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Abstract
Themost common statistical procedure with a sample of circular data is to test the null hypothesis that points are spread uniformly
around the circle without a preferred direction. An array of tests for this has been developed. However, these tests were designed
for continuously distributed data, whereas often (e.g. due to limited precision of measurement techniques) collected data is
aggregated into a set of discrete values (e.g. rounded to the nearest degree). This disparity can cause an uncontrolled increase in
type I error rate, an effect that is particularly problematic for tests that are based on the distribution of arc lengths between adjacent
points (such as the Rao spacing test). Here, we demonstrate that an easy-to-apply modification can correct this problem, and we
recommend this modification when using any test, other than the Rayleigh test, of circular uniformity on aggregated data. We
provide R functions for this modification for several commonly used tests. In addition, we tested the power of a recently proposed
test, the Gini test. However, we concluded that it lacks sufficient increase in power to replace any of the tests already in common
use. In conclusion, using any of the standard circular tests (except the Rayleigh test) without modifications on rounded/
aggregated data, especially with larger sample sizes, will increase the proportion of false-positive results—but we demonstrate
that a simple and general modification avoids this problem.

Significance statement
Circular data are widespread across biological disciplines, e.g. in orientation studies or circadian rhythms. Often these data are
rounded to the nearest 1–10 degrees. We have shown previously that this leads to an inflation of false-positive results when
testing whether the data is significantly different from a random distribution using the Rao test. Here we present a modification
that avoids this increase in false-positives for rounded data while retaining statistical power for a variety of tests. In sum, we
provide comprehensive guidance on how best to test for departure from uniformity in non-continuous data.

Keywords Rayleigh test . Rao’s spacing test . Hermans-Rasson test . Gini test . Type I error . Rounding error

Introduction

In biology, many variables are recorded on scales that are
cyclical rather than linear—the common examples of such
are compass directions, angles, times of year and times of
day. What these cyclical scales have in common is that the
measurement scale has a natural repeating period to it, and
data can often be effectively presented on the circumference
of a circle. For example, certain neurons that respond to ani-
mal heading (head direction cells) in freely moving rats are an
integral part of the animal’s neuronal compass in the brain
(Taube 2007). In order to determine if such a cell indeed
responds to direction, one needs to investigate data on a cir-
cular scale. In linear statistics, a cell firing with a peak around
0° and decreasing firing equally towards both sides (± 10°)
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might be divided into two skewed modes, each on the ex-
tremes of this linearized scale (e.g. from 350° to 359° and 0°
to 10°). However, this would be a dangerous misinterpretation
of the actual behaviour of the cell, which, in this example, fires
in directions in only a single grouping around 0° following a
von Mises distribution (the circular analogue of a normal
distribution).

Therefore, such circular data needs different statistical
treatment from linear measures (like height and weight), and
a number of monographs are available on the statistical treat-
ment of such circular data (e.g. Batschelet 1981; Fisher 1995;
Mardia and Jupp 2000; Jammalamadaka and SenGupta
2001; Pewsey et al. 2013; Ley and Verdebout 2017). The
most common procedure in circular statistics is testing to see
if a sample of values suggests a deviation from being uniform-
ly distributed around the circle. One issue here for the re-
searcher seeking to test such a null hypothesis is that the com-
monly used tests were developed for data which are continu-
ously distributed around the circle, whereas (e.g. because of
limits to the precision of estimation techniques) often values
are recorded in an aggregated form (i.e. rounded or grouped in
bins). This means that, instead of being continuously distrib-
uted, the possible recorded values are restricted to a finite
numberm of values equally spaced around the circle. A recent
survey by Humphreys and Ruxton (2017) found that com-
monly experienced values of m are 4, 8, 12 and 36; with 12
and 36 being particularly common (Freedman 1979). These
values suggest that the assumption of a continuous distribu-
tion is often strongly violated.

We have recently offered some guidance on how to over-
come this mismatch between the assumptions of the statistical
tests and commonly collected real-life data. The most com-
monly used circular test is the Rayleigh test, and Humphreys
and Ruxton (2017) argued that this test could be used on sam-
ples of grouped data. However, that study only investigated
sample sizes up to 50; in the current analysis, we extend that
to larger sample sizes. Another commonly used test is the Rao
spacing test, and we recently demonstrated that in its standard
form, this test failed to control type I error rate well when data
were grouped (Landler et al. 2019). We offered a variant form
of the test where small perturbations were added to recorded
values in order to break any ties between data values and dem-
onstrated that this modification led to considerably improved
performance on grouped data (Landler et al. 2019). That study,
however, only considered unimodal departures from uniformi-
ty. This limitation is important because the Rao spacing test is
considered particularly attractive if multimodal departures are
expected (e.g. Landler et al. 2018). Hence, here we explored
the performance of both versions of this test in detecting mul-
timodal departures from uniformity.

We also expand on the range of tests considered. Landler
et al. (2018) compared the performance of a battery of alter-
native tests for detecting departures from circular uniformity

with continuous data. There, we argued for increased consid-
eration of a hitherto rarely used test due to Hermans and
Rasson (1985; based on our publication this test has been
added to the R package CircMLE (Fitak and Johnsen 2017)).
Here we consider how that test functions when applied to
grouped data. Finally, Tung and Jammalamadaka (2013) in-
troduced a test based on the Gini mean difference in arc
lengths between adjacent points in a sample that they argue
is asymptotically more powerful than the Rao spacing test.
Here we explore whether this test also suffers from the same
lack of control of type I error that we observed in the Rao test
and whether this control can be regained by the same modifi-
cation. We further test the relative powers of the Rao spacing
test and this Gini mean test. In addition, we test the perfor-
mance of two other omnibus tests, the Watson and Kuiper test
(see Batschelet 1981), and explore their behaviour on grouped
data.

It could be argued that the question of uniformity of binned
data around the circle does not need to be treated as a purely
circular statistics problem. For example, one could employ a
chi-squared test of the null hypothesis of uniformity across the
bins (see, e.g. Batschelet 1981). We, therefore, compare the
power of the chi-squared test with the circular statistic tests on
binned data.

In summary, researchers exploring circular data routinely
test the null hypothesis of uniformity. They also commonly
have rounded and grouped (rather than continuously distrib-
uted) data. We show how common practice easily leads to
high risk of false-positive results. Here we provide a more
comprehensive and definitive guidance than any currently
available on how best to test for departure from uniformity
in non-continuous data.

Methods

We consider six “standard” tests of the null hypothesis of
circular uniformity, which we call the Rayleigh, Watson,
Kuiper, Rao spacing, Gini and HR tests. In addition, we em-
ploy the chi-squared test (using the R function chisq.test) for
all grouped data with a sample size larger than five, to test the
null hypothesis of random distribution between groups (see
Ruxton and Neuhäuser (2010) for an introduction to the liter-
ature on the potential unsuitability of this test with low sample
sizes). The Rayleigh test is the most commonly applied test of
this null hypothesis; see for example Batschelet (1981) for a
full description. We use this implementation of the test pro-
vided by the function rayleigh.test within the R package
circular (Agostinelli and Lund 2017). For the Watson and
Kuiper test, we use the function watson.test and kuiper.test,
respectively, both provided in circular. For the Rao spacing
test, we use the function rao.spacing.test (package circular)
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for continuous data as well as the general simulation method
described in Landler et al. (2019) and summarized as follows:

We define the test for n observations ϕ1,…, ϕn taken in
radians such that the values lie within [0,2π). We further as-
sume that the observations are ordered from smallest to larg-
est: ϕ1 < ϕ2 <…. < ϕn-1 < ϕn. We can define the set of n arc
lengths between neighbouring points as

Ti ¼ ϕiþ1−ϕi; if i < n
2π−ϕn þ ϕ1 if i ¼ n

�
:

The test statisticU is the sum of the differences between the
actual arc lengths and their expected values under uniformity
(2π/n):

U ¼ 0:5 ∑
n

i¼1
Ti−

2π

n

����
����:

We generate NR samples from a continuous uniform distri-
bution, each with the same sample size as the original sample.
For each of these simulated samples, we calculate the value of
the test statistic and calculate the numberNe of these simulated
samples that produce a test statistic value equal to or greater
than the test statistic value for the original data. The estimated
p value is then (Ne + 1)/(NR + 1). In our simulations, we used
NR = 10,000. P value calculation by random permutation is a
standard procedure in statistics and arguably goes back to
Dwass (1957); this procedure is used throughout the paper
for “tie-breaking” versions of tests (see below), as well as
for all versions of the HR and Gini tests.

The Gini and HR tests are carried out in the same fashion,
only the test statistics differ. For the Gini test, the test statistic
is given in Tung and Jammalamadaka (2013) as

Gn ¼ 2

n n−1ð Þ
� �

∑
n−1

i¼1
∑
n

j¼iþ1

1

2
nTi−nT j
�� ��:

For the HR test, a full description is given in Hermans and
Rasson (1985) and Pycke (2010), but the test statistic is

V ¼ 1

n

� �
∑
n

i¼1
∑
n

j¼1
ϕi−ϕ j

�� ��−π�� ��− π
2
−2:895 sin ϕi−ϕ j

� ��� ��− 2

π

� �� �
:

As well as the standard tests, we also consider a version of
each of the tests (called the tie-breaking “TB” version), where
small perturbations are added to all data points prior to the
implementation of the test in order to induce tie-breaking in
situations where grouping can produce identical values.
Specifically, we added very small random perturbations se-
lected independently from a vonMises distribution with mean
zero to each data point in both our original sample and in the
simulated samples for the tests that we evaluate by simulation.
That is for data point ϕiwe obtain a perturbation ɛi drawn from
a von Mises distribution with mean zero and with concentra-
tion parameter κ. In our simulations, we used κ = 1000. The

higher the value of κ, the more concentrated the distribution.
A value should be chosen that is high enough that the pertur-
bations are much smaller than the granularity of the impreci-
sion. That is, if (e.g.) original values were obtained to the
nearest 10 degrees, then a value of κ should be selected to
ensure that almost all perturbations are less than 1 degree. We
then calculate the value of the test statistics for the observed
sample with added perturbations. Notice that if the sum of the
original value and perturbation is outside of (0,2π), we add or
subtract 2π (modulo 360) as required to correct this prior to
implementing the test. All functions written to perform these
TB versions of all tests, as well as the original version of the
Gini test, are available in the supplementary material (Online
Resource 2).

We consider two types of data in our simulation study,
continuously distributed data and data restricted to 36 values
spaced evenly around the circle (as would occur if direction
measurements were taken to the nearest 10 degrees). The
grouped data was obtained by first generating a continuously
distributed sample and then rounding each value.

We first of all explored type I error rate by generating
samples from a uniform distribution, using the function
rcircularuniform in circular. We set the nominal type I error
rate at 0.05 and recorded the fraction of 10,000 uniform sam-
ples of a specified size that generated p values below 0.05.

For statistical power, we generated samples from non-
uniform distributions and record the fraction of samples of a
given size that produce p values below 0.05. We considered
12 different distributions including the von Mises (with con-
centration parameter κ = 1) and the skew normal (dispersion
parameter = 1, skewness parameter = 30). Both of these were
generated using the function rcircmix from the R package
NPCirc (Oliveira Pérez et al. 2014). That same package was
used to generate a symmetric (circular means at 0° and 180°)
and asymmetric (0° and 120°) bimodal distribution made up
of two von Mises distributions (κ = 5, equal proportions for
both modes) and a symmetric (0°, 120° and 240°), as well as
asymmetric (0°, 90° and 200°), trimodal one, made up of three
von Mises distributions (with κ = 10, equal proportions for all
three modes). In addition, we generated a cardioid distribution
using the function rcardioid (ρ = 0.3), a Kato-Jones distribu-
tion using the function rkatojones (r = 0.7, κ = 2.3), a triangu-
lar distribution using the function rtriangular (ρ = 0.3), a
wrapped Cauchy dist r ibut ion using the funct ion
rwrappedcauchy (ρ = 0.7) and a wrapped stable distribution
using the function rwrappedstable (scale = 1, index = 0.3,
skewness = 1), all generated using the package circular.
Finally, a wrapped normal distribution was generated using
the function rwrpnorm from the packageCircStat (Agostinelli
and Lund 2018).

We also applied the original and TB versions of all tests to
an example dataset explored by Tung and Jammalamadaka
(2013). This consists of the directions taken by 13 released
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homing pigeons. The values are 20, 135, 145, 165, 170, 200,
300, 325, 335, 350, 350, 350 and 355 degrees from North. It
appears these values have been rounded to the nearest 5 de-
grees. Further, by inspection, it looks like the data might be
bimodally distributed, with values clustering around either
North (0 or 360 degrees) or South (180 degrees).

Results

All six standard tests provided good control of type I error rate
across all sample sizes explored when data were continuously
distributed (Fig. 1a). The six TB tests produced type I error
rates close to the nominal 5% level for the three smallest
sample sizes (5, 10 and 15) but for higher samples of contin-
uous data type I error rates were lower than expected for these
tests. This effect occurs because these TB test versions all
assume 36 bins even for continuous data, and therefore they
are ‘correcting’ for bins where none exist. Of these, the HR
test was the best behaved, producing values tolerably close to
5% for sample sizes of 25 and 50.

Behaviour was quite different when the original data was
grouped (Fig. 1b). Now the six TB tests produced good con-
trol of type I error rates across all sample sizes. The standard
Rao and Gini tests, however, had type I error rates close to the
nominal level only for the three lowest sample sizes consid-
ered. After that they rose steeply, being close to twice the
expected level for n = 25 and rising above 50% for n = 50.
The type I error rate also climbed with sample size for the
other standard tests with the notable exceptions of the
Rayleigh and chi-squared tests. Indeed, the standard version
of the Rayleigh test and the chi-squared test retains good con-
trol of type I error rate for all sample sizes considered. The
underlying issue for most standard tests is that rounding can
produce identical values, something that occurs with an in-
creasing probability as sample size increases. Such identical
values are treated by these tests as highly unlikely under the
null hypothesis of uniformity.

Because of this separation in type I error rates, we com-
pared the power performance within the group of six standard
tests (applied to continuous data) and the separate group of
five TB tests, Rayleigh test and the chi-squared test (applied to
grouped data). For unimodal continuous data following a von
Mises distribution, Rayleigh, Watson, Kuiper and HR tests
offered broadly similar performance, with the Gini test being
substantially less powerful but slightly more powerful than the
Rao spacing test (Fig. 2a). Turning to grouped data for the
same type of distribution, we saw a comparable relative per-
formance of the TB tests—with Rayleigh, Watson, Kuiper
and HR offering the best power, the chi-squared test offering
a little less power, the Gini test being substantially less pow-
erful and the Rao spacing test being a little less powerful again
(Fig. 2b). We observed, in general, slightly lower power for

grouped data using the TB tests (as would be expected, since
the type I error rate is controlled for), but this reduction was
relatively modest (particularly for the Watson, Kuiper and HR
tests). The same qualitative trends were seen for data drawn
from a skew normal distribution (Fig. 2c, d).Wrapped Cauchy
and wrapped normal distributions revealed similar results,
with the chi-squared test performing even worse, in the case
of grouped data (Online Resource 1: Fig. A1 A-D).
Interestingly, in the case of the wrapped stable distribution,
the Rayleigh test was outperformed by Watson, Kuiper and
HR tests and performed similarly to the chi-squared test on
grouped data, while the Rao and Gini tests again performed
poorly (Online Resource 1: Fig. A1 E, F). The cardioid and
triangular distributions revealed almost identical results,
which followed the general trend of the von Mises distribu-
tion. However, the power difference between the four tests
with good performance (Rayleigh, Watson, Kuiper and HR
test) and the less powerful tests (Rao, Gini and chi-squared
test) was more pronounced for these distributions (Online
Resource 1: Fig. A2 A-D). Interestingly, the Kato-Jones dis-
tribution showed low power for most tests, with HR, Watson
and Kuiper tests outperforming the Rayleigh, Gini and Rao
tests. In this distribution, the chi-squared test had slightly
higher power than the Rayleigh test (Online Resource 1: Fig.
A2 E, F).

Considering the relative performance of the six standard
tests against a symmetric bimodal deviation, the Rayleigh test
performed exceptionally poorly. The Rayleigh test is known
to perform poorly for alternative distributions with mean re-
sultant length equal to 0 (Mardia and Jupp 2000). This is
because the Rayleigh test statistic is based on the mean resul-
tant length of the data, and the mean resultant length for data
from a symmetric multimodal distribution will be near 0, just
as data from a uniform distribution would be. Hence, the
Rayleigh test will not be able to discern between data from a
uniform versus a symmetric multimodal distribution. Previous
simulations by Landler et al. (2018) confirmed this. The other
five tests had relatively similar performance with HR being
generally best, followed by Gini and Rao, again having slight-
ly lower power, and the Watson and Kuiper tests having sub-
stantially lower power (Fig. 3a).We saw essentially analogous
performances from the corresponding four TB tests (Fig. 3b).
There was only a very slight reduction in power as a result of
grouping. Also the chi-squared test performed poorly, similar-
ly to the Watson and Kuiper tests (Fig. 3b).

We also considered a trimodal deviation from uniformity
for standard tests and continuous data and TB tests and
grouped data, respectively. We found in both cases that the
Rayleigh test offers no useful power. However, unlike the
bimodal case, in the trimodal situation, the two methods based
on spacings (Rao and Gini) comfortably outperformed the HR
test, with the Rao spacing test very slightly outperforming the
Gini test. The Watson and Kuiper tests were intermediate in
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their power between the Gini and HR tests. The chi-squared
test showed good performance for this distribution in the case
of grouped data, offering power intermediate between the Gini
and Kuiper tests (Fig. 3c, d).

In the case of asymmetric bimodal distributions, test per-
formances were similar amongst tests, with the exception of
slightly reduced power of the Rayleigh and lower power of the
chi-squared test, for grouped data (Online Resource 1: Fig. A3
A, B). The results changed when using an asymmetric

trimodal distribution, the two most powerful tests were Gini
and Rao, while all other tests show relatively poor perfor-
mance, with the Rayleigh test being the least powerful
(Online Resource 1: Fig. A3 C, D).

Finally, we tested a real-life example dataset of homing
pigeon vanishing bearings explored by Tung and
Jammalamadaka (2013). The application of the seven tests
provided the following p values for standard (and, if available,
TB) versions of the tests: Rayleigh 0.555, Watson p > 0.1

a

b

Fig. 1 Type I error of the analysed tests on continuous and grouped
uniform data. (a) The original Rayleigh, Rao, Gini, Kuiper, Watson and
HR tests showed nominal type I error rates (5% indicated by the dashed
line) when tested against continuous uniform distributions. However, the
modified versions (TB, modified for a grouping of 10°) showed a

decreasing type I error with an increasing sample size. (b) In contrast,
when tested against a uniform distribution with grouped data (to the
nearest 10°), the original test versions, with the exception of the Rayleigh
and chi-squared tests, showed inflated type I error with increasing sample
sizes, compared with the modified version control type I error rates
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(0.138), Kuiper p > 0.15 (0.162), Rao 0.1 > p > 0.05 (0.0685),
Gini 0.044 (0.048), HR 0.0034 (0.0039) and chi-squared
0.046. The anomalous performance of the Rayleigh test is
not surprising given the apparent bimodal distribution of the
data. The p value of the HR test was much below 0.05, the
Gini and chi-squared tests were just below 0.05, the Rao spac-
ing test was just slightly above 0.05 and the Watson and
Kuiper tests considerably above 0.05—this is very much in
line with the suggestion in Fig. 3 about the relative power of
these tests to detect bimodal departures from uniformity. In
this case, there was little difference between the p values sug-
gested by the standard and TB versions of each test—likely
because there was only one pair of tied values in the dataset.

Discussion

Based on our simulations, we can refine previous guidance on
testing the null hypothesis of uniformity with circular data.
First, we consider continuous data. We note that in line with
previous work (e.g. Landler et al. 2018), where expected de-
viations are unimodal, the Rayleigh test may be the most at-
tractive option (although theWatson, Kuiper and HR tests can
be used with only slight power loss). The HR test remains the
most attractive option if the expected deviation is bimodal. For
more complex deviations, the two tests based on spacings
(Rao and Gini) might be more attractive. Of these, we would
recommend the Rao spacing test (but only if the data is really

a b

c d

Fig. 2 Power of the analysed tests on continuous and grouped unimodal
data. Each of the original Rayleigh, Rao, Gini, Kuiper, Watson and HR
tests (a) showed similar power levels compared to the modified version of
the same test (b) when tested against continuous von Mises distributions,

with the Rayleigh test being the most powerful test. Similarly, in the case
of the skew normal distribution, the power levels of the original test
versions (c) were comparable to the modified versions (d). However, in
this case, both Rayleigh and HR tests gave almost identical results
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continuous, see Landler et al. 2019). The Rao spacing test has
the benefit of greater familiarity than the more recently pro-
posed Gini test. Further, we could not find any circumstances
where the Gini test offered substantially greater power.

Turning to grouped data, we would recommend that when
data is grouped, researchers use the standard Rayleigh test or
switch to a TB version of their test of choice as a means of
preserving control of type I error rate without substantial loss
of power. This switch is essential for spacing-based tests for
all but the smallest sample sizes (for N > 20 as a rule of
thumb). For the Watson, Kuiper and HR tests, it may be safe
to use the standard tests for medium-sized samples, but there
is no drawback to using the TB versions of these tests routine-
ly for grouped data. Hence, we would recommend the routine
use of TB versions of such tests, no matter the test or sample

size, whenever data is grouped. We provide R code for these
methods in the supplement of this article (Online Resource 2).
Our recommendations for choice of (TB modified) test for
grouped data mirrors our advice above on selecting a test for
continuously distributed data. Finally, we cannot recommend
using the chi-squared test, as it performed poorly in compar-
ison to specific circular statistic tests. Further, the chi-squared
test requires a minimal frequency of expected data points in
each bin (recommended n ≥ 4, Batschelet 1981), a condition
which is difficult to meet with small sample sizes, in particular
when the data points are clustered.

Our analysis suggests that the issue of uncontrolled in-
crease of type I error with aggregated data is common and
widespread. We have highlighted the need for caution when
applying aggregated data to statistical tests designed for

a b

c d

Fig. 3 Power of the analysed tests on continuous and grouped
multimodal data. Again, the original (a) and modified version (b) of the
same test showed similar power, when tested against a bimodal vonMises
distribution, with the HR test being the most powerful test. In the case of

trimodal distributions, the power levels of the original test versions (c)
also were comparable to the modified versions (d). However, in this case,
the Rao and Gini tests outperformed the other alternative tests
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continuously distributed circular data in the context of testing
a single sample for uniformity, the most commonly applied
statistical procedure on circular data. Pending further research,
we would recommend that the method suggested here—tie-
breaking through addition of small perturbations followed by
evaluation by simulation—should be effective in any statisti-
cal procedure involving aggregated circular data.
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