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ABSTRACT

We provide a Hamiltonian derivation of recently discovered dual BMS charges. In order to

do so, we work in the first order formalism and add to the usual Palatini action, the Holst

term, which does not contribute to the equations of motion. We give a method for finding

the leading order integrable dual charges à la Wald-Zoupas and construct the corresponding

charge algebra. We argue that in the presence of fermions, the relevant term that leads to

dual charges is the topological Nieh-Yan term.
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1 Introduction

The intimate relation between symmetries and charges, as manifested in the Noether the-

orem, is a fundamental result of mathematical physics. The application of these ideas in

a gravitational setting is intricate, yet fundamental to almost any investigation involving

gravity, from gravitational wave astrophysics to quantum gravity. In this paper, we apply

the prescription set out in Ref. [1], which uses the covariant phase space formalism [2–9] to

propose a systematic method for determining, in principle, all possible gravitational charges,

to give a Hamiltonian derivation of a recently discovered tower of dual BMS charges [10,11].

One can think of dual BMS charges as generalisations of the Taub-NUT charge [12–15] in

the same way that standard BMS charges [8, 9, 16–19] generalise the notion of the Bondi

linear four-momentum [20,21].

The recent interest on asymptotic charges, see for example Refs. [22–36], is primarily

motivated by the discovery of the importance of such charges in studies of gravitational

scattering [37–40] and the application of such ideas to black hole physics [41–43]. The

potential success of such investigations and applications of asymptotic gravitational charges

relies crucially on a good understanding of just how many asymptotic charges there are,

and preferably a classification of all such charges, as envisaged in Ref. [1]. The fact that in

the last couple of years, two generalisations of asymptotic gravitational charges have been

found [10,11,44] (see also [45]) indicates that there remains still much to be understood. The

fact that the dual BMS charges proposed in Refs. [10,11] do not appear in previous analyses

of BMS charges, such as Refs. [8,18], is particularly intriguing. While it has been shown [11]

that the dual BMS charges satisfy the necessary properties of asymptotic charges and are

therefore to be viewed as bona fide charges, an ab initio derivation has not been given. This

is the main aim of this paper: we apply the general formalism set out in Ref. [1] to provide

a Hamiltonian derivation of the asymptotic dual BMS charges discovered in Refs. [10, 11].

Previous classifications of asymptotic gravitational charges have, rather naturally, began

with the Einstein-Hilbert action. However, in Ref. [1], it is argued that an investigation

of asymptotic charges that solely focuses on the Einstein-Hilbert term will preclude other

possible charges, such as dual charges. One must entertain the existence of all terms in

the action whose equations of motion correspond to the Einstein equation, including the

addition of terms that contribute trivially to the equations of motion. The fact that different

actions that give rise to the same equations of motion are fundamentally different in the

quantum, or even semi-classical, theory is an old, and by now elementary, idea. Indeed,

such terms have been considered with a view to applications to the first law of black hole
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mechanics [46] or to the study of particular solutions [47]. The inclusion of such terms

whose addition do not change the equations of motion generally necessitates working in

the first order formalism, which has been studied with a view to the definition of charges

mainly in the context of the first law of black hole mechanics [48–51] and in the context of

asymptotic charges [29,34,52].

In this paper, we concentrate on one such term, which one may add to the Einstein

action without altering the Einstein equation, namely the Holst term [53]. We show that

when added to the Palatini action (and more generally including other matter fields that

do not give rise to torsion), the Holst term leads to dual gravitational charges. In a setting,

where there is non-trivial torsion, as a result, for example, of the existence of fermions, the

Holst term is replaced by the topological Nieh-Yan term [54]; see Refs. [55, 56].

The Holst term, or Nieh-Yan term in the presence of torsion, can, therefore, be viewed

as the gravitational analogue of the θ-term in electromagnetism. Note that in the latter

case the application of the Noether theorem leads to magnetic charges and we show that

an analogous picture holds in gravity.

In the next section, 2, we review the covariant phase space formalism and apply it in

section 3 to the Palatini-Holst theory. In order to make a link with standard and dual BMS

charges, in section 4, we state the boundary conditions that are of interest and derive the

improper gauge transformations. The improper diffeomorphisms are given by the standard

BMS generators, while we derive the large local Lorentz transformations1. In section 5,

we apply the covariant phase space analysis of section 3 to these generators to find the

asymptotic charges, showing that the Palatini action gives rise to the standard BMS charges,

while the Holst term gives the dual charges. We apply the Wald-Zoupas method to find

the integrable part of the leading order charges in section 6. In section 7, we derive the

charge algebra for leading order dual charges. In the presence of torsion the Holst term

needs to be modified, but we show in section 8 that we can nevertheless find dual charges

in an asymptotically flat spacetime with torsion—this is achieved using the Nieh-Yan term.

2 Review of the covariant phase space formalism

In this section, we review the covariant phase space formalism [2–9], which provides a way

of defining gravitational charges starting from a Lagrangian theory. This section is based

on the notation of Refs. [6–9].

1We use “large” instead of “improper” to avoid confusion with Lorentz transformations that include
spatial reflections or time-reversal. The Lorentz transformations that we consider are proper in the latter
sense.
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Given a top-form Lagrangian density L for fields φ, the Euler-Lagrange equations E(φ)

are derived by varying the action,

δL(φ) = E(φ)δφ + dθ(φ, δφ), (2.1)

where θ, called the presymplectic potential2, corresponds to the boundary terms, which

appear when integrating by parts in order to derive the equations of motion. As is clear

from its definition above, θ is a one-form on phase space.

The exterior derivative on phase space of the presymplectic potential gives rise to a

presymplectic form ω, a two-form on phase space

ω(φ, δ1φ, δ2φ) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ). (2.2)

Recall, from e.g. Ref. [57], that what defines a Hamiltonian flow is the existence of a Hamil-

tonian vector field T on phase space whose 1-form dual on phase space is exact, i.e. using

some local coordinates A,B, . . . on phase space

(dHT )A = ωABT
B. (2.3)

The phase space scalar HT thus derived is called a Hamiltonian3 of the motion; it is con-

jugate in phase space to the transformation defined by T . In other words, the direction T

in phase space corresponds to an integral curve. In canonical coordinates the above equa-

tion reduces to Hamilton’s equations. We translate the above expression to the covariant

phase space language we have been using by noting that as a vector field on phase space, T

corresponds to a particular transformation of the fields. Hence, equation (2.3) is equivalent

to

δHτ =

∫

Σ
ω(φ, δφ, δτφ), (2.4)

where τ is some transformation parameter and we integrate over some Cauchy surface Σ.

Thus, we have a charge associated with a transformation generated by τ if the right hand

side of equation (2.4) is integrable. Moreover, it would be desirable to convert the integral

2The reason why it is a presymplectic potential rather than a symplectic potential is that it is degenerate.
Indeed, the degenerate directions in phase space correspond to proper gauge transformations, i.e. those
diffeomorphisms that vanish on the boundary. In principle, we would need to factor out the degenerate
subspaces in order to construct a true (or reduced) phase space. However, in the covariant phase space
formalism one works with the presymplectic manifold, which we simply call the phase space, avoiding the
complications of having to work in the reduced phase space, which is no longer covariant.

3While, technically the appropriate term is a Hamiltonian or a moment map, we choose to follow the
more standard nomenclature by using the term “charge” or “asymptotic charge” henceforth.
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to a boundary integral. This is because, we will be primarily interested in asymptotic

symmetry generators, i.e. solutions that have a specific asymptotic form and corresponding

symmetry generators that keep this form intact. For the asymptotic generators to define

a bona fide charge, it would make sense for it to be given in terms of a boundary integral.

This would be the case, were ω(φ, δφ, δτφ) an exact form in spacetime.

For concreteness, let us consider diffeomorphisms generated by vector fields ξ. In this

case, δξ corresponds to a Lie derivative so that

ω(φ, δφ,Lξφ) = δθ(φ,Lξφ)− Lξθ(φ, δφ). (2.5)

Using the Cartan magic formula

Lξ = dιξ + ιξd, (2.6)

the second term

Lξθ(φ, δφ) = dιξθ(φ, δφ) + ιξdθ(φ, δφ)

≈ dιξθ(φ, δφ) + ιξδL(φ), (2.7)

where we have used equation (2.1) and ≈ denotes an expression that is valid on-shell for

the field, as well as its variation. Therefore,

ω(φ, δφ,Lξφ) = δ [θ(φ,Lξφ)− ιξL(φ)]− dιξθ(φ, δφ). (2.8)

The expression in the square brackets above is called a Noether current j and one can show

that it is closed: consider the exterior derivative of the Noether current

djξ ≡ d [θ(φ,Lξφ)− ιξL(φ)]

= dθ(φ,Lξφ)− (Lξ − ιξd)L(φ), (2.9)

where we have again used the magic formula (2.6). Now, using the fact that L is a top-form

so that dL = 0 and equation (2.1), we find that

djξ ≈ 0. (2.10)

The Poincaré lemma implies that [58,59]

jξ = dQξ = θ(φ,Lξφ)− ιξL(φ), (2.11)
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where Qξ is called the Noether charge. This means that

ω(φ, δφ,Lξφ) ≈ d [δQξ − ιξθ(φ, δφ)] (2.12)

so that

δHξ =

∫

∂Σ

{
δQξ − ιξθ(φ, δφ)

}
, (2.13)

where the integral is a surface integral over a cross-section ∂Σ of “infinity”—we will make

this more precise in section 4.

What remains to consider is whether the charge exists at all, i.e. whether equation (2.13)

is integrable [9]. Certainly, a necessary (and sufficient [9]) condition is that

(δ1δ2 − δ2δ1)Hξ = −
∫

∂Σ
ιξω(φ, δ1φ, δ2φ) = 0, (2.14)

which is not generically satisfied. This obstruction to the existence of a charge is directly

related to the existence of flux at infinity and is resolved by taking the flux into account [9].

In order to make it clear that the expression in equation (2.13) is not necessarily integrable,

following Ref. [19] we rewrite equation (2.13) as

δ/Hξ =

∫

∂Σ

{
δQξ − ιξθ(φ, δφ)

}
. (2.15)

Clearly, we can rewrite the above equation as

δ/Hξ = δHξ +Nξ, (2.16)

i.e. we can split the expression in terms of an integrable part given by the true variation

of an integrable charge Hξ and a non-integrable part, whose existence is directly related to

the existence of flux at infinity. However, the splitting above is ambiguous:

Hξ →Hξ + I, Nξ → Nξ − δI. (2.17)

Ref. [9] gives a prescription for fixing this ambiguity based on reasonable criteria such as

the fact that Nξ be locally constructed from dynamical fields and their derivatives and that

it vanish in the case where there is no radiation. Based on these criteria Wald-Zoupas [9]

propose that

Nξ = −
∫

∂Σ
ιξΘ(φ, δφ), (2.18)
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where Θ is the potential for the pull-back of the presymplectic 2-form to infinity ω̄

ω̄(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ). (2.19)

Hence, the integrable charge is given by

δHξ =

∫

∂Σ
δQξ − ιξθ(φ, δφ) +

∫

∂Σ
ιξΘ(φ, δφ). (2.20)

In Einstein gravity given by the Einstein-Hilbert action, these charges are precisely the

BMS charges in the context of asymptotically flat boundary conditions. The goal in the

next sections is to apply this formalism to first first order actions.

3 Gravitational theory in first order formalism

We consider as the gravitational action the Palatini action, which is a first order tetrad

formulation of Einstein’s theory plus the Holst term [53]. As noted in the introduction,

General relativity in the first order formalism, with the Holst term and without, has already

been considered in the literature principally in the context of the first law of black hole

mechanics. Indeed much of the covariant phase space analysis of this system has already

been studied in [49, 50]; we revisit the covariant phase space analysis of the Palatini-Holst

theory and identify new gravitational charges, namely dual charges [10,11].

The action that we consider is

SPH =
1

16πG

∫

M
PabcdRab(ω) ∧ec ∧ed, (3.1)

where Latin indices a, b, c, . . . denote tangent space indices, ea is the vierbein and ω is the

spin connection and is treated as an independent field. We denote the fields collectively as

φ = {e, ω}. The 2-form Riemann curvature

Ra
b(ω) = dωa

b + ωa
c ∧ωc

b (3.2)

and the tensor

Pabcd =
1

2
εabcd + i λ ηa[cηd]b, (3.3)

where in our convention the antisymmetrisations have weight 1 and η is the flat space

metric.

The parameter λ is inversely proportional to the Barbero-Immirzi parameter in loop
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quantum gravity (see [49] and references therein). In our case, we will consider it to be

a general parameter. When λ = 0, this action is the Palatini action, while the term

proportional to λ is the Holst term. It is worth noting that if the spin connection is viewed

as depending on the vierbein and solving Cartan’s first structure equation with vanishing

torsion

dea + ωa
b ∧e

b = 0, (3.4)

the Holst term becomes trivial as a result of the algebraic Bianchi identity. However, in the

first order formalism, where e and ω are treated as independent fields, the above argument

does not apply; hence the Holst term is non-trivial. Of course, as we shall show below,

the Holst term is on-shell zero, but this is no different to the fact that the Palatini term

vanishes on-shell by virtue of the Einstein equation.

The tensor P is invertible, as a 6× 6 tensor P[ab][cd], where we think of the first and last

two antisymmetric indices as a single bivector index, when λ 6= ±1, with inverse

P−1
abcd =

1

2(λ2 − 1)

(
εabcd − 2 i ληa[cηd]b

)
. (3.5)

When P is invertible, the variation of the action (3.1) with respect to the spin connection

gives rise to the torsion-free condition (3.4), while the variation of the vierbein gives the

vacuum Einstein equation, viz. Ricci flatness. Therefore, the addition of the Holst term

has not materially affected the theory, at least at the level of the equations of motion.

However, the inclusion of the Holst term does significantly affect the Hamiltonian analysis

of the theory and the symplectic current therefrom. It is this difference that allows a

derivation of dual gravitational charges starting from an action. Therefore, any treatment

of a gravitational system that takes dual charges seriously must also take the Holst term

seriously.

Inspecting action (3.1), it is straightforward to see that the presymplectic potential is

θ(φ, δφ) =
1

16πG
Pabcd e

a
∧eb ∧δωcd. (3.6)

Note that the presymplectic potential does not depend on δe.

Before we study the set of charges that can be derived from a covariant phase space

analysis of this theory, we need to define the class of solutions we are interested in. This

will give us the set of transformations that lead to the existence of non-trivial charges.

Therefore, we turn now to the definition of asymptotically flat spacetimes and an analysis

of their asymptotic symmetry generators, which allows us to find the associated charges or
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moment maps.

4 Asymptotic flatness and symmetries

We consider asymptotically flat spacetimes M as a triplet (M∪ I , e, ω), with boundary

conditions on the fields, the vierbein and spin connection, at null infinity I such that

the relevant quantities are well-defined at I . The space M∪ I is the unphysical space

corresponding to the conformal compactification of M.4 In fact, we will not explicitly

compactify and instead follow the Bondi-Sachs approach [20,21], albeit in a tetrad form, as

explained below.

4.1 Boundary conditions

The vierbein eaµ has Greek spacetime indices µ, ν, . . . and tangent space indices denoted by

Latin letters a, b, . . . . Tangent space indices are lowered and raised using the flat metric

(and its inverse), 5

η =




0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0



. (4.1)

In components, where the coordinates Xµ = (u, r, xI ), the (inverse) vierbein is given by

e0 =
1

2
Fdu+ dr, e0 = ∂r

e1 = e2β du, e1 = e−2β

(
∂u −

1

2
F ∂r + CI ∂I

)
, (4.2)

ei = r Ei
I

(
dxI − CIdu

)
, ei =

1

r
EI

i ∂I ,

where I, J, . . . denote coordinates on a 2-sphere, e.g. xI = (θ, φ), and we denote tangent

space indices on the 2-sphere with indices i, j, . . . .

The boundary conditions for the fields can now be given in terms of the components

above,

F (u, r, xI) = 1 +
F0(u, x

I)

r
+ o(r−1), β(u, r, xI ) =

β0(u, x
I)

r2
+ o(r−2),

4In this paper, we will consider future null infinity I
+, but the same methods can easily be adapted to

past null infinity as well.
5This form of the flat metric requires a complex basis of zweibeine for the two-sphere cross-sections of

I . However, in practice we do not choose a particular basis for the 2-space and all of our expressions are
covariant along the 2-sphere directions.
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CI(u, r, xI) =
CI
0 (u, x

I)

r2
+ o(r−2), Ei

I(u, r, x
I) = Êi

I(x
I) +

CIJÊ
iJ

2r
+ o(r−1), (4.3)

where CIJ is a trace-free, symmetric tensor and Ê is the zweibein on a round sphere, i.e.

γIJ = Êi
I Ê

j
J ηij (4.4)

with γIJ the metric on the round 2-sphere. Note that ÊiJ = γIJ Êi
I . Unless explicitly stated,

throughout this paper, I, J, . . . indices on tensors defined on the 2-sphere are lowered and

raised using only γIJ and its inverse. Furthermore, we require that

detEi
I = det Êi

I (4.5)

so that in (θ, φ) coordinates

detEi
I = sin θ. (4.6)

These boundary conditions imply the weakest boundary conditions on the metric in

order to have well-defined quantities at I , namely they are equivalent at leading order to

the boundary condition used by, for example, Sachs [21].

The torsion-free (on-shell) spin connection is given by the vielbein postulate

∇µe
a
ν = ∂µe

a
ν − Γρ

µνe
a
ρ + ωµ

a
be

b
ν = 0; (4.7)

hence

ωµ
a
b = eνb

(
Γρ
µνe

a
ρ − ∂µeaν

)
, (4.8)

where Γ is the affine connection, which coincides with the Christoffel symbols as a result of

vanishing torsion. Using this fact, the spin connection can also be written as

ωµab = eρ[ae
σ
b]

(
eσ c ∂µe

c
ρ + ∂σgρµ

)
, (4.9)

where

gµν = eaµ e
b
ν ηab (4.10)

and eσ c = gστ e
τ
c = ηcde

d
σ. We list the metric, inverse metric and spin connection components

associated with vierbein (4.2) in appendix A.
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4.2 Asymptotic symmetry generators

We find the diffeomorphisms and Lorentz transformations that preserve the boundary con-

ditions presented in the previous section.

The transformation of the inverse vierbein is

δeµa = ξν∂νe
µ
a − eνa∂νξµ + Λa

beµb . (4.11)

The boundary conditions on the vierbein, (4.2) and (4.3), are preserved for diffeomorphisms

of the form

ξu = f(u, xI) = s(xI) +
u

2
DIY

I , ξr =
r

2

(
CI∂If −DIξ

I
)
,

ξI = Y I −
∫ ∞

r

dr′
e2β

r′2
hIJ∂Jf, (4.12)

where D is the covariant derivative on the round sphere,

hIJ = EI
i E

J
j η

ij (4.13)

and Y I(xI) are conformal Killing vectors on the sphere6

D(IYJ) =
1
2 DKY

K γIJ . (4.14)

These are the familiar BMS transformations [20]. And the Lorentz transformations that

preserve the boundary conditions are

Λ01 = −∂rξr, Λ0i =
e2β

r
EI

i ∂Iξ
u,

Λ1i =
EI

i

2r
(F∂Iξ

u + 2 ∂Iξ
r) , Λij = γIJÊ

I
[iLY ÊJ

j] + o(r0). (4.15)

One can show that the BMS generators satisfy the following identities

∇rξ
u = 0, (4.16)

ga(r∇I)ξ
a = 0, (4.17)

∇Iξ
I = CI∇Iξ

u. (4.18)

6As emphasised before, unless stated otherwise, we always lower/raise I, J, . . . indices on tensors defined
on the 2-sphere only with the metric on the round 2-sphere γIJ and its inverse.
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5 Asymptotic charges

The gauge transformations of the theory (3.1) are diffeomorphisms and local Lorentz trans-

formations, with the asymptotic symmetry transformations given by the improper coordi-

nate transformations generated by the vector fields given in equation (4.12), BMS transfor-

mations, and large Lorentz transformations with parameters given in equation (4.15)—these

are local Lorentz versions of BMS transformations. The question that we address in this

section is what are the asymptotic charges corresponding to these improper gauge trans-

formations. We consider diffeomorphisms and Lorentz transformations in turn. However,

it should be emphasised that strictly diffeomorphisms and Lorentz transformations ought

to be considered together, since the asymptotic symmetry transformations are constructed

from the simultaneous action of diffeomorphisms and Lorentz transformations.7 It turns

out that for the theories that we consider in this paper, there is a clean decoupling of the

two sets of transformations, which allows them to be considered separately.8 We choose to

take advantage of this feature to consider them separately for ease of exposition.

5.1 Diffeomorphisms: standard and dual BMS charges

In section 2, we reviewed how asymptotic diffeomorphism charges are defined and showed

that

δ/Hξ ≡
∫

Σ
ω(φ, δφ,Lξφ) =

∫

∂Σ

{
δQξ − ιξθ(φ, δφ)

}
, (5.1)

where ∂Σ is a cross-section of I + and

dQξ = θ(φ,Lξφ)− ιξL(φ). (5.2)

Since the action (3.1) vanishes on-shell, the above equation reduces, on-shell, to

dQξ = θ(φ,Lξφ). (5.3)

From equation (3.6),

θ(φ,Lξφ) =
1

16πG
Pabcd Lξωab

∧ec ∧ed. (5.4)

7One could equally derive the asymptotic symmetries corresponding to the independent action of dif-
feomorphisms and Lorentz transformations. However, the conditions in this case would be too strong and
preclude the BMS group.

8This is not the case, for example, for the Pontryagin and Gauss-Bonnet terms [1].
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Using the magic formula (2.6), it is simple to show that the Noether charge is

Qξ =
1

16πG
Pabcd ιξω

ab ec ∧ed. (5.5)

Therefore, using equations (3.6) and (5.5), equation (5.1) becomes

δ/Hξ =
1

16πG
Pabcd

∫

∂Σ

[
δ
(
ιξω

ab ec ∧ed
)
− ιξ

(
δωab

∧ ec ∧ed
)]

=
1

8πG
Pabcd

∫

∂Σ

[
ιξω

ab δec + ιξe
c δωab

]
∧ed. (5.6)

Consider

δe[c ∧ed] |∂Σ. (5.7)

In components this would be equal to

2
(
δe

[c
[I

)
e
d]
J ] = δ

(
e
[c
[I e

d]
J ]

)
= r2δcdij δ

(
Ei

[I E
j
J ]

)
= r2δcdij δ

(
Êi

[I Ê
j
J ]

)
= 0, (5.8)

where in the second equality we use equations (4.2), in the third equality we use equation

(4.5) and in the final equality we use the fact that the variation of the zweibein on the

round sphere is trivial. Therefore, equation (5.6) reduces to

δ/Hξ =
1

8πG
Pabcd

∫

∂Σ
ιξe

c δωab
∧ed. (5.9)

Using equation (3.3), we rewrite this expression as

δ/Hξ = δ/Qξ + i λ δ/Q̃ξ , (5.10)

where

δ/Qξ =
1

16πG
εabcd

∫

∂Σ
ιξe

c δωab
∧ed, δ/Q̃ξ =

1

8πG

∫

∂Σ
ιξe

a δωab ∧eb (5.11)

are to be viewed as the standard (“electric”) and dual (“magnetic”) BMS charges, respec-

tively. Now, we consider each of these expressions separately.
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5.1.1 Standard BMS charges

The standard BMS charge is

δ/Qξ =
1

16πG
εabcd

∫

∂Σ
ιξe

c δωab
∧ed. (5.12)

Using equation (4.9), it can be shown that9

δ/Qξ =
3

32πG

∫

∂Σ
εµνρσ

(
gη[τ ξσ∇ρ]δgητ + ξ[τ∇τ

(
eσaδe

ρ] a
))

dxµ ∧dxν . (5.14)

Of course, µν = IJ in the expression above. Let us consider the second term,

3 εµνρσ ξ
[τ∇τ

(
eσaδe

ρ] a
)
= −2∇[µ

(
εν]ρστ ξ

τeσaδe
ρ a
)
− 3 εµνρσ e

[σ
a δe

ρ |a|∇τξ
τ ]. (5.15)

Since we integrate this over a cross-section of I +, the first term above is a total derivative;

hence it can be neglected. Therefore,

δ/Qξ =
3

32πG

∫

∂Σ
εµνρσ

(
gη[τ ξσ∇ρ]δgητ − e[σa δe

ρ |a|∇τξ
τ ]
)
dxµ ∧dxν ,

= δ/QIW +
1

32πG

∫

∂Σ
εµνρσ

(
− 3 e[σa δe

ρ |a|∇τξ
τ ]

+ gτσδgτη∇ηξρ + δ(log
√−g)∇ρξσ

)
dxµ ∧dxν , (5.16)

where

δ/QIW =
1

32πG

∫

∂Σ
εµνρσ

(
3 gη[τ ξσ∇ρ]δgητ − gτσδgτη∇ηξρ − δ(log√−g)∇ρξσ

)
dxµ ∧dxν

(5.17)

is the Iyer-Wald charge calculated from the second order formalism [8] (see also Ref. [60]).

It is equal to the Barnich-Brandt charge [18]; see Ref. [60].

Since µν = IJ , this implies that the ρσ indices in the extra terms in equation (5.16)

must be [ur]. Using equations (4.2), (4.12) and (4.16), this implies that the extra terms are

proportional to

−3 e[ua δer |a|∇τξ
τ ]+gτ [uδgτη∇|η|ξr]+δ(log

√−g)∇[rξu] = e−2βδβ
(
∇Iξ

I − CI∇Iξ
u
)
, (5.18)

9A repeated use of the Schouten identity

5ε[µνρσXτ ] = 2ερστ [µXν] + 3εµν[ρσXτ ] = 0 (5.13)

for an arbitrary X is required.
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which vanishes by identity (4.18).

Therefore, from equation (5.16)

δ/Qξ = δ/QIW . (5.19)

In summary, a first order analysis of the Palatini action reproduces the Iyer-Wald expression,

which is also equal to the Barnich-Brandt expression, giving rise to the standard leading

order BMS charges [19], as well as the subleading BMS charges [44].

5.1.2 Dual BMS charges

Now, we turn to the dual BMS charges, which arise from the Holst term in the action,

δ/Q̃ξ =
1

8πG

∫

∂Σ
ιξea δω

ab
∧eb. (5.20)

As before, using equation (4.9), it is fairly simple to show that

δ/Q̃ξ =
1

8πG

∫

∂Σ
ξτ∇J (eτ aδe

a
I ) dx

I
∧dxJ . (5.21)

Expanding the integrand and using the antisymmetrisation in IJ

ξτ∇J (eτ aδe
a
I ) = ξτ∂J (eτ aδe

a
I )− ξτΓρ

Jτ (eρ aδe
a
I )

= −(∂Jξτ + Γτ
Jρξ

ρ) (eτ aδe
a
I )

= −∇Jξ
τ (eτ aδe

a
I ) , (5.22)

where in the second equality, we have integrated by parts and ignored the total derivative

term, which is trivial. Therefore,

δ/Q̃ξ =
1

8πG

∫

∂Σ
eτ a δe

a
J ∇I ξ

τ dxI ∧dxJ . (5.23)

Consider

eτ a δe
a
J ∇I ξ

τ dxI ∧dxJ = eK iδe
i
J

(
∇Iξ

K − CK∇Iξ
u
)
dxI ∧dxJ

=

(
1

2
δgKJ + e[K |i|δe

i
J ]

)(
∇Iξ

K − CK∇Iξ
u
)
dxI ∧dxJ

=
1

2

{
δgKJ

(
∇Iξ

K −CK∇Iξ
u
)
+ eI iδe

i
J

(
∇Kξ

K − CK∇Kξ
u
)}
dxI ∧dxJ
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=
1

2
δgKJ

(
∇Iξ

K − grK∇Iξr
)
dxI ∧dxJ , (5.24)

where in the first equality we have used (4.2), in the third equality we have used a Schouten

identity and in the fourth equality we have used identity (4.18), as well as the form of the

inverse metric, which gives that grK = gurCK . Inserting the above equality into equation

(5.23) gives10

δ/Q̃ξ =
1

16πG

∫

∂Σ
δgKJ

(
∇Iξ

K − grK∇Iξr
)
dxI ∧dxJ .

=
1

32πG

∫

∂Σ
δgJK

(
∇Iξ

K +∇KξI
)
dxI ∧dxJ +

1

16πG

∫

∂Σ
dIJ dx

I
∧dxJ , (5.25)

where the first expression is the dual charge proposed in Ref. [11]11 and the difference

between the two charges is proportional to the integral of

dIJ = δgK[J

(
∇I]ξ

K − grK∇I]ξr
)
− 1

2
δgK[J

(
∇I]ξ

K +∇KξI]
)

=
1

2
gKτδgK[J

(
∇I]ξτ −∇|τ |ξI]

)
− grKδgK[J∇I]ξr

=
3

2
gKτδgK[J∇Iξτ ] − grKδgK[J∇I]ξr

=
1

2
grKδgK[J

(
∇I]ξr −∇|r|ξI]

)
− grKδgK[J∇I]ξr

= 0, (5.26)

where in the third equality we have used equation (4.5) and the fact that δ (detÊi
I) = 0 and

in the final equality we have again used identity (4.17).

In summary,

δ/Q̃ξ =
1

32πG

∫

∂Σ
δgJK

(
∇Iξ

K +∇KξI
)
dxI ∧dxJ , (5.27)

reproducing the dual BMS charges [10] as well as the subleading dual BMS charges [11].

10In this subsection, we are lowering and raising all indices with gµν and its inverse, including IJ indices.
Therefore, here ξI = gIµξ

µ.
11The dual charge is defined in equation (3.1), (3.2) of Ref. [11] and is equal to the above expression up

to a trivial total derivative.
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5.2 Lorentz transformations

In addition to diffeomorphisms, there exist another set of non-trivial transformations in the

first order formalism; that of Lorentz transformations parametrised by Λ. The asymptotic

symmetry analysis implies that the set of Lorentz transformations that preserve the bound-

ary conditions, and can thus be viewed as improper gauge transformations, are those given

in (4.15). In this section, we consider what the asymptotic charges associated with these

transformations are.

Applying the general discussion in section 2 to Lorentz transformations, we find that

the asymptotic charge is defined as

δ/HΛ =

∫

Σ
ω(φ, δφ, δΛφ), (5.28)

where

ω(φ, δφ, δΛφ) = δθ(φ, δΛφ)− δΛθ(φ, δφ), (5.29)

where θ(φ, δφ) is given in equation (3.6). The Lorentz transformation acts on the fields as

δΛe
a = Λa

b e
b, δΛω

ab = −dΛab + [Λ, ω]ab. (5.30)

Consider

δΛθ(φ, δφ) =
1

16πG
Pabcd

{
2Λa

e e
e
∧eb ∧ωcd + ea ∧eb ∧δ

(
−dΛcd + [Λ, ω]cd

)}

=
1

8πG
Pabcd

{
Λa

e e
e
∧eb ∧ωcd + Λc

e e
a
∧eb ∧δωed

}

= 0, (5.31)

where in the first equality we have used equations (3.6) and (5.30), in the second equality we

have used that δΛ = 0 and the third equality results from a Schouten identity. Furthermore,

it is simple to show that

θ(φ, δΛφ) = dQΛ(φ), (5.32)

where

QΛ(φ) =
1

16πG
Pabcd Λ

ab ec ∧ed. (5.33)

Therefore, using equations (5.31) and (5.32), equation (5.28) simplifies to

δ/HΛ =

∫

∂Σ
δQΛ(φ). (5.34)
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The components of QΛ(φ) that the integral above projects to are its IJ components. From

equation (5.33),

QΛIJ = − r2

16πG
Pabij Λ

ab εij εIJ , (5.35)

where εIJ is the volume form on the round 2-sphere (see appendix B). In order to obtain

the above expression, importantly, we have used the determinant condition (4.5). Clearly,

the variation of the right hand side of the above expression is zero, which implies that

δ/HΛ = 0, (5.36)

i.e. asymptotic Lorentz transformations lead to trivial asymptotic charges. One way to

understand this result is that Lorentz transformations correspond to degenerate directions

in phase space. Using some local coordinates A,B, . . . on phase space, recall that degenerate

directions correspond precisely to those transformations X such that

ωABX
B = 0. (5.37)

Thus, what we thought were large Lorentz gauge transformations turned out to be proper;

consequently leading to a trivial charge.

6 Identifying the integrable charge

We explained towards the end of section 2 how diffeomorphism charges are, in general, not

integrable. As illustrated in equation (2.16), δ/Hξ can be split into two terms: the variation

of an integrable charge Hξ and a non-integrable term Nξ. The physics behind the existence

of such a non-integrable terms is clear; it is related to the existence of flux at null infinity

removing charge from the spacetime. As such equation (2.16) can be viewed as a generalised

continuity equation in the following sense (see also ref. [11]): Given the properties of the

asymptotic charge, on-shell

δ/Hξ(φ, δξφ) = 0. (6.1)

Therefore, in this case, equation (2.16) implies that the change in the integrable charge is

balanced by the change in flux; this is a continuity equation. However, an important issue

that arises when defining the splitting in order to derive an integrable charge is how to

physically fix the ambiguity (2.17). This issue is the object of attention of Wald-Zoupas [9]

and what they find is that for standard BMS charges at leading order, the prescription
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that should be followed is to pull-back the presymplectic 2-form to infinity, read off the

associated potential, what they call Θ and subtract this from the θ term in the definition of

the charge; see equations (2.19) and (2.20). This makes sense, because the non-integrability

comes from the existence of the θ term in the expression for the charge (2.15) and the pull-

back of the presymplectic 2-form to infinity parametrises the flux at infinity. Therefore, it

is natural to remove the contribution of potential Θ associated with the pull-back of the

presymplectic 2-form from the expression involving θ in order to determine the integrable

charge.

In this section, we show that the Wald-Zoupas prescription also works in the first order

formalism to leading order and that it determines in particular the leading order integrable

dual charge. Following Ref. [9], we begin by considering the pull-back of the presymplectic

2-form to a constant r surface, i.e. we consider its uIJ component

ω̄(φ, δ1φ, δ2φ) =
1

16πG
Pabcd δ1

(
ea ∧eb ∧δ2ω

cd
)
− (1↔ 2). (6.2)

Consider the Hodge dual of the presymplectic form

(⋆ω)µ =
1

6
εµνρσωνρσ, ωµνρ = εµνρσ(⋆ω)

σ. (6.3)

The pull-back of the presymplectic 2-form to a constant r surface implies that we consider

(⋆ω)r =
1

8πG
εrνρσ Pabcd δ1e

a
[ν e

b
ρ δ2ω

cd
σ] − (1↔ 2)

=
3

8πG

(
e[ra e

ν
ce

σ]
d δ1e

a
ν δ2ω

cd
σ + iλ r−2 e−2β εIJ δ1e

a
[u e

b
I δ2ωJ ]ab

)
− (1↔ 2)

=
1

8πG

(
[eνc (e

r
ae

σ
d − eσaerd)− erceσdeνa] δ1eaν δ2ωcd

σ

+iλ r−2 e−2β εIJ
[
δ1e

a
u e

i
I δ2ωJai − δ1eiI ebu δ2ωJib + δ1e

i
I e

j
J δ2ωuij

])
− (1↔ 2)

=
1

8πG

(
− (δ1e

r
c e

σ
d − δ1eσc erd) δ2ωcd

σ − 2δ1β e
r
ce

σ
d δ2ω

cd
σ

+iλ r−2 e−2β εIJ
[
δ1(e

a
u e

i
I) δ2ωJai + δ1e

i
I e

j
J δ2ωuij

])
− (1↔ 2), (6.4)

where in the first equality we have substituted equations (6.3) and (6.2); in the second

equality we have used equation (3.3) and that εurIJ = −r−2e−2βεIJ ; in the third equality

we have used the definition of the vierbein (4.2) and in the fourth equality we have used

the fact that det(eaµ) = r2e2βdet(Êi
I). From the expressions for the spin connection (A.6),
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it is fairly simple to see that

δω01 = O(r−2)du +O(r−2)dr +O(r−1)dxI , δω0i = O(r−2)du +O(r−1)dxI ,

δω1i = O(r−2)du +O(r−2)dr +O(r0)dxI , δωij = O(r−1)du +O(r−1)dr +O(r−1)dxI .

Using the above expressions and the form of the vierbein (4.2), (4.3), equation (6.4) becomes

(⋆ω)r =
1

8πGr

(
δ1E

iI δ2ωI1i + iλ εIJ δ1E
i
I

[
δ2ωJ1i + rEj

J δ2ωuij

]
+ o(r−1)

)
− (1↔ 2)

= − 1

8πG

(
δ1E

iI δ2

[
EJ

(i∂|u|Ej)JE
j
I

]
+ iλ εIJ δ1E

i
I δ2∂uEiJ + o(r−2)

)
− (1↔ 2)

= − 1

8πG

(
1

4
δ1h

IJ δ2∂uhIJ + iλ εIJ δ1E
i
I δ2∂uEiJ + o(r−2)

)
− (1↔ 2). (6.5)

Now, from equation (6.3),

ωuIJ = εuIJr(⋆ω)
r

=
r2εIJ
8πG

δ1

(
1

4
δ2h

KL ∂uhKL + iλ εKL δ2E
i
K ∂uEiL + o(r−2)

)
− (1↔ 2). (6.6)

Using the expansion for Ei
I in equation (4.3) and the fact that

hIJ = γIJ +
CIJ

r
+ o(r−1), hIJ = γIJ − CIJ

r
+ o(r−1), (6.7)

ωuIJ = − εIJ
32πG

δ1

(
δ2C

KL ∂uCKL + iλ δ2C̃
KL ∂uCKL + o(r0)

)
− (1↔ 2), (6.8)

where the twist of tensors on the round 2-sphere are defined in appendix B. Using equation

(2.19), we conclude that at leading order

Θ
(0)
uIJ = − εIJ

32πG

(
δCKL ∂uCKL + iλ δC̃KL ∂uCKL

)
. (6.9)

Therefore, the leading order non-integrable part of the variation of the asymptotic charges,

as defined in equation (2.18), is equal to

N (0)
ξ =

1

32πG

∫

∂Σ
dΩ ξu

(
δCKL ∂uCKL + iλ δC̃KL ∂uCKL

)
, (6.10)

where dΩ is the volume form on the unit round 2-sphere. This matches that expected from
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previous studies [9–11,19].

What remains is to prescribe a similar procedure for finding the subleading integrable

charges. Note that whereas null infinity may be viewed as a r = constant surface, subleading

charges will live away from null infinity and as such will live on v = constant null surfaces,

where v is the ingoing Eddington-Finkelstein-like timelike coordinate. However, pulling the

presymplectic 2-form to v = constant surfaces does not lead to a sensible answer. While,

it is simple to distinguish the integrable charge at subleading orders on a case by case

basis [11,44], it is clear that a Wald-Zoupas-like prescription that determines the subleading

integrable charge in a general, geometric, way by pulling the presymplectic 2-form to some

surface is more challenging. We hope to deal with this interesting problem in future work.

7 Charge algebra for leading order dual charges

In this section, we derive the charge algebra associated with leading order dual charges and

show that they satisfy the same algebra as the standard leading BMS charges, albeit with a

slightly different, but analogous, field dependent central extension. The leading order dual

BMS charge corresponding to the full BMS algebra is [11]12

δ/Q̃0 ξ = δQ̃(int)
0 ξ + Ñ0 ξ[δφ] (7.1)

with

Q̃(int)
0 ξ =

1

16πG

∫

∂Σ
dΩ

(
− fDIDJ C̃

IJ +
1

4
Y KC̃IJDKCIJ −

1

4
Ỹ IDIC

2

)
, (7.2)

Ñ0 ξ[δφ] =
1

32πG

∫

∂Σ
dΩ f ∂uCIJ δC̃

IJ . (7.3)

Following Ref. [19], we define the bracket of the charges to be13

{Q̃(int)
0 ξ1

, Q̃(int)
0 ξ2
} = δξ2Q̃

(int)
0 ξ1

+ Ñ0 ξ2 [δξ1φ]. (7.4)

Inspecting equations (7.2) and (7.3), clearly the only relevant field transformations are those

12Note that there is a minor typographical error in equation (4.6) of Ref. [11].
13Note that the relative minus sign difference with Ref. [19] in the definition of the bracket is due to the

difference in defining the action of the BMS generators on the metric components. This difference can be
traced back to whether one views BMS transformations as acting actively or passively on the fields.
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acting on CIJ , which transforms in the following way14

δCIJ = f∂uCIJ +�f γIJ − 2D(IDJ)f + Y KDKCIJ + 2CK(IDJ)Y
K − 1

2DKY
K CIJ . (7.5)

Consequently, it is simple to show that

δC̃IJ = f∂uC̃
IJ + 2εK(IDKD

J)f + Y KDKC̃
IJ + 2C̃K

(IDJ)Y K − 1
2DKY

K C̃IJ (7.6)

and

δC2 = f∂uC
2 − 4CIJDIDJf +DK

(
C2Y K

)
. (7.7)

Using the above expressions and making extensive use of the fact that Y I is a conformal

Killing vector on the round 2-sphere, see equation (4.14), as well as Schouten identities

described in appendix B of [44], one can show that15

{Q̃(int)
0 ξ1

, Q̃(int)
0 ξ2
} = Q̃(int)

0 [ξ1,ξ2]
+ K̃ξ1,ξ2 , (7.8)

where the commutation of two BMS generators [ξ1, ξ2] corresponds to a third BMS generator

ξ3 with [19]

f3 = Y I
1 DIf2− 1

2f2DKY
K
1 −Y I

2 DIf1+
1
2f1DKY

K
2 , Y I

3 = Y K
1 DKY

I
2 −Y K

2 DKY
I
1 . (7.9)

The field dependent central extension

K̃ξ1,ξ2 =
1

32πG

∫

∂Σ
dΩ C̃IJ

(
f1DIDJ DKY

K
2 − f2DIDJ DKY

K
1

)
. (7.10)

Compare this with the field dependent central extension corresponding to the leading order

BMS charges [19]

Kξ1,ξ2 =
1

32πG

∫

∂Σ
dΩ CIJ

(
f1DIDJ DKY

K
2 − f2DIDJ DKY

K
1

)
. (7.11)

8 Fermions

In section 5, we computed the asymptotic charges corresponding to asymptotically flat

solutions of the Palatini-Holst theory (3.1), i.e. Einstein gravity in the first order formalism

with an extra term, called the Holst term, that does not contribute to the equations of

14See, for example, equation (2.18) of Ref. [19].
15See appendix C for a detailed derivation of this result.
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motion and hence its existence at the level of the action cannot be ruled out. A lot of what

we found for this theory relied heavily on the fact that the torsion vanished as a result

of the equation of motion for the spin connection. The fact that the Holst term does not

contribute to the equations of motion, for example, is itself a consequence of the fact that

the torsion vanishes.

In this section, we assess the extent to which similar results as in section 5 may be

obtained in the case where there exists non-trivial torsion, which is the subject of Einstein-

Cartan theory [61–63]. A simple situation in which torsion arises is in the presence of

fermions. Therefore, in this section, we consider asymptotic charges in a setting in which

one has gravity as well as fermions. We will find that asymptotic charges, including dual

charges, can still be defined, following some minor, yet important, modifications. The

results of this section were already reported in [1].

As remarked above, in the presence of torsion, the Holst term is no longer trivial in

terms of its contribution to the equation of motion (the Einstein equation). Consequently,

it must be modified. The analogous term is the Nieh-Yan term [54]

SNY =
iλ

16πG

∫

M

(
Rab(ω) ∧e

a
∧eb − T a

∧Ta

)
. (8.1)

Using the fact that in the presence of torsion, Cartan’s first structure equation (3.4) becomes

dea + ωa
b ∧e

b = T a, (8.2)

and the algebraic Bianchi identity becomes

dT a + ωa
b ∧T

b = Ra
b ∧e

b, (8.3)

it is fairly simple to show that

Rab(ω) ∧e
c
∧ed − T a

∧Ta = −d (ea ∧Ta) . (8.4)

Therefore, the Nieh-Yan term can be written as an exact term. In this form it is clearer to

see that it vanishes in the absence of torsion, as a result of the algebraic Bianchi identity.

In order, to maintain the connection with section 5, we want to view the Nieh-Yan term as

a correction to the Holst term in the presence of torsion. Accordingly, we use the form of

the Nieh-Yan term given in equation (8.1), rather than its simpler exact form. Adding this
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term (8.1) to the Palatini-Dirac action gives

SPNYD =
1

16πG

∫

M

(
PabcdRab(ω) ∧ ec ∧ed − iλT a

∧Ta

)
+

1

2

∫

M
εψ
←→
/∇ ψ, (8.5)

where Pabcd is defined in equation (3.3), ε denotes the volume form,

ψ = iψ†γ0, {γaγb} = 2ηab (8.6)

and the operator
←→∇ =

−→∇ −←−∇ , /∇ ≡ eµaγa∇µ (8.7)

with the covariant derivative acting on spinors as

∇µψ = ∂µψ +
1

4
ωµ

abγabψ. (8.8)

Varying action (8.5) with respect to ψ gives the Dirac equation

/∇ψ = 0, (8.9)

while varying with respect to ω, we obtain

1

8πG

(
Pabcd[de

c + ωc
e ∧ee] ∧ed − i λ T[a ∧eb]

)
+

1

24
εcdef ψγ

cdeψ ea ∧eb ∧e
f = 0, (8.10)

which using Cartan’s first structure equation (8.2) reduces to

1

16πG
εabcdT

c
∧ed +

1

24
εcdef ψγ

cdeψ ea ∧eb ∧ef = 0. (8.11)

This determines the torsion in terms of the Dirac fields

T a = −2πG ψγabcψ eb ∧ec. (8.12)

The Einstein equation, obtained by varying the vierbein, is16

1

8πG
εabcdRab

∧ec + eνd

(
ψ ιγε∇νψ − ψ

←−∇ν ιγεψ
)
= 0, (8.13)

where

ιγε =
1

6
γaεabcd e

b
∧ec ∧ed. (8.14)

16Note that we have used the Dirac equation (8.9) to simplify the resulting expression.
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Equivalently,

Gµ
ν + 4πGeµa

(
ψγa∇νψ − ψ

←−∇νγ
aψ
)
= 0, (8.15)

where Gµ
ν = Rµ

ν − 1
2Rδ

µ
ν is the Einstein tensor.

The presymplectic potential corresponding to theory (8.5) is

θ(φ, δφ) =
1

16πG

(
Pabcd δω

ab
∧ec ∧ed − 2iλ δea ∧Ta

)
+

1

2

(
ψ ιγε δψ − δψ ιγεψ

)
, (8.16)

while, the Noether charge, as defined by equation (2.11) is

Q =
1

16πG

(
Pabcd ιξω

ab ec ∧ed − 2iλ ιξe
a Ta

)
. (8.17)

We can verify that the Noether charge as defined above does indeed satisfy equation (2.11)

by taking the exterior derivative of the expression above, using Cartan’s magic formula (2.6)

and Schouten identities to find that

dQ =
1

16πG

(
Pabcd Lξωab

∧ec ∧ed − 2iλ Lξea ∧Ta

)
− ιξL

− 1

32πG
εabcd

(
ea ∧eb ∧ ιξRcd − 2T a

∧eb ιξω
cd
)
. (8.18)

Consider the terms on the second line of the right hand side above

− 1

32πG
εabcd

(
ea ∧eb ∧ ιξRcd − 2T a

∧eb ιξω
cd
)

=
1

32πG
εabcd

(
ea ∧ ιξ

[
eb ∧Rcd

]
− ea ∧Rcd ιξe

b + 2T a
∧eb ιξω

cd
)

=
1

12
εabcd

(
ξµ
[
ψ γa∇µψ − ψ

←−∇µ γ
a ψ
]
− 1

2
ιξω

ef ψγaefψ

)
eb ∧ec ∧ed

=
1

2

(
ψ ιγεLξψ − Lξψ ιγεψ

)
,

where

Lξψ = ξµ∂µψ. (8.19)

In the penultimate equality we have used the Einstein equation (8.13) and the expression

for the torsion given in equation (8.12). Therefore, from equation (8.18) and the definition

of the presymplectic potential (8.16), we establish

dQ = θ(φ,Lξφ)− ιξL. (8.20)
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The variation of the asymptotic charge is given by equation (2.15), hence we consider on

the sphere

δQ− ιξθ =
1

8πG
Pabcd ιξe

c δωab
∧ed − iλ

8πG
(ιξe

a δTa + δea ∧ ιξTa)

− 1

2

(
ψ ιξιγε δψ − δψ ιξιγεψ

)
, (8.21)

where we have used equation (5.8) to simplify the expression on the right hand side. Again,

using equation (5.8) and ignoring total derivative terms, it is simple to show from the

definition of the torsion (8.2) that

ιξe
a δTa + δea ∧ ιξTa = δea ∧Lξea + ιξe

a δωab ∧eb. (8.22)

Substituting the above equation into equation (8.21) and using the definition (3.3), on the

sphere

δQ− ιξθ =
1

16πG
εabcd ιξe

c δωab
∧ed − 1

2

(
ψ ιξιγε δψ − δψ ιξιγεψ

)
− iλ

8πG
δea ∧Lξea.

(8.23)

In summary, the presence of torsion does not impede the definition of dual gravitational

charges and, in particular, for the Einstein-Dirac theory, we have that

δ/H
(T )
ξ = δ/Q(T )

ξ + i λ δ/Q̃(T )
ξ , (8.24)

where

δ/Q(T )
ξ =

∫

∂Σ

{
1

16πG
εabcd ιξe

c δωab
∧ed − 1

2

(
ψ ιξιγε δψ − δψ ιξιγεψ

)}
, (8.25)

δ/Q̃(T )
ξ = − 1

8πG

∫

∂Σ
δea ∧Lξea. (8.26)

Compare these expression with the asymptotic charges corresponding to vacuum Einstein

gravity, namely equations (5.10) and (5.11). It is clear that δ/Q(T )
ξ coincides with δ/Qξ up

to contributions from the fermion fields, while it can also be shown that when the torsion

vanishes equation (8.26) is equivalent to (5.11).

As in section 5, the charges associated with the Lorentz transformation are trivial. We

will not repeat the argument here, since the analysis is essentially identical to that of section

5.2.

26



9 Discussion

In this paper we have presented a Hamiltonian derivation of the dual BMS charges proposed

in Refs. [10, 11]. This derivation justifies their interpretation as asymptotic charges. The

main motivation for the extensions of BMS charges proposed in Refs. [10, 11, 44] was to

understand Newman-Penrose charges [64] as BMS charges; that is to give an asymptotic

symmetry interpretation of these charges. In Ref. [44], it was found that a generalisation of

standard BMS charges contains half of the set of 10 non-linear Newman-Penrose charges,

while it was argued in Ref. [11] that a new set of dual BMS charges would contain the other

five Newman-Penrose charges. Therefore, a consequence of the results of this paper is that

we have finally given a full Hamiltonian derivation of Newman-Penrose charges.

The addition of the Holst term to the Palatini action in section 3 is controlled by

an arbitrary parameter λ. Setting λ = 0 gives back the Palatini action, while λ = −1
corresponds [53] to Ashtekar variables, which is a reformulation of general relativity as an

SU(2) gauge theory [65]. There are two other independent arguments for why we ought to

choose λ = −1: In Ref. [11], it was found that λ = −1 reproduces the correct combination

of Newman-Penrose charges, while in Ref. [66], an analysis of the gravitational phase space

found that the BMS algebra acts in a well-defined manner only if λ = −1. As we observed

in section 3, λ = ±1 is a somewhat singular choice, since in this case the P operator is non-

invertible, see equation (3.5). In fact, these choices correspond to (anti)-self-dual Palatini

gravity [67, 68]. In particular, λ = −1 projects onto the self-dual part of the Riemann

curvature 2-form (or equivalently the self-dual part of the spin connection). This means

that the equations of motion are not clearly Einstein’s equation. In order to resolve this

apparent problem, we should recall that in adding the Holst term, we have made the theory

complex. Therefore, we require reality conditions in order to reduce the degrees of freedom

to that of the real theory. When λ 6= ±1, this is simple to do: we simply require that

the solutions be real. However, when λ = ±1, the reality condition that takes one back to

Einstein theory is not as clear, although one does exist [69], so that even in this case we

can be confident that we are working with a theory that is equivalent to Einstein’s, albeit

not obviously so. We do not have to worry about the details of this issue here, since the

invertibility of the P operator is not required when defining charges. Therefore, our results

are valid for the cases where λ = ±1.
This work raises many further interesting questions that we wish to explore in future

work. One important question is how these ideas can be understood in the context of the

Barnich-Brandt formalism [18]. This is an alternative formalism for the derivation of asymp-
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totic charges that relies solely on the equations of motion, rather than the presymplectic

structures as in the covariant phase space formalism. The justification for such a formalism

is that it relies on the only objects in the theory that matter, namely the equations of

motion, rather than objects that have many ambiguities. For standard BMS charges, it

agrees with the expression derived from the covariant phase space formalism, see e.g. [60].

However, the main message of Ref. [1] and this work is that there is more to be considered

beyond the equations of motion, which seems to go against the spirit of the Barnich-Brandt

formalism. Therefore, a question that we look forward to considering in the near future is

whether dual charges can be derived from the Barnich-Brandt formalism at all? And if so,

how?

We have shown how the Wald-Zoupas prescription can be generalised to define the

leading order integrable dual charge in section 6. The identification of the integrable charge

is an important step in the construction of the charge algebra [19], which we derived here for

leading order dual charges, see section 7. A construction of the charge algebra for subleading

charges [11, 44] remains to be done. Of course, one can identify integrable charges order

by order and, hence, derive the charge algebra order by order. However, it would be much

more satisfactory to have an all order result. In order to do this, one must first formulate

a Wald-Zoupas prescription for subleading charges.

In section 5, we found that the diffeomorphism and Lorentz generators decoupled. In-

vestigating each in turn, we found that the charges associated with the Lorentz generators

is trivial. Of crucial importance in deriving this result is the determinant condition (4.5).

Therefore, the decoupling of diffeomorphisms and Lorentz generators and the triviality of

the Lorentz charges seems to be inextricably linked to our definition of asymptotic flat-

ness, which corresponds to that of Bondi and Sachs [20,21]. This is not so surprising since

the charges will clearly depend on the background and the boundary conditions that we

impose. In light of this, it would be interesting to consider what happens, for example

in the Newman-Unti gauge [70]? For standard BMS charges in the metric formulation of

the Barnich-Brandt formalism, this has been studied previously and it has been found that

the charges in the Newman-Unti gauge satisfy the same charge algebra as those in the

Bondi-Sachs gauge [71].
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A The metric and spin connection

For convenience, in this appendix, we list the metric and inverse metric components

gµν = eaµe
b
ν ηab, gµν = eµae

ν
b η

ab, (A.1)

as well as the spin connection components

ωµab = eρ[ae
σ
b]

(
eσ c ∂µe

c
ρ + ∂σgρµ

)
. (A.2)

For Xµ = (u, r, xI), we have

gµν =




−e2βF + r2hKLC
KCL −e2β −r2hJKCK

−e2β 0 0

−r2hIKCK 0 r2hIJ


 , (A.3)

gµν =




0 −e−2β 0

−e−2β e−2βF −e−2βCJ

0 −e−2βCI r−2hIJ


 , (A.4)

where

hIJ = Ei
IE

j
J ηij , hIJ = EI

i E
J
j η

ij. (A.5)

The spin connection components are

ω01 = 2 ∂rβ e
0 +

1

2
e−2β∂rF e1 + EI

i

(
1

r
∂Iβ +

r

2
e−2βhIJ∂rC

J

)
ei,

ω0i = −EI
i

(
1

r
∂Iβ −

r

2
e−2βhIJ∂rC

J

)
e1 −

(
1

r
ηij + EI

(i∂|r|Ej)I

)
ej ,

ω1i = −EI
i

(
1

r
∂Iβ +

r

2
e−2βhIJ∂rC

J

)
e0 − 1

2r
e−2βEI

i ∂IF e1
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+ e−2β

(
1

2r
F ηij − EI

(i∂|u|Ej)I +
1

2
F EI

(i∂|r|Ej)I − EI
(iEj)J

(2)∇IC
J

)
ej ,

ωij = EI
[i∂|r|Ej]I e

0 + e−2β

(
EI

[i∂|u|Ej]I −
1

2
F EI

[i∂|r|Ej]I + EI
[iEj]J

(2)∇IC
J + (2)ωJ ijC

J

)
e1

+
1

r
EJ

k
(2)ωJ ij e

k, (A.6)

where in the above equations

Ei I ≡ ηijEj
I = hIJE

J
i ,

(2)∇I is the metric connection associated with hIJ , i.e.

(2)∇I hJK = 0 (A.7)

and (2)ωI ij is the spin connection associated with the zweibein Ei
I satisfying

∂[IE
i
J ] +

(2)ω[I
i
j ∧Ej

J ] = 0. (A.8)

B Twisting on the 2-sphere

We define a twisting operation on tensors defined on the 2-sphere [10,11] as follows. For a

symmetric tensor XIJ , its twist

X̃IJ = XK
(IεJ)K , εIJ =


 0 1

−1 0


 detÊi

I , εIJ =


 0 1

−1 0


 1

detÊi
I

. (B.1)

If XIJ is, furthermore, trace-free, i.e. γIJXIJ = 0, then XK
[IεJ ]K = 0. Therefore, X̃IJ is

symmetric without the need for explicit symmetrisation and we can simply write

X̃IJ = XK
IεJK . (B.2)

Moreover, we define the twist of a vector Y I to be

Ỹ I = εIJYJ . (B.3)
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C Derivation of the leading dual charge algebra

In this appendix, we compute the charge algebra given in equations (7.8) and (7.10). We

begin by considering

{Q̃(int)
0 ξ1

, Q̃(int)
0 ξ2
} − Q̃(int)

0 [ξ1,ξ2]
= δξ2Q̃

(int)
0 ξ1

+ Ñ0 ξ2 [δξ1φ]− Q̃
(int)
0 [ξ1,ξ2]

≡ 1

16πG

∫

∂Σ
dΩ k̃ξ1,ξ2 . (C.1)

Substituting the field transformations (7.5), (7.6) and (7.7) into the relevant expressions

given by equation (7.2) and (7.3) gives a long expression with three types of terms: terms

involving the radiative modes ∂uCIJ or equivalently ∂uC̃IJ ; terms involving only the gen-

erators of conformal transformation on the round sphere Y and, finally, terms involving a

combination of Y s and fs. We will look at each set of terms in turn, beginning with the

terms involving the radiative modes:

k̃ξ1,ξ2 =f2 ∂uC̃
IJ DIDJf1 − f1DIDJ

[
f2∂uC̃

IJ
]

+
1

4
Y K
1

(
f2 ∂uC̃

IJDKCIJ −DK

[
f2 ∂uC̃

IJ
]
CIJ

)
− 1

4
Ỹ IDI

(
f2 ∂uC

2
)

− 1

2
f2 ∂uC̃

IJ
(
−1

2DKY
K
1 CIJ + Y K

1 DKCIJ + 2CKIDJY
K
1

)
+ . . .

=DI

(
f2 ∂uC̃

IJ DJf1

)
−DI

(
f1DJ

[
f2∂uC̃

IJ
])

− 1

4
Y K
1 DK

(
f2 ∂uC̃

IJCIJ

)
+

1

4
DKY

K
1 f2 ∂uC̃

IJCIJ − f2CK
J∂uC̃

IJ D(KY1I) + . . . ,

where we have used the Schouten identity to rewrite

− 1

4
Ỹ IDI

(
f2 ∂uC

2
)
=

1

2
Y1ID

K
(
f2CKJ∂uC̃

IJ
)
− 1

2
Y K
1 DI

(
f2CKJ∂uC̃

IJ
)
. (C.2)

Furthermore, we make frequent use above and in what follows of the property that for

arbitrary covariant operators O1 and O2

O1CIK O2C̃
JK = −O1C̃IK O2C

JK, (C.3)

which can be proved simply from definition (B.2). Now using equation (4.14), we find that

the terms involving the radiative modes can be grouped into total derivative terms, which
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can safely be discarded

k̃ξ1,ξ2 = DI

(
f2 ∂uC̃

IJ DJf1

)
−DI

(
f1DJ

[
f2∂uC̃

IJ
])
− 1

4
DK

(
f2 Y

K
1 ∂uC̃

IJCIJ

)
+ . . . .

(C.4)

Next, we consider terms involving solely the Y generators:

k̃ξ1,ξ2 =
1

4
Y K
1

{(
−1

2DLY
L
2 C̃IJ + Y L

2 DLC̃
IJ + 2C̃L

IDJY L
2

)
DKCIJ

−DK

(
−1

2DLY
L
2 C̃IJ + Y L

2 DLC̃
IJ + 2C̃L

IDJY L
2

)
CIJ

}

− 1

4
Ỹ K
1 DKDL

(
C2Y L

2

)
− 1

4

(
Y L
1 DLY

K
2 − Y L

2 DLY
K
1

)
C̃IJ DKCIJ

+
1

4

(
Y L
1 DLỸ

K
2 − Y L

2 DLỸ
K
1

)
DKC

2 + . . .

=
1

2
Y K
1

(
−1

2DLY
L
2 C̃IJ + Y L

2 DLC̃
IJ + 2C̃L

IDJY L
2

)
DKCIJ

+
1

4
DKY

K
1

(
−1

2DLY
L
2 C̃IJ + Y L

2 DLC̃
IJ + 2C̃L

IDJY L
2

)
CIJ

− 1

4
Y K
1 DIDL

(
Y L
2 CJKC̃

IJ
)
+

1

4
Y1ID

KDL

(
Y L
2 CJKC̃

IJ
)

− 1

4

(
Y L
1 DLY

K
2 − Y L

2 DLY
K
1

)
C̃IJ DKCIJ +

1

4

(
Y L
1 DLỸ

K
2 − Y L

2 DLỸ
K
1

)
DKC

2 + . . .

=
1

4
DL

(
Y L
1 Y

K
2 DKCIJ

)
C̃IJ − 1

4
Y K
2 DLY

L
1 DKCIJ C̃

IJ − 1

4
Y L
1 DLY

K
2 C̃IJ DKCIJ

− 1

2
DL

(
Y L
1 CJKC̃

IJ
)
DIY

K
2 −

1

4
Y L
2 DLỸ

K
1 DKC

2 − (1↔ 2) + . . .

=
1

4
Y K
1 Y L

2 C̃IJ D[KDL]CIJ +
1

4
C2εIKY L

2 DIDKY1L − (1↔ 2) + . . . , (C.5)

where we have freely integrated by parts and ignored total derivative terms and made free

use of Schouten identities to derive equations of the form (C.2) and

C̃IKCJ
K =

1

2
C2 εIJ . (C.6)

Using the definition of the Riemann tensor

(DIDJ −DJDI)V
K = RIJ

K
LV

L (C.7)
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in both of the terms in (C.5) gives equal and opposite terms that cancel against one another.

Therefore, the expression of interest reduces to the final set of terms involving a combination

of fs and Y s:

k̃ξ1,ξ2 =2f1 ε
IK D(IDJ)DKD

Jf2

− f1DIDJ

(
−1

2DLY
L
2 C̃IJ + Y L

2 DLC̃
IJ + 2C̃L

IDJY L
2

)

+
1

2
Y K
1

(
DKC̃

IJ DIDJf2 − C̃IJ DKDIDJf2

)
+ Ỹ K

1 DK

(
CIJDIDJf2

)

+
(
Y K
1 DKf2 − Y K

2 DKf1 − 1
2f2DKY

K
1 + 1

2f1DKY
K
2

)
DIDJ C̃

IJ . (C.8)

Using equation (C.7), as well as the fact that

RIJKL = γIKγJL − γILγJK , (C.9)

it is fairly simple to show that the first term on the right hand side of equation (C.8)

vanishes. Simplifying the remaining terms by integrating by parts and using Schouten

identities as before gives

k̃ξ1,ξ2 = C̃IJ

{
1

2
f1DIDJ DKY

K
2 + 2Y2D[KDI]DJf1 − 2DJD[IY

K
2 DK]f1 − (1↔ 2)

}
.

(C.10)

Consider the third term

−2C̃IJDJD[IY
K
2 DK]f1 = −C̃IJεIKε

PQDJDPY
K
2 DQf1

= −C̃IJεIKε
PQ(DPDJY

K
2 DQf1 −DPDQY

K
2 DJf1)

= −C̃IJγILY
L
2 DJf1, (C.11)

where in the second equality we have used a Schouten identity and in the third line we have

used equation (4.14) and the fact that CIJ is symmetric and tracefree to show that the first

term in the second line vanishes, while we have used equations (C.7) and (C.9) to simplify

the second term in the second line. Using equations (C.7) and (C.9) to simplify the second

term in equation (C.10), we find that k̃ξ1,ξ2 simplifies to

k̃ξ1,ξ2 =
1

2
C̃IJ

(
f1DIDJ DKY

K
2 − f2DIDJ DKY

K
1

)
. (C.12)
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This establishes the leading dual charge algebra given by equations (7.8) and (7.10).
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