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Abstract: In this work, we study the impact of quantum entanglement on the two-point correlation
function and the associated primordial power spectrum of mean square vacuum fluctuation in a
bipartite quantum field theoretic system. The field theory that we consider is the effective theory
of axion field arising from Type IIB string theory compacted to four dimensions. We compute the
expression for the power spectrum of vacuum fluctuation in three different approaches, namely
(1) field operator expansion (FOE) technique with the quantum entangled state, (2) reduced density
matrix (RDM) formalism with mixed quantum state and (3) the method of non-entangled state (NES).
For a massless axion field, in all three formalisms, we reproduce, at the leading order, the exact
scale invariant power spectrum which is well known in the literature. We observe that due to
quantum entanglement, the sub-leading terms for these thee formalisms are different. Thus, such
correction terms break the degeneracy among the analysis of the FOE, RDM and NES formalisms in
the super-horizon limit. On the other hand, for massive axion field we get a slight deviation from scale
invariance and exactly quantify the spectral tilt of the power spectrum in small scales. Apart from
that, for massless and massive axion field, we find distinguishable features of the power spectrum for
the FOE, RDM, and NES on the large scales, which is the result of quantum entanglement. We also
find that such large-scale effects are comparable to or greater than the curvature radius of the de
Sitter space. Most importantly, in near future if experiments probe for early universe phenomena,
one can detect such small quantum effects. In such a scenario, it is possible to test the implications of
quantum entanglement in primordial cosmology.

Keywords: De-Sitter space; quantum entanglement; cosmology of theories beyond the SM;
quantum correlation

1. Introduction

The concept of quantum entanglement is one of the most interesting features that one can
study in the context of quantum mechanics. Using such an idea, one can study the instantaneous
physical implication of local measurements [1–3]. There are several applications in the framework
of quantum field theory in which the quantum entanglement play a significant role. For example,
particle creation (EPR Bell pair [4]) through the bubble nucleation procedure was explained using
the idea of quantum entanglement where the quantum system is strongly correlated [5–9]. Also
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using the concept of quantum entanglement in QFT one successfully explains many phenomena such
as entropy bounds, phase transitions, anomalies, confinement, thermalization and quantum critical
quenches, localization in quantum gravity and description of interior of black holes. Apart from that
quantum entanglement has huge application in the context of quantum information theory, quantum
cryptography and interferometry.

The von-Neumann entropy and Rényi entropy are the appropriate measures of quantum
entanglement the framework of condensed matter theory [10], in quantum information theory and
in theoretical high energy physics. The idea of entanglement entropy in the context of quantum field
theory is the best possible computational tool to quantify and study the nature of the long range effects
of quantum correlation. However, the computation of entanglement entropy for a specific class of
quantum field theories were not easy before the method proposed by Ryu and Takayanagi [11]. In this
work, the authors have computed the entanglement entropy for a strongly coupled field theory set
up with a gravity dual using the techniques of holography and the results are remarkable as it is in
agreement with various expectations from the quantum field theory side [11–16].

Following this success, Maldacena and Pimentel in ref. [17] further proposed an explicit technique
to compute the entanglement entropy in the framework of quantum field theory of de Sitter space
with Bunch Davies quantum initial vacuum state1. It is important to note in particular that the
Green functions which verify a condition (commonly known as the Hadamard condition) behave on
the light-cone as in flat space for Bunch Davies or the Euclidean false vacuum state. On the other
hand, the Bunch Davies or the Euclidean false vacuum can also be physically interpreted as being
generated by an infinite time tracing operation from the condition that the energy scale of the quantum
mechanical fluctuations is much smaller than the characteristic scale in cosmology, which is the Hubble
scale. This quantum vacuum state possesses actually no quanta at the limiting asymptotic past infinity.
However, in the framework of quantum field theory of curved space time, there exists a huge class
of quantum mechanical vacuum states in the background De Sitter space time which are invariant
under all the SO(1, 4) isometries and commonly known as the α-vacua. Here α is a real parameter
which forms a real parameter family of continuous numbers to describe the issometric classes of
invariant quantum vacuum state in De Sitter space. In a more technical sense, sometimes the α vacua
is characterized as the squeezed quantum vacuum state in the context of quantum field theory of
curved space time. It is also important to note that in the original version something called, α, β or
Motta-Allen (MA) vacua is appearing which is CPT violating and here an additional real parameter β

is appearing in the phases in the definition of the quantum mechanical vacuum state. This phase factor
is responsible for the CPT violation. Once we switch off this phase factor by fixing β = 0, the one
can get back the CPT symmetry preserving quantum vacuum state in the present context. The α

vacua and the Bunch Davies or Euclidean false vacuum are connected to each other via Bogoliubov
transformation. Especially, the α = 0 case corresponds to the Bunch Davies or Euclidean vacuum state
in which the Hadamard condition in the Green’s functions is satisfied. Additionally, the point to be
noted here that the Bunch-Davies or the Euclidean quantum vacuum state is actually representing a
zero-particle quantum mechanical state which is observed by a geodesic observer, which implies that
an observer who is in free fall in the expanding state is characterized by this vacuum state. Because
of this reason to explain the origin of quantum mechanical fluctuations appearing in the context
of cosmological perturbation theory in the inflationary models or during the particle production
phenomena the concept of Euclidean false quantum vacuum state is commonly used in primordial
cosmology literature. Here, the authors have studied the gravitational dual of the quantum field
theory of De Sitter space using holographic techniques in detail. Furthermore, in ref. [18] the authors
have extended this computation in the context of α vacua [19–22] in the same context. In ref. [23,24]

1 It is important to note that, by the term Bunch-Davies vacuum here we actually pointing towards the well known Euclidean
vacuum state which is actually a false vacuum state in quantum field theory and commonly used to fix the initial quantum
condition of our universe in terms of quantum mechanical state or the wave function of the universe.
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the computation of quantum entanglement entropy and the formation of EPR Bell pair from stringy
Axion2 were discussed with Bunch Davies and α vacua respectively.

Based on the physical set up used in our previous works [23,24], in this paper we studied the
cosmological implications of quantum entanglement by focussing on the long range effects of the two
point correlation function computed from the mean square vacuum fluctuation of stringy Axion field
with Bunch Davies and α quantum states as initial choice of vacua . We expect from this analysis that
the signature and impact of quantum entanglement could be manifest in the correlation function even
beyond the Hubble horizon scale. Our expectation is mainly due to the fact that de Sitter expansion of
universe distinguish between a pair of Axions [27–30], known as EPR Bell pair which is created within
causally connected Hubble region. For this purpose, we use three different techniques:

1. Field operator expansion (FOE) method with entangled state,
2. Reduced density matrix formalism (RDM) with mixed state and
3. Non-entangled state (NES) method.

Here one can ask the following sets of questions regarding the implementation of three different
techniques in the present context:

• Q1. Why did we use three different formalisms to compute the cosmological two point
correlation function?

• Q2. What is the correct physics they believe that happens in the setup of the space time?
• Q3. In those three formalisms, the physics is completely different. So which one is correct?
• Q4. We finally could only observe one possible observational consequence. So which one

is correct?

The appropriate answers to above mentioned questions are appended below point wise:

• A1. We used three different formalisms to compute the cosmological two point correlation
function to check the explicit role of quantum mechanical entanglement in the primordial
cosmology. In these three formalisms the leading order expressions become same. However,
the difference only can be found once we look into the small quantum corrections appearing
in these formalisms. If the signature of quantum entanglement will be detected in near future
in the observational probes of early universe, then one can explicitly rule out the possibility of
appearing of NES method in the context of quantum field theory of primordial cosmology. On the
other hand, if the signatures of quantum entanglement cannot be confirmed then one can strongly
rely on the result obtained in the NES method. Additionally, it is important to note that these
three frameworks provide us the quantum mechanical origin of quantum field theory of early
universe cosmology.

• A2 and A3. From the theoretical perspective these three different formalisms have their own
merit on the physical ground. If the quantum mechanical origin of the quantum correction of
the primordial fluctuation is coming from the non entangled state then NES formalism is the
only single option which can take care of the correct physics. On the other hand, if the quantum
mechanical origin of the quantum correction of the primordial fluctuation is coming from the
entangled mixed state then RDM formalism applicable to the subsystem is the most promising
option which supports correct physical explanation. The last option is FOE formalism which is
applicable when the quantum mechanical origin of the quantum correction of the primordial
fluctuation is guided by the total entangled state (not the subsystem) then FOE formalism is useful
to describe the correct physics.

2 Here we want to point to a few works, refs. [25,26], where the authors have studied quantum field theory of axion fields and
its relation with quantum entanglement.
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• A4. It is very well known fact that at late time scale all the large scale structure is formed
due to long range persistent correlation originated from the primordial quantum mechanical
fluctuation in the early universe. This can only be consistently theoretically established by using
FOE and RDM formalisms which supports the concept of quantum entanglement in early universe
cosmology. Now RDM formalism is more theoretically consistent than the FOE method as it
is based on the quantum description of the reduced subsystem. Now as far as the detection in
the observation is concerned, if we can detect the quantum mechanical origin of the sub leading
quantum correction in near future probes then one can explicitly very the explicit role of quantum
entanglement, precisely test FOE or RDM formalism is correct. If we cannot detect the role of
quantum entanglement then NES formalism will provide the correct physical explanation of the
quantum origin of the sub leading correction term in the two point primordial correlation function.

We implement the RDM formalism using the previous work done by Maldacena and Pimentel
in ref. [17] in the context of de Sitter cosmology. In our computation we explicitly included the
effect of Stringy Axion in the small field regime and as a result we get perturbatively corrected
contributions in the expression for the power spectrum derived using FOE, RDM and NES formalisms.
Such correction terms can be interpreted as quantum effects which are appearing from the UV complete
theory, such as a specific type of bipartite quantum field theory driven by axion. We note that
the axion field which is being considered here, is actually originating from Type IIB string theory
compactified on a Calabi-Yau three fold (CY3), in presence of a NS5 brane sitting at the bottom
of a long throat [31–34]. Most importantly, in the large wave number3 limit (small scale or small
wave length approximation [35]) we showed the results for the power spectrum derived from these
three formalism perfectly match with each other if we consider only the leading order contribution.
However, the results are different for these three formalisms if we we include the contributions from
next and next to next leading order. In a way one can say that such additional small perturbative
correction terms play a pivotal role to distinguish between the FOE, RDM and NES formalisms. This is
obviously an important information because using the present observational data on early universe
cosmology [36–94] one can further constrain the present model and also test the appropriateness of
these formalisms. Apart from this, for completeness, we also analysed the behaviour of the power
spectrum in the small wave number limit (large scale or large wave length approximation). We find
that all these three formalisms yield distinctive results in terms of the momentum (quantum number)
dependence of the power spectrum in order by order. However, the lack of observational data on
this particular regime does not allow us to test the appropriateness and correctness of the proposed
methods. We hope that in near future when the observational data for this regime will be available,
our results can further constrain the model and rule out two of the possibilities between the three
formalisms discussed here. We would like to mention here that in our computation of the power
spectrum for mean square vacuum fluctuation we have not considered the quantum fluctuation of the
pseudo scalar Axion field as a classical back ground field, the approach which is mostly used in the
context of the cosmological correlations from early universe. Instead , we chosen the field operator of
the Axion field itself as quantum operator whose fluctuation with respect to a quantum mechanical
vacuum state (Bunch Davies and α vacua). Thus, in this paper, we followed:

1. A complete quantum approach to compute the primordial power spectrum of mean square
vacuum fluctuation, which is not usually followed in the context of cosmology.

2. For the specific structure of the axion effective potential , we computed the explicit form of the
corrections which are due to quantum effects.

3 Here the wave number p mimics the role of SO(3, 1) principal quantum number in the de Sitter hyperbolic open chart
which is continuous and lying within the range 0 < p < ∞. The other SO(3, 1) quantum numbers m (azimuthal) and
l (orbital) play no significant role in the final result as the expression for the power spectrum for mean square vacuum
fluctuation only depends on the quantum number p.
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3. For our calculation, we used three different approaches at super horizon time scale hoping
that the quantum corrections, at small and large wave number limits when confronted with
observations, can select the most effective approach and the nature of quantum corrections. From
the cosmological perspective we believe this is a very important step forward.

The plan of the paper is as follows: In Section 2, we begin our discussion with the computation of
the wave function of the Axion field in a de Sitter hyperbolic open chart. For this purpose, we discuss
the details of the background de Sitter geometrical set up in Section 2.1. Furthermore, in Sections 2.2
and 2.3, we solve the total wave function for Axion for Bunch Davies vacuum and generalised α- vacua
respectively. Using these solutions we derived the cosmological power spectrum of mean square
quantum vacuum fluctuation in Section 3. In Sections 3.1.1 and 3.1.2 we discuss the quantum vacuum
fluctuation using field operator expansion (FOE) formalism with entangled state for Axion. field. We
also derived the explicit form of the wave function in this formalism. This solution is used to derive
the power spectrum by computing the two point quantum correlation function from mean square
vacuum fluctuation. In Sections 3.2.1and 3.2.2 we discuss the quantum vacuum fluctuation using
reduced density matrix (RDM) formalism using mixed state for Axion field and we derived the explicit
form of the reduced density matrix in the de Sitter hyperbolic open chart. Furthermore, this result is
used to derive the power spectrum by computing the two point quantum correlation function from
mean square vacuum fluctuation in large and small wave number limits for both massless and massve
Axion fields. In Sections 3.3.1and 3.3.2 we study the quantum vacuum fluctuation using non entangled
state (NES) formalism for Axion field and have discussed the NES formalism in detail. This result
was used to derive the power spectrum by computing the two point quantum correlation function
from mean square vacuum fluctuation. Finally, Section 4 is devoted to a summary, conclusions and
future prospects. In Figure 1, we present a schematic diagram for the computation algorithm of long
range effect of cosmological correlation function from quantum entanglement of axion in de Sitter
open hyperbolic chart.

Cosmological correlation from Quantum 
entanglement in de Sitter space with stringy axions

Study of vacuum fluctuation using 
Bunch Davies and generalised 

quantum state  

Field Operator Expansion (FOE) 
formalism (Entangled state)  

Reduced Density Matrix (RDM) 
formalism (Mixed state)  

Power spectrum from two 
point function using FOE  

Power spectrum from two 
point function using RDM  

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale both are same

Small wavenumber  (long wavelength) limit in super horizon 
 time scale they are completely different

Non Entangled state (NES) 
formalism  

Figure 1. Schematic diagram for the computation algorithm of long range effect of cosmological
correlation function from quantum entanglement of axion in de Sitter open hyperbolic chart.

2. Wave Function of Axion in Open Chart

We briefly review here, for the sake of completeness, the background geometry and the results for
wave function of the axion field.
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2.1. Background Geometry

We consider a time preserving space-like hypersurface S2 in the open hyperbolic chart of the de
Sitter space. As a result, S2 is divided into two sub regions-interior and exterior which are identified by
RI (≡ L)/ RII (≡ R). In terms of the Lorentzian signature an open chart in de Sitter space is described
by three different subregions :

R(= RII)/L(= RI) :


τE = ±π

2
∓ itR/L tR ≥ 0/tL ≥ 0

ρE = −irR/L rR ≥ 0/ rL ≥ 0

ds2
R/L =

1
H2

[
−dt2

R/L + sinh2 tR/L

(
dr2

R/L + sinh2 rR//L dΩ2
2

)] (1)

C :


τE = tC −π

2 ≤ tC ≤ π
2

ρE =
π

2
− irC −∞ < rc < ∞.

ds2
C =

1
H2

[
dt2

C + cos2 tC

(
−dr2

C + cosh2 rC dΩ2
2

)] (2)

where H = ȧ/a is the Hubble parameter and dΩ2
2 represents angular part of the metric on S2. Now

let us assume that the total Hilbert space of the local quantum mechanical system is described byH,
which can be written using bipartite decomposition in a direct product space as,H = HINT ⊗HEXT.
HereHINT andHEXT are the Hilbert space associated with interior and exterior region and describe
the localised modes in RI/ RII respectively.

In Figure 2 we show the schematic diagram for the geometrical construction and underlying
symmetries of the bipartite quantum field theoretic system of de Sitter hyperbolic open chart.
Corresponding Penrose diagrams are also drawn for completeness.

2.2. Wave Function for Axion Using Bunch Davies Vacuum

Though our prime objective is to compute the cosmological correlation functions for axion field
in de Sitter space, we need the results for the wave function of the axion field in the just mentioned
geometrical set up. Please note that the axion field under consideration is coming from RR sector of
Type IIB string theory compactified on CY3 in presence of NS 5 brane [31,95]. The effective action for
the axion field is given by [31]:

Saxion =
∫

d4x
√
−g
[
−1

2
(∂φ)2 + µ3

{
φ + b fa cos

(
φ

fa

)}]
, (3)

where µ3 is the mass scale, fa is axion decay constant and the parameter b is defined as, b = Λ4
G/µ3 fa.

Here ΛG depend on the string coupling gs, slope parameter α
′

and details of SUSY breaking parameter.
For φ << fa, effective potential for axion can be expressed as:

V(φ) ≈ µ3 (b fa + φ)−
m2

axion
2

φ2, (4)

where we introduce the effective mass of the axion as, m2
axion = µ3b/ fa = Λ4

G/ f 2
a . Here axion decay

constant follow a (conformal) time dependent profile, which is explicitly mentioned in refs. [27–29].
In Figure 3 we explicitly present the behaviour of the above axion potential with respect to the

dimensionless field value φ/ fa.
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

Rs
2

=0 

 

A=B 

A<B 

 

A=B 

global 

global 

 

C 

0 



Figure 2. Schematic diagram for the geometrical construction and underlying symmetries of the
bipartite quantum field theoretic system of de Sitter hyperbolic open chart. Corresponding Penrose
diagrams are also drawn for completeness.
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ϕ/fa

b cos ϕ/fa

ϕ/fa+b cos ϕ/fa

ϕ/fa+b[1- (ϕ/fa)
2/2]

0 1 2 3 4 5 6
-4

-2

0

2

4

6

ϕ/fa

V
(ϕ
)/μ

3
f a

Axion effective potential (for b=2)

Figure 3. Behaviour of the axion effective potential obtained from Type IIB String Theory with respect
to the dimensionless field value φ/ fa, where fa is the axion decay constant.

Furthermore, using Equation (3) the field equation of motion for the axion can be written as:[
1

a3(t)
∂t

(
a3(t)∂t

)
− 1

H2a2(t)
L̃2

H3 + m2
axion

]
φ = µ3, (5)

where the scale factor a(t) in de Sitter open chart is given by, a(t) = sinh t/H and H is the Hubble
parameter, which is in principle can be time-dependent. However, in the global patch of De Sitter
space, it appears that the Hubble parameter H can be treated as approximately a constant throughout
the evolutionary time scale of our universe and the value is fixed at very high energy scale, 1016 GeV
at which the inflation and cosmological particle production (in the present context axion production)
at very early universe are occurring. This value of the Hubble parameter is appearing from the
observational constraint from Planck 2018 on the tensor-to-scalar ratio, which is actually a very
important quantity in cosmology and determines the existence of primordial gravitational wave
fluctuations at the very early time scale of our universe.

Additionally, it is important to note that the Laplacian operator L̃2
H3 , which is defined in the H3

geometry can be written as:

L̃2
H3 =

1
sinh2 r

[
∂r

(
sinh2 r ∂r

)
+

1
sin θ

∂θ (sin θ ∂θ) +
1

sin2 θ
∂2

φ

]
, (6)

which satisfy the following eigenvalue equation:

L̃2
H3Yplm(r, θ, φ) = −(1 + p2)Yplm(r, θ, φ). (7)

Here Yplm(r, θ, φ) represents orthonormal eigenfunctions which can be written in terms of a radial
and angular part as:

Yplm(r, θ, φ) =
Γ (ip + l + 1)

Γ (ip + 1)
p√

sinh r
P−(l+ 1

2 )
(ip− 1

2 )
(cosh r)Ylm(θ, φ), (8)
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where Ylm(θ, φ) is the spherical harmonics. Consequently, the total solution of the equations of motion
can be written as:

Φ(t, r, θ, φ) = ∑
σ=±1

∑
Q=p,l,m

[
aQVQ(t, r, θ, φ) + a†

QV∗Q(t, r, θ, φ)
]

, (9)

Here the total solution VQ(t, r, θ, φ) for Bunch Davies vacuum can be expressed as:

VQ(t, r, θ, φ) =
1

a(t)
χp,σ(t)Yplm(r, θ, φ) =

H
sinh t

χp,σ(t)Yplm(r, θ, φ), (10)

where χp,σ(t) forms a complete set of positive frequency function. Also this can be written as a sum of

complementary (χ(c)
p,σ(t)) and particular integral (χ(p)

p,σ(t)) part, as given by:

χp,σ(t) = χ
(c)
p,σ(t) + χ

(p)
p,σ(t). (11)

Explicitly the solution for the complementary part and the particular integral part can be
expressed as:

χ
(c)
p,σ(t) =


1

2 sinh πp

 (eπp − iσ e−iπν
)

Γ
(

ν + 1
2 + ip

) P ip

(ν− 1
2 )
(cosh tR)−

(
e−πp − iσ e−iπν

)
Γ
(

ν + 1
2 − ip

) P−ip

(ν− 1
2 )
(cosh tR)

 for R

σ

2 sinh πp

 (eπp − iσ e−iπν
)

Γ
(

ν + 1
2 + ip

) P ip

(ν− 1
2 )
(cosh tL)−

(
e−πp − iσ e−iπν

)
Γ
(

ν + 1
2 − ip

) P−ip

(ν− 1
2 )
(cosh tL)

 for L,

(12)

χ
(p)
p,σ(t) = sinh2 t

∞

∑
n=0

1
(p2 − p2

n)
χ
(c)
pn ,σ(t)

∫
dt
′

χ
(c)
pn ,σ(t

′
) µ3 . (13)

where the parameter ν is defined as:

ν =

√
9
4
−

m2
axion
H2 =

√
9
4
− µ3b

faH2 =

√
9
4
−

Λ4
G

f 2
a H2 . (14)

In Figure 4 we give a schematic diagram for the computation algorithm of solving the wave
function of our universe in de Sitter hyperbolic open chart for stringy axion.

2.3. Wave Function for Axion Using α Vacua

Here we use two subspaces in CPT invariant SO(1, 4) isometric de Sitter space, which is identified
as RI and RII respectively. Use the result obtained for Bunch Davies vacuum, and performing a
Bogoliubov transformation the mode functions for the α-vacua can be expressed as:

Φ(r, t, θ, φ) =
∫ ∞

0
dp ∑

σ=±1

∞

∑
l=0

+l

∑
m=−l

[
dσplmF

(α)
σplm(r, t, θ, φ) + d†

σplm(F
(α)
σplm)

∗(r, t, θ, φ)
]

, (15)

where the α-vacua state are defined as:

dσplm|α〉 = 0 ∀σ = (+1,−1); 0 < p < ∞; l = 0, · · · , ∞, m = −l, · · · ,+l. (16)
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How to solve wave function of our universe in de 
Sitter hyperbolic open chart for stringy Axion?

We express the D’Alembertian 
operator in this particular manifold 
and apply method of separation of 

variable to find out the total 
solution in terms of time, radial 

and angular coordinates

Using Bunch Davies 
 vacuum state

Using generalised 
 vacua state 

Bogoliubov 
transformation

We express the D’Alembertian 
operator in this particular manifold 
and apply method of separation of 

variable to find out the total 
solution in terms of time, radial 

and angular coordinates

Bogoliubov 
transformation

Here we express the solution 
in terms of the oscillator 

 

Here we express the solution in 
terms of the oscillator 

 

Bogoliubov 
transformation

Figure 4. Schematic diagram for the computation algorithm of solving the wave function of our
universe in de Sitter hyperbolic open chart for stringy axion.

In this context, the α-vacua mode function F (α)
σplm can be expressed in terms of Bunch Davies mode

function Vσplm(r, t, θ, φ) using Bogoliubov transformation as:

F (α)
σplm =

[
cosh α Vσplm(r, t, θ, φ) + sinh α V∗σplm(r, t, θ, φ)

]
. (17)

Here Vσplm(r, t, θ, φ) is the Bunch Davies vacuum states, which is defined as:

Vσplm(r, t, θ, φ) =
H

sinh t
χp,σ(t)Yplm(r, θ, φ). (18)

After substituting Equations (17) and (18) in Equation (15) we get the following expression for the
wave function:

Φ(r, t, θ, φ) = H
sinh t

∫ ∞
0 dp ∑

σ=±1

p−1
∑

l=0

+l
∑

m=−l

[
dσplm cosh α χp,σ(t) + d†

σplm sinh α χ∗p,σ(t)
]
Yplm(r, θ, φ), (19)

Finally, the solution of the time dependent part of the wave function can be recast as:

χp,σ(t) = ∑
q=R,L


1
Np

[
ασ

q P q + βσ
q P q∗

]
︸ ︷︷ ︸
Complementary solution

+
∞

∑
n=0

1
Npn (p2

n − p2)

[
ᾱσ

q,n P̄ q,n + β̄σ
q,n P̄ q∗,n

]
︸ ︷︷ ︸

Particular solution

 ∀σ = ±1 (20)

where we use the following shorthand notation:

P̄ q,n = sinh2 t
∫

dt
′

χ
(c)
pn ,σ,q(t

′
) µ3 P q,n. (21)
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Here we also use the shorthand notations P q, P q,n, for the Legendre polynomial. Also the
coefficient functions (ασ

q , βσ
q ) and (ασ

q,n, βσ
q,n), normalization constants Np, Npn for the complementary

and particular part of the solution which are defined as:

Np =
4 sinh πp√

π

√
cosh πp− σ sin πν

|Γ
(

ν + ip + 1
2

)
|

, (22)

Np,(n) =
4 sinh πpn√

π

√
cosh πpn − σ sin πν

|Γ
(

ν + ipn +
1
2

)
|

. (23)

3. Cosmological Spectrum of Quantum Vacuum Fluctuation

In this section, we present our computation of the spectrum of Bunch Davies vacuum and
α vacua fluctuation from two point correlation function . We will be discussing the computation
of two point correlation function and their associated cosmological spectra from three completely
different formalisms:

1. Field operator expansion (FOE) method:
This method is useful for entangled quantum states with the wave function of the de Sitter
universe for Bunch Davies and most generalised α vacua. Technically this formalism is based on
the wave function χI which we will explicitly derive . The cosmological spectrum is characterised
by the two point correlation function and their associated power spectrum. Using such entangled
state in this formalism one can construct the usual density matrix for Bunch Davies and most
generalised α vacua.

2. Reduced density matrix (RDM) formalism:
This formalism is helpful for mixed quantum states and is useful for the construction of reduced
density matrix in a diagonalised representation of Bunch Davies and α vacua by tracing over
the all possible degrees of freedom from the region R. Technically the formalism is based on the
wave function ψI which we explicitly derive.

3. Non entangled state (NES) formalism:
This formalism in presence of non entangled quantum state which deals with the construction of
wave function in the region L in which the total universe is described. Here we also use Bunch
Davies and most generalised α vacua in the region L. Technically this formalism is based on the
wave function ≺I which we explicitly derive in this paper.

We will now derive the expression for the mean square fluctuation considering both Bunch Davies
vacuum and α vacua using the results presented in the previous section. For this computation we will
follow the steps which are outlined below:

1. First of all, we trace out all contributions which belong to the R region. As a result, the required
field operator is only defined in the L region. This method we use in FOE formalism where the
quantum states for L and R region are entangled with each other. On the other hand, doing
a partial trace over region R one can construct reduced density matrix which leads to RDM
formalism. Instead, if we use the non entangled quantum state and compute the wave function
solely in L region we will be lead to the NES formalism. Please note that all of these three methods
are used to compute mean square vacuum fluctuation or more precisely the quantum mechanical
computation of two point correlation function for axion and the associated power spectrum.

2. Instead of doing the computation in |L〉 basis we use a new basis |L′〉, obtained by applying
Bogoliubov transformation in |L〉. Consequently the field operators will act on |L′〉 and the
FOE method is developed in this transformed basis. On the other hand, as mentioned earlier it
will appear in the expression for the reduced density matrix to be used in the RDM formalism.
However, in the NES formalism this transformation is not very useful since in this case the total
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wave function is solely described by the quantum mechanical state appearing in the L region and
the corresponding Hilbert space is spanned by only |L〉 which forms a complete basis.

3. Furthermore, we will compute the expressions for the mean square quantum vacuum fluctuation
and the corresponding cosmological power spectrum after horizon exit using all the three
formalisms, i.e., FOE, RDM, and NES. We will finally consider two limiting situations: long wave
length and short wave length approximation for the computation of the power spectrum.

3.1. Quantum Vacuum Fluctuation Using Field Operator Expansion (FOE) (With Entangled State)

3.1.1. Wave Function in Field Operator Expansion (FOE)

Let us first compute the spectrum of vacuum fluctuation using field operator expansion (FOE).
In Figure 5 we present a schematic diagram for the computation algorithm of field operator expansion
method for entangled state of axion in de Sitter hyperbolic open chart. To compute the vacuum
fluctuation using FOE, we focus only with the left region L as it is completely symmetric to the right
region R. We use the time dependent mode function for the left region L which we presented in
Section 2. Thus, instead of getting a (4× 4) square matrix (when both sectors are considered) we have
a (4× 2) matrix which appears in the solution of the field equation as:

χ̃I =
1
Np
M̃I
J P̃J +

∞

∑
n=0

1
Np,(n)

˜(
M(n)

)I

J
P̃J
(n), (24)

where the index J = 1, 2 is appearing for the contribution from region L. To write down the total
solution in region L we define the following matrices:

M̃I
J =

(
ασ

L βσ
L

βσ∗
L ασ∗

L

)
,

˜(
M(n)

)I

J
=

(
ᾱσ

L,n β̄σ
L,n

β̄σ∗
L,n ᾱσ∗

L,n

)
, (25)

χ̃I =

(
χσ(t)

χσ∗(t),

)
, P̃J =

(
P̃L

P̃L∗ ,

)
, P̃J

(n) =

(
P̃L,n

P̃L∗ ,n

)
, (26)

where σ = ±1, I = 1, 2, 3, 4 and J = 1, 2. The Fourier mode of the field operator, which is also the
total solution of the field equation for axion (in presence of source contribution) can be expressed as:

Φ̃(tL) =
H

sinh tL
QI χ̃I =

H
sinh tL

QI

[
1
Np
M̃I
J P̃ J +

∞

∑
n=0

1
Np,(n)

˜(
M(n)

)I

J
P̃J
(n)

]
, (27)

where the operator QI represent a set of creation and annihilation operators which are defined (in
Section 2) for Bunch Davies vacuum (α = 0) and α vacua (α 6= 0) as:

QI ≡


aI = (aσ, a†

σ) =

[
a(c)I +

∞

∑
n=0

a(p)
I(n)

]
for Bunch Davies vacuum

dI = (dσ, d†
σ) =

[
d(c)I +

∞

∑
n=0

d(p)
I(n)

]
for α vacua.

(28)

Here we labeled the time coordinate t by tL since we are considering the left region L only.
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Field operator expansion (FOE) 
formalism for entangled state

Computation of mean square quantum vacuum fluctuation 
in terms of two point correlation function using Bunch 
Davies and generalised vacuum state configuration

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the total wave function of the universe 
in L region of dS space  

Result exactly matches with the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion 
Result is different compared to the cosmological 

two point correlation function and the power 
spectrum for massless and massive axion

Using this quantum state one 
can construct density matrix and 
entanglement entropy using von 
Neumann measure in region L

Figure 5. Schematic diagram for the computation algorithm of field operator expansion method for
entangled state of axion in de Sitter hyperbolic open chart.

To explicitly write down the expression for the amplitude of the normalized power spectrum, we
start with the column matrix representation of the time dependent part of the solution of the wave
function, given by:

χ̃I =

(
χσ(t)
χσ∗(t)

)
=

(
Aσ

LP̃L + Bσ
LP̃L∗

Bσ∗
L P̃L +Aσ∗

L P̃L∗

)
+

∞

∑
n=0

(
Aσ

L,(n)P̃
L
(n) + B

σ
L,(n)P̃

L∗
(n)

Bσ∗
L,(n)P̃

L
(n) +A

σ∗
L,(n)P̃

L∗
(n)

)
, (29)

where the entries of the column matrix for the complementary and particular integral part of the
solution are given by the following expressions:

Aσ
L =

ασ
L
Np

= σ
eπp − iσ e−iπν

NpΓ
(

ν + ip + 1
2

) , (30)

Bσ
L =

βσ
L
Np

= −σ
e−πp − iσ e−iπν

NpΓ
(

ν− ip + 1
2

) , (31)

Aσ
L,(n) =

ασ
L,(n)

Np,(n)
= σ

eπpn − iσ e−iπν

Np,(n)Γ
(

ν + ipn +
1
2

) , (32)

Bσ
L,(n) =

βσ
L,(n)

Np,(n)
= −σ

e−πpn − iσ e−iπν

Np,(n)Γ
(

ν− ipn +
1
2

) . (33)

Np and Np,(n) in the above equations are the normalization constants for the complementary part and
particular integral part of the solution as defined Section 2.
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3.1.2. Two Point Correlation Function

To compute the expression for the two point correlation function for the vacuum fluctuation let
us now concentrate on a single mode with fixed value of the SO(3, 1) quantum numbers p, l and m.
As a result, the mean square vacuum fluctuation of axion for any generalized arbitrary vacuum state
(|Ω〉) can be expressed as:

〈Ω| ˜Φplm(tL)
(

˜Φp′ l′m′ (tL)
)†
|Ω〉 =

H2

sinh2 tL
〈Ω|

[
QI χ̃I

]
plm

([
QI χ̃I

]
p′ l′m′

)†
|Ω〉. (34)

Furthermore, explicitly writing the expression for the mean square vacuum fluctuation of axion
for Bunch Davies vacuum we get the following simplified expressions:

〈BD| ˜Φplm(tL)
(

˜Φp′ l′m′ (tL)
)†
|BD〉 = H2

sinh2 tL
〈BD|

[
aI χ̃I

]
plm

([
aI χ̃I

]
p′ l′m′

)†
|BD〉

= H2

sinh2 tL
∑σ=±1 |χ̃σ|2 δ(p− p

′
) δll′ δmm′

≡ PBD(p, tL) δ(p− p
′
) δll′ δmm′ ,

(35)

where we define the amplitude of the normalized power spectrum of axion as:

PBD(p, tL) =
p3

2π2 PBD(p, tL) =
p3

2π2
H2

sinh2 tL
∑

σ=±1
|χ̃σ|2. (36)

Furthermore, using Equation (29) we compute the following expression, which is appearing in
the expression for the amplitude of the normalized power spectrum:

∑σ=±1 |χ̃σ|2 = ∑σ=±1

(
χ̃σ
)†

χ̃σ =

[(
|Aσ

L|2 + |Bσ
L|2
)
P̃LP̃L∗ +Aσ

LBσ∗
L

(
P̃L
)2

+Aσ∗
L Bσ

L

(
P̃L∗

)2

+ ∑∞
n=0

{(
Aσ

LAσ∗
L,(n) + B

σ
LBσ∗

L,(n)

)
P̃LP̃L∗

(n)

+
(
Aσ

LBσ∗
L,(n) +A

σ
L,(n)B

σ∗
L

)
P̃LP̃L

(n)

+
(
Aσ∗

L,(n)B
σ
L +Aσ∗

L Bσ
L,(n)

)
P̃L∗
(n)P̃

L∗
}

+ ∑∞
n=0 ∑∞

m=0

{(
Aσ

L,(n)A
σ∗
L,(m)

+ Bσ
L,(n)B

σ∗
L,(m)

)
P̃L
(n)P̃

L∗
(m)

+Aσ
L,(n)B

σ∗
L,(m)
P̃L
(n)P̃

L
(m) +A

σ∗
L,(n)B

σ
L,(m)
P̃L∗
(n)P̃

L∗
(m)

}]
.

(37)

Using Equation (37), the amplitude of the normalized power spectrum of axion from Bunch
Davies vacuum can be expressed in all time scales of region L as

PBD(p, tL) = p3

2π2
H2

sinh2 tL
∑σ=±1 |χ̃σ|2

= p3

2π2
H2

sinh2 tL

[(
|Aσ

L|2 + |Bσ
L|2
)
P̃LP̃L∗ +Aσ

LBσ∗
L

(
P̃L
)2

+Aσ∗
L Bσ

L

(
P̃L∗

)2

+ ∑∞
n=0

{(
Aσ

LAσ∗
L,(n) + B

σ
LBσ∗

L,(n)

)
P̃LP̃L∗

(n)

+
(
Aσ

LBσ∗
L,(n) +A

σ
L,(n)B

σ∗
L

)
P̃LP̃L

(n)

+
(
Aσ∗

L,(n)B
σ
L +Aσ∗

L Bσ
L,(n)

)
P̃L∗
(n)P̃

L∗
}

+ ∑∞
n=0 ∑∞

m=0

{(
Aσ

L,(n)A
σ∗
L,(m)

+ Bσ
L,(n)B

σ∗
L,(m)

)
P̃L
(n)P̃

L∗
(m)

+Aσ
L,(n)B

σ∗
L,(m)
P̃L
(n)P̃

L
(m) +A

σ∗
L,(n)B

σ
L,(m)
P̃L∗
(n)P̃

L∗
(m)

}]
.

(38)
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However, it is not easy to extract any information from Equation (38) for cosmological predictions.
Hence, we consider the superhorizon time scales (tL >> 1) of region L. In such a case, the Legendre
functions, appearing in the complementary part and the particular integral part of the time dependent
solution, can be approximated as :

(
P̃L, P̃L∗

)
≡ P±ip

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ip + 1
2

) , (39)

(
P̃L
(n), P̃

L∗
(n)

)
≡ P±ipn

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ipn +
1
2

) . (40)

Consequently, in the superhorizon time scales (tL >> 1) of region L Equation (37) can be further
simplified as:

∑
σ=±1

|χ̃σ|2 = ∑
σ=±1

(
χ̃σ
)†

χ̃σ tL >> 1−−−−−→ M̃(p, ν) (cosh tL)
2ν−1 (41)

where the time independent function M̃(p, ν) is defined as:

M̃(p, ν) = 22ν−1(Γ(ν))2

π × ∑
σ=±1

[
(|Aσ

L |2+|Bσ
L |2)

|Γ(ν+ip+ 1
2 )|

2 +
Aσ

LBσ∗
L

(Γ(ν−ip+ 1
2 ))

2 +
Aσ∗

L Bσ
L

(Γ(ν+ip+ 1
2 ))

2

+
∞
∑

n=0

{ (
Aσ

LAσ∗
L,(n)+B

σ
LBσ∗

L,(n)

)
Γ(ν−ip+ 1

2 )Γ(ν+ipn+
1
2 )

+

(
Aσ

LBσ∗
L,(n)+A

σ
L,(n)B

σ∗
L

)
Γ(ν−ip+ 1

2 )Γ(ν−ipn+
1
2 )

+

(
Aσ∗

L,(n)B
σ
L+Aσ∗

L Bσ
L,(n)

)
Γ(ν+ipn+

1
2 )Γ(ν+ip+ 1

2 )

}

+
∞
∑

n=0

∞
∑

m=0

{ (
Aσ

L,(n)A
σ∗
L,(m)

+Bσ
L,(n)B

σ∗
L,(m)

)
Γ(ν−ipn+

1
2 )Γ(ν+ipm+ 1

2 )

+
Aσ

L,(n)B
σ∗
L,(m)

Γ(ν−ipn+
1
2 )Γ(ν−ipm+ 1

2 )
+

Aσ∗
L,(n)B

σ
L,(m)

Γ(ν+ipn+
1
2 )Γ(ν+ipm+ 1

2 )

}]
.

(42)

As a result, in the superhorizon time scales (tL >> 1) of region L the amplitude of the normalized
power spectrum of axion from Bunch Davies vacuum can be expressed as:

PBD(p, tL) =
p3

2π2
H2

sinh2 tL
∑

σ=±1
|χ̃σ|2 tL >> 1−−−−−→

p3

2π2 (cosh tL)
2ν−3 H2M̃(p, ν). (43)

Here, it is important to note that in the superhorizon time scales (tL >> 1) of region L if we
consider the massless case where we fix the mass parameter to be ν = 3/2, then the time dependent
contribution can be approximated as:(

(cosh tL)
2ν−1

sinh2 tL

)
ν=3/2

tL >> 1−−−−−→ 1. (44)
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Consequently, in the superhorizon time scales of region L and for the massless axion case,
the amplitude of the normalized power spectrum of axion from Bunch Davies vacuum can be
expressed as:

PBD(p, tL) =
p3

2π2
H2

sinh2 tL
∑

σ=±1
|χ̃σ|2 tL >> 1, ν = 3/2−−−−−−−−−−−→

p3

2π2 H2 ˜M(p, ν = 3/2). (45)

This implies that in the massless case, the amplitude of the vacuum fluctuation gets frozen with
respect to the time scale when the associated modes exit the horizon.

Furthermore, to infer the exact wave number dependence of the amplitude of the normalized
power spectrum from Bunch Davies vacuum we need to know the behaviour of the power spectrum at
very short wavelengths (p, pn >> 1). In this limit it is expected that the power spectrum should match
the result obtained for spatially flat universe. Please note that in the short wave length approximation

the time independent function ˜M(p >> 1, ν) for any arbitrary mass parameter ν can be expressed as:

˜M(p >> 1, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p >> 1), (46)

where we defined a new function ˜G(p >> 1) in the short wave length limit as :

G̃(p) = 1(
1+ 1

82944p4

)×(1 + e−2πp)2
+ ∑∞

n=0

(
p

pn

) 3
2

√
1+ 1

82944p4√
1+ 1

82944p4
n

(
1 + 2

(
e−2πp + e−2πpn

)
+ e−2π(p+pn)

)

+ ∑∞
n=0 ∑∞

m=0
p3

(pn pm)3/2

(
1+ 1

82944p4

)
√

1+ 1
82944p4

n

√
1+ 1

82944p4
m

(
1 + e−π(pm+pn)

)2
 .

(47)

The above equation implies that for very large p, pn >> 1 one can rewrite this as, G̃(p) ∼ 1 + · · · ,
and all the · · · terms can be considered to be small correction terms. Also for the mass less case
(ν = 3/2) and in the short wave length approximation, the time independent function ˜M(p, ν = 3/2)
can be further simplified as:

˜M(p >> 1, ν = 3/2) =
˜G(p >> 1)
2p3 . (48)

Finally, in the superhorizon time scales (tL >> 1) of region L, the amplitude of the normalized
power spectrum of axion from Bunch Davies vacuum in the short wave length limit can be expressed as:

PBD(p >> 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2M̃(p, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p >> 1).

(49)
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Also for the massless case (ν = 3/2) in the superhorizon time scales (tL >> 1) of region L the
amplitude of the normalized power spectrum of axion from Bunch Davies vacuum in the short wave
length limit can be simplified as:

PBD(p >> 1, tL >> 1) =
p3

2π2 H2 ˜M(p >> 1, ν = 3/2) =
(

H
2π

)2
˜G(p >> 1). (50)

Now, we generalize the above results for the two point correlation function and the associated
power spectrum for α vacua. For α vacua the mean square vacuum fluctuation of axion in the short
wave length limit can be expressed as:

〈α| ˜Φplm(tL)
(

˜Φp′ l′m′ (tL)
)†
|α〉 = H2

sinh2 tL
〈α|
[
dI χ̃I

]
plm

([
dI χ̃I

]
p′ l′m′

)†
|α〉

= H2

sinh2 tL
∑σ=±1 |χ̃σ|2 δ(p− p

′
) δll′ δmm′

≡ P(p >> 1, α, tL) δ(p− p
′
) δll′ δmm′ .

(51)

where we defined the amplitude of the normalized power spectrum of axion in the short wave length
limit as:

P(p >> 1, α, tL) = p3

2π2 P(p >> 1, α, tL)

= PBD(p >> 1, tL) (cosh 2α− sinh 2α)

= exp(−2α) PBD(p >> 1, tL).

(52)

In the above equation, PBD(p, tL) is defined as:

PBD(p >> 1, tL) =
p3

2π2
H2

sinh2 tL
∑

σ=±1
|χ̃σ|2. (53)

We carry out the same approximations as earlier and we note that in the superhorizon time scales
(tL >> 1) of region L the amplitude of the normalized power spectrum of axion in the short wave
length limit from α vacua can be expressed as:

P(p >> 1, α, tL >> 1) = PBD(p >> 1, tL >> 1) (cosh 2α− sinh 2α) = exp(−2α) PBD(p, tL >> 1), (54)

where the normalized power spectrum in superhorizon scale for Bunch Davies vacuum PBD(p >>

1, tL >> 1) is defined in Equation (59). Here it is important to note that with α = 0 then we can
reproduce the results obtained for Bunch Davies vacuum.

In Figure 6a,b we show the behaviour of the power spectrum of the mean square vacuum
fluctuation computed from FOE formalism in the short wave length regime for α = 0 and α = 0.1 and
for fixed values of the mass parameter ν(= 3/2, 2, 5/2, 3, 7/2) respectively. In both cases we found
almost similar behaviour. Additionally, in Figure 6c we depicted the behaviour of the power spectrum
with respect to the mass parameter ν with fixed values of the parameter α(= 0, 0.1, 0.2, 0.3, 0.4). It is
clear from this figure that the power spectrum shows two distinct behaviour in 1/2 < ν < 1 and ν > 1
region. For 1/2 < ν < 1 region, the amplitude of the normalized power spectrum decreases to a
certain value but just after ν = 1 it increases.
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Figure 6. Features of FOE power spectrum in large wave number region. (a) Large wave number
dependence of FOE power spectrum for α = 0; (b) Large wave number dependence of FOE power
spectrum for α = 0.1; (c) Mass parameter dependence of FOE power spectrum for p >> 1.

On the other hand, to know the exact wavenumber dependence of the amplitude of the normalised
power spectrum from Bunch Davies vacuum in the long wavelength limit we need to know the
behaviour of the power spectrum at p, pn << 1. In this limit it is expected that the power spectrum of
axion match with the result obtained for spatially flat universe. Here the time independent function

˜M(p << 1, ν) for any arbitrary mass parameter ν can be expressed as:

˜M(p << 1, ν) =
22(ν−1) (Γ(ν))2

π
˜G(p << 1), (55)

where we defined a new function ˜G(p << 1) in the long wave length limit as:

˜G(p << 1) = π
|Γ(ν+ 1

2 )|2

[
1 +

|Γ(ν+ 1
2 )|

2

(Γ(ν+ 1
2 ))

2

{
1 + 3e−πp

∞
∑

n=0
e−πpn + 2

∞
∑

n=0

∞
∑

m=0
e−π(pn+pm)

}]
. (56)
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This implies that for very small wave numbers p, pn << 1, one can write, ˜G(p << 1) ∼
π

|Γ(ν+ 1
2 )|2

[1 + · · · ], where all the· · · terms are small correction terms.

Also for the massless case (ν = 3/2) and in the long wave length approximation, the time

independent function ˜M(p << 1, ν = 3/2) can further be simplified as:

˜M(p << 1, ν = 3/2) =
˜G(p << 1)

2
. (57)

Finally, in the super horizon time scales (tL >> 1) of region L the amplitude of the normalized
power spectrum of axion from Bunch Davies vacuum, in the long wave length limit, can be
expressed as:

PBD(p << 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2 ˜M(p << 1, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
p3
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p << 1),

(58)

and for the massless case (ν = 3/2) this simplifies to:

PBD(p << 1, tL >> 1) =
p3

2π2 H2 ˜M(p << 1, ν = 3/2) =
(

H
2π

)2
p3 ˜G(p << 1). (59)

Here it is important to note that both Equation (58) and Equation (59) are valid after horizon exit.
Next, we generalize the result for the two point correlation function and the associated power

spectrum for α vacua. For α vacua the mean square vacuum fluctuation of axion in the long wave
length limit can be expressed as:

〈α| ˜Φplm(tL)
(

˜Φp′ l′m′ (tL)
)†
|α〉 = H2

sinh2 tL
〈α|
[
dI χ̃I

]
plm

([
dI χ̃I

]
p′ l′m′

)†
|α〉

= H2

sinh2 tL
∑σ=±1 |χ̃σ|2 δ(p− p

′
) δll′ δmm′

≡ P(p << 1, α, tL) δ(p− p
′
) δll′ δmm′ ,

(60)

where the amplitude of the normalized power spectrum of axion at long wave length limit is defined as:

P(p << 1, α, tL) = p3

2π2 P(p << 1, α, tL)

= PBD(p, tL) (cosh 2α− sinh 2α)

= exp(−2α) PBD(p << 1, tL),

(61)

with PBD(p << 1, tL) as defined earlier.
In the super horizon time scales (tL >> 1) of region L the amplitude of the normalized power

spectrum of axion in the long wave length approximation from α vacua can be expressed as:

P(p << 1, α, tL >> 1) = PBD(p << 1, tL >> 1) (cosh 2α− sinh 2α)

= exp(−2α) PBD(p << 1, tL >> 1),
(62)

where PBD(p << 1, tL >> 1) is defined in Equation (58). It may be noted that for α = 0 we get back
the results obtained for Bunch Davies vacuum.

In Figure 7a–c we show the behaviour of the power spectrum of the mean square vacuum
fluctuation computed from FOE formalism in the small wave number regime. The values of α and
the values of the mass parameter ν used here are same as those taken for large wave number regime.
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As expected, the behaviour for the the two limiting cases are distinct. However, the characteristics
observed for α and ν dependences for both cases are almost similar.
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Figure 7. Features of FOE power spectrum in small wave number region. (a) Small wave number
dependence of FOE power spectrum for α = 0; (b) Small wave number dependence of FOE power
spectrum for α = 0.1; (c) Mass parameter dependence of FOE power spectrum for p << 1.

3.2. Quantum Vacuum Fluctuation Using Reduced Density Matrix (RDM) Formalism (With Mixed State)

In this section, we study the features of the two point correlation function of the quantum
vacuum fluctuations and the associated primordial power spectrum using the reduced density matrix
formalism. In Figure 8 we present a schematic diagram for the computation algorithm of reduced
density matrix formalism for mixed quantum state of axion in de Sitter hyperbolic open chart.
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Reduced Density Matrix (RDM) formalism 
(Mixed state)  

Computation of mean square quantum vacuum 
fluctuation in terms of two point correlation 
function using Bunch Davies and generalised 

vacuum state configuration by tracing out region R

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the wave function of 
the in L and R region of dS space  

Result exactly matches with the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion 
Result is different compared to the cosmological 

two point correlation function and the power 
spectrum for massless and massive axion

Using this quantum mixed state by tracing 
out region R one can construct reduced 

density matrix and entanglement entropy 
using von Neumann measure in region L

Figure 8. Schematic diagram for the computation algorithm of reduced density matrix formalism for
mixed quantum state of axion in de Sitter hyperbolic open chart.

3.2.1. Reduced Density Matrix (RDM) Formalism

We first write down the Fourier mode of the field operator, which is also the total solution of the
field equation for axion in presence of source contribution. We start directly from the solution obtained
in Equation (20) and rewrite it in terms of the following matrix equation:

ØI =
1
Np
MI

JP J +
∞

∑
n=0

1
Np,(n)

(
M(n)

)I

J
P J
(n) (63)

where for the complementary part of the solution we defined the following matrices:

MI
J =

(
ασ

q βσ
q

βσ∗
q ασ∗

q

)
, χI =

(
χσ(t)
χ∗σ(t),

)
, P J =

(
P q

P q∗ ,

)
. (64)

Similarly for the particular solution, we define the following matrices:

(
M(n)

)I

J
=

(
ᾱσ

q,n β̄σ
q,n

β̄σ∗
q,n ᾱσ∗

q,n

)
, P J

(n) =

(
P q,n

P q∗ ,n

)
, (65)

where σ = ±1, q = R, L and I, J = 1, 2, 3, 4.
The redefined normalization constant for the particular part of the solutionNp,(n) can be expressed

as, Np,(n) = 2 sinh πpn
√
Npnσ

(
p2 − p2

n
)
. Furthermore, using Equation (63) the Bunch-Davies mode

function can be written as:

H
sinh t

aIχ
I =

H
sinh t

aI

[
1
Np
MI

JP J +
∞

∑
n=0

1
Np,(n)

(
M(n)

)I

J
P J
(n)

]
, (66)
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where aI = (aσ, a†
σ) represents a set of creation and annihilation operators.

We also define the following operators:

bJ = a(c)I M
I
J , bJ(n) = a(p)

I(n)

(
M(n)

)I

J
, (67)

where a(c)I = (a(c)σ , a(c)†σ ) and a(p)
I(n) = (a(p)

σ,n, a(p)†
σ,n ) are the set of creation and annihilation operators

which act on the complementary and particular part respectively. Thus, the operator contribution for
the total solution is:

aI =

[
a(c)I +

∞

∑
n=0

a(p)
I(n)

]
, (68)

where by inverting Equation (67) we expressed:

a(c)I = bJ

(
M−1

)I

J
, a(p)

I(n) = bJ(n)

(
M−1

(n)

)I

J
. (69)

The inverse matrices are defined as:

(
M−1

)I

J
=

(
γσq δσq

δ∗σq γ∗σq

)
,

(
M−1

(n)

)I

J
=

(
γ̄σq,n δ̄σq,n

δ̄∗σq,n γ̄∗σq,n

)
, (70)

where σ = ±1, q = R, L and I, J = 1, 2, 3, 4.
For further computation, α-vacua are defined in terms of Bunch Davies vacuum state as:

|α〉 = exp

(
1
2

tanh α ∑
σ=±1

a†
σaσ

)
|BD〉. (71)

It is to be noted that for α = 0 we get, |α = 0〉 = |0〉 = |BD〉. Moreover, we can also write the R
and L vacua as:

|R〉 = |R〉(c) +
∞

∑
n=0
|R〉(p),n, |L〉 = |L〉(c) +

∞

∑
n=0
|L〉(p),n, (72)

with subscripts (c) and (p) representing the complementary and particular part respectively.
Furthermore, assuming the bipartite Hilbert space (Hα := HR ⊗ HL) one can also write the

α-vacua in terms of the R and L vacuum as:

|α〉 = exp

(
1
2

tanh α ∑
σ=±1

a†
σaσ

)
exp

(
1
2 ∑

i,j=R,L
mij b†

i b†
j +

1
2 ∑

i,j=R,L

∞

∑
n=0

m̄ij,n b̄†
i,n b̄†

j,n

)
(|R〉 ⊗ |L〉)︸ ︷︷ ︸

Bunch−Davies contribution

, (73)

where the matrices mij and m̄ij,n are defined for the complementary and particular part of the solution
obtained for Bunch Davies vacuum state. In other words by setting α = 0 we get the following
expression for the Bunch Davies quantum state:

|BD〉 = exp

(
1
2 ∑

i,j=R,L
mij b†

i b†
j +

1
2 ∑

i,j=R,L

∞

∑
n=0

m̄ij,n b̄†
i,n b̄†

j,n

)
(|R〉 ⊗ |L〉). (74)



Universe 2020, 6, 79 23 of 70

Also the creation and annihilation operators for the R and L vacuum are defined in terms of new
b type of oscillators using Bogoliubov transformation as:

aσ = ∑
q=R,L

{[
γqσbq + δ∗qσb†

q

]
+

∞

∑
n=0

[
γ̄qσ,n b̄q,n + δ̄∗qσ,n b̄†

q,n

]}
∀σ = ±1, (75)

a†
σ = ∑

q=R,L

{[
γ∗qσb†

q + δqσbq

]
+

∞

∑
n=0

[
γ̄∗qσ,n b̄†

q,n + δ̄qσ,n b̄q,n

]}
∀σ = ±1. (76)

Here γqσ, δqσ, γ̄qσ,n and δ̄qσ,n are the coefficient matrices. For our further computation we use the
definition of α-vacuum state (and Bunch Davies vacuum state), which is very useful to compute long
range cosmological correlation functions in de Sitter space. In the context of α-vacua the creation and
annihilation operators are defined in terms of the constituents of R or L vacuum state as:

dσ = ∑q=R,L

{[(
cosh α γqσ − sinh α δqσ

)
bq +

(
cosh α δ∗qσ − sinh α γ∗qσ

)
b†

q

]
+
[(

cosh α ∑∞
n=0 γ̄qσ,n b̄q,n − sinh α ∑∞

n=0 δ̄qσ,n b̄q,n
)

+
(

cosh α ∑∞
n=0 δ̄∗qσ,n b̄†

q,n − sinh α ∑∞
n=0 γ̄∗qσ,n b̄†

q,n

)]}
∀σ = ±1,

(77)

d†
σ = ∑q=R,L

{[(
cosh α γ∗qσ − sinh α δ∗qσ

)
b†

q +
(
cosh α δqσ − sinh α γqσ

)
bq

]
+
[(

cosh α ∑∞
n=0 γ̄∗qσ,n b̄†

q,n − sinh α ∑∞
n=0 δ̄∗qσ,n b̄†

q,n

)
+
(
cosh α ∑∞

n=0 δ̄qσ,n b̄q,n − sinh α ∑∞
n=0 γ̄qσ,n b̄q,n

)]}
∀σ = ±1,

(78)

where we use the definition of creation and annihilation operators in Bunch Davies vacuum as
mentioned in Equations (76) and (75). In this computation it is important to note that under Bogoliubov
transformation the original matrix γqσ, δqσ, γ̄qσ,n and δ̄qσ,n used for Bunch Davies vacuum transform
(for α-vacua) as:

γqσ −→
(
cosh α γqσ − sinh α δqσ

)
, δqσ −→

(
cosh α δqσ − sinh α γqσ

)
, (79)

γ̄qσ,n −→
(
cosh α γ̄qσ,n − sinh α δ̄qσ,n

)
, δ̄qσ,n −→

(
cosh α δ̄qσ,n − sinh α γ̄qσ,n

)
.

Thus, after the Bogoliubov transformation, α-vacua state can be written in terms of R and L vacua
as:

|α〉 = exp

(
1
2 ∑

i,j=R,L
m̃ij b†

i b†
j +

1
2 ∑

i,j=R,L

∞

∑
n=0

¯̃mij,n b̄†
i,n b̄†

j,n

)
(|R〉 ⊗ |L〉), (80)

Here m̃ij and ¯̃mij,n represent the entries of the matrices corresponding to the complementary and
particular solution respectively and we will compute them by demanding dσ|α〉 = 0, and keeping only
linear terms of creation operators. This directly yields the following:[

m̃ij
(
cosh α γjσ − sinh α δjσ

)
+ (cosh α δ∗iσ − sinh α γ∗iσ)

]
= 0, (81)[(

cosh α ¯̃mij,nγ̄jσ,n − sinh α m̄ij,n δ̄jσ,n
)
+
(
cosh α δ̄∗iσ,n − sinh α γ̄∗iσ,n

)]
= 0∀ n. (82)



Universe 2020, 6, 79 24 of 70

From these two equations, the matrices corresponding to the complementary and particular part
of the solution can be expressed as:

m̃ij = − (cosh α δ∗iσ − sinh α γ∗iσ) (cosh α γ− sinh α δ)−1
σj =

(
m̃RR m̃RL

m̃LR m̃LL

)
, (83)

¯̃mij,n = −
(
cosh α δ̄∗iσ,n − sinh α γ̄∗iσ,n

) (
cosh α γ̄− sinh α δ̄

)−1
σj,n =

(
m̄RR,n m̄RL,n
m̄LR,n m̄LL,n

)
. (84)

Substituting the expressions for γ, δ, γn and δn we finally obtain the entries of the mass matrices
for i, j = R, L as:

m̃ij = eiθ

√
2 e−pπ T (ν)

ij√
cosh 2πp + cos 2πν

(
cosh2 α + sinh2 α e−2π(p+iν)

) (85)

¯̃mij,n = eiθ

√
2 e−pnπ T (ν,n)

ij√
cosh 2πpn + cos 2πν

(
cosh2 α + sinh2 α e−2π(pn+iν)

) (86)

where we defined the T matrices as:

T (ν)
ij =

(
T (ν)

RR T (ν)
RL

T (ν)
LR T (ν)

LL

)
, T (ν,n)

ij =

(
T (ν,n)

RR T (ν,n)
RL

T (ν,n)
LR T (ν,n)

LL

)
. (87)

and the corresponding entries of the T matrices are given by:

T (ν)
RR = T (ν)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)
− sinh 2α sinh2 πp e−iπν sec πν

]
cos πν, (88)

T (ν)
RL = T (ν)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

]
sinh πp, (89)

T (ν,n)
RR = T (ν,n)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)
− sinh 2α sinh2 πpn e−iπν sec πν

]
cos πν, (90)

T (ν,n)
RL = T (ν,n)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

]
sinh πpn. (91)

For the massless (ν = 3/2) axion case, we obtain the following simplified expressions:

m̃ij = eiθ

√
2 e−pπ T (3/2)

ij√
cosh 2πp− 1

(
cosh2 α− sinh2 α e−2πp

) (92)

¯̃mij,n = eiθ

√
2 e−pnπ T (3/2,n)

ij√
cosh 2πpn − 1

(
cosh2 α− sinh2 α e−2πpn

) (93)

where we defined the T (3/2) matrices as:

T (3/2)
ij =

(
T (3/2)

RR T (3/2)
RL

T (3/2)
LR T (3/2)

LL

)
, T (3/2,n)

ij =

(
T (3/2,n)

RR T (3/2,n)
RL

T (3/2,n)
LR T (3/2,n)

LL

)
. (94)
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and the corresponding entries of the T (3/2) matrices are given by:

T (3/2)
RR = T (3/2)

LL = 0, (95)

T (3/2)
RL = T (3/2)

LR = i sinh πp, (96)

T (3/2,n)
RR = T (3/2,n)

LL = 0, (97)

T (3/2,n)
RL = T (3/2,n)

LR = i sinh πpn. (98)

In the above analysis, we considered small axion mass (ν2 > 0) limiting situations with an
arbitrary parameter α, which corresponds to Bunch Davies vacuum state with the choice α = 0. For
completeness, we also consider the large axion mass (ν2 < 0 where ν→ −i|ν|) limiting situation which
is very important to study the imprints of quantum entanglement in cosmological correlation functions.
In this large axion mass limiting situation, we actually consider a specific window of SO(1, 3) principal
quantum number, which is bounded within the range 0 < p < |ν|. Consequently, the entries of the
coefficient matrix m̃ can be approximated as:

m̃RR = −

√
cosh(|ν| − p)
cosh(|ν|+ p)

2
[
cosh 2α cosh2 π|ν| − sinh 2α sinh2 πp + 1

2 sinh 2π|ν|
]

(e2πp + e2π|ν|) cosh2 α + (e2πp + e2π|ν|) sinh2 α
, (99)

m̃RL = −

√
cosh(|ν| − p)
cosh(|ν|+ p)

2 i [(cosh 2α + sinh 2α) cosh π|ν|+ sinh π|ν|]
(e2πp + e2π|ν|) cosh2 α + (e2πp + e2π|ν|) sinh2 α

, (100)

which for α = 0 yield a simplified expression for the m̃ with Bunch Davies vacuum state. We note that
for general value of α and for large axion mass (ν2 < 0 where ν→ −i|ν|) , we always get real value for
m̃RR and imaginary value for m̃RL. This is an important observation for our further analysis.

From the perspective of cosmological observation in the superhorizon time scale, we again
consider two further limiting situations: (a) large wave number (p >> 1) or small wave length limit
and (b)small wave number (p << 1) or large wave length limit.

Using these two limiting situations we can simplify the expression for the entries of the coefficient
matrix m̃ considering both small and large axion mass. We start with the expressions for small axion
mass limit in large wave number (p >> 1) approximation:

m̃ij ≈ 2 eiθ e−2pπ T̃ (ν)
ij sech2α (101)

¯̃mij,n ≈ 2 eiθ e−2pnπ T̃ (ν,n)
ij sech2α (102)

where we defined the T̃ matrices for p >> 1 limit as:

T̃ (ν)
ij =

(
T̃ (ν)

RR T̃ (ν)
RL

T̃ (ν)
LR T̃ (ν)

LL

)
, T̃ (ν,n)

ij =

(
T̃ (ν,n)

RR T̃ (ν,n)
RL

T̃ (ν,n)
LR T̃ (ν,n)

LL

)
. (103)

and the corresponding entries of the T̃ matrices for p >> 1 limit are given by the following
simplified expressions:

T̃ (ν)
RR = T̃ (ν)

LL =

[(
cosh2 α + sinh2 α e−2iπν

)
− 1

4
sinh 2α e2pπ e−iπν sec πν

]
cos πν, (104)

T̃ (ν)
RL = T (ν)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

] 1
2

eπp, (105)

T̃ (ν,n)
RR = T̃ (ν,n)

LL =

[(
cosh2 α + sinh2 α e−2iπν

)
− 1

4
sinh 2α e2pnπ e−iπν sec πν

]
cos πν, (106)

T̃ (ν,n)
RL = T̃ (ν,n)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

] 1
2

eπpn . (107)
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For massless (ν = 3/2) axion, we get the following simplified expressions:

m̃ij ≈ 2 eiθ e−2pπ T̃ (3/2)
ij sech2α (108)

¯̃mij,n ≈ 2 eiθ e−2pnπ T̃ (3/2,n)
ij sech2α (109)

where the T̃ (3/2) matrices (for p >> 1) are given by:

T̃ (3/2)
ij =

(
T̃ (3/2)

RR T̃ (3/2)
RL

T̃ (3/2)
LR T̃ (3/2)

LL

)
, T̃ (3/2,n)

ij =

(
T̃ (3/2,n)

RR T̃ (3/2,n)
RL

T̃ (3/2,n)
LR T̃ (3/2,n)

LL

)
. (110)

and the corresponding entries of the T̃ (3/2) matrices are given by :

T̃ (3/2)
RR = T̃ (3/2)

LL = 0, (111)

T̃ (3/2)
RL = T (3/2)

LR =
i
2

eπp, (112)

T̃ (3/2,n)
RR = T̃ (3/2,n)

LL = 0, (113)

T̃ (3/2,n)
RL = T̃ (3/2,n)

LR =
i
2

eπpn . (114)

On the other hand, for small axion mass and for large wave number (p << 1) we have:

m̃ij ≈ eiθ

√
2 e−pπ T̂ (ν)

ij
√

cos 2πν
(

cosh2 α + sinh2 α e−2πiν
) (115)

¯̃mij,n ≈ eiθ

√
2 e−pnπ T̂ (ν,n)

ij
√

cos 2πν
(

cosh2 α + sinh2 α e−2πiν
) (116)

where the T̂ matrices are defined as:

T̂ (ν)
ij =

(
T̂ (ν)

RR T̂ (ν)
RL

T̂ (ν)
LR T̂ (ν)

LL

)
, T̂ (ν,n)

ij =

(
T̂ (ν,n)

RR T̂ (ν,n)
RL

T̂ (ν,n)
LR T̂ (ν,n)

LL

)
(117)

and the corresponding entries of the T̂ matrices (for p << 1 ) are given by :

T̂ (ν)
RR = T̂ (ν)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)
− sinh 2α π2 p2 e−iπν sec πν

]
cos πν, (118)

T̂ (ν)
RL = T̂ (ν)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

]
πp, (119)

T̂ (ν,n)
RR = T̂ (ν,n)

LL =
[(

cosh2 α + sinh2 α e−2iπν
)
− sinh 2α π2 p2

n e−iπν sec πν
]

cos πν, (120)

T̂ (ν,n)
RL = T̂ (ν,n)

LR = i
[
cosh2 α + sinh2 α e−2iπν + sinh 2α cos πν e−iπν

]
πpn. (121)

For the case of massless (ν = 3/2) axion, we get the following simplified expressions:

m̃ij ≈ eiθ
√

2 e−pπ T̂ (3/2)
ij (122)

¯̃mij,n ≈ eiθ
√

2 e−pnπ T̂ (3/2,n)
ij (123)

with the T̂ matrices defined as:

T̂ (3/2)
ij =

(
T̂ (3/2)

RR T̂ (3/2)
RL

T̂ (3/2)
LR T̂ (3/2)

LL

)
, T̂ (3/2,n)

ij =

(
T̂ (3/2,n)

RR T̂ (3/2,n)
RL

T̂ (3/2,n)
LR T̂ (3/2,n)

LL

)
(124)
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and the corresponding entries of the T̂ (3/2) matrices (for p << 1 ) are given by:

T̂ (3/2)
RR = T̂ (3/2)

LL = 0, (125)

T̂ (3/2)
RL = T̂ (3/2)

LR = iπp, (126)

T̂ (3/2,n)
RR = T̂ (3/2,n)

LL = 0, (127)

T̂ (3/2,n)
RL = T̂ (3/2,n)

LR = iπpn. (128)

For further analysis, it is convenient to change over to a suitable basis by tracing over all possible
contributions from R and L region. To achieve this we perform another Bogoliubov transformation by
introducing new sets of operators :

c̃R = ũ bR + ṽ b†
R, c̃L = ¯̃u bL + ¯̃v b†

L, C̃R,n = Ũn bR,n + Ṽn b†
R,n, C̃L,n = ¯̃Un bL,n +

¯̃Vn b†
L,n, (129)

satisfying the following conditions:

|ũ|2 − |ṽ|2 = 1, | ¯̃u|2 − | ¯̃v|2 = 1, |Ũn|2 − |Ṽn|2 = 1, | ¯̃Un|2 − | ¯̃Vn|2 = 1. (130)

Using these operators we write the α-vacuum state in terms of new basis represented by the direct
product of R

′
and L

′
vacuum state as:

|α〉 =
[

1−
(
|γ(α)

p |2 +
∞

∑
n=0
|Γ(α)

p,n|2
)]1/2

exp

(
γ
(α)
p c̃†

R c̃†
L +

∞

∑
n=0

Γ(α)
p,n C̃†

R,n C̃†
L,n

)(
|R′ 〉 ⊗ |L′ 〉

)(α)
, (131)

where γ
(α)
p and Γ(α)

p,n are to be determined shortly. We note that the the relationship between the new
and the old basis is given by:

(|R〉 ⊗ |L〉)→
(
|R′〉 ⊗ |L′〉

)(α)
=

[
1−

(
|γ(α)

p |2 +
∞
∑

n=0
|Γ(α)

p,n|2
)]−1/2

exp
(
−γ

(α)
p c̃†

R c̃†
L −

∞
∑

n=0
Γ(α)

p,n C̃†
R,n C̃†

L,n

)
exp

(
1
2 ∑

i,j=R,L
mij b†

i b†
j +

1
2 ∑

i,j=R,L

∞
∑

n=0
m̄ij,n b̄†

i,n b̄†
j,n

)
(|R〉 ⊗ |L〉) .

(132)

The commutation relations between the creation and annihilation operators corresponding to the
new sets of oscillators is taken as:[

c̃i, c̃†
j

]
= δij,

[
c̃i, c̃j

]
= 0 =

[
c̃†

i , c̃†
j

]
,
[
C̃i,n, C̃†

j,m

]
= δijδnm,

[
C̃i,n, C̃j,m

]
= 0 =

[
C̃†

i,mC̃†
j,m

]
. (133)

These operations act on the α vacuum state in the following way:

c̃R|α〉 = γ
(α)
p c̃†

L|α〉, c̃R|α〉 = γ
(α)
p c̃†

L|α〉, C̃R,n|α〉 = Γ(α)
p,n C̃†

L,n|α〉, C̃R,n|α〉 = Γ(α)
p,n C̃†

L,n|α〉. (134)

Furthermore, one can express the new c type annihilation operators in terms of the old b type
annihilation operators as:

c̃J = bI G̃ I
J = bI

(
Ũq Ṽ∗q
Ṽq Ũ∗q

)
, C̃J(n) = b̄J(n)

(
G̃(n)

)I

J
= b̄J(n)

( ¯̃Uq,n
¯̃V∗σq,n

¯̃Vq,n
¯̃U∗q,n

)
. (135)
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Please note that Ũq ≡ diag (ũ, ¯̃u),Ṽq ≡ diag (ṽ, ¯̃v) , ¯̃Uq,n ≡ diag
(

Ũn, ¯̃Un

)
, ¯̃Vq,n ≡ diag

(
Ṽn, ¯̃Vn

)
.

From Equations (129) and (134), we obtain the following sets of homogeneous equations:

For complementary solution :

m̃RRũ + ṽ− γ
(α)
p m̃RL ¯̃v∗ = 0, (136)

m̃RR ¯̃u + ¯̃v− γ
(α)
p m̃RLṽ∗ = 0, (137)

m̃RLũ− γ
(α)
p ¯̃u∗ − γ

(α)
p m̃RR ¯̃v∗ = 0, (138)

m̃RL ¯̃u− γ
(α)
p ũ∗ − γ

(α)
p m̃RRṽ∗ = 0, (139)

For particular solution :

m̃RR,nŨn + Ṽn − Γ(α)
p,nm̃RL,n

¯̃V∗n = 0, m̃RR,n
¯̃Un +

¯̃Vn − Γ(α)
p,nm̃RL,nṼ∗n = 0, (140)

m̃RL,nŨn − Γ(α)
p,n

¯̃U∗n − Γ(α)
p,nm̃RR,n

¯̃V∗n = 0, m̃RL,n
¯̃Un − Γ(α)

p,nŨ∗n − Γ(α)
p,nm̃RR,nṼ∗n = 0, (141)

Using the relations ṽ∗ = ¯̃v, ũ∗ = ¯̃u, Ṽ∗n = ¯̃Vn, Ũ∗n = ¯̃Un, |ũ|2 − |ṽ|2 = 1 and |Ũn|2 − |Ṽn|2 = 1 the
solutions of these equations can be written as:

γ
(α)
p = 1√

2|m̃RL |
[(

1 + |m̃RL|4 + |m̃RR|4

−2|m̃RR|2 − m̃2
RR(m̃

∗
RL)

2 − m̃2
RL(m̃

∗
RR)

2)± {(−1− |m̃RL|4 − |m̃RR|4

+2|m̃RR|2 + m̃2
RR(m̃

∗
RL)

2 + m̃2
RL(m̃

∗
RR)

2)2 − 4|m̃RL|4
} 1

2
] 1

2

≈ i
√

2[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν](√
cosh 2πp+cos 2πν±

√
cosh 2πp+cos 2πν+2

)
(cosh2 α+sinh2 α e−2π(p−iν))

α = 0−−−→ γ
(0)
p = 1

2mRL

[(
1 + m2

RL −m2
RR
)
±
√(

1 + m2
RL −m2

RR
)2 − 4m2

RL

]
≈ i

√
2√

cosh 2πp+cos 2πν±
√

cosh 2πp+cos 2πν+2
,

(142)

Γ(α)
p,n = 1√

2|m̃RL,n |
[(

1 + |m̃RL,n|4 + |m̃RR,n|4

−2|m̃RR,n|2 − m̃2
RR,n(m̃

∗
RL,n)

2 − m̃2
RL,n(m̃

∗
RR,n)

2
)
±
{(
−1− |m̃RL,n|4 − |m̃RR,n|4

+2|m̃RR,n|2 + m̃2
RR,n(m̃

∗
RL,n)

2 + m̃2
RL,n(m̃

∗
RR,n)

2
)2
− 4|m̃RL,n|4

} 1
2
] 1

2

≈ i
√

2[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν](√
cosh 2πpn+cos 2πν±

√
cosh 2πpn+cos 2πν+2

)
(cosh2 α+sinh2 α e−2π(pn−iν))

α = 0−−−→ Γ(0)
p,n = 1

2m̄RL,n

[(
1 + m̄2

RL,n − m̄2
RR,n

)
±
√(

1 + m̄2
RL,n − m̄2

RR,n

)2
− 4m̄2

RL,n

]
≈ i

√
2√

cosh 2πpn+cos 2πν±
√

cosh 2πpn+cos 2πν+2
,

(143)

where the components m̃RR = m̃LL, m̃RL = m̃LR and m̃RR,n = m̃LL,n, m̃RL,n = m̃LR,n are defined in
Equations (85)–(88) for general α vacua. Also the components without tilde symbol represent the
contribution from α = 0, which is the Bunch Davies vacuum state.
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Furthermore, for the massless (ν = 3/2) axion field we get the following simplified expressions:

γ
(α,3/2)
p ≈ i

√
2(√

cosh 2πp− 1±
√

cosh 2πp + 1
) (

cosh2 α− sinh2 α e−2πp
)

α = 0−−−→ γ
(0,3/2)
p ≈ i

√
2√

cosh 2πp− 1±
√

cosh 2πp + 1
, (144)

Γ(α)
p,n ≈ i

√
2(√

cosh 2πpn − 1±
√

cosh 2πpn + 1
) (

cosh2 α− sinh2 α e−2πpn
)

α = 0−−−→ Γ(0)
p,n ≈ i

√
2√

cosh 2πpn − 1±
√

cosh 2πpn + 1
, (145)

In the large axion mass (ν2 < 0 where ν→ −i|ν|) limit the two solutions for the γ
(α)
p and Γ(α)

p,nfor α

vacuum are given by:

γ
(α)
p ≈ 1

2|m̃RL|

[(
1 + |m̃RL|2 − m̃2

RR

)
±
√(

1 + |m̃RL|2 − m̃2
RR
)2 − 4|m̃RL|2

]
. (146)

Γ(α)
p,n ≈ 1

2|m̃RL,n|

[(
1 + |m̃RL,n|2 − m̃2

RR,n

)
±
√(

1 + |m̃RL|2 − m̃2
RR
)2 − 4|m̃RL,n|2

]
(147)

In this limit, we divide the total window of p into two regions, given by 0 < p < |ν| and
|ν| < p < ΛC. In these regions of interest, the two solutions for γ

(α)
p in presence of α vacuum can be

approximately written as:

|γ(α)
p | ≈


e∓π|ν| (1 + tan α) for 0 < p < |ν|
e∓πp (1 + tan α)

(
1 + tan α e2π|ν|

)
(
1 + tan2 α e−2πp

) for |ν| < p < ΛC/2π.
(148)

and

|Γ(α)
p,n| =


e∓π|ν| (1 + tan α) for 0 < p < |ν|
e∓πpn (1 + tan α)

(
1 + tan α e2π|ν|

)
(
1 + tan2 α e−2πpn

) for |ν| < p < ΛC/2π.
(149)

Furthermore, in the limit p >> 1 we get the following simplified results:

γ
(α)
p ≈ i

2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
sech2α(√

| cosh 2πp| ±
√
| cosh 2πp|+ 4

)
α = 0−−−→ γ

(0)
p ≈ i

2√
| cosh 2πp| ±

√
| cosh 2πp|+ 4

, (150)

Γ(α)
p,n ≈ i

2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
sech2α(√

| cosh 2πpn| ±
√
| cosh 2πpn|+ 4

)
α = 0−−−→ Γ(0)

p,n ≈ i
2√

| cosh 2πpn| ±
√
| cosh 2πpn|+ 4

, (151)
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For massless (ν = 3/2) axion field this simplifies to :

γ
(α,3/2)
p ≈ i

2sech2α(√
| cosh 2πp| ±

√
| cosh 2πp|+ 4

)
α = 0−−−→ γ

(0,3/2)
p ≈ i

2√
| cosh 2πp| ±

√
| cosh 2πp|+ 4

, (152)

Γ(α,3/2)
p,n ≈ i

2sech2α(√
| cosh 2πpn| ±

√
| cosh 2πpn|+ 4

)
α = 0−−−→ Γ(0,3/2)

p,n ≈ i
2√

| cosh 2πpn| ±
√
| cosh 2πpn|+ 4

, (153)

On the other hand, in the limit p << 1 we get the following results:

γ
(α)
p ≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
(√

cos 2πν + 1±
√

cos 2πν + 3
) (

cosh2 α + sinh2 α e2πiν
)

α = 0−−−→ γ
(0)
p ≈ i

√
2√

cos 2πν + 1±
√

cos 2πν + 3
, (154)

Γ(α)
p,n ≈ i

√
2
[
cosh2 α + sinh2 α e2iπν + sinh 2α cos πν eiπν

]
(√

cos 2πν + 1±
√

cos 2πν + 3
) (

cosh2 α + sinh2 α e2πiν
)

α = 0−−−→ Γ(0)
p,n ≈ i

√
2√

cos 2πν + 1±
√

cos 2πν + 3
, (155)

which for a massless (ν = 3/2) axion field, simplifies to:

γ
(α,3/2)
p ≈ ±i

1√
2

α = 0−−−→ γ
(0,3/2)
p ≈ ±i

1√
2

, (156)

Γ(α,3/2)
p,n ≈ ±i

1√
2

α = 0−−−→ Γ(0,3/2)
p,n ≈ ±i

1√
2

, (157)

and are very useful information for the computation of spectrum of vacuum fluctuation.
Furthermore, the Fourier mode of the total compact solution in the region L in case of α vacua

can be re-expressed in terms of the oscillators defined in the new basis (c̃, C̃) as well as the SO(1,3)
quantum numbers (p, l, m) as:

˜φL,plm(tL) =
H

sinh tL
c̃T
I ψ̃IT =

H
sinh tL

[
1
Np

(̃G−1)
I
JP

J +
∞

∑
n=0

1
Np,(n)

˜(
G−1
(n)

)I

J
P J
(n)

]
, (158)

where the total wave function ψ̃IT is a column matrix and for the complementary and particular part of

the solution the inverse matrix (̃G−1)
I
J and

˜(
G−1
(n)

)I

J
are defined as:

(̃G−1)
I
J =

(
˜̄u∗ − ˜̄v∗

− ˜̄v ˜̄u

)
,

˜(
G−1
(n)

)I

J
=

( ˜̄U∗(n) − ˜̄V∗(n)
− ˜̄V(n)

˜̄U(n)

)
, ψI ,T =

(
ψL,T(tL)

ψL∗ ,T(tL)

)
. (159)
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When we trace out the degrees of freedom over the right part of the Hilbert space, we obtain the
following reduced density matrix for the left part of the Hilbert space :

(ρL(α))p,l,m = TrR|α〉〈α|, (160)

where the α vacuum state is written in terms of c̃ type of oscillators as:

|α〉 ≈
[

1−
(
|γ(α)

p |2 +
∞

∑
n=0
|Γ(α)

p,n|2
)]1/2

exp

[
γ
(α)
p c̃†

R c̃†
L +

∞

∑
n=0

Γ(α)
p,n C̃†

R,n C̃†
L,n

] (
|R′ 〉 ⊗ |L′ 〉

)(α)
, (161)

Substituting Equation (161) in Equation (160), we get the expression for the reduced density
matrix for the left part of the Hilbert space:

(ρL(α))p,l,m =

(
1− |γ(α)

p |2
)

1 + f (α)p

∞

∑
k=0
|γ(α)

p |2k ˜|k; p, l, m〉 ˜〈k; p, l, m|︸ ︷︷ ︸
Complementary part

+
( f (α)p )2

1 + f (α)p

∞

∑
n=0

∞

∑
r=0
|Γ(α)

p,n|2r ˜|n, r; p, l, m〉 ˜〈n, r; p, l, m|︸ ︷︷ ︸
Particular part

. (162)

where f (α)p is given by

f (α)p =

 ∞

∑
n=0

1

1− |Γ(α)
p,n|2

−1

, (163)

and the states ˜|k; p, l, m〉 and ˜|n, r; p, l, m〉 are expressed in terms of the new quantum state |L′〉 as:

˜|k; p, l, m〉 =
1√
k!
(c̃†

L)
k|L′〉, ˜|n, r; p, l, m〉 = 1√

r!
(C̃†

L,n)
r|L′〉. (164)

Please note that for α = 0, we get back the result obtained for Bunch Davies vacuum.

3.2.2. Two Point Correlation Function

In this subsection, we explicitly compute the two point correlation function and its significant
role to obtain long range effect in the cosmological correlation using the generalised α and Bunch
Davies vacuum. For this purpose and using the expression for the reduced density matrix, derived in
the previous subsection, we first compute the mean square quantum vacuum fluctuation, which is
expressed for α vacua as:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)
(α) = exp (−2α)


(

1− |γ(α)
p |2

) ∞

∑
n=0
|γ(α)

p |2n ˜〈n; p, l, m|φL(tL)φ
†
L(tL) ˜|n; p, l, m 〉︸ ︷︷ ︸

Complementary part

+
1(

f (α)p

)2

∞

∑
r=0

∞

∑
s=0
|Γ(α)

p,r,s|2r ˜〈s, r; p, l, m|φL(tL)φ
†
L(tL) ˜|s, r; p, l, m 〉

︸ ︷︷ ︸
Particular part


.

(165)



Universe 2020, 6, 79 32 of 70

In the above, we used the shorthand notation φL(tL) = φLplm(t) for the field. Please note that
setting α = 0 in Equation (165) we get the result for the Bunch Davies vacuum which is given by:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)
(BD) =

(
1− |γ(0)

p |2
) ∞

∑
n=0
|γ(0)

p |2n〈n; p, l, m|φL(tL)φ
†
L(tL)|n; p, l, m 〉︸ ︷︷ ︸

Complementary part

+
1(

f (0)p

)2

∞

∑
r=0

∞

∑
s=0
|Γ(0)

p,r,s|2r〈s, r; p, l, m|φL(tL)φ
†
L(tL)|s, r; p, l, m 〉

︸ ︷︷ ︸
Particular part

.
(166)

Here |s, r; p, l, m 〉 is the Bunch Davies counterpart of the quantum state in the newly Bogoliubov
transformed basis and is obtained by simply setting α = 0 in the definition of the quantum state
introduced in terms of the new oscillators.

The contributions from the complementary and the particular part, as appearing in the right hand
side of Equation (165) for each n-particle state are found to be:

˜〈n; p, l, m|φL(tL)φ
†
L(tL) ˜|n; p, l, m 〉 = H2

sinh2 tL

1
n! 〈L

′ |(c̃L)
n (c̃T
I ψ̃†I

T
) (

c̃T
J ψ̃†J

T

)†
(c̃†

L)
n|L′〉

= H2

sinh2 tL
(2n + 1) |ψ̃L

T|2,
(167)

˜〈s, r; p, l, m|φL(tL)φ
†
L(tL) ˜|s, r; p, l, m 〉 = H2

sinh2 tL

1
r! 〈L

′ |(C̃(s)
L )r (c̃T

I ψ̃†I
T
) (

c̃T
J ψ̃†J

T

)†
(C̃(s)†

L )r|L′〉

= H2

sinh2 tL
(2r + 1) |ψ̃L

T|2,
(168)

where ψ̃L
T is given by :

ψ̃L
T =

(
ψ̃L

T(t)
ψ̃L∗

T (t)

)
=

(
ELP̃L +FLP̃L∗

F ∗LP̃L + E∗LP̃L∗

)
+

∞

∑
n=0

(
EL,(n)P̃L

(n) +FL,(n)P̃L∗
(n)

F ∗L,(n)P̃
L
(n) + E

∗
L,(n)P̃

L∗
(n)

)
, (169)

with the entries of the column matrix for the complementary and particular integral part of the
solution being:

EL =
¯̃u
Nc

, (170)

FL = −
¯̃v
Nc

, (171)

EL,(n) =
¯̃Un

Nc,(n)
, (172)

FL,(n) = −
¯̃V

Nc,(n)
. (173)

The normalization constants Nc and Nc,(n) for the complementary part and particular integral
part of the solution is defined as:

Nc =

√
2
π

e−
πp
2
√

cosh 2πp + cos2πν, (174)

Nc,(n) =

√
2
π

e−
πpn

2
√

cosh 2πpn + cos2πν. (175)
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The expression for ( ¯̃u, ¯̃v) for complementary solution and ( ¯̃Un, ¯̃Vn) for particular solution are
given by the following expressions:

For complementary part :

¯̃u =
1− γ

(α)
p m̃LR√

|1− γ
(α)
p m̃LR|2 − |m̃RR|2

α = 0−−−→ ū =
1− γ

(0)
p mLR√

|1− γ
(0)
p mLR|2 − |mRR|2

, (176)

¯̃v =
m̃RR√

|1− γ
(α)
p m̃LR|2 − |m̃RR|2

α = 0−−−→ ¯̃v =
mRR√

|1− γ
(0)
p mLR|2 − |mRR|2

, (177)

For particular part :

¯̃Un =
1− Γ(α)

p,nm̃LR√
|1− Γ(α)

p,nm̃LR|2 − |m̃RR|2
α = 0−−−→ Ūn =

1− Γ(0)
p,nmLR√

|1− Γ(0)
p,nmLR|2 − |mRR|2

, (178)

¯̃Vn =
m̃LR√

|1− Γ(α)
p,nm̃LR|2 − |m̃RR|2

α = 0−−−→ V̄n =
mLR√

|1− Γ(0)
p,nmLR|2 − |mRR|2

, (179)

Results for generalised ff vacua︸ ︷︷ ︸ Results for Bunch Davies vacuum︸ ︷︷ ︸ .

where the expression for (m̃LR, m̃RR) and (γ
(α)
p , Γ(α)

p,n) for the complementary and particular part of
the solution are defined earlier in Equations (85)–(88) and Equations (3.119–120) respectively. We
used Equations (136)–(139) and also have imposed the normalization conditions, | ¯̃u|2 − ¯̃v|2 = 1 and
| ¯̃u|2 − ¯̃v|2 = 1. Please note that the structural form of the equations for α = 0 corresponding to Bunch
Davies vacuum is exactly same as that of α vacua. Only the significant changes appear when we
explicitly consider the entries of (mLR, mRR) and (γp, Γp,n) for the complementary and particular part
of the solution.

Now, substituting Equations (167) and (168) into Equation (165) we get the following simplified
expression for the mean square quantum vacuum fluctuation for α vacua as:

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)
(α) = exp (−2α)

 H2

sinh2 tL
|ψ̃L

T|2
(

1− |γ(α)
p |2

) ∞

∑
n=0
|γ(α)

p |2n (2n + 1)︸ ︷︷ ︸
Complementary part

+
H2

sinh2 tL
|ψ̃L

T|2
1(

f (α)p

)2

∞

∑
r=0

∞

∑
s=0
|Γ(α)

p,r,s|2r (2r + 1)

︸ ︷︷ ︸
Particular part


.

= H2

sinh2 tL
|ψ̃L

T|2 exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2 ∑∞
s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]
.

(180)

Setting α = 0 we get the expression for the Bunch Davies vacuum as :

TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)
(BD) =

H2

sinh2 tL
|ψL

T|2
(

1− |γ(0)
p |2

) ∞

∑
n=0
|γ(0)

p |2n (2n + 1)︸ ︷︷ ︸
Complementary part

+
H2

sinh2 tL
|ψL

T|2
1(

f (0)p

)2

∞

∑
r=0

∞

∑
s=0
|Γ(0)

p,r,s|2r (2r + 1)

︸ ︷︷ ︸
Particular part

.

= H2

sinh2 tL
|ψL

T|2
[

1+|γ(0)
p |2

1−|γ(0)
p |2

+ 1(
f (0)p

)2 ∑∞
s=0

1+|Γ(0)
p,s |2(

1−|Γ(0)
p,s |2

)2

]
.

(181)
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We note that to derive this expression we used the following identities:

∞
∑

n=0
(2n + 1)|γ(α)

p |2n =
1+|γ(α)

p |2(
1−γ

(α)
p |2

)2 α = 0−−−→
∞
∑

n=0
(2n + 1)|γ(0)

p |2n =
1+|γ(0)

p |2(
1−γ

(0)
p |2

)2 , (182)

∞
∑

s=0

∞
∑

r=0
(2r + 1)|Γ(α)

p,r,s|2r =
∞
∑

s=0

1+|Γ(α)
p,s |2(

1−Γ(α)
p,s |2

)2 α = 0−−−→
∞
∑

s=0

∞
∑

r=0
(2r + 1)|Γ(0)

p,r,s|2r =
∞
∑

s=0

1+|Γ(0)
p,s |2(

1−Γ(0)
p,s |2

)2 . (183)

The expression for |ψ̃L
T|2, now comes out to be:

|ψ̃L
T|2 =

(
ψ̃L

T
)†

ψ̃L
T =

[(
|EL|2 + |FL|2

)
P̃LP̃L∗ + ELF ∗L

(
P̃L
)2

+ E∗LFL

(
P̃L∗

)2

+ ∑∞
n=0

{(
ELE∗L,(n) +FLF ∗L,(n)

)
P̃LP̃L∗

(n)

+
(
ELF ∗L,(n) + EL,(n)F ∗L

)
P̃LP̃L

(n)

+
(
E∗L,(n)FL + E∗LFL,(n)

)
P̃L∗
(n)P̃

L∗
}

+ ∑∞
n=0 ∑∞

m=0

{(
EL,(n)E∗L,(m) +FL,(n)F ∗L,(m)

)
P̃L
(n)P̃

L∗
(m)

+ EL,(n)F ∗L,(m)P̃
L
(n)P̃

L
(m) + E

∗
L,(n)FL,(m)P̃L∗

(n)P̃
L∗
(m)

}]
(184)

Here also by fixing the parameter α = 0 one can get the expression for the square of the magnitude
of the wave function for Bunch Davies vacuum in the newly defined Bogliubov transformed basis.

Using Equation (184), the amplitude of the normalised power spectrum of axion from the
generalised α vacua can be expressed in all time scales of region L as:

P(p, α, tL) = p3

2π2 TrL
(
ρL(α)φL(tL)φ

†
L(tL)

)
(α)

= p3

2π2
H2

sinh2 tL
|ψ̃L

T|2 exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2 ∑∞
s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]

= p3

2π2
H2

sinh2 tL
exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2 ∑∞
s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]
[(
|EL|2 + |FL|2

)
P̃LP̃L∗ + ELF ∗L

(
P̃L
)2

+ E∗LFL

(
P̃L∗

)2

+ ∑∞
n=0

{(
ELE∗L,(n) +FLF ∗L,(n)

)
P̃LP̃L∗

(n)

+
(
ELF ∗L,(n) + EL,(n)F ∗L

)
P̃LP̃L

(n)

+
(
E∗L,(n)FL + E∗LFL,(n)

)
P̃L∗
(n)P̃

L∗
}

+ ∑∞
n=0 ∑∞

m=0

{(
EL,(n)E∗L,(m) +FL,(n)F ∗L,(m)

)
P̃L
(n)P̃

L∗
(m)

+ EL,(n)F ∗L,(m)P̃
L
(n)P̃

L
(m) + E

∗
L,(n)FL,(m)P̃L∗

(n)P̃
L∗
(m)

}]
.

(185)
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However, the above equation is very complicated to extract any physical information for further
cosmological predictions. For this reason, we consider the superhorizon time scales (tL >> 1) of region
L, in which the Legendre functions appearing in the complementary part and the particular integral
part of the time dependent solution can be approximated as the following simplified form:

(
P̃L, P̃L∗

)
≡ P±ip

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ip + 1
2

) , (186)

(
P̃L
(n), P̃

L∗
(n)

)
≡ P±ipn

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ipn +
1
2

) . (187)

Consequently, in the superhorizon time scales (tL >> 1) of region L Equation (189) can be
simplified for as:

|ψ̃L
T|2 =

(
ψ̃L

T

)†
ψ̃L

T tL >> 1−−−−−→
˜Q(p, α, ν) (cosh tL)

2ν−1 (188)

where the time independent function ˜Q(p, α, ν) for generalised α vacua is defined as:

˜Q(p, α, ν) = 22ν−1(Γ(ν))2

π ×
[
(|EL |2+|FL |2)
|Γ(ν+ip+ 1

2 )|2
+

ELF ∗L
(Γ(ν−ip+ 1

2 ))
2 +

E∗LFL

(Γ(ν+ip+ 1
2 ))

2

+ ∑∞
n=0

{ (
ELE∗L,(n)+FLF ∗L,(n)

)
Γ(ν−ip+ 1

2 )Γ(ν+ipn+
1
2 )

+

(
ELF ∗L,(n)+EL,(n)F ∗L

)
Γ(ν−ip+ 1

2 )Γ(ν−ipn+
1
2 )

+

(
E∗L,(n)FL+E∗LFL,(n)

)
Γ(ν+ip+ 1

2 )Γ(ν+ipn+
1
2 )

}

+ ∑∞
n=0 ∑∞

m=0

{ (
EL,(n)E∗L,(m)

+FL,(n)F ∗L,(m)

)
Γ(ν−ipn+

1
2 )Γ(ν+ipm+ 1

2 )

+
EL,(n)F ∗L,(m)

Γ(ν−ipn+
1
2 )Γ(ν−ipm+ 1

2 )
+

E∗L,(n)FL,(m)

Γ(ν+ipn+
1
2 )Γ(ν+ipm+ 1

2 )

}]
.

(189)

As a result, in the superhorizon time scales (tL >> 1) of region L the amplitude of the normalised
power spectrum of axion from generalised α vacua can be expressed as:

P(p, α, tL) = p3

2π2
H2

sinh2 tL
|ψ̃L

T|2 exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2

∞
∑

s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]

tL >> 1−−−−−→
p3

2π2
(cosh tL)

2ν−1

sinh2 tL
H2Q̃(p, ν) exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2

∞
∑

s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]
.

(190)

We note that in the superhorizon time scales (tL >> 1) of region L if we consider the massless case
by fixing the mass parameter ν = 3/2, then the time dependent contribution can be approximated as:(

(cosh tL)
2ν−1

sinh2 tL

)
ν=3/2

tL >> 1−−−−−→ 1. (191)

From this we infer that for an arbitrary value of the parameter ν we can write:(
(cosh tL)

2ν−1

sinh2 tL

)
tL >> 1−−−−−→ (cosh tL)

2ν−3 . (192)
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Consequently, in the super horizon time scales (tL >> 1) of region L considering the massless
case (ν = 3/2) the amplitude of the normalised power spectrum of axion from generalised α vacua can
be expressed as:

P(p, α, tL) = p3

2π2
H2

sinh2 tL
|ψ̃L

T|2 exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2

∞
∑

s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]

tL >> 1, ν = 3/2−−−−−−−−−−−→
p3

2π2 H2 ˜Q(p, ν = 3/2) exp (−2α)

[
1+|γ(α)

p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2

∞
∑

s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]
.

(193)

Like the result in the case of field operator expansion method derived in the previous section, this
result also implies that in the massless case (ν = 3/2) amplitude of the vacuum fluctuation gets frozen
with respect to the time scale when the associated modes exit horizon.

Furthermore, to know the exact wave number dependence of the amplitude of the normalised
power spectrum from generalised α vacua we need to know the behaviour of the power spectrum
at very short wavelengths (p, pn >> 1). In this limit it is expected that the power spectrum of
axion should match with the result obtained for spatially flat universe. In the short wave length

approximation the time independent function ˜Q(p >> 1, α, ν) for any arbitrary mass parameter ν can
be expressed for generalised α vacua as:

˜Q(p >> 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p >> 1) = M̃(p, ν) ∀α, (194)

where we already defined the function ˜G(p >> 1) in the earlier section. Here for very large wave

number p, pn >> 1 one can write, ˜G(p >> 1) ∼ 1 + · · · , where all · · · are small correction terms. This
also implies to the interesting fact that for large wavenumber limit and for any values of the parameter
α, the time independent function Q(p >> 1, α, ν) computed for generalised α vacua exactly matches

with the result obtained for Bunch Davies vacua in the earlier section, i.e., ˜M(p >> 1, ν). This means
that the final result is independent of the choice of the parameter α.

For the massless case (ν = 3/2) in the short wave length approximation, the time independent

function ˜Q(p >> 1, α, ν = 3/2) can further be simplified to:

˜Q(p >> 1, α, ν = 3/2) =
˜G(p >> 1)
2p3 = ˜M(p >> 1, ν = 3/2) ∀α. (195)

Additionally, we note that the following important contribution appearing in the normalised
power spectrum for axion can be simplified, in the large wave number limit, as:

1 + |γ(α)
p |2

1− |γ(α)
p |2

+
1(

f (α)p

)2

∞

∑
s=0

1 + |Γ(α)
p,s |2(

1− |Γ(α)
p,s |2

)2

 p>>1
=

1 +

(
∞

∑
s=0

1

)−1

︸ ︷︷ ︸
=0

 ∀α. (196)
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Finally, in the super horizon time scales (tL >> 1) of region L, the amplitude of the normalised
power spectrum of axion, in the short wave length approximation, can be expressed as:

P(p >> 1, α, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 exp (−2α) H2 ˜Q(p >> 1, α, ν)

= p3

2π2 (cosh tL)
2ν−3 exp (−2α) H2 ˜M(p >> 1, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p >> 1)

(197)

For the massless case (ν = 3/2), in the same scale and the same approximation, the above
amplitude takes the form:

P(p >> 1, α, tL >> 1) = p3

2π2 exp (−2α) H2 ˜Q(p >> 1, α, ν = 3/2)

= p3

2π2 exp (−2α) H2 ˜M(p >> 1, ν = 3/2)

=
(

H
2π

)2
exp (−2α) ˜G(p >> 1).

(198)

It is important to note that both Equations (197) and (198) are valid after horizon exit. From the
same results , we also observe that the normalised power spectrum from generalised α vacua, in the
leading order, computed from reduced density matrix formalism is exactly same as that obtained in
the previous sub-section, computed using field operator expansion method.

For completeness, we present the result for the two point correlation function and the associated
power spectrum for Bunch Davies vacuum by fixing the parameter α = 0 in our previous equations
and they can be expressed as:

PBD(p >> 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2 ˜Q(p >> 1, α = 0, ν)

= p3

2π2 (cosh tL)
2ν−3 H2 ˜M(p >> 1, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p >> 1).

(199)

For for the massless case (ν = 3/2) this can be further simplified to:

PBD(p >> 1, tL >> 1) = p3

2π2 H2 ˜Q(p >> 1, α = 0, ν = 3/2)

= p3

2π2 H2 ˜M(p >> 1, ν = 3/2)

=
(

H
2π

)2 ˜G(p >> 1).

(200)

In Figure 9a,b we show the behaviour of the power spectrum of the mean square vacuum
fluctuation computed from RDM formalism in the large wave number regime. We considered α = 0
and α = 0.1 and fixed values of the mass parameter ν respectively. Additionally, in Figure 9c we
depicted the behaviour of the power spectrum with respect to the mass parameter ν for fixed values of
the parameter α = 0, 0.1, 0.2, 0.3, 0.4. From the figures, we observe that the power spectrum shows two
distinctive behaviour in 1/2 < ν < 1 and ν > 1 region. For 1/2 < ν < 1 region the amplitude of the
power spectrum decrease to a certain value and just after ν = 1 it increases. Also note that in large
wave number regime, the power spectrum obtained from RDM formalism behaves in the same as way
as that obtained from FOE formalism in the previous section.
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Figure 9. Features of RDM power spectrum in large wave number region. (a) Large wave number
dependence of RDM power spectrum for α = 0; (b) Large wave number dependence of RDM power
spectrum for α = 0.1.; (c) Mass parameter dependence of RDM power spectrum in p >> 1.

On the other hand, to know the exact wave number dependence of the amplitude of the normalised
power spectrum from generalised α vacua in the long wave length approximation, we need to know
the behaviour of the power spectrum for p, pn << 1. In this regime we expect that the power spectrum
of axion should match with the result obtained for spatially flat universe. The time independent

function ˜Q(p << 1, α, ν) for the mass parameter ν 6= 3/2 can be expressed for generalised α vacua as:

˜Q(p << 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p << 1) ∀α, (201)
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where the function ˜G(p << 1) is defined for ν 6= q/24 as:

˜G(p << 1) = πp

2| cos πν||Γ(ν+ 1
2 )|

2
|1−γ

(α)
p m̃LR |2

|1−γ
(α)
p m̃LR |2−|m̃RR |2

×
{

1 +
|m̃RR |2+

(
1−γ

(α)
p m̃LR

)∗
m̃RR+

(
1−γ

(α)
p m̃LR

)
m̃∗RR

|1−γ
(α)
p m̃LR |2

+ ∑∞
n=0

√
pn
p
|1−γ

(α)
p m̃LR |2−|m̃RR |2

|1−Γ(α)
p,nm̃LR,n |2−|m̃RR,n |2

1
|1−γ

(α)
p m̃LR |2[(

1− γ
(α)
p m̃LR

) (
1− Γ(α)

p,nm̃LR,n

)∗
+ m̃RRm̃∗RR,n

+
(

1− γ
(α)
p m̃LR

)
m̃∗RR,n +

(
1− Γ(α)

p,nm̃LR,n

)
m̃∗RR

+
(

1− γ
(α)
p m̃LR

)∗
m̃RR,n +

(
1− Γ(α)

p,nm̃LR,n

)∗
m̃RR

]

+ ∑∞
n=0 ∑∞

m=0

√√√√ pn pm
p2

(
|1−γ

(α)
p m̃LR |2−|m̃RR |2

)2(
|1−Γ(α)

p,nm̃LR,n |2−|m̃RR,n |2
)(
|1−Γ(α)

p,mm̃LR,m |2−|m̃RR,m |2
)

1
|1−γ

(α)
p m̃LR |2

[(
1− Γ(α)

p,nm̃LR,n

) (
1− Γ(α)

p,mm̃LR,m

)∗
+ m̃RR,nm̃∗RR,m

+
(

1− Γ(α)
p,nm̃LR,n

)
m̃∗RR,m +

(
1− Γ(α)

p,nm̃LR,n

)
m̃∗RR,m

+
(

1− Γ(α)
p,nm̃LR,n

)∗
m̃RR,m +

(
1− Γ(α)

p,nm̃LR,n

)∗
m̃RR,m

]}

(202)

Here for very small wave number p, pn << 1 one can write,

˜G(p << 1) ∼ πp

2| cos πν|
∣∣∣Γ (ν + 1

2

)∣∣∣2
|1− γ

(α)
p m̃LR|2

|1− γ
(α)
p m̃LR|2 − |m̃RR|2

[1 + · · · ] ,

where all · · · are small correction terms. For Bunch Davies vacuum once we fix α = 0, we find that the
function ˜G(p << 1) only depends on the mass parameter ν for massive axion field.

On the contrary, for the case where ν = n/2 (which also includes the massless situation ν =

3/2) the expression ˜G(p << 1) diverges due to the overall factor 1/| cos πν|. However, we can
avoid such unwanted divergent contributions by rewriting all the expressions for p, pn << 1 with
ν = n/2 that we mentioned earlier. In such a situation for the massless case the time independent

function ˜Q(p << 1, α, ν = 3/2) can be further simplified as:

˜Q(p << 1, α, ν = 3/2) =
˜G(p << 1, ν = 3/2)
2p3 ∀α, (203)

4 Here q is any positive odd integer.
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where the function ˜G(p << 1) is defined for ν = 3/2 as5:

˜G(p << 1, ν = 3/2) =
π

2

{
1 +

(
1± eiθπp e−pπ

)
|1± eiθπp e−pπ | ∑∞

n=0

(
1± e−iθπpn e−pnπ

)
|1± eiθπpn e−pnπ |

+ ∑∞
n=0 ∑∞

m=0

√(
1± eiθπpn e−pnπ

)
|1± eiθπpn e−pnπ |

(
1± e−iθπpm e−pmπ

)
|1± eiθπpm e−pmπ |

} (204)

Here for very small wave number p, pn << 1 with ν 6= 3/2 and ν = 3/2 one can write,

˜G(p << 1) ∼ π

2
[1 + · · · ] ,

where all · · · are small correction terms. For Bunch Davies vacuum we get the same result as the

function ˜G(p << 1) for massless axion field (ν = 3/2) is independent of the parameter α.
Moreover, it is important to note that the following contribution appearing in the normalised

power spectrum for massive (ν 6= 3/2) and massless (ν = 3/2) axion field can be simplified in the
small wave number limit as:[

1+|γ(α)
p |2

1−|γ(α)
p |2

+ 1(
f (α)p

)2 ∑∞
s=0

1+|Γ(α)
p,s |2(

1−|Γ(α)
p,s |2

)2

]

p<<1
≈


(
√

cos 2πν+1±
√

cos 2πν+3)2(cosh2 α+sinh2 α e2πiν)
2

[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν]
2 +2

(
√

cos 2πν+1±
√

cos 2πν+3)2(cosh2 α+sinh2 α e2πiν)
2

[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν]
2 −2

+
1+

∣∣∣∣∣
√

2[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν]
(
√

cos 2πν+1±
√

cos 2πν+3)(cosh2 α+sinh2 α e2πiν)

∣∣∣∣∣
2

1−
∣∣∣∣∣
√

2[cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν]
(
√

cos 2πν+1±
√

cos 2πν+3)(cosh2 α+sinh2 α e2πiν)

∣∣∣∣∣
2
4

(
∞

∑
s=0

1

)−1

︸ ︷︷ ︸
=0


=


(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
+2

(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
−2

 ∀α and ν 6= 3/2,

(205)

[
1+|γ(α,3/2)

p |2

1−|γ(α,3/2)
p |2

+ 1(
f (α,3/2)
p

)2 ∑∞
s=0

1+|Γ(α,3/2)
p,s |2(

1−|Γ(α,3/2)
p,s |2

)2

]
p<<1
≈

1 + 1
2

(
∞

∑
s=0

1

)−1

︸ ︷︷ ︸
=0


= 1 ∀α and ν = 3/2.

(206)

5 Here it is important to note the expression for the time dependent function ˜G(p << 1) for ν = q/2 (where q is any positive
odd integer) in all cases are same. The only difference is appearing in the expression for the power spectrum. For ν = 3/2
case the power spectrum is scale invariant exactly. However, for the other values of ν = 1/2, 5/2, 7/2, · · · the power
spectrum is not scale invariant and small deviation from the scale invariant feature can be observed easily.
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Thus, in the superhorizon time scales (tL >> 1) of region L the amplitude of the normalised
power spectrum of axion from generalised α vacua in the small wave number limit can be expressed as:

P(p << 1, α, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 exp (−2α) H2 ˜Q(p << 1, α, ν)

×


(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
+2

(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
−2


= (2 cosh tL)

2ν−3
(

H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p << 1)

×


(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
+2

(
√

cos 2πν+1±
√

cos 2πν+3)2|cosh2 α+sinh2 α e2πiν|2

|cosh2 α+sinh2 α e2iπν+sinh 2α cos πν eiπν|2
−2

 .

(207)

For the massless case (ν = 3/2) in the superhorizon time scales (tL >> 1) of region L,
the amplitude of the normalised power spectrum of axion from generalised α vacua in the small
wave number limit can be simplified in the present context as:

P(p << 1, α, tL >> 1) = p3

2π2 exp (−2α) H2 ˜Q(p << 1, α, ν = 3/2)

=
(

H
2π

)2
exp (−2α) ˜G(p << 1, ν = 3/2).

(208)

For Bunch Davies vacuum state ( α = 0), the mean square vacuum fluctuation of axion can be
expressed as:

PBD(p << 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2 ˜Q(p << 1, α = 0, ν)

×
[
(
√

cos 2πν+1±
√

cos 2πν+3)
2
+2

(
√

cos 2πν+1±
√

cos 2πν+3)
2−2

]
= (2 cosh tL)

2ν−3
(

H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜G(p << 1)

×
[
(
√

cos 2πν+1±
√

cos 2πν+3)
2
+2

(
√

cos 2πν+1±
√

cos 2πν+3)
2−2

]
.

(209)

Also for the massless case (ν = 3/2) in the superhorizon time scales (tL >> 1) of region L the
amplitude of the normalised power spectrum of axion from Bunch Davies vacuum in the small wave
number limit can be simplified as:

PBD(p << 1, tL >> 1) = p3

2π2 H2 ˜Q(p << 1, α = 0, ν = 3/2)

=
(

H
2π

)2 ˜G(p << 1, ν = 3/2).
(210)

In Figure 10a,c we show the behaviour of the power spectrum of the mean square vacuum
fluctuation computed from RDM formalism in the small wave number regime for α = 0 and α = 0.1
and for fixed values of the mass parameter ν = 1, 2, 3, 3, 4, 5 respectively. Moreover, in Figure 10e we
present the behaviour of the power spectrum with respect to the mass parameter ν with fixed values
of the parameter α = 0, 0.1, 0.2, 0.3, 0.4. For the mass parameter dependence here we get distinctive
feature for RDM formalism compared to FOE formalism which we discussed in the last subsection
and the NES formalism which we discuss in the next subsection. From the plot, it is observed that for
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ν = 1/2, 3/2, 5/2, 7/2 we get distinctive sharp peaks with constant and different magnitudes. On the
other hand, in Figure 10b,d we show the behaviour of the power spectrum in the small wave number
regime for α = 0 and α = 0.1 with the fixed values of the mass parameter ν = 1/2, 3/2, 5/2, 7/2, 9/2.
Here as the power spectrum is independent of the wave number, we get constant magnitude for
different values of the mass parameter ν.

3.3. Quantum Vacuum Fluctuation With Non Entangled State (NES)

In this subsection, we describe the quantum vacuum fluctuation and its cosmological
consequences using non entangled state (NES) formalism. In this formalism we assume that the wave
function of the full de Sitter universe is described in the region L. So we do not use anyt information
from the region R. In Figure 11 we present a schematic diagram for the computation algorithm of NES
formalism for non entangled quantum state of axion in de Sitter hyperbolic open chart.

3.3.1. Non Entangled State (NES) Formalism

In the region L the total wave function of the universe is described by the non entangled state
(NES) and for generalised α vacua it is given by:

φ̃I =

(
≺̃L

≺̃L∗

)
=

1
Ñb

(
P̃ L

P̃ L∗

)
+

∞

∑
n=0

1
Ñb,(n)

(
P̃ L,(n)

P̃ L∗ ,(n)

)
, (211)

where the normalisation factors Ñb and Ñb,(n) are :

Ñb =

√
2p

|Γ (1 + ip) | , (212)

Ñb,(n) =

√
2pn

|Γ (1 + ipn) |
. (213)

We can also express the total wave function of the universe in terms of the oscillator mode
expansion as given by:

φ̃L(tL) =
H

sinh tL

[
bI φ̃I (tL) +

∞

∑
n=0

bI ,(n)φ̃
I
(n)(tL)

]
. (214)

3.3.2. Two Point Correlation Function

Using the above wave function we can further derive the mean square vacuum fluctuation
through the following two point correlation function :

〈L|φ̃L
plmφ̃†L

p′ l′m′
|L〉 = H2

sinh2 tL
|φ̃L|2 exp (−2α) δ(p− p

′
)δll′ δmm′

= P(p, α, tL)δ(p− p
′
)δll′ δmm′ ,

(215)

where P(p, α, tL) is the power spectrum for non entangled state involving generalised α vacua. We can
also define the normalised power spectrum for non entangled state as:

P(p, α, tL) =
p3

2π2 P(p, α, tL) =
p3

2π2
H2

sinh2 tL
|φ̃L|2 exp (−2α) . (216)
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Figure 10. Features of RDM power spectrum in small wave number region. (a) Small wave number
dependence of RDM power spectrum for α = 0 and ν = 1, 2, 3, 4, 5; (b) Small wave number dependence
of RDM power spectrum for α = 0 and ν = 1/2, 3/2, 5/2, 7/2, 9/2; (c) Small wave number dependence
of RDM power spectrum for α = 0.1 and ν = 1, 2, 3, 4, 5; (d) Small wave number dependence of RDM
power spectrum for α = 0.1 and ν = 1/2, 3/2, 5/2, 7/2, 9/2; (e) Mass parameter dependence of RDM
power spectrum in p << 1.
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Non entangled state (NES) formalism 

Computation of mean square quantum vacuum 
fluctuation in terms of two point correlation 
function using Bunch Davies and generalised 

vacuum state configuration in region L

Large wavenumber  
(short wavelength) 

 limit in super horizon 
time scale

Small wavenumber  (long wavelength) 
 limit in super horizon time scale

Solution of the total wave function of the universe 
in L region of dS space  

Result exactly matches at leading order with the 
cosmological two point correlation function and the 
power spectrum for massless and massive axion 

Result is different compared to the cosmological 
two point correlation function and the power 

spectrum for massless and massive axion

von Neumann measure of 
entanglement entropy is 

zero for NES

Figure 11. Schematic diagram for the computation algorithm of NES formalism for non entangled
quantum state of axion in de Sitter hyperbolic open chart.

To quantify the normalised power spectrum for non entangled state, it is crcial to derive the
expression for the square of the magnitude of the total wave function of the universe in the region L,
which is given by:

|φ̃L|2 =
1
|Ñb|2

P̃ L∗P̃ L + ∑∞
n=0

1
NbN ∗b,(n)

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+ ∑∞

n=0
1

N ∗b Nb,(n)

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+∑∞

n=0 ∑∞
m=0

1
Nb,(m)N ∗b,(n)

(
P̃ L∗
(n)P̃

L
(m) + P̃

L∗
(m)P̃

L
(n)

)
.

(217)

Furthermore, substituting the expressions for the normalisation factors, the above equation can
be recast as:

|φ̃L|2 = 1
2p |Γ(1 + ip)|2P̃ L∗P̃ L +

∞
∑

n=0

1√
4ppn
|Γ(1 + ip)||Γ(1− ipn)|

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+

∞
∑

n=0

1
4
√

ppn
|Γ(1− ip)||Γ(1 + ipn)|

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+

∞
∑

n=0

∞
∑

m=0

1√
4pn pm

|Γ(1− ipn)||Γ(1 + ipm)|
(
P̃ L∗
(n)P̃

L
(m) + P̃

L∗
(m)P̃

L
(n)

)
.

(218)
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Consequently, the normalised power spectrum for non entangled state with generalised α vacua
can be written as:

P(p, α, tL) = p3

2π2
H2

sinh2 tL

[
1

2p |Γ(1 + ip)|2P̃ L∗P̃ L +
∞
∑

n=0

1√
4ppn
|Γ(1 + ip)||Γ(1− ipn)|

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+

∞
∑

n=0

1
4
√

ppn
|Γ(1− ip)||Γ(1 + ipn)|

(
P̃ L∗
(n)P̃

L + P̃ L∗P̃ L
(n)

)
+

∞
∑

n=0

∞
∑

m=0

1
4
√

pn pm
|Γ(1− ipn)||Γ(1 + ipm)|

(
P̃ L∗
(n)P̃

L
(m) + P̃

L∗
(m)P̃

L
(n)

)]
.

(219)

However, to extract further physical information from Equation (189) for cosmological predictions,
we consider the superhorizon time scales (tL >> 1) of region L. In this limit, the Legendre functions as
appearing in the complementary part and the particular integral part of the time dependent solution
can be approximated to the following simplified form:

(
P̃L, P̃L∗

)
≡ P±ip

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ip + 1
2

) , (220)

(
P̃L
(n), P̃

L∗
(n)

)
≡ P±ipn

ν− 1
2
(cosh tL) tL >> 1−−−−−→

2ν− 1
2 (cosh tL)

ν− 1
2 Γ(ν)

√
πΓ
(

ν∓ ipn +
1
2

) . (221)

Thus, in the superhorizon time scales (tL >> 1) of region L, Equation (218) can be further
simplified as:

|φ̃L|2 tL >> 1−−−−−→
˜K(p, α, ν) (cosh tL)

2ν−1 (222)

where the time independent function ˜K(p, α, ν) for generalised α vacua is defined as:

˜K(p, α, ν) =
22ν−1 (Γ(ν))2

π
×

 |Γ(1 + ip)|2

2p|Γ
(

ν + ip + 1
2

)
|2

+
∞

∑
n=0

|Γ(1− ip)||Γ(1 + ipn)|+ |Γ(1 + ip)||Γ(1− ipn)|
4
√

ppn Γ
(

ν− ip + 1
2

)
Γ
(

ν + ipn +
1
2

) (223)

+
∞

∑
n=0

∞

∑
m=0

|Γ(1− ipn)||Γ(1 + ipm)|+ |Γ(1 + ipn)||Γ(1− ipm)|
4
√

pn pm Γ
(

ν− ipn +
1
2

)
Γ
(

ν + ipm + 1
2

)
 .

Also in the super horizon time scale (tL >> 1) we get the following simplification in the
normalised power spectrum for non entangled state :

P(p, α, tL) =
p3

2π2
H2

sinh2 tL
|φ̃L|2 exp (−2α)

tL >> 1−−−−−→
p3

2π2
(cosh tL)

2ν−1

sinh2 tL
H2K̃(p, ν) exp (−2α) . (224)

In this limit, for the massless case ( ν = 3/2), the time dependent contribution can be approximated
into the following simplified form:(

(cosh tL)
2ν−1

sinh2 tL

)
ν=3/2

tL >> 1−−−−−→ 1. (225)
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This implies that for an arbitrary value of the parameter ν one can write:(
(cosh tL)

2ν−1

sinh2 tL

)
tL >> 1−−−−−→ (cosh tL)

2ν−3 . (226)

Consequently, in the superhorizon time scales (tL >> 1) of region L and for the massless case
(ν = 3/2), the amplitude of the normalised power spectrum can be expressed as:

P(p, α, tL) =
p3

2π2
H2

sinh2 tL
|φ̃L|2 exp (−2α)

tL >> 1, ν = 3/2−−−−−−−−−−−→
p3

2π2 H2 ˜K(p, ν = 3/2) exp (−2α) . (227)

Like our result derived in the previous section, this result also implies that for the massless case
(ν = 3/2), the amplitude of the vacuum fluctuation gets frozen with respect to the time scale when the
associated modes exit horizon.

Furthermore, to know the exact wavenumber dependence of the amplitude of the normalised
power spectrum from generalised α vacua, we need to know the behaviour of the power spectrum at
very short wavelengths (p, pn >> 1). In this limit, it is expected that the power spectrum of the axion
in the non entangled case should match with the result obtained for spatially flat universe. The time

independent function ˜K(p, α, ν) in this limit and for arbitrary mass parameter ν can be expressed as:

˜K(p >> 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜U (p >> 1) ∀α, (228)

where the function ˜U (p >> 1) is defined as:

˜U (p >> 1) =

1 +
∞

∑
n=0

(
p
pn

) 3
2
+

∞

∑
n=0

∞

∑
m=0

p3

(pn pm)
3
2︸ ︷︷ ︸

Quantumm correction factor for axion in short wave length limit

 . (229)

Thus, for very large wave number (p, pn >> 1), we can write, Ũ (p) ∼ 1 + · · · , where all · · ·
are small correction terms. This also implies that for large wavenumber and for any value of the
mass parameter α, the time independent function U (p, α, ν), computed with generalised α vacua,
matches with the result obtained for Bunch Davies vacua in the previous subsection at the leading

order in M̃(p, ν).

Also for the massless case (ν = 3/2) the time independent function ˜K(p, α, ν = 3/2) in the short
wave length limit can further be simplified as:

˜K(p >> 1, α, ν = 3/2) =
˜U (p >> 1)
2p3 ∀α. (230)

Finally, in the superhorizon time scales (tL >> 1) of region L the amplitude of the normalised
power spectrum of axion from generalised α vacua for non entangled state in short wave length limit
can be expressed as:

P(p >> 1, α, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 exp (−2α) H2 ˜K(p >> 1, α, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
exp (−2α) ˜U (p >> 1).

(231)
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For the massless case (ν = 3/2) in the superhorizon time scales (tL >> 1) of region L, the
amplitude of the normalised power spectrum in short wave length limit can be simplified to:

P(p >> 1, α, tL >> 1) = p3

2π2 exp (−2α) H2 ˜K(p >> 1, α, ν = 3/2)

=
(

H
2π

)2
exp (−2α) ˜U (p >> 1).

(232)

Please note that both Equations (231) and (239) are valid after horizon exit. From these results
we also observe that the power spectrum computed from non entangled state formalism is same, at
the leading order approximation, as that computed from the FOE and RDM formalism, computed in
earlier subsections. This is true in the large wavenumber limit of superhorizon time scale in region L.

The result for the two point correlation function and the associated power spectrum for Bunch
Davies vacuum can be obtained by setting α = 0 in the above equation and is found to be:

PBD(p >> 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2 ˜K(p >> 1, α = 0, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
(

Γ(ν)
Γ( 3

2 )

)2
˜U (p >> 1).

(233)

For the massless case (ν = 3/2) it reduces to:

PBD(p >> 1, tL >> 1) = p3

2π2 H2 ˜K(p >> 1, α = 0, ν = 3/2)

=
(

H
2π

)2 ˜U (p >> 1).
(234)

In Figure 12a,b we present the behaviour of the power spectrum of the mean square vacuum
fluctuation computed inNES formalism for the large wave number regime. This is shown for α = 0 and
α = 0.1 and for fixed values of the mass parameter ν = 3/2, 2, 5/2, 3, 7/2 respectively. For both values
of α, we get almost similar behaviour. In Figure 12c we show the behaviour of the power spectrum
with respect to the mass parameter ν with fixed values of the parameter α = 0, 0.1, 0.2, 0.3, 0.4. Here
for 1/2 < ν < 1 region and ν > 1 region mass parameter dependence show two distinctive features.
In 1/2 < ν < 1 region amplitude of the normalised power spectrum initially decrease and then just
after ν = 1 the amplitude of the power spectrum increase.
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Figure 12. Features of NES power spectrum in large wave number region. (a) Large wave number
dependence of NES power spectrum for α = 0; (b) Large wave number dependence of NES power
spectrum for α = 0.1; (c) Mass parameter dependence of NES power spectrum for p >> 1.

However, to examine the behaviour of the power spectrum in the long wavelength region and
in the superhorizon time scale (tL >> 1), we take the limit p << 1. In the long wave length limit,

the time independent function ˜K(p, α, ν) for any arbitrary mass parameter ν can be expressed (for α

vacua) as:

˜K(p << 1, α, ν) =
22(ν−1) (Γ(ν))2

pπ
˜U (p << 1) ∀α, (235)
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where the function ˜U (p << 1) is given by:

˜U (p << 1) =

1 +

 |Γ
(

ν + 1
2

)
|

Γ
(

ν + 1
2

)
2{

∞

∑
n=0

√
p
pn

+
∞

∑
n=0

∞

∑
m=0

p
√

pn pm

}
︸ ︷︷ ︸

Quantum correction factor for axion in long wave length limit

 . (236)

For the massless case (ν = 3/2), this can be further simplified to:

˜K(p << 1, α, ν = 3/2) =
˜U (p << 1)

2p
∀α. (237)

Moreover, in the superhorizon time scales (tL >> 1) of region L, the amplitude of the normalised
power spectrum ( for α vacua ) for non entangled state (in the long wave length limit) can be
expressed as:

P(p << 1, α, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 exp (−2α) H2 ˜K(p << 1, α, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
p2 exp (−2α)

(
Γ(ν)
Γ( 3

2 )

)2
˜U (p << 1).

(238)

Also, for the massless case (ν = 3/2), this reduces to:

P(p << 1, α, tL >> 1) = p3

2π2 exp (−2α) H2 ˜K(p << 1, α, ν = 3/2)

=
(

H
2π

)2
p2 exp (−2α) ˜U (p << 1).

(239)

The result for Bunch Davies vacuum is obtained by fixing α = 0 in above equation and is
expressed as:

PBD(p << 1, tL >> 1) = p3

2π2 (cosh tL)
2ν−3 H2 ˜K(p << 1, α = 0, ν)

= (2 cosh tL)
2ν−3

(
H
2π

)2
p2
(

Γ(ν)
Γ( 3

2 )

)2
˜U (p << 1)

(240)

which for the massless case (ν = 3/2) reduces to :

PBD(p << 1, tL >> 1) = p3

2π2 H2 ˜K(p << 1, α = 0, ν = 3/2)

=
(

H
2π

)2
p2 ˜U (p << 1).

(241)

In Figure 13a,b, we shownthe behaviour of the power spectrum of the mean square vacuum
fluctuation in NES formalism in the small wave number regime for α = 0 and α = 0.1 with fixed values
of the mass parameter ν = 3/2, 2, 5/2, 3, 7/2 respectively. Please note that in both cases we find almost
similar behaviour. Also, in Figure 13c we show the behaviour of the power spectrum with respect to
the mass parameter ν with fixed values of α = 0, 0.1, 0.2, 0.3, 0.4. In this case we again observe two
distinct regions of mass parameter dependence.
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Figure 13. Features of NES power spectrum in small wave number region. (a) Small wave number
dependence of NES power spectrum for α = 0; (b) Small wave number dependence of NES power
spectrum for α = 0.1; (c) Mass parameter dependence of NES power spectrum in p << 1.

We explicitly presented the comparison among FOE, RDM, and NES formalism for α vacua in
Table 1. The same table is valid for Bunch Davis vacuum when α = 0. We quoted the differences,
among the findings from these formalism, for the primordial power spectrum from mean square
vacuum fluctuation at large and small scales.
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Table 1. Comparison between FOE, RDM and NES formalism for α vacua.

Feuatures FOE RDM NES

Wave Here we solve the Here we solve the Here we only solve the
function wave function in L region wave function in L and R region wave function in L region

of dS space. of dS space. of dS space.

Quantum Here we deal with Here we deal with Here we deal with
state entangled quantum state. mixed quantum state. non-entangled quantum state.

Quantum Power spectrum is Power spectrum is Power spectrum is
number only dependent on SO(1,3) only dependent on SO(1,3) only dependent on SO(1,3)

dependence quantum number p quantum number p quantum number p
and independent on l,m. and independent on l,m. and independent on l,m.

Time Analysis is performed on Analysis is performed on Analysis is performed on
scale superhorizon superhorizon superhorizon

for computation time scale. time scale. time scale.

Power Leading order term Leading order term Leading order term

spectrum is
(

H
2π

)2
exp(−2α) is

(
H
2π

)2
exp(−2α) is

(
H
2π

)2
exp(−2α)

spectrum and the next and the next and the next
at large order effects are different order effects are different order effects are different
wave from RDM and NES from FOE and NES from FOE and RDM

number for massless axion (ν = 3/2). for massless axion (ν = 3/2). for massless axion (ν = 3/2).

Power Leading order term Leading order term Leading order term

spectrum is
(

H
2π

)2
p3 exp(−2α) is H2

8π exp(−2α) is
(

H
2π

)2
p2 exp(−2α)

at small and the next and the next and the next
at small order effects are different order effects are different order effects are different
wave from RDM and NES from FOE and NES from FOE and RDM

number for massless axion (ν = 3/2). for massless axion (ν = 3/2). for massless axion (ν = 3/2).

4. Summary

To summarize, in this work, we addressed the following issues:

• We explicitly studied the power spectrum of mean squared vacuum fluctuation for axion field
using the concept of quantum entanglement in de Sitter space. The effective action for the axion
field, used here, has its origin from Type IIB String theory compacted to four dimensions. For our
analysis, we chose two initial vacuum states, i.e., Bunch Davies and a generalised class of α vacua.
The power spectrum of mean squared vacuum fluctuation is computed using three distinctive
formalisms: (1) Field operator expansion (FOE), (2) Reduced density matrix (RDM) and (3) Non
entangled state (NES). In all three cases, the computation has been done starting with two open
charts in hyperbolic manifold of de Sitter space consisting of two regions: L and R. Though the
starting point is same, the construction of these three formalisms are different from each other
and have their own physical significance. Each of the formalism has been discussed in text of
the papers and some details of approximations for them are presented in the Appendices A–C.
Similarities and differences from each other are presented in a table.

• In case of FOE formalism, we solve for the wave function in the region L and using this solution
we compute the general expression for the mean square vacuum fluctuation and its quantum
correction in terms of two point correlation function. The result is evaluated at all momentum
scales. We considered two limiting approximation in the characteristic momentum scales, i.e.,
large wave number (small wave length in which the corresponding scale is smaller than the
curvature radius of the de Sitter hyperbolic open chart) regime and small wave number (long
wave length in which the corresponding scale is larger than the curvature radius of the de Sitter
hyperbolic open chart) regime. We observed distinctive features in the power spectrum of of mean
squared vacuum fluctuation in these two different regimes. In the large wave number (small
wave length) regime we found that the leading order result for the power spectrum is consistent
with the known result for observed cosmological correlation function in the super horizon time
scale. The correction to the leading order result that we computed for the power spectrum can
be interpreted as the sub-leading effect in the observed cosmological power spectrum. This is a
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strong information from the perspective of cosmological observation since such effects, possibly
due to quantum entanglement of states, can play a big role to break the degeneracy of the observed
cosmological power spectrum in the small wave length regime. On the other hand, in the long
wave length regime we found that the power spectrum follows completely different momentum
dependence in the super horizon time scale. Since in this regime and in this time scale, at present,
we lack adequate observational data on power spectrum we are unable to comment on our result
with observation. However, our result for the power spectrum in long wave length limit and
super horizon time scale can be used as a theoretical probe to study the physical implications
and its observational cosmological consequences in near future. Our result also implies that the
mean square vacuum fluctuation for axion field, in super horizon time scale, gets enhanced in
long wave length regime and freezes in the small wave length regime. We also observe that for
a massive axion, the power spectrum is nearly scale invariant in all momentum scales. On the
other hand, for massless axion we observe exact scale invariance only in large wave number
(small wave length) regime and for the Bunch Davies initial quantum state. For generalised α

initial state, we find slight modification in the corresponding power spectrum of the mean square
vacuum fluctuation. The modification factor is proportional to exp(−2α) which is valid for all
values of the parameter α. It also implies that for large value of the parameter α we get additional
exponential suppression for the power spectrum. This information can be used to distinguish
between the role of Bunch Davies vacuum (α = 0) and any α vacua quantum initial state during
analysis of observational data.

• In RDM formalism, the wave function for the axion field is solved in L and R regions of the de
Sitter open chart. This solution was used to compute the mean square vacuum fluctuation and
its quantum correction for both Bunch Davies and α vacuum state. Corresponding results are
evaluated at all momentum scales by partially tracing out all the information from the region
R. Like in the case of FOE, we considered the small and large wavelength approximations in
the characteristic momentum scales and found distinct features in the corresponding power
spectrum. In the small wave length regime again the leading order result, in super horizon time
scales matched with known result (same as FOE). However, the sub-leading order result for the
power spectrum is different from the result obtained from FOE formalism which distinguishes
the two approaches. Moreover, in the long wave length regime the power spectrum has
completely different momentum dependence compared to FOE formalism. We also noticed
that the enhancement of mean square vacuum fluctuation for axion field, in long wave length
regime, is different (slower) in nature compared to FOE formalism but the freezing in short
wavelength regime is of same nature. The observation on scale invariance of power spectrum in
this formalism remains similar to that in FOE formalism.

• In the last formalism, i.e., NES, the wave function of axion field is solved in the region L of the
de Sitter hyperbolic open chart. With the help of this solution, t we computed the mean square
vacuum fluctuation using Bunch Davies and α vacuum state configuration. The corresponding
result is evaluated at all momentum scales. Like the previous two cases, here also we reverted
to two limiting approximations, i.e., large wave number (small wave length ) regime and small
wave number (long wave length) regime. We again observed distinctive behaviour in the power
spectrum in these two different regimes. In the large wave number (small wave length) regime, the
leading order result for power spectrum matches with the known result for observed cosmological
correlation function just as the cases of FOE and RDM formalism. However, the sub-leading
order result s completely different FOE as well as RDM formalism. Thus, it is the sub-leading
terms which distinguish these formalisms from each other and they can be confronted with future
observational data. On the other hand, in the small wave number (long wave length) regime, even
the leading order result for the power spectrum differs, in momentum dependence, compared to
the result obtained from FOE and RDM formalism. Also the nature of enhancement of the mean
square vacuum fluctuation in NES formalism is found to be different from that in FOE and RDM
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formalism but the nature of freezing and the observation on scale invariance of power spectrum
remains same in all the three cases.

• For completeness, we discuss the actual reason for the results obtained for the power spectra from
quantum entangled state as appearing in FOE formalism and the mixed state which is used to
construct the RDM formalism. To do so, we consider two subsystems, L and R using which one
can construct the quantum mechanical state vector of axion field as |Ψ〉axion. In our computation,
these subsystems are defined in the region L and R respectively in the de Sitter hyperbolic open
chart. Now using this state vector of axion field we can define the density matrix as :

ρaxion = |Ψaxion〉〈Ψaxion|, (242)

in both subsystems, L and R for FOE and RDM formalism and only the system L for NES
formalism. Using this density matrix we can express the expectation value (for the total system)
of a quantum mechanical operator Õaxion, applicable for FOE and RDM formalism, as:

Tr
(

ρaxionÕaxion

)
= ∑L ∑R〈L, R|Ψaxion〉〈Ψaxion|Õaxion|L, R〉

≡ 〈Ψaxion|Õaxion|Ψaxion〉

≡ 〈Õaxion〉.

(243)

This is an important observation as it is related to the measurement and quantification of any
physical cosmological observable in the quantum regime. However, in the case of NES formalism one
can rewrite Equation (243) as :

Tr
(

ρaxionÕaxion

)
= ∑L ∑R〈L, R|Ψaxion〉〈Ψaxion|Õaxion|L, R〉

= ∑L ∑R ∑L′ ∑R′ 〈L, R|Ψaxion〉〈Ψaxion|L
′
, R
′〉〈L′ , R

′ |ÕL
axion|L, R〉

= ∑L ∑R ∑L′ ∑R′ 〈L, R|Ψaxion〉〈Ψaxion|L
′
, R
′〉〈L′ |ÕL

axion|L〉δRR′

= ∑L ∑R ∑L′ 〈L, R|Ψaxion〉〈Ψaxion|L
′
, R
′〉〈L′ |ÕL

axion|L〉

= Tr
(

ρL
axionÕL

axion

)
,

(244)

where the operator ÕL
axion solely in the region L is defined by the following expression for

NES formalism:
〈L′ , R

′ |ÕL
axion|L, R〉 = 〈L′ |ÕL

axion|L〉〈R
′ |R〉

= 〈L′ |ÕL
axion|L〉δRR′ .

(245)

Also in NES formalism the density matrix ρL
axion for the region L is described by the

following expression:

ρL
axion = TrRρaxion

= ∑L ∑L′ |L〉
(

∑R〈L, R|Ψaxion〉〈Ψaxion|L
′
, R
′〉
)
〈L′ |

= ∑L ∑L′ |L〉
(

∑R Ψaxion(L, R)Ψ∗axion(L
′
, R
′
)
)
〈L′ |.

(246)

This implies that in NES formalism, the physical operator is solely described by the
information from the region L and consequently the expectation value of such operator satisfy the
following condition:

〈Õaxion〉 = Tr
(

ρaxionÕaxion

)
= Tr

(
ρL

axionÕL
axion

)
= 〈ÕL

axion〉. (247)
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The above analysis can help us to explain the differences between the power spectra of mean
square vacuum fluctuation obtained from FOE, RDM, and NES formalism on large scale (or small
wave number or large wave length regime). It clearly points towards the fact that in FOE and RDM
formalism the creation and annihilation operators for axion field includes new set of creation and
annihilation operators coming from the Bogoliubov transformation from one quantum basis to the
other. This means that the field operator in the FOE formalism also involves these extra creation and
annihilation operators even if the computation is being performed on a particularly specified temporal
slice defined in the region L of the Hilbert space. On the other hand, after applying the partial trace
over the degrees of freedom from the region R, the mixed quantum state, using which we formulate
the RDM formalism, is prepared by the creation and annihilation operators in the region L of the
Hilbert space. Thus, in RDM formalism, the field operator is only defined in the region L and not in
the region R of the Hilbert space. This implies that the field operator defined before partially tracing
over the degrees of freedom from region R for FOE formalism is different from the field operator in
region L used in RDM formalism since for this case we performed the partial trace over the degrees of
freedom in region R. Thus, any general quantum mechanical operator defined in the framework of
FOE is not same as that of RDM formalism.

Before we conclude, we point out that apart from the quantification of the mean square vacuum
fluctuation in the formalisms we discussed here, we also computed the entanglement entropy using
von Neumann measure and the Renyi entropy in our previous work [23,24].
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Appendix A. Quantum Correction to the Power Spectrum in FOE Formalism

At the superhorizon time scales (tL >> 1) of region L one can write the amplitude of the FOE
power spectrum as:

∑
σ=±1

|χ̃σ|2 = ∑
σ=±1

(
χ̃σ
)†

χ̃σ tL >> 1−−−−−→ M̃(p, ν) (cosh tL)
2ν−1 (A1)
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where the time independent function M̃(p, ν) is defined as:

M̃(p, ν) = 22ν−1(Γ(ν))2

π × ∑
σ=±1

[
(|Aσ

L |2+|Bσ
L |2)

|Γ(ν+ip+ 1
2 )|

2 +
Aσ

LBσ∗
L

(Γ(ν−ip+ 1
2 ))

2 +
Aσ∗

L Bσ
L

(Γ(ν+ip+ 1
2 ))

2

+
∞
∑

n=0

{ (
Aσ

LAσ∗
L,(n)+B

σ
LBσ∗

L,(n)

)
Γ(ν−ip+ 1

2 )Γ(ν+ipn+
1
2 )

+

(
Aσ

LBσ∗
L,(n)+A

σ
L,(n)B

σ∗
L

)
Γ(ν−ip+ 1

2 )Γ(ν−ipn+
1
2 )

+

(
Aσ∗

L,(n)B
σ
L+Aσ∗

L Bσ
L,(n)

)
Γ(ν+ipn+

1
2 )Γ(ν+ip+ 1

2 )

}

+
∞
∑

n=0

∞
∑

m=0

{ (
Aσ

L,(n)A
σ∗
L,(m)

+Bσ
L,(n)B

σ∗
L,(m)

)
Γ(ν−ipn+

1
2 )Γ(ν+ipm+ 1

2 )

+
Aσ

L,(n)B
σ∗
L,(m)

Γ(ν−ipn+
1
2 )Γ(ν−ipm+ 1

2 )
+

Aσ∗
L,(n)B

σ
L,(m)

Γ(ν+ipn+
1
2 )Γ(ν+ipm+ 1

2 )

}]
.

(A2)

Appendix A.1. For Large Wave Number

Furthermore, to know the exact wave number dependence of the amplitude of the normalized
power spectrum from Bunch Davies vacuum we need to know the behaviour of the power spectrum
at very short wavelengths (p, pn >> 1). After taking this limit it is expected that the power spectrum
of axion match with the result obtained for spatially flat universe. In general for an arbitrary value of
the mass parameter ν, we get the following approximated contributions in the short wavelength limit
(p, pn >> 1), which are explicitly appearing in the expression for the amplitude of the normalized
power spectrum from Bunch Davies vacuum:
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Furthermore, we apply Stirling’s formula to approximate Gamma functions for large
wavenumbers p, pn >> 1 to simplify the expression for the power spectrum:
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Consequently, we get the following simplified expressions in large wavenumber
(p, pn >> 1) limit:
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As a result, in the short wave length approximation the time independent function ˜M(p >> 1, ν)

for any arbitrary mass parameter ν can be expressed as:

˜M(p >> 1, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p >> 1), (A33)

where we define a new function ˜G(p >> 1) in the short wave length limit as given by:
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Appendix A.2. For Small Wave Number

As with know the exact wavenumber dependence of the amplitude of the normalised power
spectrum from Bunch Davies vacuum in the long wavelength limit we need to know the behaviour
of the power spectrum for p, pn << 1. In this limit it is expected that the power spectrum of axion
should match with the result obtained for spatially flat universe. In general for an arbitrary value of
the mass parameter ν, we get the following approximated contributions in the long wavelength limit
(p, pn << 1), which are explicitly appearing in the expression for the amplitude of the normalised
power spectrum from Bunch Davies vacuum:
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As a result, the time independent function ˜M(p << 1, ν) for any arbitrary mass parameter ν can
be expressed as:

˜M(p << 1, ν) =
22(ν−1) (Γ(ν))2

π
˜G(p << 1), (A49)



Universe 2020, 6, 79 59 of 70

where we define a new function ˜G(p << 1) in the long wave length limit as given by:
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Appendix B. Quantum Correction to the Power Spectrum in RDM Formalism

At the super horizon time scales (tL >> 1) of region L one can write the amplitude of the RDM
power spectrum as:

|ψ̃L
T|2 =

(
ψ̃L

T

)†
ψ̃L

T tL >> 1−−−−−→
˜Q(p, α, ν) (cosh tL)

2ν−1 (A51)

where the time independent function ˜Q(p, α, ν) for generalised α vacua is defined as:
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(A52)

Appendix B.1. For Large Wave Numbers

Furthermore, to know the exact wave number dependence of the amplitude of the normalised
power spectrum from generalised α vacua we need to know the behaviour of the power spectrum at
very short wavelengths (p, pn >> 1). After taking this limit it is expected that the power spectrum of
axion should match with the result obtained for spatially flat universe. In general for an arbitrary value
of the mass parameter ν, we get the following approximated contributions in the short wavelength
limit (p, pn >> 1), which are explicitly appearing in the expression for the amplitude of the normalised
power spectrum from generalised α vacua:
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Furthermore, we apply Stirling’s formula to approximate Gamma functions for large
wavenumbers p, pn >> 1 to simplify the expression for the power spectrum:
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Consequently, we get the following simplified expressions for large wavenumber p, pn >> 1 limit
in the case of generalised α vacua:
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As a result, in the short wave length approximation the time independent function ˜Q(p >> 1, α, ν)

for any arbitrary mass parameter ν can be expressed for generalised α vacua as:

˜Q(p >> 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p >> 1) = M̃(p, ν) ∀α, (A83)



Universe 2020, 6, 79 62 of 70

where we already defined the function ˜G(p >> 1) in the earlier section of the Appendix.

Appendix B.2. For Small Wave Number

As with knowing the exact wave number dependence of the amplitude of the normalised power
spectrum from generalised α vacua in the long wave length approximation, we need to know the
behaviour of the power spectrum at p, pn << 1. After taking this limit, it is expected that the power
spectrum of the axion should match the result obtained for spatially flat universe. In general for an
arbitrary value of the mass parameter ν, we get the following approximated contributions in the in the
long wave length approximation, which are explicitly appearing in the expression for the amplitude of
the normalised power spectrum from generalised α vacua:
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where all the entries of the right hand side of the above expressions for p, pn << 1 are explicitly
computed earlier in this paper.

As a result, the time independent function ˜Q(p << 1, α, ν) for the mass parameter ν 6= q/2
(where q is any half integer) can be expressed for generalised α vacua as:

˜Q(p << 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜G(p << 1) ∀α, (A98)
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where the function ˜G(p << 1) is defined for ν 6= 3/2 as:
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On the other hand, if we set ν = q/2 (including the massless case for ν = 3/2) in the previous
expressions obtained for general ν then due to the presence of the overall factor 1/| cos πν| the final
expression for the power spectrum in small wave number limit diverges. This is very obvious from
the obtained expressions but one can be able to avoid such unwanted divergent contributions very
easily. To serve this purpose let us rewrite all the expressions for p, pn << 1 with ν = q/2 that we
mentioned earlier:
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Also for the massless case (ν = 3/2) the time independent function ˜Q(p << 1, α, ν = 3/2) can be
further simplified as:

˜Q(p << 1, α, ν = 3/2) =
˜G(p << 1, ν = 3/2)
2p3 ∀α, (A114)

where the function ˜G(p << 1) is defined for ν = 3/2 as:
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Appendix C. Quantum Correction to the Power Spectrum in NES Formalism

At the superhorizon time scales (tL >> 1) of region L the amplitude of the NES power spectrum
can be expressed as:

|φ̃L|2 tL >> 1−−−−−→
˜K(p, α, ν) (cosh tL)

2ν−1 (A116)

where the time independent function ˜K(p, α, ν) for generalised α vacua is defined as:
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Appendix C.1. For Large Wave Numbers

Furthermore, to know the exact wave number dependence of the amplitude of the normalised
power spectrum from generalised α vacua we need to know the behaviour of the power spectrum at
very short wavelengths (p, pn >> 1). After taking this limit it is expected that the power spectrum of
an axion in the non entangled case should match with the result obtained for spatially flat universe.
In general for an arbitrary value of the mass parameter ν, we get the following approximated
contributions in the short wavelength limit (p, pn >> 1), which are explicitly appearing in the
expression for the amplitude of the normalised power spectrum from generalised α vacua:
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As a result, the time independent function ˜K(p, α, ν) in the short wave length limit for any
arbitrary mass parameter ν can be expressed for generalised α vacua as:

˜K(p >> 1, α, ν) =
22(ν−1) (Γ(ν))2

p3π
˜U (p >> 1) ∀α, (A121)

where the function ˜U (p >> 1) is defined as:
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Here for very large wave number p, pn >> 1 one can write, Ũ (p) ∼ 1 + · · · , where all · · · are
small correction terms. This also implies to the nice fact that for large wave number limit for any
values of the parameter α the time independent function U (p, α, ν) computed for generalised α vacua
is exactly matches with the result obtained for Bunch Davies vacua in the earlier section at the leading

order in M̃(p, ν).

Also for the massless case (ν = 3/2) the time independent function ˜K(p, α, ν = 3/2) in the short
wave length limit can be further simplified as:

˜K(p >> 1, α, ν = 3/2) =
˜U (p >> 1)
2p3 ∀α. (A123)

Appendix C.2. For Small Wave Number

Similarly to see the behaviour of the power spectrum in the long wavelength region in the super
horizon time scale (tL >> 1) we take the limit p << 1 and further expand the expression for the
power spectrum in p. In general for an arbitrary value of the mass parameter ν, we get the following
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approximated contributions in the long wavelength limit (p, pn << 1), which are explicitly appearing
in the expression for the amplitude of the normalised power spectrum from generalised α vacua:
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As a result, in the long wave length limit the time independent function ˜K(p, α, ν) for any arbitrary
mass parameter ν can be expressed for generalised α vacua as:

˜K(p << 1, α, ν) =
22(ν−1) (Γ(ν))2

pπ
˜U (p << 1) ∀α, (A127)

where the function ˜U (p << 1) is defined in the long wave length limit as:

˜U (p << 1) =
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Also for the massless case (ν = 3/2) the time independent function ˜K(p, α, ν = 3/2) can be
further simplified as:

˜K(p << 1, α, ν = 3/2) =
˜U (p << 1)

2p
∀α. (A129)
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