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S1.	Sample	preparation	and	equilibrium	optical	properties	

	
Single	crystals	of	k-(BEDT-TTF)2Cu[N(CN)2]Br	with	typical	dimensions	of	0.5 × 0.3 ×

0.5	mm!	 were	 synthesized	 by	 electro-crystallization,	 following	 the	 procedure	

described	in	Refs.	1	&	2.	The	(ac)-axes	define	the	highly	conducting	plane,	while	the	b-

axis	is	normal	to	that	plane.	The	equilibrium	superconducting	transition	at	𝑇" ≃	12.5	K	

was	characterized	with	resistivity	measurements1,2.	

The	terminal	ethylene	groups	of	the	BEDT-TTF	molecule	(henceforth	abbreviated	ET)	

in	this	compound	undergo	an	ordering	transition,	at	about	80	K.	To	ensure	minimum	

disorder	 of	 the	 ethylene	 groups,	 in	 all	 of	 our	 experiments	 the	 samples	were	 cooled	

down	at	the	same	low	rate	of	~150	mK/min	below	160	K1,2.	

The	 k-(ET)2Cu[N(CN)2]Br	 equilibrium	 optical	 properties	 were	 measured	 using	 a	

Bruker	Vertex	80v	interferometer.	The	sample	was	mounted	on	the	tip	of	a	cone-shaped	

holder,	with	the	in-plane	crystal	surface	exposed	to	the	beam.	The	holder	was	installed	

on	 the	cold	 finger	of	a	He-flow	cryostat,	 thus	enabling	 to	collect	broadband	 infrared	

spectra	 in	 reflection	 geometry	 at	 different	 temperatures.	 These	 spectra	 were	 then	

referenced	against	a	thin	gold	film	evaporated	in-situ	on	the	same	sample	surface.	

The	reflectivity	curves	obtained	with	this	procedure,	covering	a	range	between	~25	–	

5000	 cm-1,	 were	 extrapolated	 to	𝜔 → 0	 with	 Drude	 fits	 (see	 also	 Section	 S3),	 and	

extended	 to	 higher	 frequencies	 with	 literature	 data3,4.	 This	 allowed	 us	 to	 perform	

Kramers-Kronig	transformations	and	retrieve	full	sets	of	in-plane	equilibrium	response	

functions	to	be	used	as	reference	in	our	pump-probe	experiment.	

Examples	of	selected	reflectivity	and	complex	optical	conductivity	spectra	are	reported	

in	 Fig.	 S1.	 As	 discussed	 in	 the	 main	 text,	 the	 normal	 state	 equilibrium	 response	 is	

characterized	by	a	metallic	Drude	peak	(see	Fig.	S1b)	for	temperatures	below	𝑇∗ ≃	50	

K,	while	the	spectra	at	higher	temperatures	are	those	of	a	“bad	metal”,	characterized	by	

a	non-zero	low-frequency	conductivity,	in	absence	of	a	Drude	peak	(see	also	Ref.	3).	

We	 did	 not	 observe	 any	 change	 in	 the	 optical	 spectra	 across	 the	 superconducting	

transition	 temperature	 𝑇" = 12.5	K.	 The	 absence	 of	 a	 clear	 optical	 gap	 in	 the	

superconducting	κ-(ET)2X	compounds	has	already	been	reported	in	the	past5-8.	



 

 
 

3	

	
	

Fig.	 S1.	 Equilibrium	 in-plane	 reflectivity	 (a),	 real	 (b),	 and	 imaginary	 part	 (c)	 of	 the	 optical	
conductivity	 of	 k-(ET)2Cu[N(CN)2]Br,	 measured	 at	 different	 temperatures	 following	 the	
procedure	described	in	the	text.	
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S2.	Determination	of	the	transient	optical	properties	
	

In	a	series	of	mid-infrared	pump	/	THz	probe	experiments,	we	investigated	different	k-

(ET)2Cu[N(CN)2]Br	single	crystals.	Each	of	them	was	glued	on	the	top	of	a	cone-shaped	

sample	holder,	exposing	a	crystal	face	which	contained	both	an	in-plane	and	an	out-of-

plane	 axis	 (with	 ~0.5	mm	 and	 ~0.3	mm	 dimension,	 respectively).	 The	 holder	 was	

installed	 on	 the	 cold	 finger	 of	 a	 He-flow	 cryostat	 for	 temperature	 dependent	

measurements.	

k-(ET)2Cu[N(CN)2]Br	was	photo-excited	with	~100	fs	long	mid-infrared	pulses,	tuned	

to	different	wavelengths	(𝜆$%&$ ≃ 11	µm,	8	µm,	6.8	µm,	5	µm),	 some	of	which	were	

resonant	with	local	vibrational	modes	of	the	ET	molecules.	These	pump	pulses	were	

generated	by	difference	frequency	mixing	of	the	signal	and	idler	outputs	of	an	optical	

parametric	amplifier	(OPA)	in	a	0.5	mm	thick	GaSe	crystal.	The	OPA	was	pumped	with	

~100	 fs	 long	pulses	 from	a	 commercial	Ti:Sapphire	 regenerative	 amplifier	 (800-nm	

wavelength).		

The	pump	pulses	were	focused	onto	the	sample	surface,	with	their	polarization	aligned	

along	the	out-of-plane	axis.	The	typical	pump	spot	size	was	~0.5	mm,	allowing	for	a	full	

illumination	of	the	crystal	surface.	A	maximum	fluence	of	~4	mJ/cm2	could	be	achieved,	

corresponding	to	a	peak	electric	field	of	~4	MV/cm.	

The	 transient	 reflectivity	 changes	 after	 photo-excitation	 were	 determined	 via	 time-

domain	THz	spectroscopy	in	two	different	experimental	setups.	Single-cycle	THz	pulses	

were	generated	either	in	1-mm	thick	ZnTe	or	in	0.2-mm	thick	GaP,	using	100-fs	and	30-

fs	 long	 800	 nm	 pulses,	 respectively.	 These	 probe	 pulses	 were	 focused	 at	 normal	

incidence	onto	the	sample	surface	on	a	spot	of	≲	0.3	mm	diameter.	Their	polarization	

was	set	along	the	in-plane	direction,	and	their	electric	field	profile	was	measured,	after	

reflection,	via	electro-optic	sampling	in	nonlinear	crystals	identical	to	those	used	for	THz	

generation	 (i.e.,	 1-mm	 thick	 ZnTe	 and	 0.2-mm	 thick	 GaP).	 The	 ZnTe	 based	 setup	

produced	a	 spectral	bandwidth	extending	 from	~25	 to	70	 cm-1,	while	 the	GaP	based	

setup	covered	the	range	from	~40	to	230	cm-1.		

In	order	to	minimize	the	effects	on	the	pump-probe	time	resolution	due	to	the	finite	

duration	of	the	THz	probe	pulse,	we	performed	the	experiment	as	described	in	Ref.	9.	

The	 transient	 reflected	 field	 at	 each	 time	 delay	 𝜏	 after	 excitation	 was	 obtained	 by	
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keeping	fixed	the	delay	𝜏	between	the	pump	pulse	and	the	electro-optic	sampling	gate	

pulse,	while	scanning	the	delay	t	of	the	single-cycle	THz	probe	pulse.	

The	 stationary	 probe	 electric	 field	𝐸'(𝑡)	 and	 the	 differential	 electric	 field	∆𝐸'(𝑡, 𝜏)	

reflected	from	the	sample	were	recorded	simultaneously	by	feeding	the	electro-optic	

sampling	signal	into	two	lock-in	amplifiers	and	mechanically	chopping	the	pump	and	

probe	 beams	 at	 different	 frequencies.	𝐸'(𝑡)	 and	∆𝐸'(𝑡, 𝜏)	were	 then	 independently	

Fourier	transformed	to	obtain	the	complex-valued,	frequency-dependent	 	𝐸;'(𝜔)	and	

∆𝐸;'(𝜔, 𝜏).	The	photo-excited	complex	reflection	coefficient		r=(𝜔, 𝜏)	was	determined	by		

	

∆𝐸;'(𝜔, 𝜏)
𝐸;'(𝜔)

=
r=(𝜔, 𝜏) − r=((𝜔)

r=((𝜔)
	,		

where	r=((𝜔)	is	the	stationary	reflection	coefficient	known	from	the	equilibrium	optical	

response	(see	Section	S1).	

As	the	penetration	depth	of	the	excitation	pulses	was	typically	larger	than	that	of	the	

THz	probe	pulses	(with	the	only	exception	of	the	6.8	µm	pump	experiment,	see	Figure	

S2),	 the	 THz	 probe	 pulse	 sampled	 a	 homogeneously	 excited	 volume.	 The	 transient	

optical	properties	could	then	be	extracted	directly,	without	the	need	to	consider	any	

pump-probe	penetration	depth	mismatch	in	the	data	analysis.	

	
Fig.	 S2.	 Field	 penetration	 depth,	 𝑑(𝜔) = !

"∙$%['(!(")]
	 (here	 𝑛',(𝜔)	 is	 the	 stationary	 complex	

refractive	 index),	 calculated	 from	 the	 in-plane	 equilibrium	 optical	 properties	 of	 k-
(ET)2Cu[N(CN)2]Br	 (see	 Fig.	 S1),	 at	 selected	 temperatures.	 Data	 are	 displayed	 over	 the	
frequency	 range	 covered	 by	 our	 THz	 probe	 pulses.	 Arrows	 on	 the	 right	 axis	 indicate	 the	
corresponding	 out-of-plane	 pump	 penetration	 depth	 values	 for	 two	 selected	 excitation	
frequencies,	extracted	from	the	data	in	Ref.	10.	
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In	 this	case,	 the	complex	refractive	 index	of	 the	photo-excited	material,	𝑛=(𝜔, 𝜏),	was	

directly	retrieved	from	the	Fresnel	relation:	

𝑛=(𝜔, 𝜏) =
r=(𝜔, 𝜏) − 1
r=(𝜔, 𝜏) + 1	,	

and	 from	 this,	 the	 transient	 complex	 optical	 conductivity,	 	𝜎=(𝜔, 𝜏) = 	 )
*+,

[𝑛=(𝜔, 𝜏)- −

𝜀.].	

For	 the	 limited	 set	 of	 data	 that	 required	 a	 pump-probe	 penetration	 depth	 analysis	

(𝜆$%&$ = 6.8	µm,	𝑇 ≥ 50	K),	we	followed	the	procedure	described	in	Refs.	11	&	12.	We	

treated	 the	 photo-excited	 surface	 as	 a	 stack	 of	 thin	 layers	 with	 a	 homogeneous	

refractive	 index	 and	 described	 the	 excitation	 profile	 by	 an	 exponential	 decay.	 By	

numerically	 solving	 the	 coupled	 Fresnel	 equations	 of	 such	 multi-layer	 system,	 the	

refractive	 index	 at	 the	 surface	 could	 be	 retrieved,	 and	 from	 this	 the	 complex	

conductivity	for	a	homogeneously	transformed	volume.		

Importantly,	this	renormalization	only	affected	the	size	of	the	response,	whereas	the	

qualitative	changes	in	optical	properties	were	independent	of	it	and	the	specific	model	

chosen12.		
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S3.	Data	analysis	and	fitting	models	
	

The	in-plane	equilibrium	optical	properties	of	k-(ET)2Cu[N(CN)2]Br	were	fitted	at	all	

measured	 𝑇 > 𝑇" 	 with	 a	 Drude-Lorentz	 model,	 for	 which	 the	 complex	 optical	

conductivity	is	expressed	as:	

𝜎=/0(𝜔) =
𝜔$-

4𝜋
1

𝛾/ − 𝑖𝜔
+M

Ω$,,-

4𝜋
𝜔

𝑖OΩ(,,- − 𝜔-P + Γ,𝜔,

	.	 (S3.1)	

	

Here,	𝜔$	and	𝛾/	are	the	Drude	plasma	frequency	and	momentum	relaxation	rate,	while	

Ω(,, , Ω$,, ,	and	Γ, 	are	the	peak	frequency,	plasma	frequency,	and	damping	coefficient	of	

the	i-th	oscillator,	respectively.	

The	same	Drude-Lorentz	model	was	also	employed	to	fit	the	transient	optical	spectra	

after	 photo-excitation.	 Here,	 all	 parameters	 related	 to	 the	 oscillators	 at	 frequencies	

outside	 the	 measurement	 range	 were	 kept	 fixed	 to	 the	 values	 determined	 at	

equilibrium,	while	the	lowest	frequency	oscillator	and	the	Drude	term	were	left	free	to	

vary.	Importantly,	for	each	data	set,	the	same	parameters	were	used	to	simultaneously	

fit	the	reflectivity,	the	real	part	of	the	optical	conductivity,	as	well	as	its	imaginary	part.	

As	shown,	for	example,	in	Fig.	3	&	Fig.	6	of	the	main	text,	this	Drude-Lorentz	model	is	

able	to	fully	reproduce	the	experimental	data	for	the	temperatures	and	time	delays	that	

show	a	metallic	behavior	and	no	signature	of	a	superconducting-like	response.	

In	addition,	the	transient	superconducting-like	response	of	k-(ET)2Cu[N(CN)2]Br	could	

also	be	captured	(see	fits	in	Fig.	6	of	main	text)	by	the	simple	𝛾/ → 0	limit	of	Eq.	S3.1,	

	

𝜎=/0(𝜔, 𝛾/ → 0) =
𝜋
2
𝑁2𝑒-

𝑚 𝛿[𝜔 = 0] + 𝑖
𝑁2𝑒-

𝑚
1
𝜔 +M

Ω$,,-

4𝜋
𝜔

𝑖OΩ(,,- − 𝜔-P + Γ,𝜔,

.	 (S3.2)	

	

Here	𝑁2,	 𝑒,	 and	𝑚	 are	 the	 superfluid	 density,	 electron	 charge,	 and	 electron	 mass,	

respectively.		

That	said,	the	Drude-Lorentz	model	of	Eq.	S3.1	could	be	applied	to	all	transient	optical	

spectra	 reported	 in	 this	 work,	 without	 any	 assumption	 on	 the	 nature	 of	 the	 non-

equilibrium	 state	 (see	 also	 Ref.	 13).	 The	 zero-frequency	 limit	 𝜎( = lim
)→(

𝜎=/0(𝜔)	

extracted	from	these	fits	(see	Fig.	5	&	Fig.	6	of	main	text),	which	is	a	finite	quantity	in	a	
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metal	 and	 diverges	 in	 a	 “perfect	 conductor”,	 was	 used	 as	 a	 discriminator	 for	 the	

presence	of	transient	superconductivity13.	

Additional	fitting	of	the	superconducting-like	optical	properties	was	performed	with	an	

extension	 of	 the	 Mattis-Bardeen	 model	 for	 superconductors	 of	 variable	 purity14,15,	

which	is	typically	used	to	describe	the	response	of	superconductors	at	equilibrium,	for	

finite	 frequencies	 and	 temperatures.	 Fit	 curves	 extracted	 with	 this	 procedure	 are	

reported,	for	example,	in	Fig.	3	of	the	main	text.	The	corresponding	values	of	the	optical	

gap,	2∆(𝑇),	are	shown	in	Fig.	4a.		

In	addition,	in	Figures	4b	&	5b	we	display	the	temperature	and	time-delay	dependence	

of	 the	 transient	superfluid	density.	This	quantity	can	either	be	determined	 from	the	

low-frequency	 divergence	 in	 the	 imaginary	 conductivity,	 as	 𝑁4556789: =
&;!"##
4$

𝑙𝑖𝑚
)→(

[𝜔𝜎-6789:(𝜔)]	or,	alternatively,	via	the	integrated	spectral	weight	loss	over	the	

optical	gap,	as	𝑁4556789: ∝ ∫[𝜎<
=>%,?(𝜔) − 𝜎<6789:(𝜔)\ 𝑑𝜔	(see	Fig.	5a	of	main	text).		

We	used	this	latter	expression	to	estimate	the	experimental	uncertainty	on	𝑁4556789:.	Its	

value	depends,	in	fact,	on	how	𝜎<6789:(𝜔)	is	extrapolated	below	the	measured	spectral	

range	(𝜔 ≲	40	cm-1).	Two	cases	can	be	considered:	one	where	𝜎<6789:(𝜔)	is	completely	

gapped	down	to	𝜔 = 0,	and	another	one	in	which	no	spectral	weight	is	lost	below	𝜔 ≃	

40	cm-1	(i.e.,	𝜎<6789:(𝜔 < 	40	cm@<) = 𝜎<
=>%,?(𝜔 < 	40	cm@<)).	If	we	extract	these	values	

at	the	peak	of	the	pump-probe	response	in	Fig.	5a	(~1	ps	time	delay),	we	obtain	in	the	

former	 case	 ∼ 1.12 ∙ 10A	Ω@<cm@-	 and	 in	 the	 latter	 ∼ 0.91 ∙ 10A	Ω@<cm@-.	 This	

corresponds	to	a	~20%	uncertainty	in	the	transient	superfluid	density.	

Regardless	of	the	above,	we	stress	here	that	our	analysis	and	interpretation	does	not	

rely	on	 the	absolute	value	of	 this	quantity.	Rather,	we	 consider	how	 it	 evolves	with	

decreasing	temperature	vis-à-vis	the	equilibrium	concentration	of	normal	carriers	and	

discover	that	both	follow	the	same	temperature	dependence.	
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S4.	Extended	data	sets	
	

We	 report	 here	 a	 comparison	 of	 transient	 optical	 spectra	 taken	 under	 the	 same	

conditions	(temperature,	excitation	wavelength	and	fluence,	pump-probe	time	delay)	

on	 three	 different	 k-(ET)2Cu[N(CN)2]Br	 crystals	 coming	 from	 the	 same	 batch	 of	

samples.		

These	data,	measured	at	𝑇 = 30	K,	are	reported	in	Fig.	S4.	Therein,	we	show	how,	aside	

from	 small	 differences,	 the	 non-equilibrium	 response	 appears	 to	 be	 sample	

independent,	 and	all	 signatures	of	 transient,	photo-induced	superconductivity,	 i.e.,	 a	

reflectivity	 equal	 to	 1,	 a	 gap	 in	 𝜎<(𝜔),	 and	 a	~1/𝜔	 divergence	 in	 𝜎-(𝜔),	 are	 fully	

preserved.		

	

	
Fig.	S4.	In-plane	reflectivity,	real,	and	imaginary	part	of	the	optical	conductivity,	measured	at	
𝑇 = 30	K	under	the	very	same	excitation	conditions	(𝜐-./- = 1250	cm-1,	~2	mJ/cm2	fluence)	
on	 three	 different	 k-(ET)2Cu[N(CN)2]Br	 crystals,	 at	 𝜏 = 1	ps	 pump-probe	 time	 delay	 (blue,	
green,	and	purple	circles).	Red	data	points	are	the	spectra	measured	at	equilibrium.		
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S5.	Pump	fluence	dependence	
	

In	Figure	S5	we	show	pump	fluence	dependent	data.	In	analogy	with	Fig.	4	of	the	main	

text,	 we	 plot	 the	 non-equilibrium	 “superfluid	 density”,	 determined	 from	 the	 low-

frequency	 extrapolation	 of	 the	 transient	 imaginary	 conductivity	 as	 𝑁4556789: =
&;!"##
4$

𝑙𝑖𝑚
)→(

[𝜔𝜎-6789:(𝜔)],	where	m	is	the	bare	electron	mass,	𝑉"4?? 	the	unit	cell	volume,	

and	𝑒	 the	 electron	 charge.	 This	 effective	 number	 of	 “condensed”	 carriers	 displays	 a	

monotonic	increase	with	increasing	excitation	strength,	with	signatures	of	a	saturation	

for	fluences	above	~2	mJ/cm2.		

The	saturation	seems	to	occur	for	a	value	of	𝑁4556789:	that	approaches	the	equilibrium	

quasi-particle	 density,	 𝑁455
=>%,?=	 &;!"##

*+4$
O𝜔B

=>%,?P
-
,	 which	 we	 show	 for	 reference	 as	 a	

horizontal	 dashed	 line	 (here	 𝜔B
=>%,? 	 is	 the	 equilibrium	 carrier	 plasma	 frequency	

extracted	from	Drude-Lorentz	fits).	

This	observation,	combined	with	the	temperature	dependent	data	of	Fig.	4b	of	the	main	

text,	is	suggestive	of	an	intimate	connection	between	the	photo-excited	carriers	in	the	

transient	superconducting	state	and	pre-existing	quasiparticles	at	equilibrium.	

		

	
Fig.	S5.	Pump	fluence	dependence	of	the	effective	number	of	“condensed”	carriers	per	unit	cell	
in	the	transient	state,	𝑁233456'7	(blue	circles),	shown	along	with	the	effective	number	of	mobile	

carriers	 in	 the	equilibrium	metallic	 state	before	photo-excitation,	𝑁233
89.:; 	 (horizontal	dashed	

line,	 see	 discussion	 in	 the	 text).	 These	 data	 have	 been	 taken	 upon	 1250	cm-1	 excitation	 at	
T	=	50	K.	
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S6.	Calculation	of	the	effective	Hubbard	parameters	
	

Geometry	optimization	

	

We	performed	a	 geometry	optimization	of	 the	 crystal	 structure	 for	κ-Br	 in	order	 to	

obtain	 relaxed	 atomic	 coordinates.	 This	 was	 achieved	 using	 the	 density	 functional	

theory	code	Quantum	ESPRESSO16,17	 starting	 from	the	x-ray	crystallographic	data	of	

Ref.	18.	We	used	the	PBE	functional	complemented	by	the	Grimm	D2	van	der	Waals	

correction,	norm-conserving	pseudopotentials,	a	2 × 1 × 3	momentum	grid,	an	energy	

cutoff	of	1224	eV,	and	a	finite-temperature	smearing	of	10	meV.	Forces	were	optimized	

to	be	smaller	 than	10-4	Ha/Bohr.	We	obtained	relaxed	 lattice	constants	of	12.816	Å,	

29.608	Å,	and	8.493	Å,	for	the	a,	b,	and	c	crystallographic	directions,	respectively.	These	

values	are	in	excellent	agreement	with	reported	measured	values18,19.	

	

Phonon	mode	calculations	

	

We	computed	the	phonon	modes	of	the	isolated	ET	dimer	and	constructed	the	Bu	modes	

by	applying	the	corresponding	symmetries20.	These	Bu	modes	are	the	infrared-active	

modes	with	dipole	along	the	out-of-plane	b	direction.	We	obtained	the	eigenvectors	of	

the	dynamical	matrix	from	Quantum	ESPRESSO,	using	the	same	parameters	and	cell	as	

for	the	geometry	optimization	of	the	full	κ-Br	crystal.		

Figure	S6.1	shows	examples	of	eigenvectors	for	two	modes	with	frequencies	close	to	

the	experimental	excitation	conditions.	While	the	10.7	µm	vibration	(terminal	ethylene	

mode)	involves	motions	of	the	ethylene	groups	at	the	ends	of	each	ET	molecule,	the	6.8	

µm	mode	(C=C	stretching	mode)	acts	almost	exclusively	on	the	C	atoms.	
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Fig.	S6.1.	Calculated	Bu	phonon	mode	eigenvectors	corresponding	to	excitation	wavelengths	
considered	in	this	work.	Here,	the	modes	are	displayed	only	for	a	single	ET	molecule.		

	

Extraction	of	ground-state	Hubbard	model	parameters		

	

The	effective	electronic	parameters	of	the	weak-bond	triangular	lattice	Hubbard	model	

were	obtained	following	the	approach	proposed	in	Ref.	21.	To	this	end	we	computed	

the	 ground	 state	 and	 corresponding	band	 structure	using	 the	Octopus	 code22,23.	We	

employed	 the	 same	 norm-conserving	 pseudopotentials,	 PBE	 functional,	 and	 k-point	

grid	as	for	the	geometry	optimization.	The	real-space	grid	was	sampled	with	a	spacing	

of	0.3	Bohr.	The	resulting	band	structure	(Fig.	S6.2)	was	fitted	by	a	tight-binding	model	

for	8	ET	sites,	leading	to	four	parameters	(𝑡< − 𝑡*),	and	fixing	the	electronic	occupation	

to	3/4	filling24.	From	these	fits,	we	extracted	the	effective	parameters	𝑈,	𝑡,	and	𝑡C	of	the	

single	 band	 Hubbard	model21,24	 involving	 only	 the	 electronic	 band	 that	 crosses	 the	

Fermi	level	in	Fig.	S6.2.		

	

𝐻 = M 𝑡O𝑐,D
E 𝑐FD + 𝐻. 𝑐. P

G,FH,D

+ M 𝑡′O𝑐,D
E 𝑐FD + 𝐻. 𝑐. P + 𝑈M(𝑛,↑ −

1
2)(𝑛,↓ −

1
2)

,[,F],D

	

	

Note	that	the	single-band	Hubbard	model	is	half-filled	for	the	¾-filled	two-band	tight-

binding	model.		

a b

C=C stretching mode Terminal Ethylene mode



 

 
 

13	

	
Fig.	S6.2.	Ground-state	band	structure	of	κ-Br	calculated	at	the	PBE	level	and	tight-binding	fit.	

	

For	 κ-Br,	 the	 Cu	 3d	 bands	 overlap	 with	 the	 ET	 molecule	 bands,	 complicating	 the	

extraction	of	the	tight-binding	parameters,	as	noted	in	Ref.	21,25.	As	DFT	with	semi-

local	 functionals	suffers	from	the	so-called	delocalization	problem,	and	3d	transition	

metal	bands	are	not	well-described,	we	 included	a	Hubbard	𝑈	 of	7	eV	on	 the	Cu	3d	

orbitals,	which	has	the	effect	of	improving	the	description	of	the	electronic	structure	

and	it	also	shifts	down	the	Cu	3d	bands,	thus	making	the	fitting	procedure	more	robust.		

For	 the	 equilibrium,	 undistorted	 structure,	 we	 obtained	 values	 of	 𝑈 𝑡⁄ = 4.73	 and	

𝑡C 𝑡⁄ = 0.24.	The	𝑈 𝑡⁄ 	value	is	comparable	to	that	reported	in	Ref.	21,	but	𝑡C 𝑡⁄ 	comes	out	

smaller.	This	deviation	is	attributed	to	our	inclusion	of	the	van	der	Waals	corrections	

for	the	geometry	relaxation,	which	were	not	considered	in	Ref.	21.	The	van	der	Waals	

corrections	significantly	affect	the	volume	of	the	relaxed	crystal.	

	

Extraction	of	Hubbard	model	parameters	for	displaced	structures	

	

Starting	from	the	geometrically	relaxed	structure,	we	systematically	displaced	the	ions	

according	 to	 the	 phonon	 mode	 coordinates	 obtained	 in	 the	 calculations.	 For	 each	

displaced	 structure,	 we	 computed	 the	 adiabatic	 electronic	 ground	 state	 and	 band	

structure	in	the	frozen-phonon	approximation	using	the	Octopus	code	with	the	same	

technical	 parameters	 employed	 in	 the	 ground	 state	 calculation.	 We	 then	 followed	

exactly	the	same	steps	as	in	the	ground	state	case	to	perform	the	tight-binding	fits	and	
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finally	 extracted	 the	 effective	 Hubbard	 model	 parameters.	 Figure	 S6.3	 shows	 the	

resulting	modulations	of	𝑈,	𝑡,	and	the	ratios	𝑈 𝑡⁄ 	and	𝑡C 𝑡⁄ 	for	displacements	along	the	

Bu	mode	coordinates.	

	

	
Fig.	 S6.3.	 Hubbard	 model	 parameters	 as	 a	 function	 of	 mode	 displacement.	 (a)	 On-dimer	
Hubbard	interaction	𝑈,	(b)	strong	bond	hopping	integral,	𝑡,	(c)	ratio	𝑈 𝑡⁄ ,	and	(d)	t’/t.	In	each	
plot	 the	 lines	 represent	parabolic	 fits	 to	 the	data.	Structural	deformations	along	 the	normal	
coordinates	 of	 the	 C=C	 stretch	 induce	 strong,	 non-linear	 modifications	 of	 the	 electronic	
interaction	parameters	(green	lines	and	symbols).	By	contrast,	displacement	of	the	terminal	
ethylene	mode	does	not	induce	significant	changes	(purple	lines	and	symbols).	

	

	

	

	

	

	

a b

c d
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S7.	Driven	Hubbard	model	
	

The	geometry	of	the	triangular	Fermi-Hubbard	model	considered	here	is	shown	in	Fig.	

S7.1.	The	driven	Hamiltonian	is	given	by:	

𝐻(𝜏) = M 𝑡(𝜏)O𝑐,D
E 𝑐FD + 𝐻. 𝑐. P

G,FH,D

+ M 𝑡CO𝑐,D
E 𝑐FD + 𝐻. 𝑐. P + 𝑈(𝜏)Mk𝑛,↑ −

1
2l k𝑛,↓ −

1
2l ,

,[,F],D

	(𝑆7.1)	

where	𝜏	 denotes	 the	 time,	 𝑡	 is	 the	 nearest	 neighbout	 hopping	 element	 and	 𝑡′	 is	 the	

hopping	 element	 in	 the	 vertical	 direction.	 Following	 the	 frozen	 phonon	 simulations	

reported	 in	 Section	 S6,	 we	 assumed	 the	 on-site	 interaction	𝑈	 and	 the	 strong	 bond	

hopping	elements	𝑡	to	be	modulated	by	the	phonon	driving	as	follows:	

𝑈(𝜏) = 𝑈( ∗ o1 − 𝐴< sin-(Ω𝜏)𝑒
@(N@N%)

$

(-N&)$ s,		

																					𝑡(𝜏) = 𝑡( ∗ o1 − 𝐴- sin-(Ω𝜏)𝑒
@(N@N%)

$

(-N&)$ s.												(𝑆7.2)	

Here,	the	amplitudes	𝐴<	and	𝐴-	were	extracted	from	the	calculations	in	Section	S6,	the	

modulation	frequency	Ω	was	set	to	the	phonon	frequency,	while	the	parameters	𝜏P 	and		

𝜏(	control	the	duration	and	delay	of	the	sinusoidal	pulse.	We	assumed	that	the	vertical	

hopping	strength	𝑡’	remains	constant.		

	

Fig.	S7.1.	A	sketch	of	the	geometry	of	the	Hubbard	ladder	investigated	in	our	study.	Electrons	
can	hop	between	nearest	neighbour	sites	with	amplitude	𝑡,	and	vertically	with	amplitude	𝑡′.	
Two	electrons	occupying	the	same	site	experience	a	repulsion	U.	
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In	Fig.	S7.2	we	report	surface	plots	of	the	doublon	correlations	in	distance	and	time	for	

various	 system	 sizes.	 For	 sufficiently	 large	 systems	 we	 observe	 the	 emergence	 of	

uniform	 long-range	 doublon	 correlations	 which	 stabilise	 and	 persist	 over	 the	

simulation	 timescale.	The	 increase	 in	 long-range	correlation	strength	becomes	more	

pronounced	as	the	system	size	increases.	

Finally,	 in	 Fig.	 S7.3	we	 show	 the	 full	 time-dynamics	 of	 the	 doublon	 correlations	 for	

various	driving	strengths	and	a	fixed	system	size.	

The	matrix	product	calculations	used	to	produce	these	results	were	performed	using	

the	Tensor	Network	Library26.	The	system	was	initialised	in	its	ground	state	using	the	

Density	 Matrix	 Renormalisation	 Group	 algorithm27	 whilst	 the	 time	 evolution	 was	

performed	with	the	Time	Evolving	Block	Decimation	method28	on	the	resulting	initial	

state.	We	 used	 a	 second	 order	 Suzuki-Trotter	 decomposition	 of	 the	 time	 evolution	

operator	with	a	time-step	of	𝛿𝜏𝑡 = 𝜋Ω/50.	In	all	our	calculations	we	ensured	that	our	

results	remained	unchanged	upon	increasing	the	bond	dimension	from	the	specified	

value	in	the	figures.	
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Fig.	S7.2.	Doublon	Correlations	as	a	function	of	distance	(in	lattice	units)	and	time	(in	units	of	
ℎ 𝑡,⁄ )	 for	the	triangular	 ladder	Hubbard	model	described	by	the	Hamiltonian	in	Eq.	(1).	The	
four	panels	show	calculations	for	four	different	system	sizes	𝐿.	The	system	is	initialised	in	its	
ground	 state	 with	𝑈, 	= 	4.82	𝑡,, 𝑡′ = 	0.22𝑡,	 and	 half-filling.	 It	 was	 then	 allowed	 to	 evolve	
under	time-modulated	interaction	strengths	(see	Eq.	S7.2)	with	driving	parameters	𝜏, = 5.0𝑡,,	
𝜏< = 5.0𝑡,,	𝛺 = 2.27𝑡,, 𝐴= = 0.155	and	𝐴> = 0.07.	
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Fig.	S7.3.	Doublon	correlations	as	a	function	of	distance	(in	lattice	units)	and	time	(in	units	of	
ℎ 𝑡,⁄ )	for	the	26-site	triangular	ladder	Hubbard	model	described	by	the	Hamiltonian	in	Eq.	S7.1.	
The	 four	 panels	 show	 calculations	 for	 different	 driving	 amplitudes	𝐴=, 𝐴>.	 The	 system	was	
initialised	in	its	ground	state	with	𝑈, 	= 	4.73𝑡,, 𝑡′ = 	0.24𝑡,,	at	half	filling.	It	was	then	allowed	
to	 evolve	 under	 time-modulated	 interaction	 strengths	 (see	 Eq.	 S7.2)	 with	 driving	
parameters	𝜏, = 5.0𝑡,,	𝜏< = 5.0𝑡,,	𝛺 = 2.27𝑡,,	and	constant	ratio	𝐴= 𝐴>⁄ = 2.21.	
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