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Abstract
The majority consensus in the empirical literature is that probability weighting

functions are typically inverse-S shaped, that is, people tend to overweight small

and underweight large probabilities. A separate stream of literature has reported

event-splitting effects (also called violations of coalescing) and shown that they can

explain violations of expected utility. This leads to the questions whether (1) the

observed shape of weighting functions is a mere consequence of the coalesced

presentation and, more generally, whether (2) preference elicitation should rely on

presenting lotteries in a canonical split form instead of the commonly used coa-

lesced form. We analyze data from a binary choice experiment where all lottery

pairs are presented in both split and coalesced forms. Our results show that the

presentation in a split form leads to a better fit of expected utility theory and to

probability weighting functions that are closer to linear. We thus provide some

evidence that the extent of probability weighting is not an ingrained feature, but

rather a result of processing difficulties.

Keywords Decision making under uncertainty � Cumulative prospect

theory � Expected utility theory � Violations of coalescing � Event-splitting
effects

1 Introduction

Experiments on decision making under risk mostly employ a coalesced presentation

of lotteries, i.e., branches which lead to the same consequences are combined and

the respective probabilities are added up. However, presenting gamble pairs in a

canonical split form makes them easier to compare and process for the decision

maker since, in the case of binary choice, both gambles involve the same set of

probabilities. For illustration, consider the classic paradox of Allais (1953), also

termed common consequence effect, where M$ denotes millions of dollars. Figure 1

presents the Allais paradox in the commonly used coalesced form. Here, subjects
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tend to choose option A in Choice 1 and option B’ in Choice 2, which constitutes a

violation of expected utility.

Birnbaum (2004) showed that violations of expected utility (EU) in the common

ratio effect can be substantially reduced if the gamble pairs are presented in their

canonical split form as depicted in Fig. 2. In the canonical split form, which is a

commonly known way of splitting, both lotteries are split such that there are equal

probabilities on corresponding ranked branches and the numbers of branches are

equal in both gambles and minimal. The presentation in Fig. 2 makes it more

transparent that both gambles in each choice have an 89% chance of a common

outcome, which should be ignored when determining the preferred option under EU.

Also other typical violations of EU, like the common ratio effect or violations of

transitivity, are less frequently observed for split than for coalesced presentation of

gambles (Humphrey 2001; Schmidt and Seidl 2014; Birnbaum et al. 2017). The fact

that coalesced and split presentation of gambles can lead to systematically different

choice behavior has already been discussed by Starmer and Sugden (1993) and

Humphrey (1995) under the term event-splitting effects. Nevertheless, the impli-

cations of these effects have remained largely unexplored in the economics and

management literature. The present paper focuses on two questions in this context.

Question 1 is devoted to the shape of the probability weighting function. Many

descriptive alternatives to the EU, like prospect theory (Kahneman and Tversky

1979; Tversky and Kahneman 1992) or rank-dependent utility (Quiggin 1982),

integrate a non-linear distortion of probabilities formalized by a probability

Choice 1 

A: 100% to win 1 M$ B: 10% to win 5 M$

89% to win 1 M$

1% to win 0 M$

Choice 2 

A': 11% to win 1 M$ B': 10% to win 5 M$

89% to win 0 M$ 90% to win 0 M$

Fig. 1 Common consequence effect in a coalesced form

Choice 1

A: 10% to win 1 M$ B: 10% to win 5 M$

89% to win 1 M$ 89% to win 1 M$

1% to win 1 M$ 1% to win 0 M$

Choice 2 

A': 10% to win 1 M$ B': 10% to win 5 M$

1% to win 1 M$ 1% to win 0 M$

89% to win 0 M$ 89% to win 0 M

Fig. 2 Reduced common consequence effect in a split form
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weighting function in their utility representation. Nowadays, the majority consensus

in the literature is that this function is typically inverse-S shaped, i.e., small

probabilities are overweighted, whereas large ones are underweighted (Wu and

Gonzalez 1996; Gonzalez and Wu 1999; Abdellaoui 2000; Bleichrodt et al. 2001;

although not unanimously, see, e.g., Hertwig 2012 for critique). The evidence has

mainly been derived using coalesced presentation of the lotteries. We analyze how

the shape of the probability weighting function differs if the gamble pairs are

presented in a split form instead. Since probabilities are easier to compare in split

form, an absence or diminished extent of the typical non-linear shape in this form

could indicate that the previous evidence mostly reflects difficulties in processing

probabilities instead of an ingrained non-linear weighting of probabilities.

Question 2 is related but more general. As violations of EU decrease under the

split form, it could be more suitable for elicitation of von Neumann–Morgenstern

utility functions in EU. The split form could thus improve prescriptive decision

analysis, as the assessment of von Neumann–Morgenstern functions is central in this

context (von Winterfeldt and Edwards 1986; McCord and de Neufville 1986;

Fischoff 1991; Bleichrodt et al. 2001).

Our analyses of both questions are based on parametric analysis with fitting the

parameters of EU and rank-dependent utility (RDU)—with the latter corresponding

to the gain-domain parameters of cumulative prospect theory (CPT). Firstly, to

answer Question 2, we ask whether the fit of EU improves if we use choice data

from split lotteries. We then extend this analysis from the EU to the RDU. To keep

the analysis manageable, we restrict our attention to pure gain gambles.

Up to date, only limited work has been done to examine what intelligible impact,

if any, failing to account for splitting effects shows in the RDU framework. Indeed,

quite little is known about the impact of the splitting effects on the estimated values

of the central parameters of RDU or the model fit. Real-life gambles do not always

occur in a split form, but explicitly presenting them in a split form could improve

the fit of RDU. Moreover, it could alter the features of the probability weighting

function, namely, the magnitude of the usually observed non-linear shape, which

brings us back to Question 1. And this is indeed a result that we find: The split form

significantly improves prescriptive decision analysis.

The paper is organized as follows. We discuss the theoretical background and

related literature in Sect. 2. We lay out the experimental design and estimation

approaches in Sect. 3 and present the results in Sect. 4. Finally, we discuss the

limitations and implications for future research in Sect. 5 and 6.

2 Background

2.1 Expected utility, rank-dependent utility and cumulative prospect theory

We consider a set of real-valued outcomes X. P denotes the set of all gambles or

lotteries over X. A gamble P 2 P satisfies the axioms of Kolmogoroff (1933), i.e.,

0� p xið Þ� 1 8 xi 2 X and pðXÞ ¼ 1. Preferences of the decision are formalized by a

binary relation¤ � P � P. A function V : X ! r represents¤ on P if and only if
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P ¤ Q , V Pð Þ�V Qð Þ. For a gamble with n possible outcomes, the preferences in

EU can be represented by

VðPÞ ¼
Xn

i¼1

uðxiÞpðxiÞ; ð1Þ

where u is the von Neumann–Morgenstern utility function. In parametric analysis,

u is commonly assumed to be a power function u xið Þ ¼ xai , where 1� a is the

coefficient of relative risk aversion.

In the CPT framework, outcomes of a gamble are ordered in an increasing order

x1 � � � � � xk � 0� xkþ1 � � � � � xn and preferences can be represented by a sum of

two RDU functionals

V Pð Þ ¼
Xk

i¼1

p�i v xið Þ þ
Xn

j¼kþ1

pþj v xj
� �

; ð2Þ

where sign dependence, reference dependence and rank dependence are all satisfied

(Tversky and Kahneman 1992). In parametric analysis, the value function is mostly

taken as a two-part power function:1

v xð Þ ¼ xa x� 0

�k �xð Þb x\0

�
: ð3Þ

It assigns a number v (x) to each outcome x to describe the subjective value of the
outcome relative to a reference point. The reference-dependent S-shaped value

function with v (0) = 0 firstly exhibits diminishing sensitivity to gains and losses,

such that the function is concave (with 0\a\1 exhibiting risk aversion for gains)

or convex (with 0\b\1 exhibiting risk seeking behavior for losses), respectively.

Secondly, the value function implies loss aversion (when k[ 1) in that a loss of a

given amount has more impact on the attractiveness of a prospect than a gain of an

equivalent amount: �v �xð Þ[ v xð Þ for all x[ 0 (Kahneman and Tversky 1979,

Tversky and Kahneman 1991). Note, however, that we focus exclusively on the gain

domain in our analyses.

The decision weights pþ for the cumulative probabilities of positive outcomes in

(1) are defined by

pþn ¼ wþ pnð Þ; ð4Þ

with

pþj ¼ wþ pj þ � � � þ pn
� �

� wþ pjþ1 þ � � � þ pn
� �

; k\j\n: ð5Þ

The probability weighting function wþ is strictly increasing and continuous. It is

defined for the whole probability domain 0; 1½ � and satisfies wþ 0ð Þ ¼ 0 and

wþ 1ð Þ ¼ 1.

1 Please note that several other specifications of the functional forms for the value function have also

been proposed (for example, exponential or logarithmic forms, see Stott (2006) for a comprehensive

review). Yet, according to the author, the power function has proven to be the most favorable empirically.
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In their work, Tversky and Kahneman (1992) propose fitting the data to the

following single-parameter functional form of the probability weighting function:

wþ pð Þ ¼ pc
þ

pcþ þ 1� pð Þcþ
� �1=cþ

: ð6Þ

The typically observed inverse-S shape of this weighting function (henceforth

TKW) exhibits overweighting of small probabilities (up to the crossover point

where w (p) = p) and underweighting of large probabilities.

Furthermore, to contribute to the empirical tractability of the model, we consider

additional parametric specifications of the probability weighting function. For

example, the two-parameter linear-in-log-odds specification introduced by Gold-

stein and Einhorn (1987) has been claimed to be the most commonly used

specification of the probability weighting function (Booij et al. 2010). This function

(henceforth GEW) is given by

w pð Þ ¼ dpc

dpc þ 1� pð Þc ; ð7Þ

where two parameters independently, instead of one, explain the shape of the

weighting function. Namely, the c parameter (which is usually assumed 0\c\1 to

maintain the inverse-S shape) allows controlling for the curvature of the function

and thus serves as a discriminability indicator, while the d parameter2 (d[ 0)

explains the elevation of the function and thus serves as an attractiveness indicator

(Tversky and Kahneman 1992; Gonzalez and Wu 1999). Given that the two

properties often do not covary, this specification can offer a substantial advance-

ment in relation to the Tversky and Kahneman (1992) specification outlined above

(Gonzalez and Wu 1999; Booij et al. 2010). We should note, however, that the exact

values of the named weighting parameter estimates are subject to possible inter-

action effects,3 e.g., between d and a, which both take into account some part of risk

aversion (Nillson et al. 2011; Glöckner and Pachur 2012).

Another two-parameter specification enabling similar interpretation of the c and d
parameters as GEW was introduced by Prelec (1998) (henceforth P2W):

w pð Þ ¼ e�dð� ln pð ÞÞc : ð8Þ

A special case of the P2W with d ¼ 1 is expressed in the single-parameter form

(henceforth P1W):

2 Although generally there tend to be no further restrictions imposed on d, Glöckner and Pachur (2012)

propose restricting the d parameter values (in GEW) between 0 and 4.
3 If a relatively large number of free parameters are being estimated for choice data on proportionally

fewer games, some interactions might occur due to negative correlations of d and a. Generally, the
functional relationships between the CPT model’s parameters are still subject to debate (Nillson et al.

2011).
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w pð Þ ¼ e�ð� ln pð ÞÞc : ð9Þ

It can reportedly outperform the other weighting functions presented above if used

in combination with the power value function in (3) (Stott 2006).

Previous studies have delivered mixed results regarding which of the four

functional forms of the probability weighting function provides the best fit (see, e.g.,

Wu and Gonzalez 1996; Gonzalez and Wu 1999; Sneddon and Luce 2001). In this

paper, we thus consider the power value function in combination with all four

functional forms of the weighting function presented above: the one-parameter TKW

and P1W and the two-parameter GEW and P2W. In addition, we introduce a fifth

weighting function attributable to the EU:w (p) = p (restricting the c parameter to the

value of unity such that no weighting taking place, henceforth denoted EUW) for

benchmark purposes as a special linear case of the one-parameter weighting function.

2.2 Event-splitting effects

By definition, an event-splitting effect (also called violation of coalescing) occurs

when a reversal of preference arises in response to a coalesced- versus split-form

change of the same choice. By using the term split form of a gamble throughout the

paper, we refer to the canonical split form, for which both gambles of a choice are

split in a way that allows the corresponding ranked branches to have equal

probabilities while keeping the number of branches minimal (also implying the

same number of branches in both gambles).4 For example, a choice between

A = (€40, 0.1; €40, 0.1; €2, 0.8) and A0 = (€98, 0.1; €2, 0.1; €2, 0.8) is called the

canonical split form of the choice between the coalesced B = (€40, 0.2; €2, 0.8) and
B0 = (€98, 0.1; €2, 0.9) (Birnbaum and Navarrete 1998).

Kahneman (2003) suggests that ‘‘most decision makers will spontaneously

transform the former prospect into the latter and treat them as equivalent in

subsequent operations of evaluation and choice’’ (p. 727). This observation largely

coincides with the definition of coalescing, which refers to an assumption that any

two or more branches leading to the same outcome can be combined by adding their

probabilities without affecting the utility of the gamble, such that A ¼
x; p; x; q; y; 1� p� qð Þ	B ¼ x; pþ q; y; 1� p� qð Þ and additionally C ¼ x; p;ð
y; q; y; 1� p� qÞ	D ¼ x; p; y; 1� pð Þ. Coalescing implies that A 
 C if and only

if B 
 D. From above, A	B and C	D. Therefore, A 
 C if and only if

B	A 
 C	D. Thus, by transitivity, B 
 D (Birnbaum et al. 2017). Because

coalescing and transitivity should be satisfied within the CPT framework with any

4 Before examining coalescing in more detail, it is important to define the elements called branches that
comprise any gamble in question. A branch is a probability-consequence pair that is distinct in the

presentation to the decision maker. To illustrate this, consider two gambles: a three-branch gamble

A ¼ x; p; x; q; y; 1� p� qð Þ, for which the three branches lead to outcomes x, x and y with probabilities p,
q and 1� p� qð Þ, respectively; and a two-branch gamble B ¼ x; pþ q; y; 1� p� qð Þ, for which the two

branches are x; pþ qð Þ and y; 1� p� qð Þ for outcomes x and y respectively. A keen observer will notice

that the two gambles appear objectively equivalent, as the combination of outcomes for the first two

branches of gamble A, x; pð Þ and x; qð Þ lead to the same result as the first branch of gamble B, x; pþ qð Þ.
Thus gamble B is the two-branch coalesced form of the three-branch gamble A; and conversely, gamble A
is the split form of gamble B.
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w(p) function, there should also be no splitting effects (Birnbaum and Navarrete

1998; Luce 1998; Birnbaum 2008; see Appendix 1 for a proof illustrating how the

CPT’s assumption of rank dependency implies the satisfaction of coalescing).

In the meantime, there exists abundant evidence showing that people do not treat

coalesced-form and split-form gambles as equal (e.g., Conlisk 1989; Starmer and

Sugden 1993;Humphrey 1995). In fact, it has been shown that splitting the branchwith

the highest available outcome can increase the attractiveness of a gamble in

comparison to a coalesced form of the same gamble. Conversely, splitting the branch

with the lowest available outcome decreases the attractiveness of the gamble (Starmer

and Sugden 1993; Humphrey 1995, 2001). Splitting both the highest and lowest

branches in a binary gamble with two equiprobable positive branches tends to make

the gamble worse, in compliance with loss aversion (Birnbaum 2008).

Interestingly, it appears that violations of coalescing cannot be attributed to lack

of knowledge, as they are persistent even in people with doctoral degrees who are

familiar with the literature on decision making (Birnbaum 1999). Neither can the

splitting effects be explained by errors, as they are still persistent when errors are

factored out (Birnbaum et al. 2017), nor can the effects be attributed to the particular

format5 used for presenting, or framing, the gambles (Birnbaum 2004, 2006;

Birnbaum et al. 2008). Decision heuristics, like anchoring and adjustment, cannot

account for the observed splitting effects either (Humphrey 1996). Meanwhile, the

results regarding the effects of specific learning and experience are still mixed (see,

e.g., Humphrey 2006; Birnbaum and Schmidt 2015).

Indeed, it seems that people simply ‘‘do not obey coalescing’’ (Birnbaum 2007,

p. 171). The assumption that coalesced and split forms of the same gamble would be

treated equivalently is thus ‘‘empirically false’’ (Birnbaum 2008, p. 464). And yet, CPT

is still argued by many to be ‘‘the ‘‘best’’, if imperfect, description of decision making

under risk and uncertainty’’ (Birnbaum 2008, p. 463). In light of this controversy, a

question arises regardingwhat intelligible impact, if any, the splitting effects have on the

conclusions drawn by the ‘‘imperfect’’ CPT framework.

We examine which of the two gamble presentation forms (coalesced versus split)

leads to more normatively accurate, or rational, results. In this context, the term

rationality is used in the sense proposed by von Neumann and Morgenstern (1947).

It implies being in line with the normative preference axioms of the EU and, most

notably, the substitution axiom.

We hypothesize that the normative EU explains data comprised of split-form

gambles better than data comprised of coalesced-form gambles, while it is unclear

whether this is to be the case for the descriptive RDU model.6 A couple of previous

5 We use the term format to denote the way how the gambles are displayed (in arrangement, position,

color etc.) to the experiment subjects, as opposed to the term form that merely refers to the coalesced- or

split-form branches of a gamble. While the form should have no effect on preferences in the CPT, the

format (or framing) can have a significant effect (Tversky and Kahneman 1986).
6 It is also likely that violations of coalescing would cause systematic deviations in the CPT parameter

estimates themselves. Given the evidence that splitting effects come about following from the way the

probability information in a gamble is compared and processed (e.g., Humphrey 1995; Schmidt and Seidl

2014), it is likely that the splitting of gambles influences the estimated CPT weighting function parameter

values. Related previous studies indicate that the weighting function for split-form gambles might, in fact,

exhibit behavior that contrasts the classic CPT assumption of a non-linear inverse-S shaped weighting
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studies have already focused on the CPT’s fit to data that indirectly test coalescing

(e.g., Birnbaum and Chavez 1997; Birnbaum and Navarrete 1998), but little is

known about how well selected data comprised of coalesced- versus split-form

gamble pairs fit an RDU model with varying functional specifications.

3 Methodology

3.1 Experimental procedure

We examine these questions using data from a pairwise choice experiment (see

Birnbaum et al. 2017), conducted with 54 student subjects at the University of Kiel

in Germany (all undergraduate students, 61% in the economics and business

administration programs; 22.0 years old on average; of them, 21 female). The

experiment is based on a random-lottery incentive mechanism, which is a

commonly used one-step choice-based elicitation approach that lets subjects face

multiple pairs of gambles in a sequence and choose a preferred gamble for each of

the pairs (see, e.g., Hey and Orme 1994; Wu and Gonzalez 1996).

At the end of the experiment, one pair is chosen randomly and played out for real.

Each pair consists of a risky gamble R ¼ x1; p1; x2; p2; x3; p3; x4; p4ð Þ and a safe

gamble S ¼ y1; q1; y2; q2; y3; q3; y4; q4ð Þ with two to four outcomes xi, yi and

respective probabilities pi, qi that are systematically varied. The choices between

the gambles are presented in a pseudo-random order and the outcomes xi, yi are
ordered from the lowest to the highest within each gamble (see Appendix 2 for an

example of the presentation format and the experiment instructions).

The dataset comprises 28 gamble pairs (14 of them presented in a split form, see

Appendix 3 for an overview of all gambles and the respective descriptive statistics

of gamble choices), implying 4 9 28 = 112 choice situations faced by each subject

over four repetitions, that is, 54 9 4 9 28 = 6048 choice situations observed in

total, 3024 of them in a split form. Note, however, that the gambles in our study are

relatively specific in that no certain outcomes are included and the values and

probabilities of high outcomes are relatively similar between the gambles within a

decision. The subjects received, on average, a €19.1 cash reward (including a €5.0
show-up reward) for an approximately 90-minute session, leading to an average

reward of €12.8 per hour.

3.2 Structural modeling

We apply structural methods to jointly estimate several core parameters of the EU

and RDU frameworks. In particular, we use maximum likelihood estimation (MLE)

to determine the most likely parameter values to have generated the given dataset

Footnote 6 continued

function (e.g., Birnbaum and McIntosh 1996; Birnbaum and Chavez 1997). Hence, we additionally

hypothesize finding significant differences in c (and d) parameters between coalesced- and split-form

gambles, respectively. We expect that this result would remain robust also when controlling for additional

variables such as the numbers of branches or outcomes in a gamble as well as demographic information.
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within the specification bounds. In addition, the log-likelihood of the MLE allows us

to measure the goodness of fit of the respective frameworks.

RDU includes subjective values of outcomes and subjective weights of

probabilities. For the subjective values, we use a power value function in all

models. We thus add the a parameter as the first one in the list of estimable

parameters. For the probability weighting, we examine four weighting function

specifications given that, firstly, the probability weighting function appears to be

central for considering the coalesced- versus split-form data and, secondly, the

explanatory power of the RDU model depends on the function specifications and the

corresponding interaction effects (e.g., Stott 2006). We thus add the c (and d, where
relevant) parameter to the list of estimable parameters (see Appendix 7 for a full list

of parameters in each model).

In addition, we extend the RDU to accommodate stochastic behavior by applying

an exponential specification of the choice rule7 of Luce (1959) (see also Rieskamp

2008). The exponential specification of Luce’s choice rule is defined as

p R; Sð Þ ¼ e/v Rð Þ

e/v Rð Þ þ e/v Sð Þ ; ð10Þ

where p R; Sð Þ stands for the probability of choosing the risky gamble R over the safe

gamble S and the sensitivity parameter /[ 0 specifies how sensitively the model

reacts to differences between the subjective values V Rð Þ and V Sð Þ of the gambles R
and S, respectively (Rieskamp 2008; Nillson et al. 2011). Consequently, given that it

is feasible to structurally estimate all specified parameters jointly with MLE, we add

the / argument to the list of estimable parameters.

Using the choice rule, we attempt to quantify the goodness of fit of the RDU

model predictions given the actual choices between the gambles. A useful tool for

the purpose is the deviation measure G2, expressed as

G2 ¼ �2
XN

i¼1

ln fi yjhð Þ½ �; ð11Þ

with i denoting the choice among gambles and N denoting the total number of

gambles. fi yjhð Þ expresses the probability that the RDU model with its parameter

values h predicts a choice y, such that fi yjhð Þ ¼ pi R; Sð Þ if the gamble R is chosen

and fi yjhð Þ ¼ 1� pi R; Sð Þ if the gamble S is chosen. Low values of G2 are indicators

of good choice predictions and, hence, a good fit of the RDU model (Rieskamp

2008). A directly related measure of fit is the Akaike information criterion8 (AIC)

that additionally adjusts for the complexity of the model (namely, the number of

parameters in a given specification) and thus allows comparing the explanatory

power of differing models. The AIC is defined as

7 Stott (2006) argues that this general specification by Luce ‘‘performs well’’ (p. 102) and is ‘‘the most

psychologically motivated rule tested’’ (p. 109).
8 According to Burnham and Anderson (2002), the AIC is theoretically superior to the Bayesian

information criterion (BIC) measure (sometimes referred to as the Schwarz’s Bayesian criterion),

although they are generally equivalent. Accordingly, only the AIC measure will be relevant for the scope

of this paper.
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AIC ¼ G2 þ 2n; ð12Þ

where n stands for the number of free parameters in a model (Akaike 1973). As a

rule, an AIC difference of DAIC[ 10 for two given models strongly favours the

model with the lowest AIC measure over the other (Burnham and Anderson 2002).

4 Results

4.1 Fitting coalesced- and split-form data to RDU and EU

For the main hypothesis, we analyze the AIC measures for the EU specification

using the coalesced-form and split-form data separately. This approach allows us to

consider whether, in some settings, one could find grounds for preferring the one

form of presenting the gambles over the other. The linear case of the RDU one-

parameter weighting function (with restricting the c parameter to unity, thus

attaining EUW) shows clear evidence that the split-form gamble pairs provide a

better fit than coalesced-form gambles in the EU specification (coalesced form

AICEUW = 3870, split form AICEUW = 3816, see DAIC in Table 1). However, the

results also indicate that for the RDU specifications, the coalesced form data provide

a better fit than the split-form data. Namely, three out of the four core RDU

specifications show a DAIC that notably exceeds 10, thus providing a result in favor

of the coalesced-form data, while the fourth (TKW) shows a DAIC smaller than 10,

providing an insufficiently conclusive result.

Interestingly, the opposite holds when examining directly comparable one-type

gambles with split highest and lowest branches exclusively (see DAIC in Table 2

and the list of gambles in Appendix 3): The model that uses split-form data

outperforms the same model that uses equivalent coalesced-form data in all four

RDU specifications. The question of whether experiments ought to include split-

form gamble pairs rather than their coalesced equivalents to ensure a more accurate

preference elicitation thus finds some confirmation here but is still open for further

examination.

The four RDU specifications outperform the EU specification in terms of the

model fit (see DAICEUW in Table 2) for the coalesced-form data. For the split-form

data of the directly comparable one-type gambles, the differences between the

AICEUW and the respective measures of fit for the four RDU specifications no longer

exhibit significant differences.

Finally, the one-parameter P1W outperforms TKW and the two-parameter P2W

outperforms GEW in terms of the fit measures in practically all of the examined

models. Therefore, in the following discussion of results, we focus on these best-

performing models in particular; see Appendices 4–6 for the full results of all

examined RDU specifications and model versions with various control variables. In

total, we use four versions of the model (referred to as models M1 to M4, see

Appendix 7 for summary).
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Table 1 Comparison of the model fit with 28 gamble pairs considered

TKW GEW P1W P2W EUW

Coalesced-form data 3782 3753 3689 3690 3870

∆ = − +88 +117 +181 +180

Split-form data 3779 3781 3804 3786 3816

∆ = − +37 +35 +12 +30

∆ = − < |−10| > |−10| > |−10| > |−10| > 10

The model that uses 
coalesced-form data 

outperforms the model 
that uses split-form data

The model that uses 
split-form data 
outperforms the 
model that uses 

coalesced-form data

Better fit 
for CPT 
than EU

The four RDU specifications are applied on split-form data as compared to coalesced-form data with the

whole dataset considered

Table 2 Comparison of the model fit with 16 one-type gamble pairs considered

TKW GEW P1W P2W EUW

Coalesced-form data 2176 2141 2119 2117 2204

∆ = − +28 +63 +85 +87

Split-form data 2105 2107  2105 2107 2104  

∆ = − -1 -3 -1 -3

∆ = − > 10 > 10 > 10 ≥ 10 > 10

Better fit 
for CPT 
than EU

The model that uses split-form data outperforms 
the model that uses coalesced-form data

No 
difference 
between 

CPT and EU
fit

The four RDU specifications are applied on split form data as compared to coalesced-form data with 16

out of the 28 gamble pairs considered
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4.2 Comparing RDU parameter estimates for the coalesced- and split-form
data

The results for the weighting function parameters c and d of model M1 in Table 3

are unequivocal. There exist significant differences at a 99% significance level

between these parameters when considered in the contexts of coalesced- and split-

form gamble pairs. Indeed, also the direction of the differences is consistent over the

RDU specifications, with csplit remaining significantly higher than ccoa and dsplit
remaining significantly lower than dcoa (all at a 99% significance level, according to

Wald tests).

These results are, however, worthy of attention not only for their significant

differences between the respective coalesced- and split-form c and d, but also due to

the absolute values of these weighting function parameters. While the coalesced

form allows maintaining the ccoa value significantly different (lower) from unity,

thus confirming the established RDU predictions (Wald tests, p values\ 0.001), the

split-form csplit reveals an unusual picture. The estimated parameter value is

indifferent from unity in the one-parameter P1W specification and significantly

different (higher) from unity in the two-parameter P2W specification (Wald tests,

Table 3 Results of the models M1 and M2 in two best-performing RDU specifications

Model M1 Model M2

P1W P2W P1W P2W

acoa 0.654

(0.022)

0.709

(0.054) 0.653 0.729

asplit 0.651

(0.033)

0.759**

(0.052)

(0.025) (0.051)

ccoa 0.840

(0.020)

0.808

(0.015)

0.839

(0.022)

0.814

(0.016)

csplit 0.998**

(0.029)

1.034***

(0.064)

0.999***

(0.026)

0.998***

(0.055)

dcoa 6.242

(0.671)

6.070

(0.654)

dsplit 3.232***

(0.410)

3.546***

(0.380)

/ 5.063

(0.483)

1.132

(0.068)

5.056

(0.469)

1.147

(0.067)

AIC 7538 7483 7536 7488

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced- and

split-form parameter values at a 95% significance level, *** indicates a difference at a 99% significance

level. All differences in this model are due to a binary splitcoal variable. All constant terms are significant

at a 99% level. As for the constant term representing the / parameter, its values are likely dependent on

the a as well as the d parameters, which explains the differences over the four specifications. Standard

errors (in parentheses) are clustered at subject level
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p values\ 0.001). These results thus conflict with the usual results of the RDU

framework, namely, the aforementioned 0\c\1.

Model M2 might provide additional insights into this uncommon result. This

model, compared to M1, considers the weighting function exclusively, keeping the

utility function parameters unchanged. According to Chow tests,9 the respective

weighting parameter values estimated in M1 and M2 do not significantly differ

between these model versions for the one-parameter P1W specifications (neither for

the corresponding coalesced-, nor split-form parameters), while the two-parameter

P2W specification estimates in M2 are different from the estimates in M1 at a 95%

significance level for csplit, dcoal and dsplit.
The results of M2 confirm the results of M1 and reveal the familiar trend of

significantly different weighting function parameters c and d in the coalesced-form as

compared to the split-form gamble pairs (Wald tests, p values\ 0.001), with ccoa
significantly different (lower) fromunity (Wald tests,p values\ 0.001). In this case, the

csplit parameters report practically no curvature, which implies that no weighting of

probabilities for split-form gamble pairs could be identified in the P1Wcase (essentially

making it equivalent to the EUW case), while for the two-parameter function P2W, the

elevation parameter dsplit alone assures that the weighting function is curved.
10

As depicted in Fig. 3 where we plot the results of M1 graphically, the results of

the one-parameter weighting functions are admittedly easier to interpret than the

two-parameter weighting functions. The implications of splitting—namely, that

split-form gambles result in less probability weighting than coalesced-form

gambles—hold for both P1W and P2W, but the particular shapes of the split and

coalesced P2W should be interpreted with caution, as the d values are quite high and
indicate more pessimism in the split form.

Although there are some limitations to our results, we can indeed conclude that

violations of coalescing for split-form gamble pairs in the RDU framework not only

explain differences in the model fit, but also affect the subjective weighting

function. Namely, the use of the split-form gamble pairs appears to change gamble

choices and considerably diminish the weighting as compared to the coalesced-form

gambles.

Note that we also check the robustness of these results by considering further

weighting function specifications and adjusting the RDU parameter estimates to

further variables. Our analysis (see M1, M2 in Appendix 4 and M3, M4 in

Appendices 5 and 6) shows that the familiar trend of significantly different

weighting function parameters c and d for the coalesced- versus split-form gambles

remains strong and consistent across all RDU specifications and considered models.

Taken together, our results indicate that one source of the more pronounced

9 In the given case when linear-form restrictions are met, a Chow test (for comparisons between, rather

than within, models) provides results that are essentially equivalent to the results of a Wald test.
10 For the elevation parameter, the estimated value and value change between the models exhibit a

curious development, which appears to be attributable to the interaction effects between the value

function and weighting function specifications. As moderately significant differences in a values are only

found in cases where the power value function is combined with a two-parameter weighting function, one
can reasonably conclude that it is a result of an increased ‘‘latitude to interact’’ (see Stott 2006, p. 102).
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deviation from EU could be comparison difficulties caused by the coalesced form of

the presented gambles.

5 Discussion and limitations

The results of this paper are insightful in a number of ways. Firstly, we have shown

that the fit of EU is indeed better if the gamble pairs are presented in a split form.

This result indicates that the split form improves prescriptive decision analysis. For

example, we could conclude that one should rather use split-form than coalesced-

form gamble pairs when advising decision making.

Secondly, we have found evidence for significant differences in magnitude

between the c parameters in the RDU weighting functions for coalesced- and split-

form gamble pairs in the given dataset. Meanwhile, the somewhat mixed evidence

regarding the logically independent elevation parameter d calls for further

examination of this property. Note that the interaction effects between d and a
cannot be ruled out in this setting and are a possible source of the mixed evidence.

Still, although the values of d are quite high (particularly for coalesced gambles),

there is no indication for strong effects of cross-parameter compensations: c and d

0
.2

.4
.6

.8
1

w
(p

)

0 .2 .4 .6 .8 1
p

P1W coalesced P1W split
P2W coalesced P2W split

Fig. 3 Illustration of the weighting-function results of M1 in Table 3 above. The solid lines refer to
coalesced-form data and the dashed lines refer to split-form data in the one-parameter (black, P1W) and
two-parameter (gray, P2W) Prelec weighting functions, respectively
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do not vary considerably in concert, and d values are relatively stable in all model

specifications. Whether this result reflects some more fundamental theoretical issues

or is merely a method artifact is due to further research.

Thirdly, it appears that presenting gamble pairs in a split form changes gamble

choices as to bring the RDU closer to the EU. This is the case not only for the

measures of model fit, but also for the properties of the weighting function. With the

curvature parameter c largely closer to unity (and often not significantly different

from unity) for split-form than for coalesced-form gambles, the results indicate that

the subjects tend to pay less account to subjective probability weighting when

evaluating split-form gamble pairs of a certain type.11 They act comparatively more

‘‘normatively’’ than expected and thus put one of the cornerstones of the RDU (and

by implication, CPT) into question.

Note, however, that the gambles in our study were quite specific in that values

and probabilities of the high outcomes were relatively similar between the gambles

within a decision. Note also that no certain outcomes were included that might drive

the typically stronger deviations from linearity of the weighting function. We thus

acknowledge the fact that the particular shape of the weighting function might be

different with additional gambles and tests for generality are due to further research.

6 Conclusions

The results of this paper invite its readers to carefully rethink RDU and its

perspective on the subjective probability weighting or, more particularly, on the

stability of the probability weighting function against the editing of lotteries. We

have provided some reasons to conclude that the non-linearity in the weighting

function might be more pronounced in result of coalescing. That is, probability

weighting does not necessarily appear to be an ingrained feature, but rather a result

facilitated by processing difficulties.

What do our results imply for utility theory and its applications? Firstly, one

could argue in favor of using gamble pairs in a split form and employing EU as a

decision criterion, given that it performs rather well for the split-form pairs.

However, real-life gambles do not always occur in a split form. Therefore, a second

recommendation could be to increasingly employ other theories that imply splitting

effects. Other models, like the transfer of attention exchange (TAX) model or the

rank-affected multiplicative weights (RAM) model, could potentially be rivals to

the EU, RDU and CPT (Birnbaum and Chavez 1997; Birnbaum 1999, 2008).

11 We identify certain contradictions in the estimated CPT parameter values, with some one-parameter

models leading to a common inverse-S shape probability weighting function, while others resulting in a

linear function for the one-parameter weighting function. Note that the linear shape appears to become

less pronounced with addition of further relevant explanatory variables in a model. We thus confirm the

proposition by Birnbaum and Navarrete (1998), among others, who argue that the CPT improves its

pertinence if the parameters can additionally depend on the number of branches or outcomes in a gamble.

Controlling for this has indeed allowed the CPT parameters to be in more compliance with the theory than

otherwise. In the meantime, we also find that the importance of the splitting itself is not diminished when

these additional variables are added. This result extends the discussion of bounded rationality as a reason

behind the observed splitting effects and indicates that the underlying psychological reasoning reaches

beyond minimized cognitive expenditures related to the absolute frequency of considered attributes.
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Thirdly, one could continue employing RDU (and by implication, CPT), albeit

cautiously, knowing that the splitting has a fairly intelligible effect on the weighting

function.

Much remains to be done still. Firstly, because this paper concerns coalesced-

and split-form gamble pairs in the gain domain exclusively, we advise extending the

scope of the forthcoming experiments to also include mixed and loss-only gambles

(to examine the splitting effects in the respective parameters for the loss domain,

including the loss aversion parameter). Secondly, because the construction of

splitting appears to have an influence on the resulting model fit, we advise extending

the binary concept of splitting and examining a variety of directly comparable

coalesced versus differently split datasets. Thirdly, because the interpretations of the

psychological reasons behind the splitting effects are still manifold, we advise

gathering further insights from parallel lines of research, such as neuroeconomics

and others.
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Appendix 1: Proof of coalescing within the framework of CPT

In its most general representation as a part of RDU family, CPT guarantees

satisfaction of coalescing (i.e., the equivalence of coalesced and split forms of a

given gamble) even if no editing rules are assumed (Birnbaum 2008). In particular,

as demonstrated by Birnbaum and Navarrete (1998, p. 57–58), RDU implies

coalescing for any wðpÞ function in

V ¼
Xn

i¼0

v xið Þ w pið Þ � w pi�1ð Þ½ �; ð13Þ

where the (decumulative) probability of receiving xi or more is denoted by pi, while
the probability of receiving more than xi is denoted by pi�1.

Proof If outcomes x[ y[ z[ 0 and probabilities pþ qþ r ¼ 1, then

V x; p; y; q; z; rð Þ ¼ v xð Þw pð Þ þ v yð Þ w pþ qð Þ � w pð Þ½ � þ v zð Þ w 1ð Þ � w pþ qð Þ½ �, by

Eq. (13) above.
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If outcomes x ¼ y, then V x; p; x; q; z; rð Þ ¼

v xð Þw pð Þ þ v xð Þ w pþ qð Þ � w pð Þ½ � þ v zð Þ 1� w pþ qð Þ½ �
¼ v xð Þw pþ qð Þ þ v zð Þ 1� w pþ qð Þ½ �
¼ V x; pþ q; z; rð Þ; since r ¼ 1� p� q:

If outcomes y ¼ z, then V x; p; y; q; y; rð Þ ¼

v xð Þw pð Þ þ v yð Þ w pþ qð Þ � w pð Þ½ � þ v yð Þ 1� w pþ qð Þ½ �
¼ v xð Þw pð Þ þ v yð Þ 1� w 1� pð Þ½ �
¼ V x; p; y; 1� pð Þ ¼ V x; p; y; qþ rð Þ; since 1� p ¼ qþ r:

Appendix 2: Format of the presented gambles

See Fig. 4.

At the beginning of the experiment, the subjects received written instructions that

were also read out aloud. Following the instructions, four transparent dominance

questions were used to test the subjects’ understanding. Only after completing these

were the subjects allowed to proceed with the experiment. Four booklets with

pairwise choices between presented gambles were then consecutively provided to

each of the subjects, with every choice being replicated four times using counter-

balanced left–right positioning.

In addition, two transparent stochastic dominance problems were included in

each of the booklets to check whether the subjects were being sufficiently attentive.

Importantly, both coalesced and split forms of the same gambles were included in

the booklets, but the booklets differed in how the gambles were included. Namely,

while half of the subjects received four booklets with intermixed coalesced- and

split-form gambles, the other half received booklets with only the one or the other

form gambles.

For further details, please refer to the instructions (translated from German) on

the following pages.

_________________:rebmuN_______________:etaD

A: 50% to win 20 Euro B: 33% to win 10 Euro

30% to win 30 Euro 34% to win 15 Euro

20% to win 40 Euro 33% to win 60 Euro

Fig. 4 The presentation design of the gambles. Note: The subjects were asked to mark their preferred
gamble by circling it
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Instructions
Thank you for your willingness to participate in this study. Your data and personal

details will be treated confidentially, will not be passed on to anyone and will not be

used for any other purposes than this study.

The study
We want to know how people choose between lotteries, that is, how they choose

between different options of winning money.

For this purpose, two lotteries are offered for you to play in each task. Your task

is to decide which of the two lotteries you prefer to participate in.

Example 1
Imagine a lottery wheel with 100 lottery tickets. 50 tickets are marked with ‘‘0€’’,
whereas the other 50 tickets are marked with ‘‘20€’’. If you draw a ticket from the

lottery wheel, you have a 50–50 chance of winning either 0€ or 20€. Both amounts

can be drawn with 50% probability.

Imagine now a second lottery wheel, which contains 75 ‘‘25€’’ tickets and 25

‘‘50€’’ tickets. Would you rather draw a ticket from the first or second lottery

wheel? This task is described in the questionnaires as follows:

Example 1: Which lottery would you like to play?

□ A with a probability of 50% you win 0 €

                               with a probability of 50% you win 20 €

        OR

□ B with a probability of 75% you win 25 €

                    with a probability of 25% you win 50 €

In this case, it is clear that you should prefer the second lottery B. In this lottery

you would win at least 25 €, whereas for lottery A even the maximum prize is only

20 €.
Example 2
In this study, however, it will often depend on your own opinion which lottery you

prefer. An example of this is the next task:

Example 2: Which lottery would you like to play?

□ A with a probability of 50% you win 0 €

                               with a probability of 25% you win 5 €

                    with a probability of 25% you win 50 €

        OR

□ B with a probability of 50% you win 12 €

                    with a probability of 50% you win 14 €
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There are three different possible prizes in Lottery A. Lottery B has two different,

equally probable prizes. Suppose you choose Lottery A: With 25 lottery tickets you

could receive the high prize of €50. However, if you draw one of the other 75 tickets

fromLottery A, i.e., €0 or €5, youwould have been better off if you had chosen Lottery
B, as in Lottery B you will win at least €12. Which lottery would you rather play?

Some would rather play the first lottery A, others would rather play the second

lottery B. It is just a matter of opinion. There is no ‘‘right’’ or ‘‘wrong’’ answer!

Once you have made your choice, tick the appropriate lottery in the box.

Rules
For all lotteries in this study, you can imagine a lottery wheel with 100 tickets with

cash winnings. All tickets can be randomly drawn from the wheel with the same

probability. Therefore, the probability of winning a prize corresponds to the number

of tickets with exactly this prize in the wheel. In each task, the probability and

amount of all possible winnings for both lotteries are given. The probability adds up

to 100% in each lottery.

Please answer the questions alone, do not talk to the other participants during the

study. If you violate this rule, you will be excluded from the study and will not

receive any payment.

The study will take about 1 h and 15 min. We ask all participants to stay until the

end and not to leave earlier. There are enough tasks for the whole period. Payment is

not made until the end of the study.

Payment
Each participant receives a participation fee of 5 €. In addition, one of the tasks is

randomly selected at the end of the study. For this purpose, you are asked to draw a

number from a bag. It is checked which lottery you have chosen for this task and

this lottery is then played, again by drawing a number.

The lowest possible prize is 0 €. If you draw this prize, you go home with 5 €.
The highest possible prize is 60 €. In this case you would receive 65 € in total. The

other profit opportunities are in between, the 5 € participation fee is always added.

Your earnings are paid out immediately in cash.

Thus, your payment depends on the decisions you make during the study!

Further procedure
On the next page, please answer the general questions first.

On page four you will find four exercises. When you have answered them, please

raise your hand. Someone will check the exercises to see if you have understood them.

You will then receive your first task sheet. Each time you have finished

answering a sheet, please raise your hand, then you will receive the next task sheet.

Questions?
If you have any questions, raise your hand and someone will come to you. Please

don’t ask your neighbors.

Appendix 3: Structure of the presented gambles in coalesced
and split forms

See Table 4.
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Appendix 4: Exploring M1 and M2

See Tables 5 and 6.

One possible interpretation of the one-parameter weighting function estimates in

M1 and M2 is as follows. As already noted, a weighting parameter c\1 implies an

inverse-S shape of the one-parameter weighting function, with overweighting of

small probabilities and underweighting of large probabilities (while weighting the

middle outcomes less extremely). If the value of c in the one-parameter weighting

function is larger than unity, however, it rather implies a less12 conventional

S-shaped weighting function that is convex for smaller probabilities and concave for

larger probabilities, such that extreme outcomes under RDU are underweighted.13

Note that the more outcomes in a single gamble are given, the smaller the

probabilities for each outcome logically become, such that effectively only the

probability range closer to 0 becomes relevant (Wakker 2010). The explanation

could then also be consistent with the reasoning behind bounded rationality,

considering that for gambles with three or more outcomes or branches, the smallest

probabilities in absolute terms might be disregarded (e.g., Payne 2005). Indeed,

some authors argue that these opposite relations of weight ratios observed in split-

form gambles here could, in fact, be simply explained by the number of outcomes or

branches in a gamble, rather than the splitting itself (Birnbaum and McIntosh 1996;

Birnbaum and Chavez 1997; Birnbaum and Navarrete 1998). Please refer to M3 and

M4 in Appendices 5 and 6 for further results concerning this proposition.

Appendix 5: Adding the number of outcomes or branches in M3

See Tables 7 and 8.

Humphrey (1999, 2001) suggests that the perception of a split-form gamble could

be dependent not only on learning the combined probabilities of the respective split

events but also on learning the absolute number of the split events. Indeed, already

Estes (1976) argued in favor of a psychological phenomenon termed the categorical
memory for absolute frequency of outcome, which describes how the encoding of

event categories is done in terms of cardinal numbers and not probabilities (see also

Einhorn and Hogarth (1978) for related empirical evidence).14 While Humphrey

(1999) find mixed results in favor of this explanation in his study, Birnbaum and

Navarrete (1998) find some evidence supporting the importance of the absolute

number of branches in a gamble.

12 This shape of probability weighting is less conventional, but not unprecedented in the literature; see,

e.g., Jullien and Salanie (2000) and Hertwig (2012).
13 Note that one-parameter weighting functions have additional limitations if an S-shaped (in contrast to

inverse-S shaped) curve is predicted. For example, TKW has a crossover point at p ¼ 1=e ¼ 0:37 or c\1

but for c[ 1 it is at p ¼ 1� 0:37 ¼ 0:63
14 Furthermore, this reasoning is also in line with the established phenomenon of minimal cognitive

effort preference that describes how decision makers tend to remain ‘‘economical in their expenditures of

cognitive effort’’ (Humphrey 1999, p. 55). As frequency information is more easily learned and

remembered than probability information, this explanation appears intuitively appealing as a plausible

cognitive antecedent of splitting effects.
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Table 4 The coalesced-form and respective split-form gambles used in the parameter estimation, and

descriptive statistics

No. Safe gambles Risky gambles Risky (%)

16 directly comparable one-type gamble pairs out of the total of 28:

G1 0.89

0

0.11

16

0.90

0

0.10

32

96.3

G3 split 0.89

0

0.01

16

0.10

16

0.89

0

0.01

0

0.10

32

87.5

G5 0.80

0

0.20

19

0.90

0

0.10

44

55.5

G7 split 0.80

0

0.10

19

0.10

19

0.80

0

0.10

0

0.10

44

29.6

G9 0.70

0

0.30

21

0.80

0

0.10

21

0.10

42

37.0

G11 split 0.70

0

0.10

21

0.10

21

0.10

21

0.70

0

0.10

0

0.10

21

0.10

42

23.6

G15 0.98

0

0.02

23

0.99

0

0.01

46

70.8

G17 split 0.98

0

0.01

23

0.01

23

0.98

0

0.01

0

0.01

46

56.5

G19 0.40

0

0.60

28

0.58

0

0.42

44

29.2

G21 split 0.40

0

0.18

28

0.42

28

0.40

0

0.18

0

0.42

45

21.3

G20 0.80

0

0.20

28

0.86

0

0.14

44

50.0

G22 split 0.80

0

0.06

28

0.14

28

0.80

0

0.06

0

0.14

45

27.3

G34 0.75

33

0.23

34

0.02

36

0.99

33

0.01

60

76.9

G36 split 0.75

33

0.23

34

0.01

36

0.01

36

0.75

33

0.23

33

0.01

33

0.01

60

87.5

G41 0.60

3

0.40

10

0.80

3

0.20

21

58.8

G42 split 0.60

3

0.20

10

0.20

10

0.60

3

0.20

3

0.20

21

34.7

12 gamble pairs with varying splitting structure out of the total of 28:

G10 0.70

0

0.20

21

0.10

42

0.80

0

0.20

42

10.6

G12 split 0.70

0

0.10

21

0.10

21

0.10

42

0.70

0

0.10

0

0.10

42

0.10

42

20.8

G13 0.40

0

0.20

19

0.40

44

0.50

0

0.50

44

29.6
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Birnbaum and Navarrete (1998) demonstrate that, for a more general CPT model,

median parameters do indeed differ between two-outcome and three-outcome

gambles. The authors argue that the estimated weighting function parameters for

two-outcome gambles are consistent with previous numerously replicated results (in

that 0\c\1, see, e.g., Tversky and Kahneman 1992; Wu and Gonzalez 1996),

whereas for three-outcome gambles the results indicate c[ 1, consistent also with

Birnbaum and McIntosh (1996) and Birnbaum and Chavez (1997). In line with this,

the number of branches or outcomes in a gamble should have a significant impact on

the CPT weighting function parameter estimates, even when the splitting is

controlled for.

We consider these additions to the literature in M3 and find that both weighting

function parameter estimates c and d are significantly explained by the number of

branches as well as the number of outcomes in a gamble in all four weighting

function specifications. Furthermore, Chow tests for comparisons between M2 and

M3 indicate that adding the outcomes variable has also resulted in altering of ccoa,
csplit, dcoa and dsplit values significantly (at a 99% significance level). Although

similar to that in M1 and M2, the familiar significant differences between the

weighting function parameters for coalesced- and split-form gambles are still

Table 4 continued

No. Safe gambles Risky gambles Risky (%)

G14 split 0.40

0

0.10

19

0.10

19

0.40

44

0.40

0

0.10

0

0.10

44

0.40

44

50.0

G30 0.73

0

0.02

15

0.25

33

0.74

0

0.26

33

43.5

G32 split 0.73

0

0.01

15

0.01

15

0.25

33

0.73

0

0.01

0

0.01

33

0.25

33

72.2

G29 0.73

0

0.02

15

0.25

60

0.74

0

0.01

33

0.25

60

82.4

G31 split 0.73

0

0.01

15

0.01

15

0.25

60

0.73

0

0.01

0

0.01

33

0.25

60

72.2

G33 0.75

1

0.23

34

0.02

36

0.75

1

0.24

33

0.01

60

91.2

G35 split 0.75

1

0.23

34

0.01

36

0.01

36

0.75

1

0.23

33

0.01

33

0.01

60

90.7

G38 0.40

9

0.60

21

0.20

3

0.80

21

62.5

G39 split 0.20

9

0.20

9

0.60

21

0.20

3

0.20

21

0.60

21

80.6

The top numbers indicate the probabilities, the bottom numbers indicate the outcome values for each of

the branches. The probabilities of all gambles are presented in italic font. The split branches of the

coalesced outcomes are denoted in bold font. The right-side column describes how many choices (in %)

the subjects made in favor of the risky gamble for each gamble pair
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pinpointed (at a significance level of 99%), the csplit estimates are significantly lower

than unity in all four specifications in M3.

Appendix 6: Adding demographic variables in M4

See Tables 9 and 10.

Appendix 7: Overview of the estimated model versions

See Table 11.

Table 5 Results of the M1 in four specifications

Model: M1

Value f.: Power

Weighting f.: TKW GEW P1W P2W

acoa 0.674

(0.025)

0.717

(0.045)

0.654

(0.022)

0.709

(0.054)

asplit 0.695

(0.042)

0.785**

(0.052)

0.651

(0.033)

0.759**

(0.052)

ccoa 0.889

(0.020)

0.863

(0.014)

0.840

(0.020)

0.808

(0.015)

csplit 1.065***

(0.032)

1.096***

(0.037)

0.998**

(0.029)

1.034***

(0.064)

dcoa 5.909

(0.563)

6.242

(0.671)

dsplit 3.032***

(0.456)

3.232***

(0.410)

/ 4.275

(0.528)

0.776

(0.069)

5.063

(0.483)

1.132

(0.068)

AIC 7603.14 7538.40 7537.46 7482.88

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, ***indicates a difference at a 99% signif-

icance level. All differences in this model are due to a binary splitcoal variable. All constant terms are

significant at a 99% level. Standard errors (in parentheses) are clustered at subject level
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Table 6 Results of the M2 in four specifications

Model: M2

Value f.: Power

Weighting f.: TKW GEW P1W P2W

a 0.680

(0.029)

0.745

(0.044)

0.653

(0.025)

0.729

(0.051)

ccoa 0.894

(0.021)

0.874

(0.014)

0.839

(0.022)

0.814

(0.016)

csplit 1.055***

(0.026)

1.053***

(0.029)

0.999***

(0.026)

0.998***

(0.055)

dcoa 5.693

(0.584)

6.070

(0.654)

dsplit 3.450***

(0.397)

3.546***

(0.380)

/ 4.335

(0.498)

0.742

(0.063)

5.056

(0.469)

1.147

(0.067)

AIC 7602.24 7546.04 7535.49 7487.58

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, *** indicates a difference at a 99% sig-

nificance level. All differences in this model are due to a binary splitcoal variable. All constant terms are

significant at a 99% level. Standard errors (in parentheses) are clustered at subject level
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Table 7 Results of the M3 with outcomes in four specifications

Model: M3

Value f.: Power

Weighting f.: TKW GEW P1W P2W

a 0.692

(0.030)

0.875

(0.018)

0.682

(0.025)

0.860

(0.019)

ccoa 0.801

(0.024)

0.864

(0.014)

0.795

(0.024)

0.753

(0.017)

Splitcoal 0.0978 0.035 0.109 0.044

Outcomes - 0.202 - 0.120 - 0.177 - 0.098

Constant 1.772 1.440 1.645 1.226

csplit 0.851***

(0.024)

0.871***

(0.015)

0.862***

(0.023)

0.773***

(0.018)

dcoa 10.513

(1.429)

7.944

(0.878)

Splitcoal - 0.087 0.065

Outcomes 9.065 5.163

Constant - 33.112 - 16.902

dsplit 12.579***

(1.674)

9.236***

(0.999)

/ 5.277

(0.549)

0.515

(0.047)

5.398

(0.476)

1.389

(0.042)

AIC 7371.06 7218.91 7267.36 7138.98

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, *** indicates a difference at a 99% sig-

nificance level. Meanwhile, all significant variables (at a 99% level) are presented in bold font. Alongside

with the non-linear predictions of the weighting function parameters, the respective regression coeffi-

cients are presented in italic font. The binary variable splitcoal takes the value of 1 if the corresponding

gamble is presented in a split form, 0 otherwise; the outcomes variable indicates the total number of

outcomes in a gamble pair (taking a value of 4–6, as in the coalesced form); constant refers to the constant
term. Standard errors (in parentheses) are clustered at subject level
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Table 8 Results of the M3 with branches in four specifications

Model: M3

Value f.: Power

Weighting f.: TKW GEW P1W P2W

a 0.684

(0.029)

0.896

(0.008)

0.676

(0.025)

0.886

(0.009)

ccoa 0.822

(0.022)

0.864

(0.010)

0.806

(0.022)

0.743

(0.014)

Splitcoal 0.399 0.286 0.399 0.243

Branches - 0.121 - 0.094 - 0.120 - 0.080

Constant 1.405 1.318 1.385 1.126

csplit 0.993***

(0.021)

0.973***

(0.012)

0.978***

(0.021)

0.836***

(0.015)

dcoa 11.476

(1.707)

8.821

(0.959)

Splitcoal - 20.575 - 12.743

Branches 9.924 6.240

Constant - 36.283 - 21.210

dsplit 9.632***

(1.530)

7.856***

(0.888)

/ 5.544

(0.557)

0.469

(0.042)

5.718

(0.509)

1.446

(0.043)

AIC 7445.27 7265.35 7319.97 7121.15

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, *** indicates a difference at a 99% sig-

nificance level. Meanwhile, all significant variables (at a 99% level) are presented in bold font. Alongside

with the non-linear predictions of the weighting function parameters, the respective regression coeffi-

cients are presented in italic font. The binary variable splitcoal takes the value of 1 if the corresponding

gamble is presented in a split form, 0 otherwise; the branches variable indicates the total number of

branches in a gamble pair (taking a value of 4–8); constant refers to the constant term. Standard errors (in

parentheses) are clustered at subject level
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Table 9 Results of the M4 with outcomes in four specifications

Model: M4

Value f.: Power

Weighting f.: TKW GEW P1W P2W

a 0.691

(0.030)

0.874

(0.018)

0.682

(0.025)

0.858

(0.021)

ccoa 0.802

(0.038)

0.864

(0.020)

0.795

(0.038)

0.752

(0.022)

Splitcoal 0.098 0.035 0.109 0.044

Outcomes - 0.199 - 0.120 - 0.175 - 0.101

Repetitions 0.005 0.000 0.004 0.000

Gender - 0.044 - 0.011 - 0.050 - 0.012

Major 0.001 0.010 0.004 0.012

Constant 1.773 1.444 1.655 1.237

csplit 0.853***

(0.037)

0.871***

(0.021)

0.863***

(0.038)

0.773***

(0.023)

dcoa 10.468

(1.530)

7.861

(1.038)

Splitcoal - 0.087 0.076

Outcomes 8.995 5.026

Repetitions 0.152 0.181

Gender - 0.028 - 0.395

Major - 0.011 - 0.163

Constant - 33.175 - 16.437

dsplit 12.518***

(1.751)

9.131***

(1.129)

/ 5.327

(0.549)

0.516

(0.050)

5.434

(0.478)

1.386

(0.054)

AIC 7361.75 7224.45 7255.40 7141.42

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, *** indicates a difference at a 99% sig-

nificance level. Meanwhile, all significant variables (at a 99% level) are presented in bold font. Alongside

with the non-linear predictions of the weighting function parameters, the respective regression coeffi-

cients are presented in italic font. The binary variable splitcoal takes the value of 1 if the corresponding

gamble is presented in a split form, 0 otherwise; the outcomes variable indicates the total number of

outcomes in a gamble pair (taking a value of 4–6, as in the coalesced form); constant refers to the constant
term. Furthermore, repetition takes on a value of 1–4 depending on the filling order; gender takes on a

value of 1 for male subjects, 0 for female subjects; and major takes on a value of 1 for subjects studying

economics or business administration, 0 otherwise. Standard errors (in parentheses) are clustered at

subject level
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Table 10 Results of the M4 with branches in four specifications

Model: M4

Value f.: Power

Weighting f.: TKW GEW P1W P2W

a 0.683

(0.029)

0.896

(0.008)

0.675

(0.025)

0.886

(0.009)

ccoa 0.823

(0.036)

0.864

(0.014)

0.807

(0.036)

0.742

(0.017)

Splitcoal 0.395 0.287 0.396 0.246

Branches - 0.119 - 0.095 - 0.119 - 0.081

Repetitions 0.006 - 0.000 0.004 - 0.000

Gender - 0.045 - 0.006 - 0.049 - 0.005

Major - 0.002 0.006 0.002 0.007

Constant 1.412 1.320 1.396 1.130

csplit 0.993***

(0.035)

0.973***

(0.015)

0.979***

(0.036)

0.836***

(0.018)

dcoa 11.467

(1.810)

8.813

(1.104)

Splitcoal - 20.534 - 12.703

Branches 9.896 6.212

Repetitions 0.088 0.140

Gender - 0.059 - 0.373

Major - 0.121 - 0.209

Constant - 36.269 - 21.085

dsplit 9.612***

(1.684)

7.834***

(1.073)

/ 5.571

(0.556)

0.468

(0.044)

5.746

(0.509)

1.449

(0.046)

AIC 7434.49 7273.31 7307.40 7126.75

Nobs 6048 6048 6048 6048

The symbol ** for the corresponding split parameters indicates a difference between the coalesced-form

and split-form parameter values at a 95% significance level, *** indicates a difference at a 99% sig-

nificance level. Meanwhile, all significant variables (at a 99% level) are presented in bold font. Alongside

with the non-linear predictions of the weighting function parameters, the respective regression coeffi-

cients are presented in italic font. The binary variable splitcoal takes the value of 1 if the corresponding

gamble is presented in a split form, 0 otherwise; the branches variable indicates the total numberof

branches in a gamble pair (taking a value of 4 to 8); constant refers to the constant term. Furthermore,

repetition takes on a value of 1–4 depending on the filling order; gender takes on a value of 1 for male

subjects, 0 for female subjects; and major takes on a value of 1 for subjects studying economics or

business administration, 0 otherwise. Standard errors (in parentheses) are clustered at subject level
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Allais, M. (1953). L’extension des théories de l’équilibre économique général et du rendement social au

cas du risque. Econometrica, Journal of the Econometric Society, 269–290.
Birnbaum, M. (1999). Testing critical properties of decision making on the Internet. Psychological

Science, 10, 399–407.
Birnbaum, M. (2004). Tests of rank-dependent utility and cumulative prospect theory in gambles

represented by natural frequencies: Effects of format, event framing, and branch splitting.

Organizational Behavior and Human Decision Processes, 95, 40–65.
Birnbaum, M. (2006). Evidence against prospect theories in gambles with positive, negative, and mixed

consequences. Journal of Economic Psychology, 27, 737–761.
Birnbaum, M. (2007). Tests of branch splitting and branch-splitting independence in Allais paradoxes

with positive and mixed consequences. Organizational Behavior and Human Decision Processes,
102, 154–173.

Birnbaum, M. (2008). New paradoxes of risky decision making. Psychological Review, 115, 463–501.
Birnbaum, M., & Chavez, A. (1997). Tests of theories of decision making: Violations of branch

independence and distribution independence. Organizational Behavior and Human Decision
Processes, 71, 61–194.

Birnbaum, M., Johnson, K., & Longbottom, J. (2008). Tests of cumulative prospect theory with graphical

displays of probability. Judgement and Decision Making, 3, 528–546.
Birnbaum, M., & McIntosh, W. (1996). Violations of branch independence in choices between gambles.

Organizational Behavior and Human Decision Processes, 67, 91–110.
Birnbaum, M., & Navarrete, J. (1998). Testing descriptive utility theories: Violations of stochastic

dominance and cumulative independence. Journal of Risk and Uncertainty, 17, 17–49.

Table 11 Overview of the four models examined in this paper

Value f.: Power

Weight.

f.:
TKW GEW P1W P2W EUW

M1 a: splitcoal

c: [fixed]a: splitcoal a: splitcoal a: splitcoal a: splitcoal

c: splitcoal c; d: splitcoal c: splitcoal c; d: splitcoal

M2

c: splitcoal c; d: splitcoal c: splitcoal c; d: splitcoal

M3

c: splitcoal,
outcomes or
branches

c; d: splitcoal,
outcomes or
branches

c: splitcoal,
outcomes or
branches

c; d: splitcoal,
outcomes or
branches

M4

c: splitcoal,
outcomes or
branches,
repetitions,
gender, major

c; d: splitcoal,
outcomes or
branches,
repetitions,
gender, major

c: splitcoal,
outcomes or
branches,
repetitions,
gender, major

c; d: splitcoal,
outcomes or
branches,
repetitions,
gender, major

The / parameter is estimated in each of the models; the detailed interpretation of it is, however, beyond

the scope of this paper. The values of the constant are included in each of the cases by default

123

Violations of coalescing in parametric utility measurement 499



Birnbaum, M., & Schmidt, U. (2015). The impact of learning by thought on violations of independence

and coalescing. Decision Analysis, 12, 144–152.
Birnbaum, M., Schmidt, U., & Schneider, M. (2017). Testing independence conditions in the presence of

errors and splitting effects. Journal of Risk and Uncertainty, 54, 61–85.
Bleichrodt, H., Pinto, J., & Wakker, P. (2001). Using descriptive findings of prospect theory to improve

the prescriptive use of expected utility. Management Science, 47, 1498–1514.
Booij, A., van Praag, B., & van de Kuilen, G. (2010). A parametric analysis of prospect theory’s

functionals for the general population. Theory and Decision, 68, 115–148.
Burnham, K., & Anderson, D. (2002). Model selection and multimodel inference: A practical

information-theoretic approach. New York: Springer.

Conlisk, J. (1989). Three variants on the Allais example. American Economic Review, 79, 392–407.
Einhorn, H., & Hogarth, R. (1978). Confidence in judgment: Persistence in the illusion of validity.

Psychological Review, 85, 396–416.
Estes, W. (1976). The cognitive side of probability learning. Psychological Review, 83, 37–64.
Fischoff, B. (1991). Value elicitation: Is there anything in there? American Psychologist, 46, 835–847.
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