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ABSTRACT
Background. Bayesian analyses offer many benefits for phylogenetic, and have been
popular for analysis of amino acid alignments. It is necessary to specify a substitution
and site model for such analyses, and often an ad hoc, or likelihood based method is
employed for choosing these models that are typically of no interest to the analysis
overall.
Methods. We present a method called OBAMA that averages over substitution
models and site models, thus letting the data inform model choices and taking model
uncertainty into account. It uses trans-dimensional Markov Chain Monte Carlo
(MCMC) proposals to switch between various empirical substitutionmodels for amino
acids such as Dayhoff, WAG, and JTT. Furthermore, it switches base frequencies from
these substitution models or use base frequencies estimated based on the alignment.
Finally, it switches between using gamma rate heterogeneity or not, and between using
a proportion of invariable sites or not.
Results. We show that the model performs well in a simulation study. By using
appropriate priors, we demonstrate both proportion of invariable sites and the shape
parameter for gamma rate heterogeneity can be estimated. The OBAMAmethod allows
taking in account model uncertainty, thus reducing bias in phylogenetic estimates. The
method is implemented in the OBAMA package in BEAST 2, which is open source
licensed under LGPL and allows joint tree inference under a wide range of models.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies
Keywords Amino acid model, Protein model, Phylogenetics, Bayesian analysis, Statistical
phylogenetics, Substitution model, Site model, Bayesian model averaging, BEAST, Gamma rate
heterogeneity

INTRODUCTION
To perform a Bayesian phylogenetic analysis with amino acid alignments one needs to
define a site model. A site model consists of a substitution model defining the relative
rates of different classes of substitutions, a frequency model defining base frequencies
for the amino acids, whether there is rate heterogeneity across sites (often specified as
gamma distribution (Yang, 1994)) and whether a proportion of sites is invariable (Gu, Fu
& Li, 1995; Waddell & Penny, 1996). The site model is usually chosen ad hoc, or based on
a maximum likelihood analysis like ProtTest (Abascal, Zardoya & Posada, 2005; Darriba
et al., 2011), ModelFinder (Kalyaanamoorthy et al., 2017) or ModelTest-NG (Darriba et
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Table 1 Empirical substitutionmodels used in OBAMA.

Model name Reference

Blosum62 Henikoff & Henikoff (1992)
CpREV Adachi et al. (2000)
Dayhoff Dayhoff, Schwarz & Orcutt (1978)
DCMut Kosiol & Goldman (2005)
FLU Dang et al. (2010)
HIVb Nickle et al. (2007)
HIVw Nickle et al. (2007)
JTT Jones, Taylor & Thornton (1992)
LG Le & Gascuel (2008)
MtArt Abascal, Posada & Zardoya (2007)
MtMam Cao et al. (1998)
mtREV Adachi & Hasegawa (1996)
RtREV Dimmic et al. (2002)
VT Müller & Vingron (2000)
WAG Whelan & Goldman (2001)

al., 2020). As a consequence, model uncertainty is not taken into account in the analysis,
potentially leading to biased estimates, especially with smaller amounts of data.

For nucleotide alignments, a similar situation exists where it is popular to use
ModelTest/jModelTest (Posada & Crandall, 1998; Posada, 2008; Darriba et al., 2012) to
decide the substitution and site model. There are a number of methods allowing averaging
over nucleotide substitution models in a Bayesian setting (Bouckaert, Alvarado-Mora &
Rebello Pinho, 2013; Huelsenbeck, Larget & Alfaro, 2004; Wu, Suchard & Drummond, 2013)
and the bModelTest method (Bouckaert & Drummond, 2017) allows averaging site models.
For amino acid data, no such method has been developed so far.

Here, we present a new method that averages over site models where the substitution
model is one of the available empirical models. Furthermore, it allows switching between
base frequencies as specified by the empirical models listed in Table 1 and frequency
estimates based on the alignment. Like bModelTest, it allows averaging over having
homogenous rates for all sites or gamma distributed rate heterogeneity over sites (Yang,
1994) as well as averaging over having a proportion of invariable sites or not. The method
is called OBAMA for Bayesian AminoacidModel Averaging. If the phylogeny is the object
of interest in the analysis and the site model can be considered a nuisance parameter, the
OBAMA method handles site model uncertainty by averaging over all available models.
However, site model parameters estimates are produced from an analysis with this method
as well.

The method is implemented in the OBAMA package of BEAST 2 (Bouckaert et
al., 2014; Bouckaert et al., 2019) with GUI support for BEAUti making it easy to use
with multiple partitions. BEAST 2 offers a range of methods in conjunction with tree
estimates that can be used in combination with OBAMA, such as phylogeographical
reconstructions, inference using morphological characters, and a range of distributions
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describing tree generating processes such as (structured) coalescent and (fossilised)
birth/death processes. It is open source and available under LGPL licence. Source code,
installation instructions, guides for trouble shooting and documentation can be found at
https://github.com/rbouckaert/obama.

METHODS
Site model
We consider phylogenetic site models consisting of four parts:

• a symmetric rate matrix Q of size 20×20 specifying the rate of substitution among
amino acids. During the MCMC, we average over the 15 empirical substitution models
listed in Table 1, using a model indicator IM that identifies the model by an integer
number.
• a frequency model F specifying the base frequencies of the 20 amino acids. Empirical
models come with empirical frequencies, but we can also estimate them using MCMC.
• a model of rate variation over sites. We consider no variation at all (homogenous rates)
and gamma distributed heterogeneous rates using 4 categories (Yang, 1994) with gamma
shape parameter α estimated.
• the choice whether to include a category of invariable sites and estimate the proportion
of invariable sites pinv or not.

The rate matrix Q and frequency model F together specify a rate matrix R=Q×F
that determine a transition probability matrix P = eRt , which can be used to calculate the
likelihood of a tree given the alignment efficiently using Felsenstein’s pruning algorithm
(Felsenstein, 1981).

Prior
For the prior on frequencies, we collected all frequencies from the 15 empirical models,
and Fig. 1A shows a histogram of these 15×20= 300 frequencies. The range of frequencies
is from 0.006 to 0.169 with mean 0.050001. A Dirichlet prior is appropriate for a set of
variables that is constrained to sum to 1. Figure 1B shows a sample of 2000 cases from a
Dirichlet(4,4, . . . ,4), which has range for samples from 0.005 to 0.167 with mean 1/20=0.05,
and this statistic resembles the empirical distribution for frequencies.
For bModelTest (Bouckaert & Drummond, 2017), we observed some lack of identifiability
when both gamma rate heterogeneity and invariable sites were included in the true site
model used to simluate data. This was earlier observed formaximum likelihood estimates of
these parameters (p. 120, Yang (2014)). This phenomenon is particularly problematic when
the shape parameter α governing gamma rate heterogeneity is small and a large number
of invariable sites can be expected. To demonstrate this, Fig. 2 shows the probability of
observing an invariable site for the set of trees (from our simulation study described in
detail later) and substitution models with gamma rate heterogeneity using 4 categories,
but no invariable sites. This is calculated using Felsenstein’s algorithm as the probability
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Figure 1 (A) Distribution of empirical frequencies for models in Table 1. (B) Dirichlet(4,4, . . . ,4) dis-
tribution used as frequency prior which is the default for OBAMA that can be changed by the user.

Full-size DOI: 10.7717/peerj.9460/fig-1
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Figure 2 (A) Probability of a site being invariable under gamma rate heterogeneity models for the 100
trees used in the simulation study. On the x-axis the value of the shape parameter α for the gamma dis-
tribution, and on the y-axis the probability that an invariable site is observed under an empirical model
with gamma rate heterogeneity. Lower shape parameter values lead to higher proportion of invariable
sites. (B) Rate values for the four categories are a function of the shape parameter.

Full-size DOI: 10.7717/peerj.9460/fig-2

that each of the tips in a tree have exactly the same amino acid, summed over all 20 amino
acids.

When we look at how rates behave with small α and 4 categories (Fig. 2), we notice that
when α < 0.2 the slowest category has a rate less than 0.00015. This implies for a branch
of length 1 (i.e., where the expected number of substitutions per site is 1) that for every
100 sites we expect more than 99 sites to be invariable under such rate. When α < 0.1 the
second slowest rate decreases to 0.007 and now for the second rate we expect over 99 out of
100 sites to be invariable as well, while the remaining rate heterogeneity must be captured
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by the two fastest rates. At α < 0.05, the third rate decreases below 0.005, and almost all rate
heterogeneity has to be captured by the remaining rate, which with decreasing α becomes
4−ε with ε < 0.001. In this situation, the probability of invariable sites becomes 0.75 in
the case of 4 categories.

This does not seem to be reasonable behaviour for this model, so our prior on α
should exclude α below 0.1. Empirical results (Table 2.2 in Yang (2014)) appear to fall in
a range above 0.1. Even at α= 0.1 there is still a high probability of invariable sites, so the
identifiability problem is not completely solved, but at least somewhat diminished. Since
we would like gamma rate heterogeneity only to be included in the model if there is a
reasonable amount of heterogeneity in the data (which coincides with low values of α), by
default we use an exponential prior with rate 1, truncated to exclude values below 0.1.

For the other items we chose uninformative priors. In summary, the prior consists of
the product of the following independent priors:

• a uniform prior on empirical models through a uniform prior on the model indicator
IM .
• a uniform prior on using empirical frequencies (from the empirical model indicated by
IM ) or estimated frequencies.
• a uniform prior on including gamma rate heterogeneity or not.
• a uniform prior on including a proportion of invariable sites or not.
• a Beta(1,4) prior on the proportion of invariable sites. This skews the proportion of
invariable sites rather to lower than to higher proportions of invariable sites.
• a Dirichlet(4,4,. . . ,4) prior on estimated frequencies.
• an exponential prior on the shape parameter for gamma rate heterogeneity with rate 1
and lower bound 0.1.

MCMC proposals
For switching between substitution models, we use a uniform proposal for the model
indicator IM , which uniformly selects an indicator value in the range of 1 to the number of
empirical subsitution models included in the analysis.

For gamma rate heterogeneity and proportion of invariable sites we use the same birth
and death operators as for bModelTest. For gamma rate heterogeneity, the birth and death
proposal sets or unsets the category count flag and samples a new value for shape parameter
α from the prior (by default an exponential with lower bound 0.1) when the flag is set.
The proposal ratio is d(α′) for birth and 1/d(α) for death where d(.) is the density used to
sample from. Likewise, for setting the proportion of invariable sites flag and sampling pinv
from the prior (by default a Beta(1,4)). The Jacobian determinant is 1 for these proposals,
so have no impact on the Hastings ratio. For moving α, we use the standard scale operator
in BEAST 2 (Bouckaert et al., 2014), adapted so it only samples if the category count flag is
set for α. In the same way, for pinv such a scale operator is used only if the proportion of
invariable sites flag is set.

The estimation of frequencies is done through Bayesian stochastic variable selection
(Kuo & Mallick, 1998; Lemey et al., 2009), where we use a bit flip operator on a boolean
parameter to switch between empirical model frequencies and estimated frequencies.
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To estimate frequencies, efficiency of operators for sampling was conducted by
comparing two operators: the delta exchange operator and the adaptive variance
multivariate normal (AVMN) operator (Baele et al., 2017). A delta exchange operator
randomly selects two frequencies fa and fb, then randomly selects a value δ and proposes
new frequencies f ′a = fa+δ, f ′b = fb−δ under the condition that 0≤ f ′a ≤ 1 and 0≤ f ′b ≤ 1. An
AVMN operator parameterises the space spanned by frequencies as a log-constrained sum
transformedmultivariate parameter and approximates the distribution of that transformed
parameter using a multivariate normal distribution N (M ,6) for which the mean vector
M and covariance matrix 6 are learned during the MCMC run (see Baele et al. (2017)
for more details). We use the settings recommended in Baele et al. (2017) for the AVMN
operators in our experiments.

RESULTS
Validation of model implementation
Weperformed awell calibrated simulation study to verify correctness of the implementation
and investigated the behaviour of OBAMA on a published alignment.

Simulation study
For the simulation study, we simulated 100 cases under the OBAMA model, with a
Yule prior parameterised by a birth rate parameter λ, and an uncorrelated relaxed clock
(Drummond et al., 2006) using 16 taxa. We used a narrow prior on λ (log normal with
mean 5.5 in real space and standard deviation of 0.048) in order to simulate trees with
mean height of 0.44 substitutions per site with a range from 0.17 to 1.0. Broader priors
would lead to larger trees which canmake it impossible to infer trees due to saturation, even
if extremely large sequence lengths were used. For the standard deviation of the relaxed
clock, we used a gamma (with shape = 0.5 and scale = 0.4) distribution, which has mean
0.2 giving moderate rate variation for most cases.

Weobtained 100 instances of trees andparameter values by sampling from the prior using
MCMC. By using a sufficiently long chain, samples were guaranteed to be independent,
which was confirmed by inspecting the trace log in Tracer (Rambaut et al., 2018). For
each of these cases, we simulated data under the model parameters distinguishing 8
cases: any combination of with/without estimated frequencies, with/without gamma
rate heterogeneity and with/without a proportion of invariable sites, providing a
total of 800 alignments over 16 taxa with 200 amino acids. For each of these 800
alignments, an MCMC analysis was done under the OBAMA site model, Yule tree
prior and uncorrelated relaxed clock model, all with the same priors and hyper priors
as used to sample the data. Data files used in simulation study can be found at
https://github.com/rbouckaert/obama/releases/tag/data.

Table 2 summarises the results. The first four rows in the table represent the number
of analyses where the true substitution model is in the 95% credible set, so the expected
number is 95. All following rows represent the number of runs in which the true value
was in the estimated 95% HPD interval. Entries with an ‘x’ represent cases where the true
model does not use the associated parameters, making it impossible to define coverage.
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Table 2 Substitutionmodel coverage in percentage for simulation study for 16 taxa and 250 sites with
an expected value for each entry of 95. All sequences were simulated under an uncorrelated relaxed clock.
Columns represent models under which the data was simulated: +G indicates that gamma rate hetero-
geneity was used, +I indicates a proportion of invariable sites was used, +F indicates frequencies were
drawn from a Dirichlet(4, . . . ,4) distribution instead of using empirical model frequencies. Overall, the ta-
ble shows that models could be recovered from data simulated under such model.

True model: – +G +I +G+I +F +G+F +I+F +G+I+F

Model Indicator 100 100 100 100 100 100 100 100
has Invariable Sites 100 100 99 100 100 100 100 100
has Gamma Rates 100 100 100 100 100 100 99 100
use External Freqs 100 100 100 100 100 100 100 100
gamma Shape x 99 x 92 x 97 x 90
Proportion Invariable x x 96 95 x x 94 91
Tree Height 96 96 95 96 95 96 96 95
Yule Model 95 95 95 92 95 96 97 95
birth Rate 96 93 95 91 94 93 94 93
ucldStdev 96 93 93 96 97 97 96 90
frequencies.1 x x x x 96 96 97 96
frequencies.2 x x x x 97 92 96 96
frequencies.3 x x x x 93 96 92 92
frequencies.4 x x x x 96 98 93 90
frequencies.5 x x x x 95 93 97 95
frequencies.6 x x x x 98 94 94 91
frequencies.7 x x x x 94 97 95 95
frequencies.8 x x x x 99 89 91 92
frequencies.9 x x x x 92 93 94 96
frequencies.10 x x x x 97 96 94 98
frequencies.11 x x x x 95 91 93 93
frequencies.12 x x x x 96 92 97 95
frequencies.13 x x x x 98 93 95 96
frequencies.14 x x x x 93 97 92 93
frequencies.15 x x x x 94 96 96 95
frequencies.16 x x x x 95 93 96 91
frequencies.17 x x x x 93 97 89 92
frequencies.18 x x x x 92 92 98 91
frequencies.19 x x x x 96 91 96 94
frequencies.20 x x x x 94 96 95 98

For an experiment with 100 instances, coverage is distributed according to a binomial
distribution with p= 0.95 and N = 100, so the expected coverage is 95 with a 95% HPD of
90 to 99, and we expect 95 out of 100 entries in the table to be in the range 90-99. Note that
some of the frequencies have a slightly lower coverage, but not less than could be expected
with this many entries. Overall, the table shows that models could be recovered from data
simulated under such model, and it provides some confidence that our implementation is
correct.
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Figure 3 True values of gamma shape parameter (A and C) and proportion of invariable sites (B and
D) on x-axis vs estimated intervals on y-axis. (A) and (B) are when model frequencies are used, and (C)
and (D) when frequencies are sampled from a Dirichlet(4,4,. . . ,4) distribution. Black dots represent mean
of the estimates. Bars represent 95% HPD intervals, the black diagonal line is where x-axis and y-axis have
equal values. Blue bars contain the true value, red bars miss out on the true value.

Full-size DOI: 10.7717/peerj.9460/fig-3

Identifiability of gamma shape and proportion of invariable sites
When both gamma rate heterogeneity and invariable sites are in the true model under
an exponential prior with lower bound zero (see Table S4), the estimates are slightly
diminished due to lack of identifiability as explained before and observed by Bouckaert
& Drummond (2017). However, when a lower bound of 0.1 is used as motivated by our
discussion, identifiability increases as witnessed by the expected coverage of gamma shape
and proportion of invariable sites estimates in Table 2.

Furthermore, as shown in Fig. 3, the estimates of these parameters are informed by the
data and not only the prior: when values used to simulate the data increase, their estimates
increase as well.

Variants on simulation study
The simulation study was repeated with 50 instead of 200 amino acids, providing more
uncertainty and thus larger estimates in 95% HPD intervals, but coverage remained good
(Table S3). The lower bound for α was 0 in these experiments. It was also repeated using
a strict clock, and inference done with a strict clock (Table S1) as well as under a relaxed
clock (Table S2) with similar results.
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1TreeBASE Study URI: http://purl.org/
phylo/treebase/phylows/study/TB2:S795
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Figure 4 (A) Box plot of effective sample sizes for frequencies for 100 runs when a delta exchange op-
erator is used (blue) and when the adaptive variance multivariate normal is used (red). The AVMN op-
erator is more efficient most of the time. (B) Correlations between estimated frequencies for one of the
simulated runs: darker colours andmore skewed ovals indicate higher correlations. For contrast, tree
height and Yule density are included, which are highly correlated. Frequencies on the other hand show
very low correlation. This is typical for the correlation between frequencies that were spot checked. Both
plots were generated by Tracer (Rambaut et al., 2018).

Full-size DOI: 10.7717/peerj.9460/fig-4

Frequency operator
Thewell calibrated study fromTable 2 uses theAVMNoperator. The simulation experiment
was repeated with delta exchange and AVMN operator, both with a weight of 1, giving
them equal probability of being selected, and all other operators unaltered. Run times for
both experiments were very similar, even though the AVMN operator performs a relatively
large amount of work to produce a proposal. The effective sample sizes (ESSs) for 100
runs for the simulation experiment are shown in Fig. 4A, showing the AVMN operator
outperforming the delta exchange operator: in all cases the average ESS increases, though
the variance of ESSs from MCMC is usually quite high.

DISCUSSION
Figure 4B shows that correlations between frequencies is very low, so the AVMN operator
may not benefit from estimating all covariances. It appears the AVMN operator performs
more work than strictly necessary, given that it estimates the complete covariancematrix6,
even thought (as suggested in Fig. 4B), there is very little correlation between frequencies.
However, since the AVMN operator does not seem to require noticeable overhead (using
a profiler does not show any load from the operator and run times were very similar to
using a delta exchange operator), further optimisation will be hard to justify.

Site models matter
To determine the effectiveness of the OBAMA model, we investigated an amino acid
alignment, M200 from TreeBase1 (Simmons et al., 2002). This alignment for 20 flowering
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Figure 5 Clade support of an analysis for all clades in a posterior tree set vs. support for the same clade
in another analysis.Diagonal lines indicate area where at most 25% difference in clade support is ob-
served. (A) WAG (y-axis) vs JTT (x-axis) has max clade support difference of 17.3% (B) JTT vs. LG (max
difference of 27.1%) (C) WAG vs. LG (23.4%) (D) OBAMA vs. OBAMA separate runs, illustrating (low)
variance between runs (6.7%) (E) OBAMA vs. JTT (11.0%) (F) OBAMA vs. WAG (11.8%).

Full-size DOI: 10.7717/peerj.9460/fig-5

plant taxa is 466 characters long. ProtTest (Darriba et al., 2011) (run with settings
-all-matrices -all-distributions -F -threads 2) suggests JTT+G+I+F fits best
(where +G stands for using gamma rate heterogeneity, +I using invariable sites, and +F
using observed frequencies), followed by WAG+G+I+F and LG+G+I+F as third runner
up, both based on the BIC and the Ln criteria.

For a Bayesian analysis, a relaxed log normal clock (Drummond et al., 2006) can be
rejected based on a coefficient of variation being distributed with mean less than 0.1 skewed
towards zero. So, we use a strict clock in the remainder, a Yule prior with birth rate estimated
and vary the site model using the three models suggested by ProtTest. All runs were verified
to have ESSs exceeding 200 and four independent runs converging to the same distribution.
Data files used can be found at https://github.com/rbouckaert/obama/releases/tag/data.
When we compare the posterior clade support for these models (Figs. 5A–5C), we see
considerable differences. The largest clade support difference between WAG and JTT is
17.3%,while between JTT and LG aswell asWAGand LG these exceed 20%.As comparison,
two independent runs of OBAMA only show a difference of just 6.7% in clade support.
This indicates the three different models sample from different distributions and the choice
of substitution model matters for the analysis.

With the OBAMAmodel, about 84% of the time JTT is sampled and 16%WAGwhile the
other substitution models have no recorded posterior support. Gamma rate heterogeneity,
proportion of invariable sites and estimated frequencies were supported 100% of the time.
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Figure 6 Graphical user interface for setting up an OBAMA analysis. There is a choice of 15 substitu-
tion models that can be included or excluded from the analysis. When there are multiple partitions, rela-
tive substitution rates among these partitions can be estimated.

Full-size DOI: 10.7717/peerj.9460/fig-6

Comparing the three individual substitution models with OBAMA (Figs. 5E and 5F) shows
that JTT and WAG have differences in clade support of 11.0% and 11.8% respectively,
which shows that model averaging has an effect on the posterior distribution, and matters
as well.

CONCLUSIONS
We implemented a new user friendly site model for performing Bayesian phylogenetic
analyses of amino acid sequences. There are no tuning parameters, and since the site model
is usually of no interest to the question at hand, it takes the tedium out of having to specify
the details of a site model by averaging over a range of models. By careful choice of a prior,
it allows identifiability of gamma shape and proportion of invariable sites. We observed
that the site model matters, and has a substantial effect on posterior supports of clades in a
tree. Likewise, Bayesian averaging over models affects clade support as well, and arguably
represents uncertainty of the site model details more appropriately.

The method is implemented in the OBAMA package in BEAST 2, and has a graphical
user interface (Fig. 6). It is open source licensed under LGPL and allows joint tree inference
under a wide range of models, which allows combining the analysis with phylogeographical
information, data from the fossil record, species delimitation, etc. The range of empirical
substitution models can be easily extended by simply adding an appropriate reference to
the model in the BEAST XML when more empirical models become available.
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There are several other ways the model can be extended. For example, by using a mixture
of empirical rate matrices by replacing the model indicator (which effectively puts 100%
support on a singlematrix) with a weight vector and create a new ratematrix as the weighted
sum of empirical matrices. There is also potential to extend in the direction of grouping
sites into categories, each having their own combination of OBAMA model, similar to the
SubstBMA model for nucleotides (Wu, Suchard & Drummond, 2013), which has shown a
remarkable increase in fit over single model use for a partition. Another avenue, though
one that requires a bit more thought regarding priors and MCMC proposals, is to combine
OBAMA with other frequency models like the free rate model (Soubrier et al., 2012) and
include mixture models like LG4X (Le, Dang & Gascuel, 2012).
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