C
[aj 0
bj−δij 0

] n∑
k=0

(−1)k+1 n!
(n−k)!E

n−k
1 − C

[1 1n A
0 1n B

]
. (8.49)

– 58 –

For trihedral graphs, we have similarly

C
[0 1 1n A1

0 0 1n B1
A2
B2

A3
B3

]
= (−1)|2|

(
π

τ2

)n+1
C
[A2 A3
B2 B3

] R1∑
i=1

R1∏
j=1
C
[a

(j)
1 0

b
(j)
1 −δij 0

] n∑
k=0

(−1)k+1 n!
(n−k)!E

n−k
1

− C
[1 1n A1

0 1n B1
A2
B2

A3
B3

]
. (8.50)

In general, the Laurent expansion of f (n) contains a term ∼ z̄n−1

z , which vanishes at the
origin for n ≥ 3. The z → 0 limit of f (2) depends on the direction in which the origin is
approached, but z̄

z vanishes when integrated against a delta function due to the angular part
of the integration. Therefore, only the case of f (1) yields additional terms as discussed above.

When (8.48) is used in (8.43), we obtain the correct additional term, up to a factor of 2,
which arose in the momentum-conservation identity from the product rule of ∂z̄ acting on f (1)

(cf. (5.23)). This spurious factor of 2 is again due to the pole in f (1), as can be understood
by considering the integral ∫

Br(0)
d2z ∂z̄

(1
z2

)
z , (8.51)

where Br(0) is the ball of radius r around 0. Evaluating (8.43) using ∂z̄
(

1
z

)
= πδ(2)(z) and

the product rule leads to∫
Br(0)

d2z ∂z̄

(1
z2

)
z

?= 2
∫
Br(0)

d2z
1
z
∂z̄

(1
z

)
z = 2π , (8.52)

whereas the factor of 2 is absent if we apply Stokes’ theorem,∫
Br(0)

d2z ∂z̄

(1
z2

)
z = 1

2i

∮
∂Br(0)

dz 1
z

= πRes
z=0

(1
z

)
= π . (8.53)

Empirically, momentum-conservation identities of seeds with a divergence of the form
[1 0

0 1] seem to be consistent, but we have not investigated them any further. For trihedral
graphs, if the two blocks adjacent to the vertex used for momentum conservation are conver-
gent and no three-point divergence appears in the graph, the resulting momentum-conservation
identity is valid. If these conditions are not met, the same care has to be taken as with the
dihedral graphs.

In the ModularGraphForms package, the modified factorization rules (8.49) and (8.50) are
implemented in the functions DiCSimplify and TriCSimplify, but since they are not tested
as thoroughly as the convergent manipulations, a warning is issued if these special cases are
encountered. If more than one [1

0] or [0
1] column appears next to a [0

0] column, the input is
returned. The momentum conservation functions DiHolMomConsId and TriHolMomConsId and
their complex conjugates issue a warning when the seed is divergent.

– 59 –

As we will see in the next section, the basis decompositions of mgfs obtained in this
paper rely on manipulations of divergent mgfs only for the modular weights (6, 6) and (7, 5)
(and its complex conjugate). The expansion of the generating function of Koba–Nielsen in-
tegrals at two- and three points involving these sectors was checked to satisfy the Cauchy–
Riemann equations derived in [29]. Furthermore, the Laurent polynomials of this expansion
were checked against the closed formula for two-point Laurent polynomials given in [30].

9 Basis decompositions

By combining the techniques discussed in the sections above, we can systematically generate
identities for modular graph forms, starting from a small number of known relations. In the
end, we obtain decompositions of a large class of complicated mgfs into a small number of
simple graphs. That these actually a basis for all mgfs can be proven using techniques from
iterated Eisenstein integrals discussed in [30].

In the ModularGraphForms Mathematica package, decompositions for all dihedral and
trihedral convergent mgfs with non-negative edge labels of modular weight (a, b) with a+b ≤
12 are given, starting just from the dihedral identities

D3 = E3 + ζ3 (9.1)

D5 = 60C1,1,3 + 10D3E2 − 48E5 + 16ζ5 , (9.2)

where D` is defined in (2.25) and Ca,b,c in (2.28). These two identities are also the only source
of zeta-values in the basis decompositions.

9.1 Systematic derivation of identities

In order to apply the techniques discussed above systematically, we consider subspaces with
total modular weight a + b = const. of the space of all mgfs and derive all identities in one
subspace before continuing to the next higher total weight.

Within each subspace, we start by considering weight a = b which corresponds to mgfs
which are modular invariant after multiplication by τa2 . The identities in this space are gen-
erated by combining momentum conservation with Fay identities:

• We write down all convergent dihedral and trihedral mgfs of weight (a+1, a) and
(a, a+1) without closed holomorphic subgraphs and use them as seeds to generate holo-
morphic and antiholomorphic momentum-conservation identities, respectively. Closed
holomorphic subgraphs in the seeds would necessarily lead to negative labels in the
identity which could not be removed by momentum conservation.

– 60 –

weight dihedral non-hsr dihedral hsr trihedral non-hsr trihedral hsr

(1, 1) 0 0 0 0

(2, 2) 1 0 0 0
(3, 1) 1 0 0 0

(3, 3) 7 2 0 0
(4, 2) 5 3 0 0
(5, 1) 1 4 0 0

(4, 4) 27 10 28 20
(5, 3) 22 12 17 25
(6, 2) 11 16 0 29
(7, 1) 1 14 0 12

(5, 5) 83 40 326 248
(6, 4) 73 44 247 291
(7, 3) 47 50 91 322
(8, 2) 19 50 0 243
(9, 1) 1 35 0 94

(6, 6) 228 138 2236 2044
(7, 5) 206 142 1844 2191
(8, 4) 150 154 990 2359
(9, 3) 83 149 276 2008
(10, 2) 29 124 0 1207
(11, 1) 1 74 0 439

total 996 1061 6055 11532

Table 2. Number of convergent dihedral and trihedral mgfs with non-negative edge labels, excluding
products. For graphs containing closed holomorphic subgraphs, no basis decompositions need to be
found independently, they are implied by hsr and the basis decompositions of the non-hsr graphs.

• We write down all convergent trihedral mgfs of weight (a, a), including those which
contain closed holomorphic subgraphs and apply the Fay identity (6.22) in all possible
ways.

Afterwards, we remove all relations which contain divergent mgfs after topological simplifi-
cations and factorizations. Then, we simplify the remaining identities using hsr, the (gener-
alized) Ramanujan identities discussed in Section 5.5 and identities known from lower total
modular weight and expand holomorphic Eisenstein series in the ring spanned by G4 and G6.
The resulting large system of linear equations, together with the identities (9.1) and (9.2)
can then be solved for all convergent dihedral and trihedral mgfs which do not appear in the
basis.

– 61 –

After the a = b sector, we continue with the weight-(a+k, a−k) sectors with k =
1, . . . , a − 1 as follows: In addition to the momentum-conservation and Fay identities for
these sectors, we also take the Cauchy–Riemann derivative of all basis decompositions in the
(a+k−1, a−k+1) sector (excluding mgfs containing closed holomorphic subgraphs), which
were found before. Again, we remove all relations containing divergent mgfs. Finally, we take
the complex conjugate of all identities obtained, to also cover the k < 0 sectors.

In this way, basis decompositions for all convergent dihedral and trihedral mgfs can be
found with total modular weight a+ b ≤ 10. The number of these mgfs is listed in Table 2.
Note that we did not need to use the sieve algorithm in this process, hence we do not have
undetermined integration constants in the basis decompositions.

Although the strategy outlined above is successful in the a + b ≤ 10 sectors, at weight
(6, 6), it is not sufficient to decompose all trihedral mgfs. To obtain the decompositions of
these graphs as well, we keep the momentum-conservation identities containing divergent
graphs and simplify them using the divergent hsr outlined in Section 8.4 if possible (both di-
vergent holomorphic subgraphs and divergences outside of the holomorphic subgraph appear).
In this way, we can decompose all graphs in the (6, 6) and (7, 5) sectors. For the remaining
sectors in Table 2, the convergent identities are sufficient again.

In this way, basis decompositions for 1646 dihedral and 9520 trihedral convergent mgfs
with non-negative edge labels and without closed holomorphic subgraphs were found and im-
plemented in the functions DiCSimplify and TriCSimplify of the ModularGraphForms package.
Since CSimplify calls DiCSimplify and TriCSimplify, we have e.g.

In[46]:= CSimplify[c[1 1 1 1
1 1 1 1]]

CSimplify[c[11 , 1 1
1 1 ,

1 1
1 1]]

Out[46]= 24 C
[1 1 2

1 1 2
]

+ 3 π4 E2
2

τ 4
2
− 18 π4 E4

τ 4
2

Out[47]= 2 C
[1 1 3

1 1 3
]
− 2 π5 E5

5 τ 5
2

+ 3 π5 ζ5

10 τ 5
2

.

All the basis decompositions contained in the ModularGraphForms package were checked
to be compatible with the Cauchy–Riemann equation of the generating series of Koba–Nielsen
integrals discussed in [29] at two- and three points. The decompositions of mgfs with a+b ≤ 10
were used in [30] to find representations of mgfs in terms of iterated Eisenstein integrals via
this generating series.

9.2 Bases for modular graph forms

Using the procedure outlined in Section 9.1, we obtain decompositions for many modular
graph forms, which leave as independent mgfs only the ones listed in Table 3. That these

– 62 –

weight # basis elements basis elements

(2, 2) 1
(
π
τ2

)2E2
(3, 1) 1 C

[3 0
1 0
]

(3, 3) 2
(
π
τ2

)3E3,
(
π
τ2

)3
ζ3

(4, 2) 1 C
[4 0

2 0
]

(5, 1) 1 C
[5 0

1 0
]

(4, 4) 4
(
π
τ2

)4E4, C
[1 1 2

1 1 2
]
,
(
π
τ2

)4E2
2, C

[1 0
3 0
]
C
[3 0

1 0
]

(5, 3) 3 C
[5 0

3 0
]
, C
[1 1 3

1 1 1
]
,
(
π
τ2

)2E2 C
[3 0

1 0
]

(6, 2) 2 C
[6 0

2 0
]
, C
[3 0

1 0
]2

(7, 1) 1 C
[7 0

1 0
]

(5, 5) 9
(
π
τ2

)5E5, C
[1 1 3

1 1 3
]
, A
[0 2 3

3 0 2
]
, A
[0 1 2 2

1 1 0 3
]
,
(
π
τ2

)5
ζ5,

(
π
τ2

)5E2E3,(
π
τ2

)5E2ζ3, C
[1 0

3 0
]
C
[4 0

2 0
]
, C
[3 0

1 0
]
C
[2 0

4 0
]

(6, 4) 8 C
[6 0

4 0
]
, C
[1 1 4

1 1 2
]
, C
[1 2 3

1 0 3
]
, C
[1 1 1 3

0 1 1 2
]
,(

π
τ2

)3E3 C
[3 0

1 0
]
,
(
π
τ2

)3E2 C
[4 0

2 0
]
, C
[3 0

1 0
]
ζ3, C

[1 0
3 0
]
C
[5 0

1 0
]

(7, 3) 5 C
[7 0

3 0
]
, C
[1 1 5

1 1 1
]
, C
[0 2 5

1 0 2
]
, C
[3 0

1 0
]
C
[4 0

2 0
]
,
(
π
τ2

)2E2 C
[5 0

1 0
]

(8, 2) 3 C
[8 0

2 0
]
, C
[0 3 5

1 0 1
]
, C
[3 0

1 0
]
C
[5 0

1 0
]

(9, 1) 1 C
[9 0

1 0
]

(
π
τ2

)6E6, C
[1 1 4

1 1 4
]
, C
[1 2 3

1 2 3
]
, C
[2 2 2

2 2 2
]
, C
[1 1 2 2

1 1 2 2
]
, A
[0 2 4

5 0 1
]
,

A
[0 2 2 2

3 0 1 2
]
, A
[0 1 2 3

2 1 3 0
]
,
(
π
τ2

)6
ζ2

3 ,
(
π
τ2

)6E2
3,
(
π
τ2

)6E3ζ3,
(
π
τ2

)6E2E4,

(6, 6) 21
(
π
τ2

)2E2 C
[1 1 2

1 1 2
]
,
(
π
τ2

)6E3
2, C

[4 0
2 0
]
C
[2 0

4 0
]
, C
[5 0

1 0
]
C
[1 0

5 0
]
,

C
[3 0

1 0
]
C
[3 0

5 0
]
, C
[1 0

3 0
]
C
[5 0

3 0
]
, C
[3 0

1 0
]
C
[1 1 1

1 1 3
]
,

C
[1 0

3 0
]
C
[1 1 3

1 1 1
]
,
(
π
τ2

)2E2 C
[3 0

1 0
]
C
[1 0

3 0
]

C
[7 0

5 0
]
, C
[0 1 6

1 4 0
]
, C
[0 1 6

2 3 0
]
, C
[0 2 5

2 3 0
]
, C
[0 3 4

4 0 1
]
, C
[1 1 2 3

1 1 2 1
]
,

C
[1 2 2 2

1 0 2 2
]
, C
[0 1 2 4

2 1 2 0
]
,
(
π
τ2

)3E3 C
[4 0

2 0
]
,
(
π
τ2

)3 C[4 0
2 0
]
ζ3,

(7, 5) 18
(
π
τ2

)4E4 C
[3 0

1 0
]
,
(
π
τ2

)2E2 C
[5 0

3 0
]
, C
[3 0

1 0
]
C
[1 1 2

1 1 2
]
,(

π
τ2

)2E2 C
[1 1 3

1 1 1
]
, C
[3 0

1 0
]2 C[1 0

3 0
]
, C
[5 0

1 0
]
C
[2 0

4 0
]
,

C
[1 0

3 0
]
C
[6 0

2 0
]
,
(
π
τ2

)4E2
2 C
[3 0

1 0
]

C
[8 0

4 0
]
, C
[0 2 6

2 2 0
]
, C
[0 3 5

2 2 0
]
, C
[0 4 4

3 0 1
]
, C
[1 2 2 3

1 1 2 0
]
, C
[1 2 2 3

1 1 2 0
]

(8, 4) 14 C
[4 0

2 0
]2
,
(
π
τ2

)3E3 C
[5 0

1 0
]
,
(
π
τ2

)3 C[5 0
1 0
]
ζ3, C

[3 0
1 0
]
C
[5 0

3 0
]
,(

π
τ2

)2E2 C
[6 0

2 0
]
, C
[3 0

1 0
]
C
[1 1 3

1 1 1
]
,
(
π
τ2

)2E2 C
[3 0

1 1
]2
, C
[3 0

1 0
]
C
[7 0

1 0
]

(9, 3) 8 C
[9 0

3 0
]
, C
[0 3 6

1 2 0
]
, C
[0 3 6

2 1 0
]
, C
[0 4 5

2 1 0
]
, C
[4 0

2 0
]
C
[5 0

1 0
]
,

C
[3 0

1 0
]
C
[6 0

2 0
]
,
(
π
τ2

)2E2 C
[7 0

1 0
]
, C
[3 0

1 0
]2

(10, 2) 4 C
[10 0

2 0
]
, C
[0 4 6

1 1 0
]
, C
[5 0

1 0
]2
, C
[3 0

1 0
]
C
[7 0

1 0
]

(11, 1) 1 C
[11 0

1 0
]

Table 3. Basis elements used in the ModularGraphForms package for (convergent) modular graph
forms of weight a+b ≤ 12, excluding holomorphic Eisenstein series. The counting includes zeta values.

– 63 –

weight # basis elements basis elements

(2, 2) 1 E2
(3, 1) 1 ∇0E2

(3, 3) 2 E3, ζ3
(4, 2) 1 ∇0E3
(5, 1) 1 ∇2

0 E3

(4, 4) 4 E4, E2,2, E2
2, τ

−2
2 ∇0E2∇0E2

(5, 3) 3 ∇0E4, ∇0E2,2, E2∇0E2
(6, 2) 2 ∇2

0 E4, (∇0E2)2

(7, 1) 1 ∇3
0 E4

(5, 5) 9 E5, E2,3, B2,3, B′2,3, ζ5,

E2E3, E2ζ3, τ
−2
2 ∇0E2∇0E3, τ

−2
2 ∇0E2∇0E3

(6, 4) 8 ∇0E5, ∇0E2,3, ∇0B2,3, ∇0B′2,3,
∇0E2E3, E2∇0E3, ∇0E2ζ3, τ

−2
2 ∇0E2∇2

0 E3

(7, 3) 5 ∇2
0 E5, ∇2

0 E2,3, ∇2
0 B′2,3, ∇0E2∇0E3, E2∇2

0 E3
(8, 2) 3 ∇3

0 E5, ∇3
0 B′2,3, ∇0E2∇2

0 E3
(9, 1) 1 ∇4

0 E5

(6, 6) 21

E6, E2,4, E3,3, E′3,3, E2,2,2, B2,4, B′2,4, B2,2,2, ζ
2
3 ,

E2
3, E3ζ3, E2E4, E2E2,2, E3

2, τ
−2
2 ∇0E3∇0E3, τ

−4
2 ∇2

0 E3∇0
2E3

τ−2
2 ∇0E2∇0E4, τ

−2
2 ∇0E2∇0E4, τ

−2
2 ∇0E2∇0E2,2, τ

−2
2 ∇0E2∇0E2,2,

τ−2
2 E2∇0E2∇0E2

∇0E6, ∇0E2,4, ∇0E3,3, ∇0E′3,3, ∇0E2,2,2, ∇0B2,4, ∇0B′2,4, ∇0B2,2,2,

(7, 5) 18 E3∇0E3, ∇0E3ζ3, ∇0E2E4, E2∇0E4, ∇0E2E2,2, E2∇0E2,2, E2
2∇0E2,

τ−2
2 ∇2

0 E3∇0E3, τ
−2
2 ∇0E2∇2

0 E4, τ
−2
2 (∇0E2)2∇0E2

∇2
0 E6, ∇2

0 E2,4, ∇2
0 E′3,3, ∇2

0 B2,4, ∇2
0 B′2,4, ∇2

0 B2,2,2
(8, 4) 14 (∇0E3)2, E3∇2

0 E3, ∇2
0 E3ζ3, ∇0E2∇0E4, E2∇2

0 E4, ∇0E2∇0E2,2,

E2(∇0E2)2, τ−2
2 ∇0E2∇3

0 E4

(9, 3) 8 ∇3
0 E6, ∇3

0 E′3,3, ∇3
0 B2,4, ∇3

0 B′2,4, ∇0E3∇2
0 E3, ∇0E2∇2

0 E4,

E2∇3
0 E4, (∇0E2)3

(10, 2) 4 ∇4
0 E6, ∇4

0 B′2,4, (∇2
0 E3)2, ∇0E2∇3

0 E4
(11, 1) 1 ∇5

0 E6

Table 4. Basis of (convergent) modular graph forms of weight a+b ≤ 12, excluding holomorphic Eisen-
stein series. The prefactors of τ2 were chosen such that the modular weight in the sector (a+k, a−k)
is (0,−2k) for 0 ≤ k < a. The counting includes zeta values.

– 64 –

form indeed a basis of all mgfs (not just two- and three-point graphs) at the corresponding
weights can be proven using iterated Eisenstein integrals and generating functions of Koba–
Nielsen integrals [30]. The basis elements in the sector (a, b) with a < b are given by complex
conjugation. Furthermore, basis elements containing a holomorphic Eisenstein series are not
listed in Table 3, since they can be constructed from the bases at lower weights, e.g. the (6, 4)
sector contains the additional basis elements G4 C

[2 0
4 0
]
and G6G4. In the following, we will

refer to basis elements given as products as reducible and to the remaining ones as irreducible.
On top of various modular graph forms, we have included in Table 3 also the constants ζ3, ζ5

and ζ2
3 in the relevant sectors.

Note that starting from total modular weight 10, the sector with equal holomorphic and
antiholomorphic weight contains cusp forms. Specifically, in the basis of the (5, 5) sector, the
three cusp forms

C
[1 0

3 0
]
C
[4 0

2 0
]
− C

[3 0
1 0
]
C
[2 0

4 0
]

(9.3a)

A
[0 2 3

3 0 2
]

(9.3b)

A
[0 1 2 2

1 1 0 3
]

(9.3c)

appear. Similarly, the (6, 6) basis contains the cusp forms

C
[3 0

1 0
]
C
[3 0

5 0
]
− C

[1 0
3 0
]
C
[5 0

3 0
]

(9.4a)

C
[3 0

1 0
]
C
[1 1 1

1 1 3
]
− C

[1 0
3 0
]
C
[1 1 3

1 1 1
]

(9.4b)

A
[0 2 4

5 0 1
]

(9.4c)

A
[0 2 2 2

3 0 1 2
]

(9.4d)

A
[0 1 2 3

2 1 3 0
]
. (9.4e)

The remaining basis elements in these sectors are real.12 The cusp forms (9.3a) and (9.3b)
were discussed in [21], whereas (9.3c) has higher loop order than the graphs studied in the
reference. In the weight (6, 6) sector, the dimension of the space of two-loop imaginary cusp
forms was found to be 2 in [21], in agreement with (9.4).

The basis of mgfs has an intricate structure which is closely related to the counting of
iterated Eisenstein integrals, but this structure is not manifest in the basis given in Table 3.
To make the relation to iterated Eisenstein integrals more transparent, we will use a second
basis, summarized in Table 4. The basis has been multiplied by τa+k

2 /πa in the (a+ k, a− k)
sector of Table 4 as compared to Table 3 for ease of notation. This means in particular that
the basis elements given for the a = b sectors are rendered modular invariant.

12Note that if we form antisymmetric combinations A
[
A
B

]
in the (a, a) sectors with a ≤ 4, these vanish since

all basis elements are real.

– 65 –

The structure of the basis in Table 4 is the following: In the modular invariant sectors,
we split the irreducible basis elements into real and complex mgfs. The real ones are denoted
by E, the complex ones by B, where the subscript refers to the holomorphic Eisenstein series
appearing in the Cauchy–Riemann equations of the respective basis element. If several basis
elements belong to the same sector w.r.t. these holomorphic Eisenstein series, we use a prime
to distinguish them.

The non-holomorphic Eisenstein series Ek defined in (2.32) belong to the real basis ele-
ments. The remaining real basis elements of higher depth were defined in [47] to streamline
their Cauchy–Riemann equations as detailed below and are given in terms of the mgfs defined
previously by

E2,2 = C1,1,2 −
9
10E4 (9.5a)

E2,3 = C1,1,3 −
43
35E5 (9.5b)

E3,3 = 3C1,2,3 + C2,2,2 −
15
14E6 (9.5c)

E′3,3 = C1,2,3 + 17
60C2,2,2 −

59
140E6 (9.5d)

E2,4 = 9C1,1,4 + 3C1,2,3 + C2,2,2 − 13E6 (9.5e)

E2,2,2 = −C1,1,2,2 + 232
45 C2,2,2 + 292

15 C1,2,3 + 2
5C1,1,4 + 2E2

3 + E2E4 −
466
45 E6 , (9.5f)

where Ca,b,c and Ca,b,c,d were defined in (2.28) and (2.29), respectively. A subscript k means
in this notation that the holomorphic Eisenstein series G2k appears in the Cauchy–Riemann
equations, i.e. in the lowest Cauchy–Riemann derivative in which a holomorphic Eisenstein
series appears. This determines the sector of iterated Eisenstein integrals that appear in the
expansion of the basis element, cf. the discussion in Section 5 of [30]. For instance, the basis
element E2,4 belongs to the G4G8 sector. The Cauchy–Riemann equations which make this
manifest for the real irreducible basis elements are

∇k0 Ek = τ2k
2
πk

(2k − 1)!
(k − 1)! G2k (9.6a)

∇3
0 E2,2 = −6 τ

4
2
π2 G4∇0E2 (9.6b)

∇3
0 E2,3 = −2∇0E2∇2

0 E3 − 4 τ
4
2
π2 G4∇0E3 (9.6c)

∇5
0 E3,3 = 180 τ

6
2
π3 G6∇2

0 E3 (9.6d)

∇4
0 E′3,3 = −12 τ

6
2
π3 G6∇0E3 (9.6e)

– 66 –

∇3
0 E2,4 = −27

2 ∇0
(
E2∇2

0 E4
)
− 27

4 ∇
3
0 B2,4 −

21
40∇

3
0 B′2,4 − 27 τ

4
2
π2 G4∇0E4 (9.6f)

∇3
0 E2,2,2 = (∇0E2)3 − 12 τ

4
2
π2 G4∇0E2,2 , (9.6g)

where we use the Cauchy–Riemann operator defined in (5.44) and the complex basis elements
B2,4 and B′2,4 are defined in (9.9). The right-hand sides in (9.6) all lie manifestly in the same
sector of holomorphic Eisenstein series as indicated by the subscripts on the left-hand side.
In [47], the real irreducible basis elements E were written in terms of iterated Eisenstein
integrals. From this, we can read off their Laurent polynomials [3, 11], namely

Ek
∣∣
q0q̄0 = (−1)k−1 B2k

(2k)! (4y)k + 4
(

2k − 3
k − 1

)
ζ2k−1(4y)1−k (9.7a)

E2,2
∣∣
q0q̄0 = − y4

20250 + yζ3
45 + 5ζ5

12y −
ζ2

3
4y2 (9.7b)

E2,3
∣∣
q0q̄0 = − 4y5

297675 + 2y2ζ3
945 −

ζ5
180 + 7ζ7

16y2 −
ζ3ζ5
2y3 (9.7c)

E3,3
∣∣
q0q̄0 = 2y6

6251175 + yζ5
210 + ζ7

16y −
7ζ9

64y3 + 9ζ2
5

64y4 (9.7d)

E′3,3
∣∣
q0q̄0 = − y6

18753525 + yζ5
630 + 3ζ7

160y −
7ζ9

480y3 (9.7e)

E2,4
∣∣
q0q̄0 = − y6

70875 + y3ζ3
525 + 3ζ7

40y + 25ζ9
8y3 −

135ζ3ζ7
32y4 (9.7f)

E2,2,2
∣∣
q0q̄0 = 4y6

9568125−
2y3ζ3
10125+yζ5

54 + ζ2
3

90+ 661ζ7
1800y−

5ζ3ζ5
12y2 + ζ3

3
6y3 , (9.7g)

where y = πτ2, and the Laurent polynomial of Ek can be read off from its well-known
q-expansion, given e.g. in [48].

The cusp forms listed in (9.3) and (9.4) were all of the form CΓ − CΓ and hence purely
imaginary. Using the Laurent polynomials (9.7), and the basis elements given in Table 4, it
is easy to show that there are no real cusp forms in the space of mgfs at weight (a, a) with
a ≤ 5 and that there are five real cusp forms at weight (6, 6). A basis in this space of real
cusp forms is given by

S1 = 8
15E3,3 − 4E′3,3 −

1
3E3

2 + E4E2 + 349
875E2

3 + 2
45ζ

2
3 + 1

3τ
−2
2 E2∇0E2∇0E2

− 233
1750τ

−2
2 ∇0E3∇0E3 + 1

10500τ
−4
2 ∇

2
0 E3∇2

0 E3 −
1
6τ
−2
2

(
∇0E2∇0E4+∇0E2∇0E4

)
(9.8a)

S2 = E2,4 + 8748
175 E3,3 −

5622
35 E′3,3 −

269
50 E2

3 −
3739
2100τ

−2
2 ∇0E3∇0E3 + 1

840τ
−4
2 ∇

2
0 E3∇2

0 E3

+ 9
8τ
−2
2

(
∇0E2∇0E4+∇0E2∇0E4

)
(9.8b)

– 67 –

S3 = E2,2,2 + 5288
1125E3,3 −

2644
75 E′3,3 + E2E2,2 −

1
6E3

2 + 401
17500E2

3 + 1
4τ
−2
2 E2∇0E2∇0E2

− 11801
39375τ

−2
2 ∇0E3∇0E3 + 127

630000τ
−4
2 ∇

2
0 E3∇2

0 E3 (9.8c)

S4 = −2E2E2,2 − E3
2 + 8757

1250E2
3 + 1

5ζ
2
3 + 3

2τ
−2
2 E2∇0E2∇0E2

+ τ−2
2

(
∇0E2∇0E2,2+∇0E2∇0E2,2

)
−3283

1875τ
−2
2 ∇0E3∇0E3−

7
15000τ

−4
2 ∇

2
0 E3∇2

0 E3 (9.8d)

S5 = −9
5E2E2,2 −

311
350E3

2 + 26187
12500E2

3 + E3ζ3 + 311
2625ζ

2
3 + 307

700τ
−2
2 E2∇0E2∇0E2

− 1638
3125τ

−2
2 ∇0E3∇0E3 + 21

50000τ
−4
2 ∇

2
0 E3∇2

0 E3 . (9.8e)

The complex irreducible basis elements follow the same notation regarding the sectors of
holomorphic Eisenstein series. They are defined in terms of lattice sums by

B2,3 =
(
τ2
π

)5(
A
[0 1 2 2

1 1 0 3
]

+ C
[3 0

1 0
]
C
[2 0

4 0
]
− C

[1 0
3 0
]
C
[4 0

2 0
])

(9.9a)

B′2,3 =
(
τ2
π

)5(1
2 A

[0 2 3
3 0 2

]
+A

[0 1 2 2
1 1 0 3

]
+ C
[3 0

1 0
]
C
[2 0

4 0
]
−C
[1 0

3 0
]
C
[4 0

2 0
])

+ 129
20 E5 −

1
2E2ζ3 −

21
4 C1,1,3 (9.9b)

B2,4 =
(
τ2
π

)6(
A
[0 2 4

5 0 1
]

+ 2
(
C
[3 0

1 0
]
C
[3 0

5 0
]
− C

[1 0
3 0
]
C
[5 0

3 0
]))

+ C1,1,4 + 1
3C1,2,3 + 1

9C2,2,2 − E2E4 −
13
9 E6

(9.9c)

B′2,4 =
(
τ2
π

)6
A
[0 2 2 2

3 0 1 2
]
− 30C1,1,4 − 10C1,2,3 −

10
3 C2,2,2 − 3E3ζ3 + 130

3 E6 (9.9d)

B2,2,2 =
(
τ2
π

)6(
4A
[0 1 2 3

2 1 3 0
]
+121

50 A
[0 2 2 2

3 0 1 2
]
−113

5 A
[0 2 4

5 0 1
]
+266

5
(
C
[1 0

3 0
]
C
[5 0

3 0
]
−C
[3 0

1 0
]
C
[3 0

5 0
])

+4
(
C
[3 0

1 0
]
C
[1 1 1

1 1 3
]
−C
[1 0

3 0
]
C
[1 1 3

1 1 1
]))

+ 6C1,1,2E2 −
27
5 E2E4 −

63
50E3ζ3 , (9.9e)

where the real modular graph functions Ca,b,c are defined in (2.28). The complex basis elements
B2,3 and B′2,3 of the a+ b = 10 sector were first mentioned in [30]. Only the first of the basis
elements in (9.9) is purely imaginary, the others contain imaginary and real contributions.
The complex conjugates of the basis mgfs in (9.9) are

B2,3 = −B2,3 (9.10a)

B′2,3 = −B′2,3 − E2ζ3 −
21
2 E2,3 (9.10b)

– 68 –

B2,4 = −B2,4 − 2E2E4 + 2
9E2,4 (9.10c)

B′2,4 = −B′2,4 − 6E3ζ3 −
20
3 E2,4 (9.10d)

B2,2,2 = −B2,2,2 −
63
25E3ζ3 + 12E2E2,2 . (9.10e)

The definition of the basis elements E and B was guided by the maxim to delay the appear-
ance of holomorphic Eisenstein series in the Cauchy–Riemann equations to higher derivatives
and to separate the different sectors of holomorphic Eisenstein series at the same time. Al-
though this does not fix the basis elements uniquely, the remaining freedom allows one only to
isolate one purely imaginary basis element, B2,3. Similarly to (9.9), the first Cauchy–Riemann
derivatives of the complex basis elements in which holomorphic Eisenstein series appear, are

∇2
0 B2,3 = 2

7∇
2
0 B′2,3 + 3

2
(
∇0E2∇0E3 − E2∇2

0 E3 +∇2
0 E2,3

)
+ τ4

2
π2 G4

(
9E3 + 3ζ3

)
(9.11a)

∇4
0 B′2,3 = 1260 τ

6
2
π3 G6∇0E2 (9.11b)

∇4
0 B2,4 = − 7

90∇
4
0 B′2,4 − 1680 τ

8
2
π4 G8E2 (9.11c)

∇5
0 B′2,4 = 151200 τ

8
2
π4 G8∇0E2 (9.11d)

∇3
0 B2,2,2 = −9(∇0E2)3 − τ4

2
π2 G4

(
72E2∇0E2 + 36∇0E2,2

)
. (9.11e)

Since the complex basis elements are given in (9.9) in terms of real basis elements, for
which the Laurent polynomials are listed in (9.7), and cusp forms with vanishing Laurent
polynomials, we can assemble the Laurent polynomials of the B as well. They are given by

B2,3
∣∣
q0q̄0 = 0 (9.12a)

B′2,3
∣∣
q0q̄0 = y5

14175 −
y2ζ3
45 + 7ζ5

240 −
ζ2

3
2y −

147ζ7
64y2 + 21ζ3ζ5

8y3 (9.12b)

B2,4
∣∣
q0q̄0 = − 4y6

637875 −
ζ7

180y + 25ζ9
72y3 −

35ζ3ζ7
32y4 (9.12c)

B′2,4
∣∣
q0q̄0 = 2y6

42525−
4y3ζ3
315 −

ζ7
4y−

9ζ3ζ5
4y2 −

125ζ9
12y3 +225ζ3ζ7

16y4 (9.12d)

B2,2,2
∣∣
q0q̄0 = − y6

151875 + yζ5
18 + ζ2

3
10 + 311ζ3ζ5

200y2 −
3ζ3

3
2y3 . (9.12e)

The basis elements E and B span the irreducible sectors of the modular invariant sub-
spaces of mgfs. For the subspaces with modular weight (a, b) with a > b, we take the Cauchy–
Riemann derivatives of the E and B as irreducible basis elements. Since the space of mgfs of

– 69 –

weight (a+k, a−k) shrinks with growing k, there are relations between the Cauchy–Riemann
derivatives of the E and B, leading to dropouts in this pattern. In general, these dropouts are
manifest in the Cauchy–Riemann equations (9.6) and (9.11), however some of the real basis
elements satisfy relations at derivatives lower than the one in which the first holomorphic
Eisenstein series appear as stated in (9.6). These additional relations are

∇2
0 E2,2 = −1

2(∇0E2)2 (9.13a)

∇2
0 E3,3 = 3

4(∇0E3)2 + 15
2 ∇

2
0 E′3,3 (9.13b)

∇2
0 E2,2,2 = −2∇0E2∇0E2,2 . (9.13c)

For the complex basis elements, there are no relations at lower derivatives than in (9.11).
On top of the irreducible basis elements E and B, there are reducible basis elements

which are products of irreducible basis elements of lower weights. We also take derivatives of
these reducible basis elements to generate the bases of weight (a, b) with a > b. Again, this
is constrained by the relations (9.6), (9.11) and (9.13). As for the irreducible basis elements,
the Cauchy–Riemann derivatives of the reducible basis elements also contain terms with
holomorphic Eisenstein series, which are not written in the basis. Furthermore, the derivative
of terms of the form ∇n0 Ek is (up to prefactors) ∇n−1

0 Ek. The derivative of the only depth-two
instance ∇0E2,2 gives rise to 2E2,2 − E2

2, as follows from the Laplace equation (∆− 2)E2,2 =
−E2

2 [3].
Since the action of the derivative operators ∇0 and ∇0 on y is straightforwardly given by

∇0y = ∇0y = y2

π
, (9.14)

using the decompositions into the basis of Table 4 and the known Laurent polynomials
(9.7) and (9.12), we can easily assemble the Laurent polynomials of all dihedral and tri-
hedral mgfs of total weight a+ b ≤ 12. These computations are made straightforward in the
ModularGraphForms package as outlined in the following.

Computations in the ModularGraphForms package are performed in the basis listed in Ta-
ble 3. Using the function CConvertToNablaE, an expression can be converted into the basis given
in Table 4. The real basis elements are represented by e.g. e[2,2], and ep[3,3] for the primed
version. The complex basis elements are given by e.g. b[2,3] and bp[2,3]. The Cauchy–
Riemann derivatives are denoted by the functions nablaE, nablaEp, nablaB and nablaBp.
Their complex conjugates are nablaBarE, nablaBarEp, nablaBarBBar and nablaBarBpBar. The
first arguments of these functions is always the order of the derivative, the second is a list
with the subscripts of the basis element, e.g. ∇0

2B2,4 is denoted by nablaBarBBar[2,{2,4}].
These basis elements are translated back into the basis given in Table 3 by the function

– 70 –

CConvertFromNablaE. Note that only the derivatives appearing in Table 4 can be converted in
this way. As an example, the decomposition of the graph C

[1 2 4
2 2 1

]
can be performed by

In[48]:= CConvertToNablaE[CSimplify[c[1 2 4
2 2 1]]]

Out[48]=
3 π6∇E6

28 τ 7
2
− 5 π6∇E3,3

9 τ 7
2

+
5 π6∇E′

3,3

3 τ 7
2

.

The derivative operator∇0 is not implemented directly, but since it is given by∇0 = τ2∇(0)

(cf. (5.44)), it can be obtained by acting with tau[2]CHolCR on an mgf with vanishing modular
weight. E.g. the Cauchy–Riemann equation (9.11c) is reproduced by

In[49]:= CConvertToNablaE[Nest[CSimplify[tau[2]CHolCR[#]]&,b[2,4],4]]

Out[49]= − 7
90
∇4B′

2,4 −
1680 E2 G8 τ

8
2

π4 .

The Laurent polynomials (9.7) and (9.12) are implemented in the function CLaurentPoly,
which replaces each of the basis elements by its Laurent polynomial and performs the neces-
sary Cauchy–Riemann derivatives. E.g. the Laurent polynomial of the graph C

[1 2 4
2 2 1

]
decom-

posed in Out[48] can be obtained via

In[50]:= CLaurentPoly[Out[48]]

Out[50]= − 19 π12

91216125
+ 5 π12 ζ2

5

16 y10 + π12 ζ7

288 y7 −
7 π12 ζ9

64 y9 − 135 π12 ζ11

512 y11 .

The basis elements at a certain weight are accessible via the function CBasis. If the option
basis is set to the string "C" (the default value), the basis from Table 3 is returned, if it is
set to the string "nablaE", the basis from Table 4 is returned, e.g.

In[51]:= CBasis[3, 5]

CBasis[3, 5, basis "nablaE"]

Out[51]=
{

C
[1 1 1

1 1 3
]
, C
[3 0

5 0
]
,
π2 C

[1 0
3 0

]
E2

τ 2
2

}
Out[52]=

{
∇E2,2,∇E4,E2∇E2

}
.

Together with the function zIntegrate described in Section 3.2, the basis decompositions
available in the ModularGraphForms package are sufficient to expand all two- and three-point
Koba–Nielsen integrals to the orders which give rise to mgfs of total modular weight at
most 12. This was crucial for checking and solving the differential equation of the generating
function of Koba–Nielsen integrals in [29, 30]. The arXiv submission of this paper includes
the expansion of the two- and three point versions of the generating function Y τ

~η defined in

– 71 –

[30] up to order 12. For the three-point version, it also contains the Laurent polynomial of
the generating series. At two-point, it was checked that the Laurent polynomials obtained
using the basis decompositions agree with the closed formula given in [30] from genus-zero
integrals.

10 Conclusion and outlook

In this paper, we systematically studied relations between modular graph forms, a class of
non-holomorphic modular forms used in the computation of the low-energy expansion of
closed-string genus-one amplitudes in type-II, heterotic or bosonic theories.

We studied mgfs with two, three and four vertices and introduced in particular a concise
notation for four-point graphs and studied their symmetry properties systematically. For these
graphs, we reviewed how topological simplifications, momentum-conservation at the vertices,
factorization of [0

0]-edges and Cauchy–Riemann derivatives lead to relations between mgfs
and discussed how these can also be understood in the integral representation of mgfs. This
point of view led us to a new formulation of holomorphic subgraph reduction which can
be understood as integrated Fay identities of Kronecker–Eisenstein series. This formulation
yields an efficient iterative procedure for higher-point hsr, circumventing difficulties in earlier
approaches.

Since divergent mgfs appear naturally in the expansion of Koba–Nielsen integrals and
in momentum-conservation identities, we initiated a systematic study of these divergent
sums, starting with an analysis of the superficial degree of divergence for mgfs with up
to four points. We discussed holomorphic subgraph reduction in divergent mgfs and Cauchy–
Riemann derivatives as well as momentum conservation and factorization of divergent graphs.

By constructing all momentum conservation- and Fay identities at the corresponding
weight and applying the techniques described above, we could find basis decompositions for
all (convergent) two- and three-point mgfs of total modular weight a + b ≤ 12. The only
additional input in this process were the two well-known identities for D3 and D5, which are
also the source of the zeta values in the basis decompositions.

We then discussed a particular basis for mgfs systematically built out of real and complex
basis elements and their derivatives. Since the Laurent polynomials of these basis elements
are known from the literature, we can compute the Laurent polynomials of all decomposed
mgfs. This allowed us to identify five linearly independent real cusp forms at weight (6, 6)
and to show that no real cusp forms exist in the space of mgfs at lower weights.

The basis decompositions, as well as implementations of the manipulations discussed
above, are made available in the ancillary files of the arXiv submission of this paper in the
form of the Mathematica package ModularGraphForms together with two text files containing
the decompositions. Using this package, we decomposed the generating function for Koba–

– 72 –

Nielsen integrals introduced in [30] at two- and three points up to order 12. The resulting
expansion is also included in the arXiv submissions.

Interestingly, the basis of mgfs obtained in this work only contains dihedral graphs.
From an argument involving iterated Eisenstein integrals given in [30], we know that the
basis is nevertheless complete and hence also all higher-point graphs beyond the trihedral
ones considered here can be decomposed into only dihedral graphs at weight a + b ≤ 12. It
would be interesting to see at which weight more complicated topologies have to be included.
A first step in this direction would be an extension of the ModularGraphForms package to a
complete treatment of four-point graphs, which would not only allow one to explicitly find
decompositions of four-point graphs, but presumably also to perform the basis decompositions
at higher weights.

Acknowledgments

I would like to thank Axel Kleinschmidt and Oliver Schlotterer for numerous enlightening
discussions during all stages of this project and for carefully reading the manuscript. I would
also like to thank them for ongoing collaborations on related projects that initiated this
work. I am supported by the International Max Planck Research School for Mathematical
and Physical Aspects of Gravitation, Cosmology and Quantum Field Theory.

A Complete reference for the Modular Graph Forms package

In this appendix, we give a complete reference of all symbols defined in the ModularGraphForms
package, all functions and their options and detailed instructions how to load the package. In
Section A.4, we show how the integrals appearing in the four-gluon amplitude of the heterotic
string discussed in [29] can be computed using the ModularGraphForms package.

Within Mathematica, short descriptions of the various symbols, functions and options
can be displayed using the Information function, e.g. by running ?g. A list of all the symbols
defined in the package is printed by running ?ModularGraphForms`*. The options and default
values for a function are accessible via the Options function, e.g.

In[53]:= Options[CBasis]

Out[53]= {basis C} .

A.1 Files and loading the package

The Mathematica package ModularGraphForms includes the three files ModularGraphForms.m,
DiIds.txt and TriIds.txt. The first one provides the package itself, whereas the two text
files contain the basis decompositions described in Section 9 for dihedral and trihedral graphs,
respectively. The package loads the latter files automatically and expects them in the same

– 73 –

directory, in which also the ModularGraphForms.m file is saved. However, the text files can
also be imported into Mathematica using the Get function and can be used independently of
the ModularGraphForms package.

To load the package, call the Get function on the ModularGraphForms.m file. Either the
full path can be provided,

In[54]:= Get["/home/user/ModularGraphForms.m"]

or, if the files are placed in one of the directories in Mathematica’s search path, it is sufficient
to run

In[55]:= Get["ModularGraphForms.m"] .

A list of the directories in Mathematica’s search path is available in the global variable $Path

and includes the current directory, which by default is the directory in which the current
Notebook is saved.

A.2 Symbols

The ModularGraphForms package defines a number of symbols used for the various objects in
this paper. For most of these symbols, a 2d-notation is implemented which makes the output
easier to read. E.g. τ2 is represented by tau[2], but printed as

In[56]:= tau[2]

Out[56]= τ 2 .

These 2d-outputs can be copied to input cells and used for further computations. The input
form of the 2d-output can be accessed by the function InputForm, e.g.

In[57]:= InputForm[τ 2]

Out[57]= tau[2] .

Using the $Assumptions variable, the ModularGraphForms package sets the global as-
sumption that τ2 > 0. This is helpful e.g. when simplifying equations.

A.2.1 General symbols

Five general symbols used by the ModularGraphForms package are

Mathematica symbol description

tau modular parameter τ
tauBar τ̄

– 74 –

Mathematica symbol description

tau[2] τ2 = Im τ

y y = πτ2

zeta[k] ζk as defined in (1.4)

bCoeff coefficient in the sieve algorithm,
cf. CSieveDecomp

A.2.2 Modular graph forms

The conventions for two-, three- and four-point modular graph forms were introduced in detail
in Section 4. The symbols used to represent mgfs, (non-)holomorphic Eisenstein series and
real and complex basis elements are

Mathematica symbol description

c[...] mgf, cf. Section 4
a[...] A

[
A
B

]
as defined in (4.4)

intConst[...] integration constant, cf. CSieveDecomp
intConstBar[...] complex conjugate of intConst

g[k] Gk as defined in (2.31)
gBar[k] Gk

gHat[2] Ĝ2 as defined in (2.33)

gBarHat[2] Ĝ2

e[k1,...,kr] Ek as defined in (2.32)
and Ek1,...,kr as defined in (9.5)

ep[k1,...,kr] E′k1,...,kr
as defined in (9.5)

b[k1,...,kr] Bk1,...,kr as defined in (9.9)
bp[k1,...,kr] B′k1,...,kr

as defined in (9.9)

Note that mgfs are represented by the symbol c, but are printed with a capital C. When
copying this output into an input cell, the capital C should not be changed into a lowercase
c. Furthermore, the basis elements listed here are meaningful only for the indices defined in
(9.5) and (9.9).

The Mathematica symbols used to represent Cauchy–Riemann derivatives of real and
complex basis elements of mgfs are

– 75 –

Mathematica symbol description

nablaE[n,{k1,...,kr}] ∇n0 Ek1,...,kr

nablaBarE[n,{k1,...,kr}] ∇n0 Ek1,...,kr

nablaEp[n,{k1,...,kr}] ∇n0 E′k1,...,kr

nablaBarEp[n,{k1,...,kr}] ∇n0 E′k1,...,kr

nablaB[n,{k1,...,kr}] ∇n0 Bk1,...,kr

nablaBarBBar[n,{k1,...,kr}] ∇n0 Bk1,...,kr

nablaBp[n,{k1,...,kr}] ∇n0 B′k1,...,kr

nablaBarBpBar[n,{k1,...,kr}] ∇n0 B′k1,...,kr

The derivative operator ∇0 and its complex conjugate are defined in (5.44). The zeroth
derivative returns the argument, e.g.

In[58]:= nablaE[0, {5}]

Out[58]= E5 .

A.2.3 Iterated Eisenstein integrals

For compatibility with the data provided in the ancillary file of [30], the ModularGraphForms
package defines the following symbols for iterated Eisenstein integrals, although no manipu-
lations of these objects can be performed within this package.

Mathematica symbol description

esv[j1 ... j`
k1 ... k`

] Esv[j1 ··· j`
k1 ··· k` ; τ

]
esvS[j1 ... j`

k1 ... k`
] Esv[j1 ··· j`

k1 ··· k` ;− 1
τ

]
esvBar[j1 ... j`

k1 ... k`
] Esv[j1 ··· j`

k1 ··· k` ; τ
]

betasv[j1 ... j`
k1 ... k`

] βsv[j1 ··· j`
k1 ··· k` ; τ

]
betasvS[j1 ... j`

k1 ... k`
] βsv[j1 ··· j`

k1 ··· k` ;− 1
τ

]
betasvBar[j1 ... j`

k1 ... k`
] βsv[j1 ··· j`

k1 ··· k` ; τ
]

As for mgfs, the matrices can be inserted in Mathematica either as nested lists or as 2d input,
cf. In[8]. For the definitions of the iterated Eisenstein integrals, see [30].

– 76 –

A.2.4 Koba–Nielsen integrals

For the evaluation and representation of Koba–Nielsen integrals and their generating series,
the following symbols are defined.

Mathematica symbol description

eta[k1,...,kr] ηk1,...,kr expansion variable as in [30]
etaBar[k1,...,kr] η̄k1,...,kr

s[k1,...,kr] sk1,...,kr as defined in (1.1) and (8.19)

fz[a, i, j] f
(a)
ij as defined in (2.12b)

fBarz[b, i, j] f
(b)
ij as defined in (2.12c)

gz[i, j] Gij as defined in (2.7)

cz[a, b, i, j] C
(a,b)
ij as defined in (2.18)

vz[a,{k1,...,kr}] Va(k1, . . . , kr) as defined in (2.16)

vBarz[b,{k1,...,kr}] Vb(k1, . . . , kr)

Symbols which represent functions which can appear in the integrand of a Koba–Nielsen
integral have the suffix z.

A.3 Functions

The functions in the ModularGraphForms package are organized into three main categories:
Dihedral functions only manipulate dihedral mgfs and carry the prefix Di. Trihedral functions
only manipulate trihedral mgfs and carry the prefix Tri. General functions act on mgfs of
all supported graph topologies or perform other tasks which are not specific to any graph
topology. They carry a prefix C. On top of these, there is limited support for four-point
manipulations in the form of the function TetCSimplify and a function to expand Koba–
Nielsen integrals in mgfs.

A.3.1 General functions

CBasis

The function CBasis returns a list of basis elements for mgfs.

Arguments CBasis accepts two arguments, corresponding to the holomorphic and antiholo-
morphic modular weight of the basis.

Return value CBasis returns the basis of mgfs at the modular weight passed as the argu-
ments as listed in Tables 3 and 4, excluding the zeta values ζ3, ζ5 and ζ2

3 . Note that at

– 77 –

weight (a+k, a−k), the basis elements in Table 3 have weight (a+k, a−k), whereas in
Table 4, they have weight (0,−2k).

Options If the option basis is set to the string "C" (the default) the basis from Table 3 is
returned, if the option basis is set to the string "nablaE", the basis from Table 4 is
returned. No other values for basis are admissible.

Warnings

• If the sum of the holomorphic- and antiholomorphic modular weights passed in
the arguments is odd, the warning CBasis::incorrModWeight is issued and CBasis

returns an empty list.

• If the sum of the holomorphic- and antiholomorphic modular weights passed in
the arguments is less than four, the warning CBasis::tooLowWeight is issued and
CBasis returns an empty list.

• If the basis for the modular weight passed to CBasis is not implemented, the
warning CBasis::noBasis is issued and CBasis returns an empty list.

Examples

In[59]:= CBasis[3, 7]

Out[59]=
{

C
[1 1 1

1 1 5
]
, C
[3 0

7 0
]
, C
[1 0

3 0
]

C
[2 0

4 0
]
,
π2 C

[1 0
5 0

]
E2

τ 2
2

, C
[0 1 2

2 0 5
]}

In[60]:= CBasis[3, 7, basis "nablaE"]

Out[60]= {∇
2
E2,3,∇

2
E5,∇E2 ∇E3,E2 ∇

2
E3,∇

2
B

′
2,3}

CCheckConv

The function CCheckConv tests if mgfs are convergent or divergent.

Argument CCheckConv accepts one argument which is an arbitrary expression, possibly con-
taining mgfs of any topology and Eisenstein series.

Return value CCheckConv returns True or False. If the argument contains an mgf which
is divergent according to the conditions discussed in Section 8.1 or a Ek, Gk or Gk with
k < 2, the function returns False, otherwise it returns True.

Examples

In[61]:= CCheckConv[e[1] c[2 0
3 0]]

Out[61]= False

– 78 –

Since E1 is divergent, the return value is False, even though C
[2 0

3 0
]

= 0.

In[62]:= CCheckConv[c[1 2
-2 2 ,

1 2
1 2 ,

1 2
-2 2 ,

1 2
1 2 ,

2 2
2 2]]

Out[62]= False

Since the last condition in (8.9) is violated, the return value is False.

In[63]:= CCheckConv[c[1 2
-2 2 ,

1 2
1 2 ,

1 2
-2 2 ,

2 3
2 1 ,

2 2
2 2]]

Out[63]= True

Since here č4 as defined below (8.6) is increased, the last condition in (8.9) is also
satisfied and the return value is True.

CComplexConj

The function CComplexConj computes the complex conjugate of an expression.

Argument CComplexConj accepts one arbitrary argument.

Return value CComplexConj returns its argument with all mgfs complex conjugated and
written in their canonical representation. This includes Eisenstein series, complex ba-
sis elements (according to (9.10)) Cauchy–Riemann derivatives of basis elements and
integration constants, unless the mgf in the argument is real.

Example

In[64]:= CComplexConj[{g[4], b[2, 4], intConst[1 2 1
1 1 4], nablaB[1, {2, 4}]}]

Out[64]=
{

G4, − B2,4 − 2 E2 E4 + 2 E2,4

9
, intConst[1 2 1

1 1 4],∇B2,4
}

CConvertToNablaE and CConvertFromNablaE

The functions CConvertToNablaE and CConvertFromNablaE convert an expression between the
bases given in Tables 3 and 4.

Argument Both CConvertToNablaE and CConvertFromNablaE accept one arbitrary argument.

Return value CConvertToNablaE replaces all of the basis elements in Table 3 in its argument
with their expansions in the basis of Table 4. CConvertFromNablaE replaces all of the basis
elements in Table 4 in its argument with their expansions in the basis of Table 3. On
top of the elements listed explicitly in these tables, ∇n0 Ek and C

[k+n 0
k−n 0

]
are rewritten

according to (5.50) for any n and k. The results are not manipulated any further and
mgfs in the argument which are not in the basis to be converted are left untouched.

– 79 –

Examples

In[65]:= CConvertToNablaE[c[1 1 4
1 1 2]]

Out[65]=
π5∇B2,3

18 τ 6
2
−
π5∇B′

2,3

18 τ 6
2
− π5 E3∇E2

12 τ 6
2

+ π5 E2∇E3

12 τ 6
2

+ 41 π5∇E5

140 τ 6
2

+ π5∇E2,3

24 τ 6
2
− π5∇E2 ζ3

36 τ 6
2

In[66]:= CConvertToNablaE[c[1 2 3
1 1 2]]

Out[66]= C
[1 2 3

1 1 2
]

In[67]:= CConvertFromNablaE[Out[65]]

Out[67]= C
[1 1 4

1 1 2
]

CHolCR and CAHolCR

The functions CHolCR and CAHolCR compute the holomorphic- and antiholomorphic Cauchy–
Riemann derivative, respectively.

Argument Both CHolCR and CAHolCR accept one argument which should be a functional
expression (e.g. a polynomial) involving mgfs and Eisenstein series.

Return value CHolCR returns the holomorphic Cauchy–Riemann derivative of its argument,
using the derivative operator defined in (5.40), by applying (5.47). The result is always
given in terms of lattice sums, even if the argument involves Cauchy–Riemann deriva-
tives of basis elements. The generalized Ramanujan identities from Section 5.5 are not
applied. If the argument contains a divergent graph with a closed holomorphic sub-
graph, hsr is applied before the derivative is taken, while C

[2 0
0 0
]
is not replaced by

Ĝ2. The output is not manipulated any further. CAHolCR returns the antiholomorphic
Cauchy–Riemann derivative.

Options The Boolean option divDer specifies if derivatives of divergent graphs are taken
or not. If it is set to False (the default is True) and a divergent mgf appears in the
argument, CHolCR and CAHolCR return Nothing.

Warnings

• If the argument of CHolCR contains a divergent mgf, the warning CHolCR::derOfDiv

is issued (and c.c.).

• The argument is passed to CModWeight (see below), to check if it has homogeneous
modular weight. If it does not, the warning CModWeight::WeightNotHom is issued
and Nothing is returned.

– 80 –

Examples

In[68]:= CHolCR[{nablaE[1, {3}], gBarHat[2], c[1 1 1
1 1 1]}]

Out[68]=
{12 C

[5 0
1 0

]
τ 4

2

π3 ,
π

τ 2 , C
[1 1 2

1 1 0
]

+ C
[1 2 1

1 0 1
]

+ C
[2 1 1

0 1 1
]}

In[69]:= CHolCR[c[0 0 3
1 1 3]]

CHolCR : Warning: You are generating the holomorphic Cauchy−Riemann derivative of
the divergent expression C

[0 0 3
1 1 3

]
. This may be problematic.

Out[69]= − 6 C
[4 0

4 0
]

+
2 π C

[3 0
3 0

]
τ 2

CLaurentPoly

The function CLaurentPoly replaces basis elements by their Laurent polynomials.

Argument CLaurentPoly accepts one arbitrary argument.

Return value CLaurentPoly returns its argument with the real basis elements (9.5), the
complex basis elements (9.9), their Cauchy–Riemann derivatives and complex conju-
gates, as well as all non-holomorphic- and holomorphic Eisenstein series (including Ĝ2)
replaced by their Laurent polynomials. The Laurent polynomials of the real and complex
basis elements are given in (9.7) and (9.12), respectively, their derivatives are obtained
using (9.14).

Options The Boolean option usey specifies if the output is given in terms of τ2 (False) or
y = πτ2 (True, the default).

Examples

In[70]:= CLaurentPoly[nablaBarBBar[2, {2, 4}]]

Out[70]= − 8 y8

30375 π2 −
105 ζ3 ζ7

8 π2 y2 + 25 ζ9

12 π2 y

In[71]:= CLaurentPoly[{g[6], gHat[2], e[7]}, usey False]

Out[71]=
{2 π6

945
,
π2

3
− π

τ 2
,

4 π7 τ 7
2

18243225
+ 231 ζ13

512 π6 τ 6
2

}
CListHSRs

The function CListHSRs lists mgfs with closed holomorphic subgraphs in an expression.

Arguments CListHSRs accepts one arbitrary argument.

– 81 –

Return value CListHSRs returns a list with all dihedral and trihedral graphs with closed
holomorphic subgraphs appearing somewhere in its argument. If the argument does not
contain any dihedral or trihedral graphs, CListHSRs returns the empty list.

Examples

In[72]:= CListHSRs[c[10 , 1 2
0 1 ,

1 2
2 0] +++ c[7 0

3 0]]

Out[72]=
{

C
[1
0

1 2
0 1

1 2
2 0

]}
CModWeight

The function CModWeight determines the modular weight of an expression.

Argument CModWeight accepts one argument which can be either a modular form (possibly
of trivial modular weight), a product of modular forms or a sum of products of modular
forms.

Return value CModWeight returns a list with two elements, corresponding to the holomor-
phic and antiholomorphic modular weight, respectively.

Warnings

• If a sum is passed to CModWeight and the modular weights of the summands do
not agree, CModWeight returns Null and the warning CModWeight::WeightNotHom,
containing a list of the modular weights appearing in the sum, is issued.
• If symbols appear in the argument of CModWeight, for which no modular weight is
implemented, CModWeight returns the modular weight which the expression would
have if all symbols of unknown weight were modular invariant. A list of the
terms whose weight could not be determined is printed as part of the warning
CModWeight::UnknownExp.

Examples

In[73]:= CModWeight[tau[2]-2 nablaBarE[1, {2}] nablaE[2, {4}] +++ nablaBp[1, {2, 4}]]

Out[73]= {0, − 2}

In[74]:= CModWeight[e[2] +++ C
[2 0
2 0

]
]

CModWeight: The modular weight of the argument is not homogeneous, the weights
{2,2}, {0,0} appear.

In[75]:= CModWeight[g[2] g[4]]

CModWeight: Expression(s) {G2} found whose modular weight could not be determined.
The returned weight assumes them to be modular invariant.

In[76]:= {4, 0}

– 82 –

CSieveDecomp

The function CSieveDecomp decomposes an mgf using the sieve algorithm.

Arguments CSieveDecomp accepts one argument which can be either a dihedral or a trihedral
mgf without closed holomorphic subgraph.

Return value CSieveDecomp performs the sieve algorithm on its argument as discussed in
Section 7 and returns the decomposition obtained. If the holomorphic modular weight
is larger than the antiholomorphic one, CSieveDecomp takes holomorphic derivatives,
otherwise antiholomorphic ones. If both modular weights of the argument are equal,
an integration constant intConst labeled by the exponent matrix of the argument and
dressed with an appropriate factor of π

τ2
is added to the final decomposition. If the basis

into which the argument is decomposed is not linearly independent, the output contains
free parameters with head bCoeff.

Options

option
possible
values

default
value

description

verbose True, False False activates verbose output

divDer True, False False activates decomposition of
divergent graphs

basis list of mgfs {} basis elements for
decomposition

addIds list of replacement
rules for mgfs

{} additional replacement rules
applied to each derivative

CSimplifyOpts option assignments
of CSimplify

see below options passed to CSimplify when
simplifying the derivatives

The default value of CSimplifyOpts is {basisExpandG True}. If the option basis is set
to the empty list, the appropriate basis is determined automatically using CBasis. Since
this basis does not contain powers of E1, it is not sufficient for the decomposition
of divergent graphs. The basis elements have to be mgfs without closed holomorphic
subgraphs of the same modular weight as the argument. Divergent basis elements are
only admissible if divDer is set to True.

Warnings

• If the argument of CSieveDecomp is divergent, the warning CSieveDecomp::divArg

is issued. The decomposition proceeds only if divDer is set to True.

– 83 –

• If one of the basis elements is divergent, but the argument is not, the warning
CSieveDecomp::divBasis is issued.

• If a holomorphic Eisenstein series could not be canceled in one of the derivatives,
the warning CSieveDecomp::noSol is issued. This happens e.g. if the basis is not
large enough.

• If in one of the derivatives, an undecomposed graph appears in the coefficient of a
holomorphic Eisenstein series, the warning CSieveDecomp::holEisenCoeffNoBasis

is issued and the algorithm interrupted. mgfs are considered decomposed if they
appear in the basis given by CBasis. For modular weight a + b ≤ 12, these unde-
composed graphs will be divergent.

Examples

In[77]:= CSieveDecomp[c[11 , 1 1
1 1 ,

1 1
1 1]]

Out[77]= 2 C
[1 1 3

1 1 3
]
− 2 π5 E5

5 τ 5
2

+
π5intConst[1

1
1 1
1 1

1 1
1 1]

τ 5
2

In[78]:= CSieveDecomp[c[1 1 1
1 1 1], basis {c[0 1 2

1 1 1], τ 32
tau[2]3

e[3]}]

Out[78]= − C
[0 1 2

1 1 1
]

+ 2 bCoeff[2] C
[0 1 2

1 1 1
]

+ π3 bCoeff[2] E3

τ 3
2

+
τ 3 intConst

[1 1 1
1 1 1

]
τ 3

2

In[79]:= CSieveDecomp[c[0 1 1 1
3 0 1 1]]

CSieveDecomp : The 1st derivative contains the undecomposed graph(s)
{
C
[0 1 1
1 0 1

]}
as

a coefficient of a holomorphic Eisenstein series.

Out[79]= C
[0 1 1 1

3 0 1 1
]

In[80]:= CSieveDecomp[c[0 1 1 1
3 0 1 1], addIds {c[0 1 1

1 0 1] − π2 E21
2 tau[2]2

+++ π2 E2
2 tau[2]2

}]

Out[80]= 2 C
[3 0

5 0
]
− 2 C

[1 1 1
1 1 3

]
−
π2 C

[1 0
3 0

]
E2

τ 2
2

CSimplify

The function CSimplify performs all known simplifications for mgfs.

Argument CSimplify accepts one arbitrary argument.

Return value CSimplify applies, in this order, the specialized functions TetCSimplify,
TriCSimplify and DiCSimplify to its argument until it no longer changes and returns
the result.

– 84 –

Options CSimplify accepts all the options of both TriCSimplify and DiCSimplify and passes
them to these functions when they are called.

Examples

In[81]:= CSimplify[c[10 , 1 1
0 1 ,

1 2
1 0]]

Out[81]=
3
2

C
[3 0

1 0
]2 − 1

2
C
[6 0

2 0
]
− 1

2
C
[4 0

2 0
]

Ĝ2 −
π2 G4

τ 2
2

+
3 π C

[5 0
1 0

]
τ 2

−
π C
[3 0

1 0
]

Ĝ2

τ 2

In[82]:= CSimplify[c[10 , 1 1
0 1 ,

1 2
1 0], tri3ptFayHSR True]

Out[82]=
3
2

C
[3 0

1 0
]2 − 1

2
C
[6 0

2 0
]
− 1

2
C
[4 0

2 0
]

Ĝ2 −
π2 G4

τ 2
2

+
3 π C

[5 0
1 0

]
τ 2

−
π C
[3 0

1 0
]

Ĝ2

τ 2

In[83]:= CSimplify[c[{} , 11 ,
1
1 ,

1
1 , {} , 11]]

Out[83]= 0

CSort

The function CSort sorts mgfs into their canonical representation.

Argument CSort accepts one arbitrary argument.

Return value CSort returns its argument with all mgfs written in their canonical repre-
sentation as discussed in Section 5.1.

Example

In[84]:= CSort[{c[2 2
1 1 ,

1 1
1 1 ,

1 1
1 1 ,

1 2
1 1 ,

2 2
1 1 ,

1 1
1 2]}, c[1 1

1 0 ,
1
0 ,

1 2
1 0]]

Out[84]=
{

C

[1 1
1 1

1 1
1 1

2 2
1 1

1 2
1 1

2 2
1 1

1 1
1 2

]
, C
[1
0

1 1
0 1

1 2
1 0

]}
A.3.2 Dihedral functions

DiHolMomConsId and DiAHolMomConsId

The functions DiHolMomConsId and DiAHolMomConsId generate holomorphic and antiholomor-
phic dihedral momentum-conservation identities, respectively.

Argument Both DiHolMomConsId and DiAHolMomConsId accept a dihedral mgf as their only
argument.

Return value DiHolMomConsId returns the holomorphic momentum conservation identity
(5.24) of the seeds given in the argument as an equation with rhs 0. DiAHolMomConsId
returns the antiholomorphic momentum-conservation identity. No further manipulation
as e.g. sorting into the canonical representation are performed on the output.

– 85 –

Warnings If the argument of DiHolMomConsId is divergent according to CCheckConv, the warn-
ing DiHolMomConsId::divDiHolMomCons (and c.c.) is issued.

Examples

In[85]:= DiHolMomConsId[c[1 1 2
1 1 1]]

DiAHolMomConsId[c[1 1 2
1 1 1]]

Out[85]= C
[0 1 2

1 1 1
]

+ C
[1 0 2

1 1 1
]

+ C
[1 1 1

1 1 1
]

== 0

Out[86]= C
[1 1 2

0 1 1
]

+ C
[1 1 2

1 0 1
]

+ C
[1 1 2

1 1 0
]

== 0

In[87]:= DiHolMomConsId[c[0 1 2
1 0 2]]

DiHolMomConsId : You are generating the holomorphic momentum−conservation
identity of the divergent seed C

[0 1 2
1 0 2

]
. Divergent seeds can lead to inconsistent identities.

Out[87]= C
[-1 1 2

1 0 2
]

+ C
[0 0 2

1 0 2
]

+ C
[0 1 1

1 0 2
]

== 0

DiCSimplify

The function DiCSimplify performs all known dihedral simplifications.

Argument DiCSimplify accepts one arbitrary argument.

Return value DiCSimplify returns the expression given as the argument with all dihedral
mgfs (including one-loop graphs such as Eisenstein series) rewritten in a simplified
form, if possible. This is done by performing the following manipulations on all dihedral
graphs, until the result does not change any more.

1. Apply hsr (6.6) and its divergent analog (8.28).

2. Set C
[
∅
]

= 1, cf. (5.10).

3. Factorize on [0
0] columns according to (5.34) and (8.49).

4. Set C
[a
b

]
= 0, cf. (5.9).

5. Remove entries of −1 by using momentum conservation as described in Section 7.

6. Sort dihedral mgfs into their canonical representation as described in Section 5.1.

7. Set graphs with odd |A|+ |B| to zero.

8. Rewrite C
[
k 0
0 0
]

= Gk and c.c., cf. (2.30b).

9. Rewrite C
[2 0

0 0
]

= Ĝ2 and c.c., cf. (2.36).

10. Set Gk with k odd to zero and c.c.

11. Rewrite C
[
k 0
k 0
]

=
(
π
τ2

)kEk, cf. (2.30c).

– 86 –

12. Apply generalized Ramanujan identities discussed in Section 5.5 and expand holo-
morphic Eisenstein series in the ring of G4 and G6.

13. Apply basis decompositions discussed in Section 9, in the basis listed in Table 3.

Within this process, the steps 2 to 12 are repeated until the result no longer changes,
before step 13 is executed.

Options

option
possible
values

default
value

description

basisExpandG True, False False activates step 12
momSimplify True, False True deactivates step 5
repGHat2 True, False True deactivates step 9
useIds True, False True deactivates step 13
diHSR True, False True deactivates step 1
divHSR True, False True deactivates step 1 for divergent graphs

diDivHSR True, False True deactivates step 1 for divergent graphs

Both options divHSR and diDivHSR have to be True for divergent graphs to be included
in step 1.

Warnings

• If a graph in the argument contains a [0
0] column next to a [1

0] or [1
0] column, the

warning DiCSimplify::dangerousFact is issued and the modified factorization rule
(8.49) applied.

• If a divergent graph with a holomorphic subgraph is encountered but hsr cannot
be performed because either one of the options divHSR or diDivHSR is set to False,
the warning DiCSimplify::divHSRNotPossible is issued.

Examples

In[88]:= DiCSimplify[c[1 2 2 2
0 0 1 2]]

Out[88]= 3 C
[3 0

1 0
]

C
[4 0

2 0
]
− 15 C

[7 0
3 0

]
− 9C

[0 2 5
1 0 2

]
+ 21

2
C
[1 1 5

1 1 1
]
− C

[5 0
3 0

]
Ĝ2 +

1
2

C
[1 1 3

1 1 1
]

Ĝ2 −
2 π2 C

[5 0
1 0

]
τ 2

2
+

6 π C
[6 0

2 0
]

τ
−

2 π C
[4 0

2 0
]

Ĝ2

τ 2

In[89]:= DiCSimplify[c[1 2 2 2
0 0 1 2], momSimplify False, useIds False]

– 87 –

Out[89]= − 3 C
[2 2 3

1 2 0
]

+ C
[1 2 2

0 1 2
]
Ĝ2 +

π C
[2 2 2

-1 1 2
]

τ 2

In[90]:= DiCSimplify[c[0 0 1 1 1 2 4
0 1 1 1 1 3 4]] // Simplify

DiCSimplify : The graph C
[0 0 1 1 1 2 4
0 1 1 1 1 3 4

]
is factorized and contains a (1,0) or (0,1)

column. This may be problematic.

Out[90]= −
π8 C

[1 0
3 0

]
(-6 + 6 E1 − 3 E2

1 + E3
1) E4 + C

[0 1 1 1 2 4
1 1 1 1 3 4

]
τ 8

2

τ 8
2

A.3.3 Trihedral functions

TriHolMomConsId and TriAHolMomConsId

The functions TriHolMomConsId and TriAHolMomConsId generate trihedral holomorphic and
antiholomorphic momentum-conservation identities, respectively.

Arguments Both TriHolMomConsId and TriAHolMomConsId accept two arguments: The first
is a trihedral mgf, the second is one of the lists {1,2}, {2,3} or {1,3}, where the order
of the elements in the list does not matter.

Return value TriHolMomConsId returns the holomorphic trihedral momentum-conservation
identity (5.25) as an equation with rhs zero. Due to the permutation symmetry of the
three blocks in a trihedral mgf, any two blocks can be involved in the momentum-
conservation identity (i.e. have their holomorphic weight reduced) and the second argu-
ment of TriHolMomConsId specifies which two blocks should be used to generate the iden-
tity. TriAHolMomConsId generates the antiholomorphic momentum conservation identity.
No further manipulation is performed on the output.

Warnings If either one of the blocks in the second argument is divergent as a dihedral mgf
or if the trihedral mgf in the first argument has a three-point divergence (cf. (8.6)), the
warning TriHolMomConsId::divTriHolMomCons (and c.c.) is issued.

Examples

In[91]:= TriHolMomConsId[c[11 , 1 1
1 1 ,

1 1
1 1], {1, 2}]

Out[91]= C
[0
1

1 1
1 1

1 1
1 1

]
− C

[1
1

0 1
1 1

1 1
1 1

]
− C

[1
1

1 0
1 1

1 1
1 1

]
== 0

In[92]:= TriAHolMomConsId[c[11 , 1 1
1 1 ,

1 1
1 1], {3, 2}]

Out[92]= − C
[1
1

1 1
0 1

1 1
1 1

]
− C

[1
1

1 1
1 0

1 1
1 1

]
+ C

[1
1

1 1
1 1

1 1
0 1

]
+ C

[1
1

1 1
1 1

1 1
1 0

]
== 0

In[93]:= TriHolMomConsId[c[11 , 0 1
1 0 ,

1 1
1 1], {1, 3}]

Out[93]= c[0
1 , 0 1

1 0 , 1 1
1 1] − c[1

1 , 0 1
1 0 , 0 1

1 1] − c[1
1 , 0 1

1 0 , 1 0
1 1] == 0

– 88 –

TriFay

The function TriFay generates trihedral Fay identities.

Arguments TriFay accepts up to two arguments. The first (mandatory) argument is a trihe-
dral mgf, the second (optional) argument is a list of the form {{b1,c1},{b2,c2}}, where
ci is a column number in the bith block and the list selects two columns, both of the
form [a0] with a ≥ 1 or

[0
b

]
with b ≥ 1 in the trihedral graph. If the second argument

is omitted, TriFay selects the first suitable pair of columns automatically, starting from
the left and trying holomorphic column pairs first.

Return value TriFay returns an equation in which the lhs is the graph specified in the first
argument and the rhs is given by (6.22) (or its complex conjugate), with the columns
[a1

0] and [a2
0] selected by the second argument or determined automatically. No further

manipulations are performed on the output.

Warnings If no second argument is passed to TriFay and no suitable pair of columns could
be found, the warning TriFay::noFayCols is issued.

Examples

In[94]:= TriFay[c[10 , 1 2
0 2 ,

1 2
1 0]]

Out[94]= C
[1
0

1 2
0 2

1 2
1 0

]
== C

[
{} 2

2
1 2 2
1 0 0

]
− C

[
{} 1 2

0 2
1 1 2
0 1 0

]
+

C
[

{} 1 2
1 0

2 2
0 2

]
− C

[1
0

2
2

1 1 2
0 1 0

]
+ C

[2
0

2
2

1 2
1 0

]
In[95]:= TriFay[c[01 , 0 1

2 1 ,
0 2
1 2], {{1, 1}, {3, 1}}]

Out[95]= c[0
1 , 0 1

2 1 , 0 2
1 2] == C

[
{} 2

2
0 0 1
2 2 1

]
+ C

[
{} 0 1

2 1
0 2
2 2

]
−

C
[

{} 0 2
1 2

0 0 1
1 2 1

]
− C

[0
1

2
2

0 0 1
1 2 1

]
+ C

[0
2

2
2

0 1
2 1

]
TriCSimplify

The function TriCSimplify applies all known trihedral simplifications.

Argument TriCSimplify accepts one arbitrary argument.

Return value TriCSimplify returns the expression given as the argument with all trihedral
mgfs rewritten in a simplified form, if possible. This is done by performing the following
manipulations on all trihedral graphs, until the result does not change any more.

1. Apply two-point hsr using the trihedral generalization of (6.6) as described in [19]
and its divergent analog (8.31).

2. Apply three-point hsr using the closed formula in [19].

– 89 –

3. Set graphs with odd total modular weight a+ b to zero.

4. Apply the topological simplification (5.13).

5. Apply the topological simplification (5.12).

6. Factorize on [0
0] columns according to (5.35) and (8.50).

7. Remove entries of −1 by using momentum conservation as described in Section 7.

8. Sort trihedral mgfs into their canonical representation as described in Section 5.1.

9. Apply basis decompositions discussed in Section 9, in the basis listed in Table 3.

Within this process, the steps 3 to 8 are repeated until the result no longer changes,
before step 9 is executed.

Options

option
possible
values

default
value

description

momSimplify True, False True deactivates step 7
useIds True, False True deactivates step 9
triHSR True, False True deactivates steps 1 and 2

tri2ptHSR True, False True deactivates step 1
tri3ptHSR True, False True deactivates step 2

tri3ptFayHSR True, False False activates three-point hsr via the Fay
identity (6.22) instead of the forumla in [19]

divHSR True, False True deactivates steps 1 and 2 for divergent graphs
triDivHSR True, False True deactivates steps 1 and 2 for divergent graphs

Both options divHSR and triDivHSR have to be True for divergent graphs to be included
in steps 1 and 2. Furthermore, if tri3ptFayHSR is set to True, setting tri2ptHSR to False

also deactivates three-point hsr since (6.22) reduces three-point hsr to two-point hsr.

Warnings

• If a graph in the argument contains a [0
0] column next to a [1

0] or [1
0] column,

the warning TriCSimplify::dangerousFact is issued and the modified factorization
rule (8.50) applied.

• If a divergent graph with a holomorphic subgraph is encountered but hsr cannot
be performed because either one of the options divHSR or triDivHSR is set to False,
the warning TriCSimplify::divHSRNotPossible is issued.

• If three-point hsr is performed on a divergent graph using Fay identities by setting
the option tri3ptFayHSR to True, the warning TriCSimplify::div3ptFay is issued.

– 90 –

• If three-point hsr is performed via the formula in [19] and there is no ordering
of the blocks which prevents a divergent expression in the result (cf. discussion
in Section 4.2.4 of the reference), the warning TriCSimplify::noConvHSROrder is
issued. If one of the options divHSR or triDivHSR is set to False, the warning
TriCSimplify::divHSRNotPossible is issued and the hsr is not performed.

Examples

In[96]:= TriCSimplify[c[10 , 1 1
0 1 ,

1 2
1 0]]

Out[96]= − 6 C
[2 4

2 0
]

+ 2 C
[3 1 2

1 1 0
]
− 6 C

[4 1 1
1 0 1

]
+ C

[1
1
]2

G4 +

2 C
[2 1 1

1 0 1
]

Ĝ2 +
2 π C

[2 3
2 -1

]
τ 2

+
2 π C

[3 1 1
0 0 1

]
τ 2

In[97]:= TriCSimplify[c[10 , 1 1
0 1 ,

1 2
1 0], tri3ptFayHSR True]

Out[97]= C
[1

1
]
C
[1 1

0 1
]
− C

[2 1 3
1 1 0

]
− C

[2 1 3
2 0 0

]
+ 3 C

[4 1 1
1 0 1

]
− C

[2 1 1
1 0 1

]
Ĝ2 −

π C
[3 1 1

0 0 1
]

τ 2

In[98]:= DiCSimplify[Out[96]-Out[97]]

Out[98]= 0

In[99]:= TriCSimplify[c[10 , 1 2
0 0 ,

1 2
1 0], tri2ptHSR False, tri3ptFayHSR True]

Out[99]= C
[1
0

1 2
0 0

1 2
1 0

]
A.3.4 Four-point simplification

TetCSimplify

The function TetCSimplify applies topological simplifications on four-point graphs.

Argument TetCSimplify accepts one arbitrary argument.

Return value TetCSimplify returns the expression given as the argument with all four-
point mgfs rewritten in a simplified form, if possible. This is done by performing the
following manipulations on all four-point graphs (not only tetrahedral ones), until the
result does not change any more.

1. Set graphs with odd total modular weight a+ b to zero.

2. Apply the topological simplification (5.14).

3. Apply the topological simplifications (5.15) and (5.16).

4. Apply the topological simplifications (5.17) and (5.18).

– 91 –

5. Set four-point mgfs to zero which vanish by symmetry, cf. (5.5).

6. Sort four-point mgfs into their canonical representation as described in Section 5.1.

Examples

In[100]:= TetCSimplify[c[1 1
1 1 ,

1 1
1 1 ,

1 2
1 1 ,

2 2
1 1 ,

2 2
1 1 ,

1 1
1 2]]

Out[100]= 0

In[101]:= TetCSimplify[c[{} , 11 ,
1
1 ,

1
1 , {} , 11]]

Out[101]= C
[1

1
]
C
[1
1

1
1

1
1
]

A.3.5 Koba–Nielsen integration

zIntegrate

The function zIntegrate expands Koba–Nielsen integrals in terms of mgfs.

Arguments zIntegrate represents a Koba–Nielsen integral and accepts three arguments.
The first argument should be a polynomial in the objects with suffix z introduced in
Section A.2.4, specifying the prefactor of the Koba–Nielsen factor. The second argument
should be a natural number specifying the number of punctures in the Koba–Nielsen
factor or a list of pairs of natural numbers {{i, j}, {k, l}, ...}, specifying the Green
functions (and associated Mandelstam variables) appearing in the Koba–Nielsen factor.
The third argument should be a natural number specifying the order to which the
Koba–Nielsen integral is to be expanded.

Return value zIntegrate returns the order specified by the last argument of the Koba–
Nielsen integral defined by the first two arguments. The resulting mgfs are simplified
using the general properties listed below (2.36) and all the techniques implemented
in CSimplify, apart from hsr and the application of the basis decompositions from
Section 9. If the resulting mgfs require graphs with more than four vertices, for which
no notation was defined, a graphical representation of those graphs is printed, cf. Out[7].
No constraints are placed on the Mandelstam variables.

Examples

In[102]:= zIntegrate[vz[2, {1, 2}] +++ vz[2, {3, 4}], 4, 1] // Simplify

CSimplify[%]

Out[102]= −
(
2 C
[3 0

1 0
]

+ C
[1 1 1

0 0 1
])

(s1,2 + s3,4)τ 2

π

Out[103]= − Ĝ2 s1,2 − Ĝ2 s3,4

– 92 –

In[104]:= zIntegrate[vz[2, {1, 2}] vz[2, {3, 4}], 4, 1] // Simplify

CSimplify[%]

Out[104]= −
(
2 C
[3 0

1 0
]

+ C
[1 1 1

0 0 1
])

Ĝ2 (s1,2 + s3,4)τ 2

π

Out[105]= − Ĝ
2
2 s1,2 − Ĝ

2
2 s3,4

In[106]:= zIntegrate[fz[1, 1, 2] fBarz[1, 1, 3], 3, 2] // Simplify

CSimplify[%]//Simplify

Out[106]=
s2,3

(
− 2 C

[1 1 1
0 1 2

]
s1,2 − 2 C

[0 1 2
1 1 1

]
s1,3 + C

[1 1 1
1 1 1

]
s2,3

)
τ 2

2

2 π2

Out[107]=
π s2,3 (s1,2 + s1,3 + s2,3) (E3 + ζ3)

2 τ 2

A.4 Example: four-gluon scattering in the heterotic string

In this section, we use the functions introduced above to reproduce the expansions for the
integrals I(2,0)

1234 and I(4,0)
1234 defined by

I(4,0)
1234 (sij , τ) =

∫
dµ3 V4(1, 2, 3, 4) KN4 (A.1)

I(2,0)
1234 (sij , τ) =

∫
dµ3 V2(1, 2, 3, 4) KN4 , (A.2)

which appear in the planar sector of four-gluon scattering in the heterotic string, cf. Section 2.4
of [20].

All of the steps in the calculation are automatized, with one exception: The four-point
hsr-identity (6.19) has to be added by hand. To this end, we first define the replacement rule

In[108]:= tetrule === c[10 , 10 , 11 , 10 , 10 , 11] − c[10 , {} , 1 2
1 0 ,

1
0 ,

1
0 ,

1
1] − c[10 , {} , 11 ,

2
0 ,

1
0 ,

1
1] −

c[10 , 20 , 11 , {} , 10 ,
1
1] +++ c[10 , {} , 1 1

1 0 ,
1
0 ,

1
0 ,

1
1] − c[10 , 10 , 1 1

1 0 , {} , 10 ,
1
1];

In order to bring the output into a nice form, we furthermore define the helper function

In[109]:= prettify[poly_]:=Block[{ap,mandOrd,result},
mandOrd=MonomialList[poly,{s[1,2],s[2,3]}]/.List[x__]:>Plus[x];
result=DeleteCases[DeleteDuplicates[Flatten[CoefficientList[mandOrd,

{s[1,2],s[2,3]}]]],0];
result=Collect[mandOrd,result];
result=(SortBy[({Exponent[#/.s[i_,j_]:>ap s[i,j],ap],#}&)

/@(List@@result),First][[All,2]])/.List[x__]:>HoldForm[Plus[x]];

Return[result]];

– 93 –

The integral I(4,0)
1234 can now be expanded to second order by running

In[110]:= Sum[zIntegrate[vz[4, {1, 2, 3, 4}], 4, i], {i, 0, 2}];

To this we apply the four-point hsr-rule from above, decompose all resulting mgfs into the
basis from Table 3 and change the basis to Table 4,

In[111]:= % /. tetrule // CSimplify // CConvertToNablaE;

Since zIntegrate does not apply momentum conservation to the Mandelstam variables, we
do this explicitly,

In[112]:= % /. {s[3, 4] s[1, 2], s[1, 4] s[2, 3], s[2, 4] - s[1, 2] - s[2, 3],

s[1, 3] - s[1, 2] - s[2, 3]};

Finally, we apply the function prettify defined in In[109] to rearrange the output

In[113]:= prettify[%]

Out[113]= G4 + (s1,2 + s2,3)
(
− 6 G4−

3 π Ĝ2∇E2

τ 2
2

)
+
(
s2

1,2 + s2
2,3

) (
2 E2 G4 + π2∇2E3

6 τ 4
2

+ 2 π Ĝ2∇E3

3 τ 2
2

)
+

s1,2 s2,3

(
2 E2 G4 + 2 π2∇2E3

3 τ 4
2

+ 8 π Ĝ2∇E3

3 τ 2
2

)
,

which agrees with the result found in [20]. The Laurent polynomial of the first orders of I(4,0)
1234

can now easily be obtained by

In[114]:= prettify[CLaurentPoly[ReleaseHold[%]]]

Out[114]=
π4

45
+(s1,2+s2,3)

(
−2 π4 y

45
−3 π4 ζ3

y3 +π
4 ζ3

y2

)
+s1,2s2,3

(94 π4 y2

14175
+2 π4 ζ3

45 y
+5 π4 ζ5

y4 −π
4 4ζ5

3 y3

)
+(

s2
1,2 + s2

2,3

)(34 π4 y2

14175
+ 2 π4 ζ3

45 y
+ 5 π4 ζ5

y4 − π4 ζ5

3 y3

)
.

Similarly, we can expand I(2,0)
1234 to third order by running

In[115]:= Sum[zIntegrate[vz[2, {1, 2, 3, 4}], 4, i], {i, 0, 3}];

% // CSimplify // CConvertToNablaE;

% /. {s[3, 4] s[1, 2], s[1, 4] s[2, 3], s[2, 4] - s[1, 2] - s[2, 3],
s[1, 3] - s[1, 2] - s[2, 3]};

prettify[%]

Out[115]= − 3 π∇E2 (s1,2 + s2,3)
τ 2

2
+ 8 π∇E3 s1,2 s2,3

3 τ 2
2

+
2 π∇E3 (s2

1,2 + s2
2,3)

3 τ 2
2

+(
s2

1,2s2,3 + s1,2s2
2,3

)(
− 12 π E2∇E2

τ 2
2

− 8 π∇E4

5 τ 2
2
− 24 π∇E2,2

τ 2
2

)
+(

s3
1,2 + s3

2,3

) (
− 6 π E2∇E2

τ 2
2

− 4 π∇E4

5 τ 2
2
− 12 π∇E2,2

τ 2
2

)
,

– 94 –

in agreement with the result in [20]. The next higher order in α′ of I(2,0)
1234 contains two tetra-

hedral graphs. One of them vanishes by symmetry, the other one can be reduced to trihedral
graphs by means of the Fay identity (6.17),

C
[1

0
1
1

1
1

1
0

1
1

1
1

]
= 0 (A.3)

C
[1

0
1
0

1
1

1
1

1
1

1
1

]
= −C

[
∅ ∅ 1

1
1
1

1
1

1 2
1 0

]
− C

[
∅ 2

0
1
1

1
1

1
1

1
1

]
− C

[2
0 ∅ 1

1
1
1

1
1

1
1

]

+ C
[
∅ 1

0
1
1

1
1

1
1

1 1
0 1

]
− C

[1
0 ∅ 1

1
1
1

1
1

1 1
0 1

]
.

(A.4)

If the Fay identity (A.4) is added by hand, similarly to how (6.19) was added above, the
expansion of I(2,0)

1234 can be extended to the order α′4.

B Kinematic poles in three-point Koba–Nielsen integrals

As explained in Section 8.2, a factor |f (1)
ij |2 in a Koba–Nielsen integral leads to a naive ex-

pansion of this integral terms of divergent mgfs. This signals a pole in one or more of the
Mandelstam variables which can be made explicit by means of integration-by-parts manipu-
lations. In this appendix we discuss the resulting expressions for all three-point Koba–Nielsen
integrals containing |f (1)

ij |2 factors using the notation

W τ
(a2,a3|b2,b3)(σ|ρ) =

∫ d2z2
τ2

d2z3
τ2

ρ[f (a2)
12 f

(a3)
23]σ[f (b2)

12 f
(b3)
23] KN3 (B.1)

introduced in [29]. Here, the permutations ρ, σ ∈ S2 act on the subscripts i, j ∈ {2, 3} of f (n)

and f (n) but not on those of ai and bj .
If only one |f (1)

ij |2 is present in the integrand and the other f (a), f (b) do not depend on zi
or zj , we can use the puncture only occurring in |f (1)

ij |2 to integrate by parts, obtaining one
more term compared to (8.18),

W τ
(1,a|1,b)(2,3|2,3) = (−)a+1 s13

s12
W τ

(1,a|1,b)(2,3|3,2)− 1
s12

π

τ2
W τ

(0,a|0,b)(2,3|2,3) , (B.2)

– 95 –

with a 6= 1 or b 6= 1. Three more cases can be obtained from (B.2) by relabeling of the
Mandelstam variables,

W τ
(a,1|b,1)(2,3|2,3) = W τ

(1,a|1,b)(2,3|2,3)
∣∣∣
s12↔s23

(B.3)

W τ
(1,a|1,b)(3,2|3,2) = W τ

(1,a|1,b)(2,3|2,3)
∣∣∣
s12↔s13

(B.4)

W τ
(a,1|b,1)(3,2|3,2) = W τ

(1,a|1,b)(2,3|2,3)
∣∣∣s12→s23
s23→s13
s13→s12

, (B.5)

where again a 6= 1 or b 6= 1.
If both punctures i and j of |f (1)

ij |2 also appear in other f (a), f (b) factors, one obtains an
additional term from the action of ∂z̄ on the corresponding f (a) according to (2.13). In this
way, we obtain

W τ
(a,1|b,1)(3,2|2,3) =

{
s23
s13

W τ
(1,a|b,1)(2,3|3,2) (B.6)

+ (−)b

s13

π

τ2

[
W τ

(0,a|b,0)(2,3|2,3) + (−)a−1W τ
(1,a−1|b,0)(2,3|3,2)

]}
s12→s13
s13→s23
s23→s12

W τ
(a,1|b,1)(3,2|2,3) =

{
s23
s12

W τ
(a,1|1,b)(2,3|3,2) (B.7)

+ 1
s12

π

τ2

[
W τ

(a,0|0,b)(2,3|3,2)−W τ
(a,0|1,b−1)(2,3|3,2)

]}
s12→s23
s13→s12
s23→s13

,

where a 6= 1 in (B.6) and b 6= 1 in (B.7) and we set f (−1) = 0. With the help of the Mandelstam
relabelings, we avoid the need of a Fay identity to write the rhs in terms of the integrals
(B.1). One further case can be obtained by Mandelstam relabelings of (B.6) and (B.7),

W τ
(a,1|b,1)(2,3|3,2) = W τ

(a,1|b,1)(3,2|2,3)
∣∣∣
s12↔s13

, (B.8)

where a 6= 1 or b 6= 1.
If two |f (1)

ij |2 factors are present in the integrand, we obtain (on top of the poles for each
|f (1)
ij |2) a three-point kinematic pole ∼ 1

s123
, where the three-point Mandelstam variable is

defined in (8.19). Hence, the integral

W τ
(1,1|1,1)(2,3|2,3) =

∫
dµ2

∣∣f (1)
12
∣∣2 ∣∣f (1)

23
∣∣2 KN3 (B.9)

– 96 –

has pole structure 1
s123

(1
s12

+ 1
s23

)
. Similarly, the integral

W τ
(1,1|1,1)(3,2|2,3) = −

∫
dµ2 f

(1)
12 f

(1)
13
∣∣f (1)

23
∣∣2 KN3 (B.10)

has pole structure 1
s123s23

. As discussed in Appendix D of [29], these poles can be made explicit
by the integration-by-parts manipulation

W τ
(1,1|1,1)(2,3|2,3) = − s13

s123

[
W τ

(2,0|1,1)(2,3|2,3)+W τ
(0,2|1,1)(2,3|2,3)+W τ

(2,0|1,1)(2,3|3,2)
]

(B.11)

− 1
s123

π

τ2

[
W τ

(1,0|1,0)(2,3|2,3)+W τ
(0,1|0,1)(2,3|2,3)

]

W τ
(1,1|1,1)(3,2|2,3) = − s13

s123

[
W τ

(2,0|1,1)(3,2|2,3)+W τ
(0,2|1,1)(3,2|2,3)+W τ

(2,0|1,1)(3,2|3,2)
]

(B.12)

+ 1
s123

π

τ2

[
W τ

(1,0|1,0)(3,2|2,3)+W τ
(1,0|0,1)(2,3|2,3)+W τ

(0,1|0,1)(2,3|2,3)
]
,

where the formulas above can be used to manifest the two-particle poles on the rhs. The per-
mutations of (B.9) and (B.10) can again be obtained by relabeling the Mandelstam variables,

W τ
(1,1|1,1)(2,3|3,2) = W τ

(1,1|1,1)(3,2|2,3)
∣∣∣
s12↔s13

(B.13)

W τ
(1,1|1,1)(3,2|3,2) = W τ

(1,1|1,1)(2,3|2,3)
∣∣∣
s12↔s13

. (B.14)

References

[1] M. B. Green and P. Vanhove, “The low energy expansion of the one-loop type II super-
string amplitude”, Physical Review D 61 (2000), arXiv:hep-th/9910056.

[2] M. B. Green, J. G. Russo, and P. Vanhove, “Low energy expansion of the four-particle
genus-one amplitude in type II superstring theory”, Journal of High Energy Physics
2008, 020 (2008), arXiv:0801.0322.

[3] E. D’Hoker, M. B. Green, and P. Vanhove, “On the modular structure of the genus-
one Type II superstring low energy expansion”, Journal of High Energy Physics 2015
(2015), arXiv:1502.06698.

[4] E. D’Hoker, M. B. Green, and P. Vanhove, “Proof of a modular relation between 1-, 2-
and 3-loop Feynman diagrams on a torus”, Journal of Number Theory 196, 381 (2019),
arXiv:1509.00363.

[5] A. Basu, “Poisson equation for the Mercedes diagram in string theory at genus one”,
Classical and Quantum Gravity 33, 055005 (2016), arXiv:1511.07455.

– 97 –

http://dx.doi.org/10.1103/PhysRevD.61.104011
http://arxiv.org/abs/hep-th/9910056
http://dx.doi.org/10.1088/1126-6708/2008/02/020
http://dx.doi.org/10.1088/1126-6708/2008/02/020
http://arxiv.org/abs/0801.0322
http://dx.doi.org/10.1007/JHEP08(2015)041
http://dx.doi.org/10.1007/JHEP08(2015)041
http://arxiv.org/abs/1502.06698
http://dx.doi.org/10.1016/j.jnt.2017.07.022
http://arxiv.org/abs/1509.00363
http://dx.doi.org/10.1088/0264-9381/33/5/055005
http://arxiv.org/abs/1511.07455

[6] E. D’Hoker, M. B. Green, Ö. Gürdoğan, and P. Vanhove, “Modular graph functions”,
Communications in Number Theory and Physics 11, 165 (2017), arXiv:1512.06779.

[7] F. Zerbini, “Single-valued multiple zeta values in genus 1 superstring amplitudes”, Com-
munications in Number Theory and Physics 10, 703 (2016), arXiv:1512.05689.

[8] E. D’Hoker and M. B. Green, “Identities between Modular Graph Forms”, Journal of
Number Theory 189, 25 (2018), arXiv:1603.00839.

[9] A. Basu, “Proving relations between modular graph functions”, Classical and Quantum
Gravity 33, 235011 (2016), arXiv:1606.07084.

[10] A. Basu, “Simplifying the one-loop five graviton amplitude in type IIB string theory”,
International Journal of Modern Physics A 32, 1750074 (2017), arXiv:1608.02056.

[11] E. D’Hoker and J. Kaidi, “Hierarchy of modular graph identities”, Journal of High
Energy Physics, 051 (2016), arXiv:1608.04393.

[12] A. Kleinschmidt and V. Verschinin, “Tetrahedral modular graph functions”, Journal of
High Energy Physics 2017, 155 (2017), arXiv:1706.01889.

[13] F. Brown, “A class of non-holomorphic modular forms I”, Research in the Mathematical
Sciences 5, Paper No. 7, 40 (2018), arXiv:1707.01230.

[14] F. Brown, “A class of non-holomorphic modular forms II: equivariant iterated eisenstein
integrals”, (2017), arXiv:1708.03354.

[15] E. D’Hoker and W. Duke, “Fourier series of modular graph functions”, Journal of Num-
ber Theory 192, 1 (2018), arXiv:1708.07998.

[16] A. Basu, “Low momentum expansion of one loop amplitudes in heterotic string theory”,
Journal of High Energy Physics 2017, 139 (2017), arXiv:1708.08409.

[17] F. Brown, “A class of non-holomorphic modular forms III: real analytic cusp forms for
SL2(Z)”, Research in the Mathematical Sciences 5, Paper No. 34, 36 (2018), arXiv:1710.
07912.

[18] A. Basu, “A simplifying feature of the heterotic one loop four graviton amplitude”,
Physics Letters B 776, 182 (2018), arXiv:1710.01993.

[19] J. E. Gerken and J. Kaidi, “Holomorphic subgraph reduction of higher-point modular
graph forms”, Journal of High Energy Physics 2019, 131 (2019), arXiv:1809.05122.

[20] J. E. Gerken, A. Kleinschmidt, and O. Schlotterer, “Heterotic-string amplitudes at one
loop: modular graph forms and relations to open strings”, Journal of High Energy
Physics 2019, 52 (2019), arXiv:1811.02548.

[21] E. D’Hoker and J. Kaidi, “Modular graph functions and odd cuspidal functions - Fourier
and Poincaré series”, Journal of High Energy Physics 2019, 136 (2019), arXiv:1902.
04180.

– 98 –

http://dx.doi.org/10.4310/CNTP.2017.v11.n1.a4
http://arxiv.org/abs/1512.06779
http://dx.doi.org/10.4310/CNTP.2016.v10.n4.a2
http://dx.doi.org/10.4310/CNTP.2016.v10.n4.a2
http://arxiv.org/abs/1512.05689
http://dx.doi.org/10.1016/j.jnt.2017.11.015
http://dx.doi.org/10.1016/j.jnt.2017.11.015
http://arxiv.org/abs/1603.00839
http://dx.doi.org/10.1088/0264-9381/33/23/235011
http://dx.doi.org/10.1088/0264-9381/33/23/235011
http://arxiv.org/abs/1606.07084
http://dx.doi.org/10.1142/S0217751X17500749
http://arxiv.org/abs/1608.02056
http://dx.doi.org/10.1007/jhep11(2016)051
http://dx.doi.org/10.1007/jhep11(2016)051
http://arxiv.org/abs/1608.04393
http://dx.doi.org/10.1007/JHEP09(2017)155
http://dx.doi.org/10.1007/JHEP09(2017)155
http://arxiv.org/abs/1706.01889
http://dx.doi.org/10.1007/s40687-018-0130-8
http://dx.doi.org/10.1007/s40687-018-0130-8
http://arxiv.org/abs/1707.01230
http://arxiv.org/abs/1708.03354
http://dx.doi.org/10.1016/j.jnt.2018.04.012
http://dx.doi.org/10.1016/j.jnt.2018.04.012
http://arxiv.org/abs/1708.07998
http://dx.doi.org/10.1007/JHEP11(2017)139
http://arxiv.org/abs/1708.08409
http://dx.doi.org/10.1007/s40687-018-0151-3
http://arxiv.org/abs/1710.07912
http://arxiv.org/abs/1710.07912
http://dx.doi.org/10.1016/j.physletb.2017.11.046
http://arxiv.org/abs/1710.01993
http://dx.doi.org/10.1007/JHEP01(2019)131
http://arxiv.org/abs/1809.05122
http://dx.doi.org/10.1007/JHEP01(2019)052
http://dx.doi.org/10.1007/JHEP01(2019)052
http://arxiv.org/abs/1811.02548
http://dx.doi.org/10.1007/JHEP04(2019)136
http://arxiv.org/abs/1902.04180
http://arxiv.org/abs/1902.04180

[22] D. Dorigoni and A. Kleinschmidt, “Modular graph functions and asymptotic expansions
of Poincaré series”, Communications in Number Theory and Physics 13, 569 (2019),
arXiv:1903.09250.

[23] E. D’Hoker and M. B. Green, “Absence of irreducible multiple zeta-values in melon
modular graph functions”, Communications in Number Theory and Physics 14, 315
(2020), arXiv:1904.06603.

[24] E. D’Hoker, “Integral of two-loop modular graph functions”, Journal of High Energy
Physics 2019, 92 (2019), arXiv:1905.06217.

[25] A. Basu, “Eigenvalue equation for the modular graph Ca,b,c,d”, Journal of High Energy
Physics 2019, 126 (2019), arXiv:1906.02674.

[26] D. Zagier and F. Zerbini, “Genus-zero and genus-one string amplitudes and special
multiple zeta values”, Communications in Number Theory and Physics 14, 413 (2020),
arXiv:1906.12339.

[27] M. Berg, K. Bringmann, and T. Gannon, “Massive deformations of Maass forms and
Jacobi forms”, (2019), arXiv:1910.02745.

[28] S. Hohenegger, “From Little String Free Energies Towards Modular Graph Functions”,
Journal of High Energy Physics 2020, 77 (2020), arXiv:1911.08172.

[29] J. E. Gerken, A. Kleinschmidt, and O. Schlotterer, “All-order differential equations
for one-loop closed-string integrals and modular graph forms”, Journal of High Energy
Physics 2020, 64 (2020), arXiv:1911.03476.

[30] J. E. Gerken, A. Kleinschmidt, and O. Schlotterer, “Generating series of all modular
graph forms from iterated Eisenstein integrals”, (2020), arXiv:2004.05156.

[31] A. Basu, “Zero mode of the Fourier series of some modular graphs from Poincare series”,
(2020), arXiv:2005.07793.

[32] E. D’Hoker and M. B. Green, “Zhang–Kawazumi invariants and superstring ampli-
tudes”, Journal of Number Theory 144, 111 (2014), arXiv:1308.4597.

[33] E. D’Hoker, M. B. Green, B. Pioline, and R. Russo, “Matching the D6R4 interaction
at two-loops”, Journal of High Energy Physics 2015, 31 (2015), arXiv:1405.6226.

[34] E. D’Hoker, M. B. Green, and B. Pioline, “Higher genus modular graph functions, string
invariants, and their exact asymptotics”, Communications in Mathematical Physics 366,
927 (2019), arXiv:1712.06135.

[35] E. D’Hoker, M. B. Green, and B. Pioline, “Asymptotics of the D8R4 genus-two string
invariant”, Communications in Number Theory and Physics 13, 351 (2019), arXiv:1806.
02691.

– 99 –

http://arxiv.org/abs/1903.09250
http://dx.doi.org/10.4310/CNTP.2020.v14.n2.a2
http://dx.doi.org/10.4310/CNTP.2020.v14.n2.a2
http://arxiv.org/abs/1904.06603
http://dx.doi.org/10.1007/JHEP06(2019)092
http://dx.doi.org/10.1007/JHEP06(2019)092
http://arxiv.org/abs/1905.06217
http://dx.doi.org/10.1007/JHEP07(2019)126
http://dx.doi.org/10.1007/JHEP07(2019)126
http://arxiv.org/abs/1906.02674
http://dx.doi.org/10.4310/CNTP.2020.v14.n2.a4
http://arxiv.org/abs/1906.12339
http://arxiv.org/abs/1910.02745
http://dx.doi.org/10.1007/JHEP03(2020)077
http://arxiv.org/abs/1911.08172
http://dx.doi.org/10.1007/JHEP01(2020)064
http://dx.doi.org/10.1007/JHEP01(2020)064
http://arxiv.org/abs/1911.03476
http://arxiv.org/abs/2004.05156
http://arxiv.org/abs/2005.07793
http://dx.doi.org/10.1016/j.jnt.2014.03.021
http://arxiv.org/abs/1308.4597
http://dx.doi.org/10.1007/JHEP01(2015)031
http://arxiv.org/abs/1405.6226
http://dx.doi.org/10.1007/s00220-018-3244-3
http://dx.doi.org/10.1007/s00220-018-3244-3
http://arxiv.org/abs/1712.06135
http://dx.doi.org/10.4310/CNTP.2019.v13.n2.a3
http://arxiv.org/abs/1806.02691
http://arxiv.org/abs/1806.02691

[36] A. Basu, “Eigenvalue equation for genus two modular graphs”, Journal of High Energy
Physics 2019, 46 (2019), arXiv:1812.00389.

[37] D. Zagier, “Notes on Lattice Sums”, Unpublished.

[38] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory: Loop Amplitudes,
Anomalies and Phenomenology, Vol. 2, 2 vols. (Cambridge University Press, July 29,
1988), 608 pp.

[39] L. Kronecker, “Zur Theorie der elliptischen Funktionen”, Mathematische Werke IV, 313
(1881).

[40] F. C. S. Brown and A. Levin, “Multiple Elliptic Polylogarithms”, (2011), arXiv:1110.
6917.

[41] L. Dolan and P. Goddard, “Current Algebra on the Torus”, Communications in Math-
ematical Physics 285, 219 (2009), arXiv:0710.3743.

[42] J. Broedel, C. R. Mafra, N. Matthes, and O. Schlotterer, “Elliptic multiple zeta values
and one-loop superstring amplitudes”, Journal of High Energy Physics 2015, 112 (2015),
arXiv:1412.5535.

[43] D. Zagier, “The Bloch-Wigner-Ramakrishnan polylogarithm function”, Mathematische
Annalen 286, 613 (1990).

[44] J. Broedel and A. Kaderli, “Functional relations for elliptic polylogarithms”, Journal of
Physics A: Mathematical and Theoretical 53, 245201 (2020), arXiv:1906.11857.

[45] H. Maass, Lectures on modular functions of one complex variable, 2nd edition, Vol. 29,
Lectures on Mathematics and Physics (Springer-Verlag, 1983), 242 pp.

[46] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics (Springer-
Verlag, Berlin Heidelberg, 1973).

[47] J. Broedel, O. Schlotterer, and F. Zerbini, “From elliptic multiple zeta values to modular
graph functions: open and closed strings at one loop”, Journal of High Energy Physics
2019, 155 (2019), arXiv:1803.00527.

[48] P. Fleig, H. P. A. Gustafsson, A. Kleinschmidt, and D. Persson, Eisenstein Series and
Automorphic Representations: With Applications in String Theory (Cambridge Univer-
sity Press, July 5, 2018), 587 pp.

– 100 –

http://dx.doi.org/10.1007/JHEP02(2019)046
http://dx.doi.org/10.1007/JHEP02(2019)046
http://arxiv.org/abs/1812.00389
http://arxiv.org/abs/1110.6917
http://arxiv.org/abs/1110.6917
http://dx.doi.org/10.1007/s00220-008-0542-1
http://dx.doi.org/10.1007/s00220-008-0542-1
http://arxiv.org/abs/0710.3743
http://dx.doi.org/10.1007/JHEP07(2015)112
http://arxiv.org/abs/1412.5535
http://dx.doi.org/10.1007/BF01453591
http://dx.doi.org/10.1007/BF01453591
http://dx.doi.org/10.1088/1751-8121/ab81d7
http://dx.doi.org/10.1088/1751-8121/ab81d7
http://arxiv.org/abs/1906.11857
http://dx.doi.org/10.1007/JHEP01(2019)155
http://dx.doi.org/10.1007/JHEP01(2019)155
http://arxiv.org/abs/1803.00527

	1 Introduction
	1.1 Summary of results
	1.2 Outline

	2 Modular graph forms
	2.1 Koba–Nielsen integrals and Kronecker–Eisenstein series
	2.2 Modular graph forms

	3 The ModularGraphForms Mathematica package
	3.1 Basics
	3.2 Expanding Koba–Nielsen integrals

	4 Graph topologies and notation
	4.1 Two-point modular graph forms
	4.2 Three-point modular graph forms
	4.3 Four-point modular graph forms

	5 Simple relations
	5.1 Symmetries
	5.2 Topological simplifications
	5.3 Momentum conservation
	5.4 Factorization
	5.5 Taking derivatives

	6 Holomorphic Subgraph Reduction
	6.1 Dihedral holomorphic subgraph reduction
	6.2 Higher-point holomorphic subgraph reduction
	6.3 Holomorphic subgraph reduction and Fay identities
	6.3.1 Holomorphic subgraphs with more than two vertices
	6.3.2 Holomorphic subgraphs with two vertices

	7 The sieve algorithm
	7.1 Constructing identities

	8 Divergent modular graph forms
	8.1 Divergence conditions
	8.2 Divergent MGFs from Koba–Nielsen integrals
	8.3 Divergent modular graph forms from momentum conservation
	8.4 Divergent holomorphic subgraph reduction
	8.5 Taking derivatives of divergent graphs
	8.6 Divergent momentum conservation and factorization

	9 Basis decompositions
	9.1 Systematic derivation of identities
	9.2 Bases for modular graph forms

	10 Conclusion and outlook
	A Complete reference for the Modular Graph Forms package
	A.1 Files and loading the package
	A.2 Symbols
	A.2.1 General symbols
	A.2.2 Modular graph forms
	A.2.3 Iterated Eisenstein integrals
	A.2.4 Koba–Nielsen integrals

	A.3 Functions
	A.3.1 General functions
	A.3.2 Dihedral functions
	A.3.3 Trihedral functions
	A.3.4 Four-point simplification
	A.3.5 Koba–Nielsen integration

	A.4 Example: four-gluon scattering in the heterotic string

	B Kinematic poles in three-point Koba–Nielsen integrals

