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Abstract

Compactifications of the heterotic string on T d are the simplest, yet rich enough play-

grounds to uncover swampland ideas: the U(1)d+16 left-moving gauge symmetry gets enhanced

at special points in moduli space only to certain groups. We state criteria, based on lattice

embedding techniques, to establish whether a gauge group is realized or not. For generic d,

we further show how to obtain the moduli that lead to a given gauge group by modifying

the method of deleting nodes in the extended Dynkin diagram of the Narain lattice II1,17.

More general algorithms to explore the moduli space are also developed. For d = 1 and

2 we list all the maximally enhanced gauge groups, moduli, and other relevant information

about the embedding in IId,d+16. In agreement with the duality between heterotic on T 2 and

F-theory on K3, all possible gauge groups on T 2 match all possible ADE types of singular

fibers of elliptic K3 surfaces. We also present a simple method to transform the moduli under

the duality group, and we build the map that relates the charge lattices and moduli of the

compactification of the E8 × E8 and Spin(32)/Z2 heterotic theories.
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1 Introduction

The compactification of perturbative heterotic strings on d-dimensional tori has a long history,

starting with the seminal works by Narain [1], and Narain, Sarmadi and Witten [2]. Renewed

interest in this subject arose as a consequence of the many dualities of toroidal compactific-

ations. The conjectured dualities between the heterotic on T 4 and type IIA on K3 [3], the

heterotic on T 3 and M-theory on K3 [4,5] (for reviews, see [6,7]), and the heterotic on T 2 and

F-theory compactified on an elliptic K3 manifold [8], provide ideal frameworks for exploring

non-perturbative aspects of string theory. Another recent application is the holographic dual-

ity between the average over toroidal compactifications of Narain’s family of two-dimensional

CFT’s and three-dimensional gravity [9, 10]. Additional motivations to further investigate

this theory include the construction of phenomenologically viable models of string compac-

tifications, since heterotic and F-theory vacua are two of the most promising scenarios to

build realistic examples [11,12], as well as the test of swampland criteria (see [13] for reviews

and [14,15] for recent related work).

As it is well known, modular invariance of the heterotic string on T d requires that the

momenta of the worldsheet fields take values on the even self-dual lattice IId,d+16 [1]. This

lattice is unique up to SO(d, d + 16,R) transformations, and the precise way in which it is

related to the moduli of the theory was determined in [2]. In particular, the presence of

suitable Wilson lines may result in the enlargement of the gauge group of the theory, while

further adjusting the metric and Kalb-Ramond background fields, one could continuously

interpolate between toroidally compactified versions of the E8×E8 and Spin(32)/Z2 heterotic

theories. This interpolation was made explicit for the circle in [16,17].

Our aim is to examine the structure of the moduli space and the pattern of associated

gauge symmetries. Various interesting related issues that deserve further analysis can be

identified. One is to find the moduli (up to dualities) that produce a particular group. For

example, as already noticed in [1], the group of maximal dimension allowed is SO(32+2d) and

values of the moduli for which this group arises were found in [2] for d = 1 and in [16] for other

d. More generally, we might ask for all possible groups and their corresponding background.

The allowed groups are such that their even positive definite root lattice can be embedded in

the Narain lattice IId,d+16 [1]. Thus, they can in principle be found using lattice embedding
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techniques, in particular the machinery developed by Nikulin [18], as advocated in [19]. For

instance, Theorem 1.12.4 in [18] implies that any ADE group of rank less or equal than (d+8)

can be embedded in IId,d+16, and is thus realized in compactifications of the heterotic theory

on T d.

For d = 2 all allowed gauge groups are known from the work of Shimada and Zhang

who classified all possible ADE types of singular fibers in elliptic K3 surfaces [20, 21]. As we

will explain, the classification provides all possible heterotic gauge groups because the lattice

embedding conditions are identical in the K3 and heterotic frameworks. This is consistent

with duality between heterotic on T 2 and F-theory on K3.

Another problem is to obtain the resulting gauge group for specific moduli. It can be

solved by organizing the left-moving components of the momenta into roots of an ADE group

(see [22,23] for examples). However, since this method is cumbersome, it is desirable to develop

a more powerful approach which could also be applied to the question of finding all possible

groups. When d = 1 both problems can be solved using the extended Dynkin diagram (EDD)

associated to the Narain lattice II1,17. For instance, the 44 allowed groups with maximal rank

17 and the corresponding moduli were determined in [23] starting from the EDD.

The generalization of the powerful EDD algorithm to higher dimensional compactifications

clashes with the fact that, unlike O(1, 17; Z), the T-duality group O(d, d+ 16; Z) is no longer

generated by simple reflections. In the absence of a Dynkin diagram to describe IId,d+16, what

we can do to explore the landscape of heterotic strings on T d, for generic dimension d > 1, is

to develop alternative methods.

To begin we will revisit Nikulin’s criteria, and apply them to compactifications of the

heterotic string on T d. The study of embeddings in IId,d+16 will enable us to characterize the

allowed gauge groups in terms of lattice data consisting of the pair (L, T ), where L is the

root lattice of the group, and T is the dual lattice of the right-moving momenta. Conversely,

(L, T ) can be determined from the moduli that originate the group.

We also present three other methods to examine the toroidal landscape. We focus mainly

on maximal enhancing in T 2 compactifications of the E8 × E8 theory, but the algorithms

work in higher dimensions. In particular, we will obtain all semisimple groups with maximal

rank d + 16, occurring in d = 1, 2. Moreover, the moduli in the Spin(32)/Z2 theory can be
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deduced from those of the E8 × E8 theory by making use of an O(d, d + 16) transformation

that generalizes the map constructed in [17] for d = 1.

One of the methods developed mimics the EDD approach by employing the shift vector

algorithm, based on original work by Kac [24]. The algorithm gives in particular pairs of

Wilson lines that break E8 × E8 to a subgroup of rank 16. By choosing special values of

the torus metric and the Kalb-Ramond field one can construct extended diagrams containing

d + 18 nodes, where the d nodes coming from the torus connect the two 9-node diagrams of

two extended E8 groups. Deleting two nodes leads to a semisimple group of rank 16+d that is

realized in the heterotic string, and the construction gives the point in moduli space where it

is realized. This method gives all groups of maximal enhancement in circle compactifications,

but already for d = 2 fails to give some groups that are known to appear from the results

of [20]. To search for additional groups we elaborate an algorithm that determines maximal

enhancements for other values of the moduli, but still starting from Wilson lines that leave

unbroken a subgroup of rank 16. More groups can then be found, but still for d = 2 there are

2 of the 325 groups of the list in [20] that do not appear. We argue that these groups cannot

be obtained from enhancing a rank 16 subgroup of E8 × E8, which is the departing point of

this method.

To recover all allowed groups we use a more general technique. The idea is to start from

a point of maximal enhancement, i.e. a rank d + 16 group with no U(1) factors, move along

lines in moduli space where there is a breaking to a group with one U(1) factor, and then find

all maximal enhancings that can be reached from the neighborhood of the initial point. We

have fully exploited this technique in d = 2, finding all enhancements reported in [20]. We

have also done a quick exploration in d = 3.

The paper is organized as follows. In section 2, we briefly review the basics of heterotic

compactification on T d and present a simple method to find the transformation of the back-

ground fields under the action of O(d, d + 16). We also review the map relating the charge

vectors and moduli of the E8×E8 and Spin(32)/Z2 theories on the circle, and formulate it for

generic d. In section 3 we state criteria, based on lattice embedding techniques, that can be

used to detect whether a group is allowed or not. We additionally explain how to translate

between heterotic moduli and lattice data. The notation and essential concepts about lattices
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that supplement this section are contained in appendices A and B. The method of the EDD

and the results that were obtained in the circle are recalled in section 4, where we also show

how they perfectly fit within the formalism of lattice embeddings. Compactifications on T 2

are the subject of section 5. In section 5.1, we introduce the complex moduli and their duality

transformations, and review the action of O(2, 3; Z) on a particular slice of the moduli space.

In section 5.2 we describe a method based on extended diagrams and apply it to analyze

maximal enhancings. In section 5.3, we present two computational algorithms to obtain the

moduli underlying semisimple groups of maximal rank; one generalizes the method of exten-

ded diagrams while the other explores the neighborhood of points of maximal enhancement.

In section 5.4 we discuss several features of the models appearing in d = 2. Some results about

compactifications on T d, d > 2, are summarized in section 6. We further discuss the results

and open problems in section 7. Tables containing all the groups of maximal enhancement in

one and two dimensions, and the points in moduli space where they arise, are presented in

appendix C.

2 Toroidal compactification of the heterotic string

In this section we briefly review the basics of heterotic compactification on T d and outline

our notation. The torus is defined by identifications in a lattice Λ̃d generated by vectors ei,

i = 1, . . . , d. The constant torus metric is gij = eaiδabe
b
j, a = 1, . . . , d. The vectors ê∗i = gijei,

gij = g−1
ij , span the dual lattice Λ̃∗d. The background is further specified by the constant

antisymmetric two-form field bij and d independent Wilson lines AIi , I = 1, ..., 16. The latter

are constant components of the 10-dimensional gauge field in the Cartan sub-algebra of E8×E8

or SO(32). It is convenient to introduce the tensor Eij given by

Eij = gij +
1

2
Ai · Aj + bij , (2.1)

where Ai · Aj = AIiA
I
j . We use conventions α′ = 1.

The momenta of the worldsheet fields of perturbative heterotic string theory compactified

on a d-dimensional torus T d must take values on an even self-dual lattice IId,d+16 [1]. As

shown in [2], the left and right components of the canonical center of mass momenta can be
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expressed in terms of the compactification moduli, gij, bij and AIi , as

pR =
1√
2

[
ni − Eijwj − π · Ai

]
ê∗i , (2.2a)

pL =
1√
2

[
ni + (2gij − Eij)wj − π · Ai

]
ê∗i =

√
2wiei + pR , (2.2b)

pI = πI + AIiw
i . (2.2c)

Here ni and wi are the integer momenta and winding numbers on the torus. The πI are the

components of a vector belonging to the gauge lattice denoted Υ16, given by

Υ16 =

 Γ8 × Γ8 , for the E8 × E8 theory (HE)

Γ16 , for the Spin(32)/Z2 theory (HO)
, (2.3)

where Γ8q is the even self-dual lattice consisting of vectors (m1, ...,m8q) and (m1+ 1
2
, ...,m8q+

1
2
),

with mk ∈ Z and
∑8q

k=1mk = even. Then πIπI = even. The πI can also be written as

πI = πAαIA, with A = 1, . . . , 16, where αIA is a basis of Υ16 such that αIAα
I
B = κAB is the

lattice metric.

The total momentum p = (pR; pL), with pR = pRa, pL = (pLa, p
I), transforms as a vector

under O(d, d + 16; R). It spans the 2d+16-dimensional momentum lattice IId,d+16 ⊂ R2d+16,

satisfying

p · p = pL
2 − pR

2 = 2wini + πIπI ∈ 2Z (2.4)

Thus, IId,d+16 is even and it can be shown that it is self-dual, i.e. IId,d+16 = II∗d,d+16. Notice

that we are using signature ((−)d; (+)d+16) for the Lorentzian metric.

The space of inequivalent lattices and inequivalent backgrounds is described by

O(d, d+ 16; R)

O(d; R)×O(d+ 16; R)×O(d, d+ 16; Z)
(2.5)

where O(d, d+ 16; Z) is the T-duality group that leaves invariant the spectrum of the theory.

We refer to [23] for a complete discussion of the O(d, d+16; Z) generators, see also [25]. Typical

elements are a change of basis of the torus lattice Λ̃d, shifts of the B-field by an antisymmetric

integer matrix, and transformations of the Wilson lines by translations or automorphisms in
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Υ16. There are also factorized dualities that correspond to exchanging winding and momenta

in one internal direction. In section 2.1 we will discuss duality transformations in more detail.

The spectrum of states depends on the background fields. It can be obtained from the

mass formula and level-matching condition given by

m2 = pL
2 + pR

2 + 2

NL +NR −

 1 R sector

3
2

NS sector

 , (2.6)

0 = pL
2 − pR

2 + 2

NL −NR −

 1 R sector

1
2

NS sector

 , (2.7)

where NL and NR are left- and right-moving oscillator numbers. These equations are invariant

under the duality group O(d, d+ 16; Z).

In the NS sector the lowest lying states have NR =
1

2
and their supersymmetric partners

in R have NR = 0. These states can be massless only if

pR = 0, pL
2 + 2(NL − 1) = 0 . (2.8)

The condition pR = 0 requires that the the momentum numbers ni satisfy (see (2.2))

ni = Eijw
j + π · Ai ∈ Z . (2.9)

Moreover, from (2.4) it follows that

pL
2 = 2wini + π · π . (2.10)

For generic values of the moduli the only solution is wi = 0, ni = 0, πI = 0, implying pL = 0,

and NL = 1 in (2.8). It gives rise to the gravity multiplet plus gauge multiplets of U(1)d+16.

On the other hand, for special values of the moduli there can exist solutions with NL = 0,

and pL
2 = 2. The set of pL then gives the roots of a Lie group Gr of rank r ≤ d+ 16. In this

case there will be gauge multiplets of a group Gr × U(1)d+16−r. The non-Abelian piece Gr is

in turn a product of ADE factors of total rank r. Our main task for the next sections is to

study which groups can occur and to determine the underlying moduli.
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We will mostly work with the HE theory. The results for the HO can be deduced from the

the map discussed in section 2.2.

2.1 Duality transformations of the moduli

In this section we present a simple way of finding the action of O(d, d + 16) transformations

on the background fields (gij, bij, A
I
i ).

We first start by the transformation of the 2d+ 16 charge vectors, defined as

|Z〉 = |wi, ni; πI〉 . (2.11)

The inner product between charge vectors is computed using the O(d, d+16) invariant metric

η =


0 1d×d 0

1d×d 0 0

0 0 δIJ

 . (2.12)

and is given by

〈Z ′|Z〉 = w′
i
ni + n′iw

i + π′
I
πI . (2.13)

Given the generators O ∈ O(d, d+16; Z) presented in [23], the transformation of |Z̃〉 ≡ η|Z〉

is simply1

|Z̃〉 → O |Z̃〉 , (2.14)

The transformation of the moduli can be obtained from the transformation of the generalized

metric, discussed for example in [23]. It is generically simpler though to find the transformation

of the moduli using the vielbein E for the generalized metric. This vielbein can be built using

that the left and right moving momenta (2.2) are

p = E|Z̃〉 . (2.15)

1For instance, when bij → bij + Θij , with Θij = −Θji ∈ Z, |Z〉 → |wi, ni + Θijw
j ;πI〉.
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Under O(d, d+ 16), the vielbein transforms as

E → E ηOTη . (2.16)

From this transformation law it follows that the first d rows of ηE , which we write as

|Ẽa〉 ≡
1√
2
êi∗a |Eik,−δij;AiI〉, a = 1, ..., d, (2.17)

are O(d, d+ 16) vectors. Taking the transpose of (2.16) we find

|Ẽa〉 → O |Ẽa〉 . (2.18)

These vectors also form a negative definite orthonormal set:

〈Ẽa|Ẽb〉 =
1

2
êi∗a ê

j∗
b (−2Eij + Ai · Aj) =

1

2
êi∗a ê

j∗
b (−2gij) = −δab. (2.19)

To get the transformation laws for the moduli under an O(d, d+ 16; R) element we simply

construct the vectors |Ẽa〉, transform them to |Ẽ ′a〉 = O |Ẽa〉, and extract the transformed

moduli E ′ij, A
′
i. In practice, however, this procedure can be simplified as follows. Construct

the d× (2d+ 16) matrix

A ≡
(
Eij −δij Ai

I
)
, (2.20)

with rows labeled Ai. These differ from the vectors |Ẽa〉 in that the factor (1/
√

2)ê∗ia is missing

(cf. eq. (2.17)). We may however interpret this as taking ê∗ia =
√

2δia, so that the rows Ai can

also be transformed as O(d, d + 16) vectors, Ai → A′i = OAi. From the new matrix A′ one

then extracts the moduli with the formula

(
E ′ij −δij AI

′
i

)
= −


A′1,d+1 · · · A′1,2d

...
. . .

...

A′d,d+1 · · · A′d,2d


−1

A′ , (2.21)

where on the right hand side we multiply by minus the inverse of the d × d middle block of

A′, which is the vielbein for the transformed metric e′ai.
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We now proceed to illustrate this method with a pair of examples where we restrict to the

T-duality group O(d, d + 16,Z). Consider first the case d = 2, and apply the transformation

given by the matrix

OΛ1 =



1 0 −1
2
Λ2

1 0 Λ

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 −Λt
1 0 116×16


, Λ1 ∈ Υ16 (2.22)

, which shifts A1 by Λ1. After transforming the rows of A with OΛ1 , we obtain

A′ =

E11 + 1
2
Λ2 + Λ1 · A1 E12 −1 0 A1 + Λ1

E21 + Λ1 · A2 E21 0 −1 A2

 . (2.23)

Since the second 2×2 block of A remains invariant, minus its inverse, which appears in (2.21),

is the identity. The transformed Eij and Ai can then be read off from eq. (2.23). In terms of

the background fields gij, b12, Ai, we see that

OΛ1 : g′ij = gij, b′12 = b12 −
1

2
Λ1 · A2, A′1 = A1 + Λ, A′2 = A2. (2.24)

This result highlights the fact that, generically, a shift of one Wilson line Ai by a vector

Λi ∈ Υ16 must be accompanied by a b-field shift b′ij = bij − 1
2
Λi · Aj. The components of the

charge vector |Z〉 transform as

OΛi : πI → πI −ΛI
iw

i, ni → ni−
1

2
Λ2
iw

i + π ·Λi, nj → nj (j 6= i) , wi → wi . (2.25)

Now let us use this method to obtain the factorized duality OD1 , which exchanges n1 ↔ w1

in generic dimension d. The action of OD1 on the matrixA exchanges the first and the (d+1)th
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columns, and so

(
E ′ij −δij AI

′
i

)
=


E11 δi1

...
...

Ed1 δd
i


−1

δ1
1 E1i −E11 −δi1 A1

I

...
...

...
...

...

δ1
d Edi −Ed1 −δdi Ad

I

 , i = 2, ..., d. (2.26)

After performing this matrix operation, we obtain the transformation rules

E′ =
1

E11

 1 −E1j

−Ei1 E11Eij − Ei1E1j

 , A′i =
1

E11

 −A1

E11Ai − Ei1A1

 , i, j = 2, ..., d . (2.27)

This result generalizes to a factorized duality in an arbitrary direction θ,

ODθ : E ′θθ =
1

Eθθ
, E ′θj = −Eθj

Eθθ
, E ′iθ = −Eiθ

Eθθ
, E ′ij =

EθθEij − EiθEθj
Eθθ

,

A′θ = − Aθ
Eθθ

, A′i =
EθθAi − EiθAθ

Eθθ
, i, j = 1, ..., d 6= θ

(2.28)

in agreement with the heterotic Buscher rules found originally in [26] and discussed also in [27].

2.2 The HE ↔ HO map

Due to the uniqueness of the Narain lattices, the HO and HE theories compactified on T d

share the same moduli space. For the circle, an explicit map relating the charge lattices of

both theories was given in [16] and the precise relation between the moduli was worked out

in [17].

The O(1, 17) transformation relating a basis of vectors of the Γ8×Γ8 embedding into II1,17

to another one of the Γ16 embedding is given by [16]

ΘE→O = OΛO
OΩOP1OD1O−ΛE

, (2.29)

where OΛE
, OΛO

are shifts of the Wilson line by

ΛE = (07, 1,−1, 07) , ΛO =
(

1
2

8
, 08
)
, (2.30)

OD1 is a T-duality in the circle direction, OP1 an inversion and OΩ a rescaling. Their action
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on the charge vectors and moduli is given by

OΛ : |w, n; π〉 → |w, n+ π · Λ− 1
2
wΛ2; π − wΛ〉 , (R,A)→ (R,A+ Λ),

OD1 : |w, n; π〉 → |n,w; π〉 , (R,A)→
(

R

R2 + 1
2
A2
,− A

R2 + 1
2
A2

)
,

OP1 : |w, n; π〉 → |−w,−n; π〉 , (R,A)→ (R,−A),

OΩ : |w, n; π〉 → |2w, 1
2
n; π〉 , (R,A)→ (1

2
R, 1

2
A).

(2.31)

Hence the total transformation (2.29) gives

ΘE→O : w → 2w − 2n+ 2π · ΛE, n→ −2w + 2n+ π · (ΛO − 2ΛE),

π → w(ΛE − 2ΛO) + 2nΛO + π − 2ΛO(ΛE · π),

R→ R

2R2 + (A− ΛE)2
, A→ A− ΛE

2R2 + (A− ΛE)2
+ ΛO,

(2.32)

corresponding to the O(1, 17,R) matrix

ΘE→O =


2 −2 ΛO − 2ΛE

−2 2 2ΛE

2Λt
O Λt

E − 2Λt
O 116 − 2ΛO ⊗ ΛE

 , (2.33)

where ⊗ is an outer product.

Labeling EE = R2
E + 1

2
A2

E and the Wilson line AE in the HE theory, the transformation

(2.32) gives the HO moduli as [17]

(EO, AO) =

(
1 +

AE · ΛO

2(EE + 1− AE · ΛE)
,

AE − ΛE

2(EE + 1− AE · ΛE)
+ ΛO

)
. (2.34)

The map from HO to HE is simply obtained by exchanging (EO, AO,,ΛO)↔ (EE, AE,ΛE).

To extend (2.33) from the circle to T d, it is sufficient to consider a decomposition of the

Narain lattice of the form

IId,d+16 = II1,1 ⊕ · · · ⊕ II1,1 ⊕ Γ8 ⊕ Γ8, (2.35)
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where the number of II1,1 lattices is d. We use ΘE→O to transform

ΘE→O : II1,1 ⊕ Γ8 ⊕ Γ8 → II1,1 ⊕ Γ16, (2.36)

choosing II1,1 to be in the direction given by the torus lattice vector e1, without loss of

generality. This brings the Narain lattice into the form

IId,d+16 = II1,1 ⊕ · · · ⊕ II1,1 ⊕ Γ16. (2.37)

It follows that the desired extension is

Θ
(d)
E→O → 1(2d−2)×(2d−2) ⊕ΘE→O =

1(2d−2)×(2d−2) 0

0 ΘE→O

 , (2.38)

which holds provided the ordering |Z〉 = |w2, n2, ..., w
d, nd, w

1, n1; π〉 is used. In practice one

may wish to keep the order in (2.11) and rearrange the entries of Θ
(d)
E→O instead, which is

reasonable for low values of d.

To get the transformation rules for the moduli, we proceed constructively using the fac-

torized form of ΘE→O in (2.29), and generalizing each intermediate transformation. Each of

the generalized transformation rules can be obtained by the method detailed in section 2.1,

which is valid not only for T-dualities but for generic O(d, d + 16) transformations such as

OΛO
(in HE) and OD1 .

Let us first take a detailed look at the map ΘE→O for d = 2. The generalization to

arbitrary d is straightforward. Preserving the usual ordering of the components of |Z〉, namely

|w1, w2, n1, n2; π〉, we write

Θ
(2)
E→O =



2 0 −2 0 ΛO − 2ΛE

0 1 0 0 0

−2 0 2 0 2ΛE

0 0 0 1 0

2Λt
O 0 2Λt

E − Λt
O 0 116×16 − 2ΛO ⊗ ΛE


, (2.39)
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The transformation rules for the quantum numbers are exactly the same as in the d = 1 case

for w1,n1 and π, while w2 and n2 are invariant, as expected.

To work out the map, we proceed by applying the transformations in the r.h.s. of (2.29)

in succession. The Wilson line shift in direction 1 acts as

OΛ : E →

E11 − Λ · A1 + 1 E12

E21 − Λ · A2 E22

 , A1 → A1 − Λ , A2 → A2. (2.40)

Note that E12 is invariant since the b-field is also shifted (see the footnote 1). The factorized

duality acts as

OD1 : E → 1

E11

 1 −E12

E21 detE

 , A1 → −
A1

E11

, A2 → A2 −
E21

E11

A1 , (2.41)

and finally OP1 and OΩ produce the transformations

OP1 : E →

 E11 −E12

−E21 E22

 , A1 → −A1 , A2 → A2 , (2.42)

OΩ : E →

1
4
E11

1
2
E12

1
2
E21 E22

 , A1 →
1

2
A1 , A2 → A2 . (2.43)

Putting all together, we get

E11 E12 A1

E21 E22 A2

→
 1 0 ΛO

ΛO ·A2 E22 A2


+

1

E11 − ΛE · A1 + 1

 1
2

ΛE ·A2 − E21

(ΛO ·A1 E12 A1 − ΛE

)
. (2.44)
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The map for generic d can be worked out in a similar fashion. The final result reads


E11 E12 · · · E1d A1

E21 E22 · · · E2d A2

...
...

. . .
...

...

Ed1 Ed2 · · · Edd Ad

→


1 0 · · · 0 ΛO

ΛO ·A2 E22 · · · E2d A2

...
...

. . .
...

...

ΛO ·Ad Ed2 · · · Edd Ad



+
1

E11 − ΛE · A1 + 1


1
2

ΛE ·A2 − E21

...

ΛE ·Ad − Ed1


(

ΛO ·A1 E12 · · · E1d A1 − ΛE

)
. (2.45)

In the forthcoming sections we will apply the HE-HO map in compactifications to d = 1 and

2 and give some examples for other values of d.

3 Embedding in Narain lattices

In this section we discuss how to determine which gauge groups Gr ×U(1)d+16−r occur in the

compactification of perturbative heterotic strings on T d. We are mostly interested in heterotic

compactification on T 2, which is dual to F-theory compactifications on elliptic K3 surfaces [8].

Not surprisingly, for d = 2 the problem of finding all allowed Gr happens to be related to

the classification of possible singular fibers of ADE type in elliptic K3 surfaces. The explicit

solution has been obtained in the K3 framework in [20, 21], using Nikulin’s formalism. The

results are expected to hold in the heterotic context too. The reason is that in the K3 context,

the condition on the allowed Gr is that its even positive definite root lattice can be embedded

in II2,18 which is precisely the Narain lattice.

According to Theorem 1.12.4 in [18], any Gr of type ADE with r ≤ 10 is allowed for

d = 2, as indeed found in [21]. For larger r more complicated conditions have to be verified

as we will explain shortly. This program has been carried out in [21]. It turns out that for

r = 11, 12, also all ADE Gr can be embedded in II2,18. For r = 13, only 13A1 and 11A1 + A2

are precluded. Henceforth Gr will be denoted by the chain of ADE factors of its algebra. For

r = 14, except 8A1 +E6, all other forbidden groups, e.g. 14A1, were predicted to be prohibited
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because singular fibers with such Gr could not fit in a K3 where the vanishing degree of the

discriminant must be 24. For r ≥ 15 there are many more forbidden groups. In particular,

there are 1599 ADE groups of rank 18 [21] but according to the analysis of [20, 21], only

325 are expected to be realized in compactifications of the heterotic string on T 2. A natural

question is why some groups are forbidden. To answer it, we will present some tools that can

be applied to decide when a group is allowed or not. Our purpose is to illustrate the main

ideas, not to do a systematic search as in [20,21] for d = 2.

We will mostly focus on the case of maximal enhancing, i.e. Gr with r = d + 16. In 3.1,

we will first discuss three criteria that can be applied for generic d. We then specialize to

d = 1, 2, and in less detail to d = 8. The criteria for groups with r < 16 + d are presented

in appendix B.1. The connection of the criteria to heterotic compactifications is addressed

in section 3.2. We refer to [28–30] for short expositions of the main results of Nikulin’s [18]

relevant for our analysis, see also [31–34]. Before jumping into matters the reader is advised

to consult appendix A where the notation and some basic concepts are introduced.

3.1 Embeddings of groups with maximal rank r = d+ 16

The problem is to embed a lattice L of signature (0, d + 16) in the even unimodular Narain

lattice IId,d+16. In the heterotic context L is the root lattice of a group of maximal rank arising

upon compactification on T d. Nikulin [18] provides powerful results that serve to determine

whether or not such embedding exists. In particular, adapting respectively Corollary 1.12.3

and Theorem 1.12.4(c) of [18] to the case at hand leads to the criteria

Criterion 1

If `(AL) < d then L has a primitive embedding in IId,d+16.

Criterion 2

L has a primitive embedding in IId,d+16 if and only if there exists a lattice T of

signature (0, d) such that (AT , qT ) is isomorphic to (AL, qL).

Here AL and qL are respectively the discriminant group and the quadratic discriminant form

of L, whereas `(AL) is the minimal number of generators of AL, and analogously for T (see
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appendix A for details). Since `(AT ) ≤ d, groups with `(AL) = d could pass criterion 2 which

actually requires d(L) = d(T ). We will shortly explain how the lattice T can be determined

when d = 1, 2. There could exist more than one T , as found for some groups in [20]. Notice

that in our conventions (0, d) means positive signature.

Now, criteria 1 and 2 cannot be the whole story. We know groups with `(AL) > d that

can be realized in heterotic compactifications on T d. For example, when d = 2, heterotic

moduli that give L = 3E6 are known. Hence, there should be an embedding of this L in II2,18

even though `(AL) = 3. We also know examples with d = 1. In particular, L = D16 + A1

with `(AL) = 3, would be forbidden by criterion 2 but must admit an embedding in II1,17

because it certainly arises in the heterotic string on S1. Actually, for d = 1 the 44 groups

with maximal rank found in [23] have `(AL) ≤ 3. Only the groups with `(AL) = 1, e.g.

L = 2E8 + A1, could possibly be allowed by criterion 2. The problem is that criteria 1 and 2

refer to primitive embeddings and this need not be the case. From the arguments in [20, 21]

it transpires that this condition can be relaxed by demanding that L has an overlattice M

which can be embedded primitively in the Narain lattice. For instance, we know that D16 has

an overlattice given by the even unimodular HO lattice Γ16 with trivial discriminant group.

Therefore, L = D16 + A1 has an overlattice M = Γ16 + A1 with AM = Z2 and `(AM) = 1. The

overlattice M could then pass criterion 2 with an even 1 dimensional lattice T equal to the

A1 lattice.

The above arguments lead to a third criterion obtained adapting Theorem 7.1 [21]. It

reads

Criterion 3

L has an embedding in IId,d+16 if and only if L has an overlattice M with the

following properties:

(i) there exists an even lattice T of signature (0, d) such that (AT , qT ) is iso-

morphic to (AM , qM),

(ii) the sublattice Mroot of M coincides with L.

Since L is an overlattice of itself, criterion 2 is a subcase of criterion 3. As explained in

appendix A, for an overlattice M to exist, there must be an isotropic subgroup HL of AL such
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that M/L ∼= HL and |HL|2= d(L)/d(M). When criterion 3 is satisfied, d(M) = d(T ). We

then obtain the useful relation

d(L) = d(T )|HL|2 . (3.1)

We will refer to T as the complementary lattice in the following.

In the K3 framework, in which d = 2, HL corresponds to the torsion part of the Mordell-

Weil group, called MW in [20]. It can be checked that all pairs (L, T ) in Table 2 of [20],

reproduced in our Table 12, satisfy the relation (3.1). We remark that there could exist more

than one M , as found for some groups in [20].

In the work of Shimada and Zhang [20], the focus is on the classification of all possible

ADE types of singular fibers of extremal elliptic K3 surfaces. Such a surface, called X, is

characterized by having Picard number, ρ(X), equal to 20, and finite Mordell-Weil group [28].

In this case the Néron-Severi lattice, NSX , and the transcendental lattice, TX , have signatures

(1, 19) and (2, 0) respectively2. The latticeWX has signature (0, 18) and contains the sublattice

L(Σ) of rank 18, where Σ is the formal sum of the ADE types of singular fibers (determined

by the Kodaira classification). It follows that L(Σ) must admit an embedding in II2,18. Now,

in the heterotic compactification on T 2, the semisimple ADE groups of maximal rank 18 that

can occur are such that their root lattice can be embedded in the Narain lattice II2,18. Thus,

the results of [20] for all possible L(Σ) translate into all possible maximal enhancings in the

heterotic compactification on T 2. Notice that the complementary lattice of criteria 2 and 3

above is related to the transcendental lattice by a change of sign of the Gram metric, i.e.

T = TX〈−1〉. In section 3.2 we will discuss to greater extent the connection to heterotic

compactifications.

We illustrate below the application of criteria 1,2,3 to the cases d = 1, 2. We will also

comment briefly on d = 8. In practice we first try criterion 1. If L passes it, then it is allowed.

If not, we continue with criterion 2. If L satisfies it, we are done, otherwise we apply criterion

3. If L also fails criterion 3 we conclude that L is not allowed. A consistency check is that

if L passes criterion 1 it must also fulfill criterion 3. Let us mention that the steps taken

2By definition, NSX = H1,1(X,R)∩H2(X,Z) and has signature (1, ρ(X)−1). The transcendental lattice is
the orthogonal complement of NSX in H2(X,Z) and has signature (2, 20−ρ(X)). With the intersection form of
X, the second cohomology group H2(X,Z) is isometric to II3,19. The Néron-Severi lattice can be decomposed
as NSX = II1,1 ⊕WX , where II1,1 is generated by the zero section and the generic fiber. The lattice WX is
the orthogonal complement of II1,1 in NSX and has signature (0, ρ(X)− 2). Thus, II1,1 ⊕WX ⊕ TX ⊂ II3,19.
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by Shimada and Zhang to compile their list, cf. section 3 in [20], indicate that they run a

computer program based on the more general criterion 3.

3.1.1 d = 1

As a warm up we will study the d = 1 case which is simple yet instructive. Moreover,

all allowed groups of maximal enhancing appearing in heterotic compactification on S1 are

already known [23]. Thus, there are many examples to illustrate the application of the lattice

embedding techniques.

When d = 1 the easy criterion 1 gives no information. When `(AL) = 1 we then apply

criterion 2. In Table 1 we give some examples of allowed groups. It is easy to propose the

corresponding T because it must be d(T ) = d(L) and the (0,1) even lattices are of type A1〈m〉,

defined to be the A1 lattice rescaled so that its basis vector has norm u2
1 = 2m. One still has

to check that the discriminant forms do match, more precisely that there is an isomorphism

(AL, qL) ∼= (AT , qT ). For example, for L = D17, AL is generated by the spinor class with

s2 = 17
4

= 1
4

mod 2, so qL takes values j2

4
mod 2, j = 0, . . . 3. This matches the qT of A1〈2〉

which takes the same values because (u∗1)2 = 1
4
. It is more challenging to check L = E7 + A10.

For the proposed T , AT is generated by u∗1 with (u∗1)2 = 1
22

, whereas AL is generated by

w56 × w1 with w2
56 = 3

2
and w2

1 = 10
11

. To see that qL and qT match it suffices to verify that

(3
2

+ 10j2

11
= 1

22
+ 2k) is satisfied by integers j and k, e.g. j = 4, k = 8.

L AL T

2E8 + A1 Z2 A1

D17 Z4 A1〈2〉
E8 + D9 Z4 A1〈2〉
E7 + A10 Z2 × Z11

∼= Z22 A1〈11〉

Table 1: Examples of allowed L with `(AL) = 1, when d = 1.

The allowed groups [23] with maximal enhancing of the form L = E8 + E9−p + Ap, p =

1, . . . , 9, p 6= 7, all have `(AL) = 1. Only for p = 8 there is an isotropic subgroup (actually for

the A8 component) but the Mroot of the associated M is larger than L. Hence, all these groups

should be allowed by criterion 2. We find that the corresponding T is A1〈p(p+1)
2
〉, p = 1, . . . , 6,

and A1〈 (10−p)(p+1)
2

〉, p = 8, 9.
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It is straightforward but cumbersome to check exhaustively which of the known groups

with maximal enhancing and `(AL) = 1 satisfy criterion 2, and if not apply criterion 3. In

many cases, e.g. L = E7 + E6 + A4, AL = Z30, one can quickly see that an overlattice cannot

exist because there is no isotropic subgroup. Since this L is known to appear, criterion 2

should allow it, and indeed T = A1〈15〉 fulfills the conditions.

A neat example with `(AL) = 1 is L = A17, AL = Z18. The candidate T would be A1〈9〉

but the discriminant forms do not match because there are no integers j and k such that

(17j2

18
= 1

18
+ 2k) is satisfied. Fortunately, A17 has an overlattice M associated to the isotropic

subgroup HL = Z3, generated by w6 with w2
6 = 4 = 0 mod 2. From (3.1) we see that d(T ) = 2

so it must be T = A1. Since d(M) = d(T ) also AM = Z2. It remains to check that the

discriminant forms of AM and AT coincide. To this end we need to determine the orthogonal

complement H⊥L of HL in AL and restrict qL to H⊥L /HL. We then look for weights orthogonal

to the generator w6, i.e. weights such that wi ·w6 = 0 mod 1. Besides w6 and w12 which belong

to HL, w3, w9 and w15 are orthogonal. Now, w2
i = 1

2
mod 2, for i = 3, 9, 15. This confirms that

AM = Z2, with the discriminant form qM taking values 0 and 1
2
. These are the same values

taken by qT . Finally, the root sublattice of M is equal to L because w2
6 = 4.

We can also study known allowed groups with `(AL) ≥ 2 where criterion 3 must be applied.

An example is the group with L = E6 + A11, AL = Z3 × Z12. There exists an overlattice with

HL = Z3 and it can be shown that criterion 3 is satisfied with T = A1〈2〉. For a second

example take L = A1 + A2 + A14, AL = Z2 × Z3 × Z15
∼= Z6 × Z15. The piece L̃ = A2 + A14

has an overlattice M̃ with d(M̃) = 5 so necessarily AM̃ = Z5. Thus, L has an overlattice

M = A1 + M̃ , AM = Z2 × Z5
∼= Z10 and a candidate T is A1〈5〉. With `(AL) = 3 we already

discussed how L = D16 + A1 passes the test. In Table 11 we give full results.

So far we have discussed groups with maximal enhancing which are known to occur. It is

reassuring that they are allowed by the lattice embedding criteria but our main motivation was

to understand why some groups are forbidden. Let us then finally offer a couple of examples

of forbidden groups. Take L = A6 +D11, AL = Z28. A candidate T is A1〈14〉, but qT � qL. An

overlattice cannot exist because there is no isotropic subgroup of AL. Thus, this L fails criteria

2 and 3. A less trivial example is L = 2D8 + A1, AL = Z5
2. In appendix A we explained that

D8 admits E8 as an overlattice. For L this leads to a full overlattice given by M = 2E8 + A1.
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Now AM = Z2 and an adequate T would be A1. However, condition (ii) in criterion 3 is not

satisfied. As remarked in appendix A, the root sublattice of 2E8 is not equal to 2D8. Actually,

L admits also an overlattice M ′ = E8 + D8 + A1 with AM ′ = Z3
2 and `(AM ′) = 3 so there can

be no associated T . It would be interesting to study more examples of forbidden groups.

3.1.2 d = 2

When d = 2, criterion 1 implies that lattices with `(AL) = 1 give allowed groups. In Table 2

we present a few examples of this type.

L AL T

A18 Z19 [2, 1, 10]
A4 + E6 + E8 Z5 × Z3

∼= Z15 [2, 1, 8]
A2 + A16 Z3 × Z17

∼= Z51 [6, 3, 10]
A8 + A10 Z9 × Z11

∼= Z99 [10, 1, 10]
A6 + A12 Z7 × Z13

∼= Z91 [2, 1, 46]
E6 + A12 Z3 × Z13

∼= Z39 [4, 1, 10]

Table 2: Examples of allowed L with `(AL) = 1, when d = 2. T is denoted by its Gram
matrix [u2

1, u1 · u2, u
2
2].

Before considering examples with `(AL) = 2 let us describe how to find the lattice T . To

begin, d(T ) is known because it must be equal to d(L) or d(M). Next, the even 2 dimensional

lattices of determinant less than 50 are listed in Table 15.1 of [35], and for larger d(T ) they

can be found using the SageMath module on binary quadratic forms [36]. Given T , the pair

(AT , qT ) can be deduced as explained in appendix A. We then check if (AT , qT ) ∼= (AL, qL).

Criterion 2 must also hold when `(AL) = 1 since in this case the existence of a primitive

embedding is guaranteed by criterion 1. In Table 2 we have shown the corresponding matrices

T . For example, with d(T ) = 19 there is only the lattice with Gram matrix Q given in Table

2. It can be checked that AT ∼= Z19 and that the values of qT are such that indeed (AT , qT ) is

isomorphic to (AL, qL) for L = A18. For L = A4 + E6 + E8 we need a T with d(T ) = 15. In

this case there are two possible lattices, [2, 1, 8] and [4, 1, 4], both with AT = Z15. It can be

checked that only the discriminant form of the first does match qL.

The allowed L’s are given in Table 2 in [20]. It is a simple task to find AL and `(AL).

Groups accepted by criterion 2 have `(AL) = 2 and MW = [0]. In our language trivial MW
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means trivial HL, i.e. trivial overlattice M = L. There are many examples of this type.

In Table 3 we show a few. To find T we proceed as explained before, looking first for even

lattices of determinant d(T ) = d(L) and AT = AL. There might be more than one, the correct

ones must have (AT , qT ) ∼= (AL, qL). In Table 3 we have displayed in red candidates for T

that are discarded because qT is incongruent with qL. The incorrect T ’s are more or less

obvious. Checking the isomorphism for the correct ones is more laborious. For instance, for

L = E6 + D12, the distinct values that can appear in qL are in the set {0, 1
3
, 1, 4

3
}. Both T ’s

have AT = Z2 × Z6, but the values of qL can only be matched to the values in the T with

Q−1 = [1
3
,−1

6
, 1

3
].

L AL T

2D9 Z4 × Z4 [4, 0, 4]
A4 + 2E7 Z5 × Z2 × Z2

∼= Z10 × Z2 [4, 2, 6] [2,0,10]
E6 + D12 Z3 × Z2 × Z2

∼= Z6 × Z2 [4, 2, 4] [2,0,6]
A1 + A17 Z2 × Z18 [4, 2, 10] [2,0,18]

Table 3: Examples of allowed L with `(AL) = 2, when d = 2. The candidates for T with
d(T ) = d(L), but with (AT , qT ) � (AL, qL), are displayed in red.

The example L = A1 + A17 is interesting because it also admits an overlattice. Indeed,

in section 3.1.1 we saw that L̃ = A17 has an overlattice M̃ with M̃/L̃ ∼= Z3, AM̃ = Z2 and

qM̃ = {0, 1
2
}. Thus, the full L has an overlattice M = A1 + M̃ with AM = Z2 × Z2 and

M/L ∼= Z3. Now criterion 3 can be fulfilled with T = [2, 0, 2]. This agrees with results of [20]

for this L.

When `(AL) ≥ 3 we can check that the allowed groups pass criterion 3 with the data given

in Table 2 of [20]. One example is L = 3A6, AL = Z3
7. There is an isotropic subgroup HL = Z7

generated by µ = w1(1) × w2(2) × w4(3), where wi(a) denotes weights of the ath A6 factor.

Notice that µ2 = 4 = 0 mod 2. From (3.1), d(M) = 7 so necessarily AM = Z7. Following the

procedure to determine qM shows that it matches the qT of T = [2, 1, 4] which is the unique

even 2-dimensional lattice with d(T ) = 7.

Finally we come to forbidden groups. Let us discuss the examples in Table 4. In all three

there are no suitable lattices T . The possible candidates, shown in red, are discarded because

their qT does not match qL. We conclude that these groups do not satisfy criterion 2 and
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continue to check criterion 3. In example 1 we know that D8 has an overlattice E8 so the full

L has an overlattice M = 2E8 + A2, M/L ∼= Z2 so d(M) = 3, consistent with AM = Z3. Now

qM matches the qT of T = [2, 1, 2] but still criterion 3 fails because Mroot 6= L. In example

2, there is an isotropic subgroup HL = Z2 generated by µ = v × w2, where v is the vector

weight of D15 and w2 is the weight of the 10 of A3. Since v2 = 1 and w2
2 = 1, µ2 = 2. From

(3.1), d(M) = 16
22

= 4. The only possible T with d(T ) = 4 is [2, 0, 2] and it could be that qT

matches qM . However, M has elements y + nµ, y ∈ L, n = 0, 1 and since µ2 = 2, Mroot 6= L.

Hence, example 2 does not pass criterion 3. Concerning example 3, it flops criterion 3 because

there is no isotropic subgroup of AL. To see this, first observe that (3.1) implies that only

|HL|= 7 would be consistent with d(M) being an integer. Thus, HL would have to be Z7

and its generator would have to be a product of weights of the A6’s, say µ = wi(1) × wj(2).

However it is not possible to obtain µ2 = 0 mod 2.

# L AL T

1 E8 + D8 + A2 Z2 × Z2 × Z3
∼= Z2 × Z6 [2, 0, 6] [4,2,4]

2 D15 + A3 Z4 × Z4 [4,0,4]
3 2A6 + E6 Z7 × Z7 × Z3

∼= Z7 × Z21 [14,7,14]

Table 4: Examples of forbidden L when d = 2.

In summary, we have provided several examples where it was relatively simple to apply by

hand the criteria that serve to determine whether a group of maximal rank is allowed or not.

Clearly, to make a full search, or even to check more complicated examples, would require

computer aid.

In Table 12 we give the subgroups HL and the lattice T for all the allowed L’s found in

the K3 framework [20]. They correspond to all maximal enhancements arising in heterotic

compactifications on T 2.

3.1.3 d = 8

The case d = 8 is peculiar because there exists an even unimodular lattice of signature (0, 8),

namely E8. To see how this enters the analysis, consider L = 3E8 which has trivial AL. Since

`(AL) = 0, this L easily passes criterion 1. Now, since criterion 2 must also be fulfilled there
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has to be an even lattice of signature (0, 8) and trivial AT . This requires d(T ) = 1 so T = E8.

This indicates that in the heterotic on T 8 it is possible to obtain the group 3E8. Indeed, it

can be found in the HE by setting all the Wilson lines to zero and taking the internal torus

with metric gij = 1
2
g̃ij, where g̃ij is the Cartan matrix of E8. The antisymmetric field must be

chosen as

bij =


1
2
g̃ij, i < j,

−1
2
g̃ij, i > j,

0, i = j.

. (3.2)

This is an example of the general type discussed in [16, 37] in which pL − pR belongs to the

root lattice of an ADE group of rank d.

A second interesting example is L = 24A1, AL = Z24
2 . Since `(AL) = 24, L fails criterion 1

and criterion 2 as well because `(T ) ≤ 8. To apply criterion 3 we recall that this L admits an

even unimodular overlattice given by one of the Niemeier lattices, say Nψ, with Nψ/L ∼= Z12
2

(see chapter 16 in [35]). It is also known that the root lattice of Nψ and L coincide. Thus, L

fulfills criterion 3 with M = Nψ and T = E8. By the same token L = 12A2 is also allowed by

criterion 3. Niemeier lattices in heterotic compactifications on T 8 have appeared in [39].

3.2 Connection to heterotic compactifications

We have seen that the groups of maximal rank that can be embedded in IId,d+16 are charac-

terized by an ADE lattice L of rank d + 16, the isotropic subgroup HL ⊂ AL, the associated

overlattice M and the complementary even lattice T of rank d, satisfying (AT , qT ) ∼= (AM , qM).

The isotropic subgroup HL is the torsion part of the embedding, in the sense that M/L ∼= HL.

For an embedding to exist, it must be that d(M) = d(T ) = d(L)/|HL|2. In the heterotic

framework L is the root lattice of some gauge group with maximal enhancing. We now want

to identify T , which we call the complementary lattice.

There is a natural candidate for an even lattice of rank d, namely the sublattice of IId,d+16,

denoted K, obtained by setting pL = 0. This is

K =
{

(pR; pL) ∈ IId,d+16 || pL = 0
}
. (3.3)
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Let us next examine the consequences of setting pL = 0. First, from (2.2c) we find that pI = 0

implies

πI = −wiAIi . (3.4)

Second, imposing pL = 0 leads to

ni = −wjEji , (3.5)

after substituting (3.4) in (2.2b). From pL = 0 it further follows that

pR = −
√

2wiei . (3.6)

Thus, pR lies in a lattice of rank d as long as all the windings wi are allowed to be different

from zero. Since π is a vector in the gauge lattice Υ16, the condition (3.4) can only be fulfilled

with wi 6= 0 if the Wilson lines Ai are quantized, in the sense that they are given by a vector

in Υ16, divided by a positive integer. We define the order of the Wilson line Ai as the smallest

positive integer Ni such that

NiAi ∈ Υ16 (no sum in i) . (3.7)

If Ai = 0, its order is 1. In section 4.1.3 we will review an algorithm to find such Wilson lines.

All Ai must be quantized so that (3.4) does not force some windings wi to be identically zero.

The quantization condition in (3.5) is also very restrictive. It clearly demands the Eij to be

rational numbers. Taking into account quantization of the Wilson lines then requires the T d

metric components gij = ei·ej to be rational numbers, which is consistent with p2
R being even.

From now on we assume that K has rank d.

The constraints on the Ai and Eij are compatible with having a gauge group of maximal

enhancing, which is the case under study. In fact, recall that to this end there must exist

solutions to pR = 0 and pL
2 = 2. The former implies the conditions (2.9), which can be

achieved with quantized Ai and rational Eij.

The even lattice K ⊂ IId,d+16 has signature (d, 0) by construction. Applying Nikulin’s

Theorem 1.12.4 in [18], we learn that K admits a primitive embedding in IId,d+16. It follows

that the orthogonal complement of K in IId,d+16 also admits a primitive embedding in IId,d+16.
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This orthogonal complement is just the sublattice of IId,d+16 defined by pR = 0 which we

denote M , i.e.

M = {(pR; pL) ∈ IId,d+16 || pR = 0} . (3.8)

The name M is appropriate because it is indeed the overlattice of criteria 3 with Mroot = L.

The reason is that Mroot is the sublattice of M generated by vectors with pL
2 = 2 and it has

rank (d+ 16) by the assumption of maximal enhancing.

So far we have argued that M of signature (0, d + 16) is the orthogonal complement in

IId,d+16 of K of signature (d, 0), and that K as well as M are primitively embedded in IId,d+16.

In fact, IId,d+16 is an overlattice of M ⊕K. We can then apply Lemma 2.4 in [20] to conclude

that there is an isomorphism (AM , qM) ∼= (AK ,−qK). A proof of this lemma is presented in

appendix B.2. Finally, by Nikulin’s Proposition 1.12.1 [18] there exists T of signature (0, d)

satisfying (AM , qM) ∼= (AT , qT ). It is obtained by changing the sign of the Gram matrix of K,

i.e.

T = K〈−1〉 . (3.9)

Summarizing, the two rationality conditions NiAi ∈ Υ16 and Eij ∈ Q, guarantee the existence

of the even (0, d) lattice T , which in turn implies the existence of the even (0, d + 16) lattice

M with (AM , qM) ∼= (AT , qT ). Thus, the rationality conditions are necessary to have maximal

enhancing to a group of rank d + 16. However, these conditions are not sufficient to ensure

that the sub-lattice Mroot has rank d+ 16. The additional constraint in criterion 3 is precisely

that the gauge lattice L of rank d+ 16 coincides with Mroot.

3.2.1 Lattice data from moduli

Once we know the data (L, T ) of the allowed groups Gr we still have to determine specific

moduli Ai and Eij that give rise to them. Conversely, given Ai and Eij, in principle L is

obtained from the solutions of pR = 0, pL
2 = 2, which correspond to the roots of Gr. On the

other hand, T can be derived directly from the moduli as explained below.

The elements of T are of the form (3.6). Besides, the moduli must comply with the

conditions (3.4) and (3.5). To make more concrete statements, consider first the case in which

the Eij are integers so that (3.6) is satisfied by any wi. Then, a class of allowed values for the
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wi are multiples of the Wilson lines orders, namely wi = `iNi (no sum over i), with `i ∈ Z. If

we assume that this class exhausts all possibilities, T will be generated by a basis

u1 =
√

2N1e1, u2 =
√

2N2e2, . . . , ud =
√

2Nded , (3.10)

where we dropped an irrelevant sign. The Gram matrix of T will then be given by

Qij = ui · uj = 2NiNjgij = NiNj(Eij + Eji − Ai · Aj) . (3.11)

Since this is valid for Eij integers and NiAi ∈ Υ16, we see that the Qij are integers and the

diagonal components are even, as required for an even lattice.

In some cases there might be more admissible values of the winding numbers wi. In general,

the allowed values are sets of integers (M1,M2, . . . ,Md) that satisfy

M1A1 +M2A2 + · · ·+MdAd ∈ Υ16 , (3.12a)

M1E1i +M2E2i + · · ·+MdEdi ∈ Z , i = 1, . . . , d . (3.12b)

In this situation a way to proceed is to obtain d solutions (M
(k)
1 , . . . ,M

(k)
d ), k = 1, . . . , d,

linearly independent (with Euclidean metric), such that the vectors

uk =
d∑
`=1

√
2M

(k)
` e` (3.13)

generate a lattice with the least volume. For instance, the vectors in (3.10) are recovered when

Eij ∈ Z and the only solutions of (3.12a) are M
(k)
` = N`δ`k (no sum over `). In the general

case we have to impose the condition of least volume. To be more precise, define the matrix

C with elements Ck` = M
(k)
` , i.e. the rows of C are the solutions of (3.12). The Gram matrix

of T then reads

Qk` = uk · u` = 2(C g Ct)k` , (3.14)

where we used gij = ei ·ej. Therefore, detQ = 2d(detC)2 det g. Since the determinant of the

torus metric is fixed by the choice of moduli Ai and Eij, to obtain the least lattice volume

28



it suffices to choose C with least determinant. Hadamard’s inequality then instructs us to

choose d independent solutions (M
(k)
1 , . . . ,M

(k)
d ) of (3.12) with the least norm. To check that

Qk` are integers and the diagonal elements are even, we write gij = 1
2
(Eij + Eji − Ai · Aj),

and take into account that the M
(k)
i verify (3.12). Finally, Q is unique up to the action of

GL(d,Z). For d = 2 we can use the procedure described in section 3, Chapter 15, of [35] to

bring Q to the standard reduced form used in [20].

In the next sections we will discuss systematic methods to determine moduli associated to

groups of maximal enhancing when d = 1 and d = 2. We will then exemplify further how T

computed from the moduli matches the T from the lattice embedding data. Meanwhile it is

instructive to illustrate the main points in cases with generic d.

For a simple example, consider moduli Ai = 0, gij = 1
2
g̃ij, where g̃ij is the Cartan matrix

of an ADE group G̃d of rank d, and bij is given in (3.2). The Eij moduli are found to be

Eij =


1
2
g̃ij, i = j,

g̃ij, i < j,

0, i > j

. (3.15)

Therefore, the Eij are either 1, −1 or 0. In this setup the gauge group of the heterotic string

on T d is 2E8 + G̃d in the HE or D16 + G̃d in the HO. This example is of the general type

in which all Wilson lines are set to zero and pL − pR ∈ Γ̃d, where Γ̃d is the root lattice of

G̃d [16, 37]. From the lattice formalism we find that T = Γ̃d. From the moduli we obtain the

same result for T because the basis is given in (3.10) with ei = 1√
2
ẽi and Ni = 1.

A second example in the HO on T d has moduli [16,37]

eai =
1√
2
δai , bij = 0 , AIi = δIi with i ≤ d (3.16)

It can be shown that the resulting group is Dd+16. All Wilson lines have order Ni = 2. Besides,

Eij = δij so that the condition (3.12b) does not constrain the Mi. For d = 1 we can just take

M1 = N1 = 2 so that u1 = 2 and T = A1〈2〉 as we found with the lattice formalism in

section 3.1.1. For d ≥ 2 there are solutions to (3.12a) other than M
(j)
i = 2δij. For instance,

A1 ± A2 ∈ Γ16. The M
(j)
i can be chosen so that the ui are the roots of Dd. Thus, T = Dd.
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Another important question in the heterotic context is the meaning of the quadratic dis-

criminant form qT . The answer is that the values that p2
R can take are precisely given by qT

mod 2. This follows because pR generically lies in the dual lattice T ∗. When T has basis (3.10),

it is easy to see from (2.2a) that pR indeed takes values in a lattice generated by u∗i = 1√
2Ni

ê∗i,

with Gram matrix the inverse of Q in (3.11). When there are additional solutions to (3.12),

so that the basis for T is given by (3.13), pR lies in a lattice spanned by

u∗i =
1√
2

d∑
k=1

Ckiê∗k , (3.17)

where Cki = C−1
ki and as before Ck` = M

(k)
` . Thus, u∗i · u∗j = Qij = Q−1

ij , with Q the Gram

matrix in (3.14). The fact that qT gives the values of p2
R is useful to determine the spectrum of

massive states. In particular, it could be relevant in the double field theory analysis of gauge

enhancements [38].

4 Compactifications on S1

In this section we consider in more detail compactifications of the heterotic string on the circle,

where the moduli are the radius R and the 16-dimensional Wilson line AI . The problems of

finding all possible gauge groups Gr × U(1)17−r and the corresponding moduli (R,AI), were

solved in [23] by means of the extended Dynkin diagram (EDD) associated to II1,17, depicted

in Figure 1. We will first review the procedure and the results. We will also explain how

they can be put in a form that can be generalized to compactification on T d . Afterwards we

will discuss the connection with the lattice embedding formalism. In Table 11 we collect the

relevant lattice and moduli data for all the 44 groups of maximal rank that appear in heterotic

string compactifications on S1.

For generic moduli the elements of II1,17 are given in (2.2), with e1 = R, ê∗1 = 1/R, i.e.

pR =
1√
2R

(n− Ew − π · A), pL =
√

2Rw + pR, pI = πI + wAI , (4.1)

where E = R2 + 1
2
A2 is just the E-tensor of (2.1) for d = 1. Recall that n and w are the

quantized momenta and winding numbers, while πI belongs to the lattice Γ8 × Γ8 in the HE
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or Γ16 in the HO.

As in [16], p = (pR; pL, p
I) can be expanded as

p = wk + nk + π · l , (4.2)

with basis

k =
1√
2

(
1

R
;

1

R
, 0

)
, k =

1√
2

(
−R− A2

2R
;R− A2

2R
,
√

2AI
)
, lI =

(
− AI√

2R
;− AI√

2R
, uI
)
.

(4.3)

Here uI is a Cartesian 16-dimensional basis vector. The inner product is taken with the

Lorentzian metric (−; +, . . . ,+). Thus k ·k = k ·k = 0, k ·k = 1, lI · lJ = δIJ , k · lI = k · lI = 0.

For many purposes it is simpler to work with the charge vector |Z〉 = |w, n; πI〉. The change

of basis to p is easily read from (4.2). Besides, 〈Z ′|Z〉 = w′n+ n′w + π′ · π.

4.1 Moduli and gauge group from the EDD diagram

We refer to [37] for an introduction to root systems and associated EDDs of Lorentzian

II1,8m+1 lattices. The special case of II1,17 is discussed in detail in [16] and [40], precisely in

connection to circle compactifications of the heterotic string. It was originally considered by

Vinberg [41]. The reflective part of its group of automorphisms, which is actually the duality

group O(1, 17,Z) [40], can be encoded in the EDD as we review shortly.

4.1.1 Embedding of Γ8 × Γ8

1
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4

4
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3

7′ 4

8′ 2

Figure 1: Extended Dynkin diagram for the II1,17 lattice, with labels showing the embedding
of the extended Dynkin diagrams of E8 + E′8. The Kac marks are shown in red.

We begin by describing the embedding of the HE lattice Γ8 × Γ8 in II1,17. The EDD is
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shown in Figure 1. It is composed by the extended Dynkin diagrams of E8 and E′8 joined by

a central node. The nodes can be specified in terms of the charge vectors

ϕi = |0, 0;αi, 0
8〉, ϕi′ = |0, 0; 08, α′i〉, i = 1, ..., 8 ,

ϕ0 = |0,−1;α0, 0
8〉, ϕC = |1, 1; 08, 08〉, ϕ0′ = |0,−1; 08, α′0〉 .

(4.4)

where αi and α′i are the simple roots of E8 and E′8, given in Table 5 (note that for convenience

in regard to the EDD diagram, we take different conventions for simple roots of the two

groups) . Our conventions for the simple roots and fundamental weights wi, w
′
i, of E8 and E′8

are collected in Table 5. We have also written down the lowest root α0 = −
∑8

k=1 κkαk, and

similarly for α′0. The κi and κ′i are the Kac marks, shown in red in the Figure 1. By definition

κ0 = κ′0 = 1 and sometimes we will set w0 = 0, w′0 = 0.

k αk wk α′
k w′

k

1 (1, -1, 0, 0, 0, 0, 0, 0) -(- 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , -

5
2 ) (0, 0, 0, 0, 0, 0, 1, -1) (- 52 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , -

1
2 )

2 (0, 1, -1, 0, 0, 0, 0, 0) -(0, 0, 1, 1, 1, 1, 1, -5) (0, 0, 0, 0, 0, 1, -1, 0) (-5, 1, 1, 1, 1, 1, 0, 0)

3 (0, 0, 1, -1, 0, 0, 0, 0) -(0, 0, 0, 1, 1, 1, 1, -4) (0, 0, 0, 0, 1, -1, 0, 0) (-4, 1, 1, 1, 1, 0, 0, 0)

4 (0, 0, 0, 1, -1, 0, 0, 0) -(0, 0, 0, 0, 1, 1, 1, -3) (0, 0, 0, 1, -1, 0, 0, 0) (-3, 1, 1, 1, 0, 0, 0, 0)

5 (0, 0, 0, 0, 1, -1, 0, 0) -(0, 0, 0, 0, 0, 1, 1, -2) (0, 0, 1, -1, 0, 0, 0, 0) (-2, 1, 1, 0, 0, 0, 0, 0)

6 (0, 0, 0, 0, 0, 1, -1, 0) (0, 0, 0, 0, 0, 0, -1, 1) (0, 1, -1, 0, 0, 0, 0, 0) (-1, 1, 0, 0, 0, 0, 0, 0)

7 -(1, 1, 0, 0, 0, 0, 0, 0) -( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , -

7
2 ) (0, 0, 0, 0, 0, 0, 1, 1) (- 72 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 )

8 ( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) (0, 0, 0, 0, 0, 0, 0, 2) -( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) (-2, 0, 0, 0, 0, 0, 0, 0)

0 (0, 0, 0, 0, 0, 0, 1, -1) (0, 0, 0, 0, 0, 0, 0, 0) (1, -1, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)

Table 5: Simple roots and fundamental weights of E8 and E′8.

In [40] (see also [41]), the generators of the duality group O(1, 17,Z) were identified with

Weyl reflections in the lattice. To be more concrete, let us consider the transformations of

the charge vector |Z〉 about the simple roots of II1,17 in (4.4), denoted collectively |ϕ〉. Since
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〈ϕ|ϕ〉 = 2, the Weyl transformation is

|Z ′〉 = |Z〉 − 〈ϕ|Z〉|ϕ〉 . (4.5)

Once |Z ′〉 is found, the action on the moduli is deduced by imposing that pR = 0 transforms

into p′R = 0, i.e. n − Ew − π · A = 0 goes into n′ − E ′w′ − π′ · A′ = 0. This is a shortcut to

requiring invariance of the spectrum. For example, writing only the transformed quantities,

from the nodes 1, 0, and C we obtain

ϕ1 : π′1 = π2, π′2 = π1 ⇒ A′1 = A2, A′2 = A1, (4.6a)

ϕ0 : n′ = n− w + π7 − π8, π′7 = π8 + w, π′8 = π7 − w ⇒ A′7 = A8 − 1, A′8 = A7 + 1,

E ′ = E + A7 − A8 + 1, (4.6b)

ϕC : w
′
= −n, n′ = −w ⇒ E ′ =

1

E
,A′ =

A

E
. (4.6c)

Clearly, (4.6a) is a permutation of the first two components of the Wilson line. In general, the

reflections about nodes ϕi, or ϕ′i, i = 1, . . . , 8, induce transformations of the Wilson line AI

which are just elements of the Weyl group of E8, or E′8. In (4.6b) we recognize a translation of

AI by α0 × 0, which belongs to Γ8 × Γ8, combined with a permutation of A7 and A8. Finally,

(4.6c) is the generalization of the T-duality R→ 1/R when A 6= 0.

Node Fundamental region for Γ8 × Γ8

1 ≤ i ≤ 8 A · (αi × 0) ≥ 0

0 A · (α0 × 0) ≥ −1

C E ≥ 1

0′ A · (0× α′
0) ≥ −1

1′ ≤ i′ ≤ 8′ A · (0× α′
i) ≥ 0

Table 6: Fundamental region for HE in d = 1.

The prescription to obtain a non-Abelian gauge group Gr is to delete 19 − r nodes of

the EDD such that the remaining ones give the Dynkin diagram of the desired semi-simple

33



Lie Algebra. The total gauge group is Gr × U(1)17−r. The Wilson line and the radius are

determined by saturating the inequalities in Table 6 corresponding to the r undeleted nodes.

In this manner one can obtain all the allowed groups and the corresponding moduli. For

example, for maximal enhancement, all but 2 of the inequalities are saturated. The allowed

groups of maximal rank are precisely found by deleting one node in the E8 side and one node

in the E′8 side, while the central node C corresponding to E = 1 cannot be erased. In section

4.1.3 we will discuss a simplified way to implement this method, that we call saturation.

Conversely, if the Wilson line A and the radius R are supplied, the resulting group can

be determined by checking which boundary conditions are saturated and keeping only the

associated nodes in the EDD. To this end we might need to first bring the given A and R

to the fundamental region by transformations including shifts and Weyl reflections of A in

Γ8 × Γ8, and the T-duality (4.6c).

From the EDD we can also determine the automorphisms of the lattice corresponding to

any enhanced gauge group. They are just generated by Weyl reflections (4.5) associated to the

surviving nodes. The fixed points of each reflection determine a 16-dimensional hyperplane in

moduli space where the inequality associated to the given node is saturated. The intersection

of r of these hyperplanes gives the (17− r)-dimensional subspace of moduli space where the

given rank r gauge group is realized (maximal enhancements are realized at a point). This

subspace is invariant under the subgroup of O(1, 17,Z) generated by the r Weyl reflections

associated to the surviving nodes.

Having explained how the EDD enables us to determine the allowed groups Gr×U(1)17−r

and the corresponding moduli, we can draw some results. For instance, it is easy to see that

all ADE Gr of r ≤ 9 are allowed, consistent with Theorem 1.12.4 in the Nikulin formalism [18].

The diagram also shows that for r = 10 all ADE Gr can appear and that for r = 11 only 11A1

is forbidden. There are 44 allowed groups with maximal rank r = 17. They were determined

in [23] and are collected in Table 11. On the other hand, there are 1093 forbidden groups with

r = 17, e.g. 2D8 + A1, which clearly cannot be obtained from the EDD. The connection with

the Nikulin formalism for the case of maximal rank will be further discussed in section 4.2.
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4.1.2 Embedding of Γ16

The moduli in the HO theory can be obtained by adapting the EDD to embed Γ16 explicitly.

To this end we need to write the charge vectors of the nodes in terms of the simple roots βk,

plus the spinor weight w16 of SO(32). The simple roots and the corresponding fundamental

weights are

βk = (0k−1, 1,−1, 015−k) , wk = (1k, 016−k) , k = 1, ..., 14

β15 = (014, 1,−1) , w15 = (1
2

15
,−1

2) ,

β16 = (014, 1, 1) , w16 = (1
2

16
).

(4.7)

The lowest root of SO(32) is

β17 = (−1,−1, 014) . (4.8)

The Kac marks are κk = 1 for k = 1, 15, 16, 17, and κk = 2 for k = 2, ..., 14.
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Figure 2: Extended Dynkin diagram for the II1,17 lattice, with labels showing the embedding
of Γ16. The Kac marks of the extended SO(32) diagram are shown in red.

The EDD embedding Γ16 is shown in Figure 2. The charge vectors of the nodes read

ϕ̃k = |0, 0; βk〉, k = 1, ..., 16 , ϕ̃17 = |0,−1; β17〉 = |0,−1;−1,−1, 014〉 ,

ϕ̃18 = |1, 1; 016〉, ϕ̃19 = |1,−1;−w16〉 .
(4.9)

It is straightforward to carry out the analysis of the Weyl reflections (4.5) to identify the gen-

erators of O(1, 17,Z) and the boundaries of the fundamental region. A choice of fundamental

region for the moduli space of the HO theory is given in Table 7 (our conventions for the roots

differ by a sign from those in [23]).

As in the HE theory, the procedure to determine the allowed groups Gr×U(1)17−r, and the
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Node Fundamental region for Γ16

1 ≤ k ≤ 16 A · βk ≥ 0

17 A · β17 ≥ −1

18 E ≥ 1

19 E ≥ A · w16 − 1

Table 7: Fundamental region for HO in d = 1

corresponding moduli, consists of deleting nodes such that those remaining give the Dynkin

diagram of an ADE algebra. Obviously the groups will be the same as in the HE, but the

moduli will differ. They are simply deduced by saturating the inequalities in Table 7 that

pertain to the undeleted nodes.

From the EDD we can also find the group due to some given moduli but, if necessary,

A and R have to first be brought to the fundamental region by dualities, namely shifts and

Weyl reflections in Γ16, e.g. AI → −AI or AI → 1 − AI in pairs, and the T-duality (4.6c).

For instance, in this way A = (2
3

3
, 013), R = 1√

3
, can be transformed into A = (1

2

2
, 014) = 1

2
w2,

R =
√

3
2

. From the latter data we find that the nodes 2 and 19 must be deleted so that

the gauge group is A1 + A2 + D14. Similarly, A = (1
2

3
, 013), R = 1

2
√

2
, can be brought to

A = (1, 015) = w1, R = 1√
2
, which implies gauge group D17 because nodes 1 and 19 must be

deleted.

4.1.3 The shift algorithm

As we have seen, Wilson lines of a given order are relevant to relate the moduli with lattice

data obtained in the formalism of section 3. Recall that the order of A is defined as the

smallest integer N such that NA ∈ Υ16, with Υ16 equal to Γ8×Γ8 in the HE and to Γ16 in the

HO. There exists an algorithm, based on original work of Kac [24], to find Wilson lines (“shift

vectors”) of specific order. It was applied to heterotic compactifications originally in [42]. The

name shift vector comes from the orbifold terminology. The algorithm also prescribes how

to obtain the group left unbroken by the action of the shift. In fact, another motivation to

review it is its relation to the method of saturating inequalities of undeleted nodes in a Dynkin
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diagram in order to find the moduli.

The shift algorithm can be applied to any ADE group starting with its extended Dynkin

diagram. We will describe the E8 case following [43]. The simple roots αi and the fundamental

weights wi are given in Table 5, while the extended Dynkin diagram of E8 is formed by the

nodes 0, 1, . . . , 8, in Figure 1. Consider now a set of non-negative relative prime integers

(s0, s1, . . . , s8) and define

N =
8∑
i=0

κisi , (4.10)

where κi are the Kac marks. Then construct the shift vector

δ =
1

N

8∑
i=1

siwi . (4.11)

Note that N δ ∈ Γ8 so that δ has order N . The subalgebra left invariant by this shift is

obtained by deleting the nodes of the extended Dynkin diagram associated to non-zero si,

and adding U(1)’s to preserve the rank. The reason is that δ in (4.11) satisfies

δ · α0 = −1 +
s0

N
, δ · αj =

sj
N
, j = 1, . . . , 8. (4.12)

Notice also that in order to break to a group of rank 8, necessarily only one sk, k = 0, . . . , 8,

is different from zero at a time. In this case, δ = wk/κk. In particular, since w0 ≡ 0, k = 0

corresponds to δ = 0, consistent with deleting node α0 and leaving E8 unbroken. For the E′8

factor in the HE theory one constructs a shift δ′ in analogy to δ for E8.

From (4.12) one also obtains

δ · α0 ≥ −1 , δ · αj ≥ 0 . (4.13)

These are the conditions for δ to be in a fundamental region [42, 44]. By translations in the

root lattice of E8 and/or transformations in the Weyl group of E8 one can obtain a shift that

gives the same breaking but is outside the fundamental region. For the shift δ′ of E′8 there are

conditions analogous to (4.13).

The shift algorithm can be extended to the HO theory taking care that Γ16 is the root

37



lattice of SO(32) with the spinor weight w16 added [42]. The starting point is the extended

Dynkin diagram of SO(32) which is formed by the nodes 1 to 17 in Figure 2 where the Dynkin

marks are also shown. The simple roots βk and the fundamental weights wk are given in

(4.7), and the lowest root β17 in (4.8). We now introduce a set of non-negative relative prime

integers s̃k, k = 1, . . . , 17, and define the order Ñ and the shift ∆ as

Ñ =
17∑
k=1

s̃kκk , ∆ =
1

Ñ

16∑
k=1

s̃kwi . (4.14)

It is necessary to further enforce the constraint

∑
k odd

s̃k = even (4.15)

in order to guarantee that Ñ∆ ∈ Γ16. As before, the subalgebra left invariant by the shift

∆ is obtained by deleting the nodes of the extended Dynkin diagram associated to s̃k > 0,

and adding U(1)’s to preserve rank 16. The algorithm can produce pairs of shifts that are

equivalent under a translation by w16.

Let us now discuss the generalization of the shift algorithm to II1,17 in the HE theory. As

in the saturation method, we begin by deleting some nodes in the EDD of Figure 1 such that

the surviving ones form an allowed Dynkin diagram of a semi-simple Lie Algebra. As before

the emerging group is identified from this allowed Dynkin diagram, appending enough U(1)

factors to add to rank 17. The Wilson line that produces the emerging group is simply given

by

A = δ × δ′ , (4.16)

with δ given in (4.11), and similarly for δ′. The values of si are now fixed to be zero or one

according to whether the i-th node is undeleted or not, and likewise for the s′i. Indeed, the

inequalities that would have to be saturated to find A are a subset of those connected to the

nodes i, i′ = 0, 1, . . . , 8, in Table 6, which precisely amount to the conditions (4.13). The value

of the radius depends on whether the node C is undeleted or not. If it is not, the constraint

E = 1 must be imposed. Since δ and δ′ are in the fundamental region, it is not hard to show

that A2 ≤ 2. This guarantees that R2 = E − 1
2
A2 is positive.
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It is useful to work out the case of maximal enhancing with the shift algorithm. As

mentioned before, maximal rank 17 requires deleting one node in the E8 side and one node in

the E′8 side, while keeping the central node C. The moduli are then

A =
wk
κk
× w′m
κ′m

, E = 1⇒ R2 = 1− 1
2
A2 . (4.17)

Here k,m = 0, 1, . . . , 8, but the choice k = m = 8 is excluded because it would lead to A2 = 2

and R = 0, which is unphysical. Thus, altogether there are 44 different groups with maximal

rank. The moduli in (4.17) agree with the results in Table 2 of [23], except for irrelevant

overall minus signs in the Wilson line due to different conventions. The groups of maximal

rank and the corresponding moduli are collected in Table 11.

The algorithm can also be used to determine the moduli corresponding to groups of lower

rank. For example, SU(16)×SU(2)×U(1) can be obtained dropping the nodes 1, 1′, 7′. From

the algorithm we deduce

A = 1
3
w1 × 1

7
(w′1 + w′7) = (1

6
,−1

6

6
, 5

6
)× (−6

7
, 1

7

6
, 0) . (4.18)

Since node C is undeleted, E = 1 and the radius is fixed to be R =
√

8
63

.

We will not attempt to generalize the shift algorithm to II1,17 with HO embedding. For

one reason, for the HO the allowed groups and the corresponding moduli can be obtained by

the saturation method discussed in section 4.1.2. In particular, the moduli for the 44 groups

of maximal enhancing are presented in Table 1 in [23]. Moreover, we can use the map (2.2) to

obtain a point (RO, AO) in the moduli space of the HO theory from a given one (RE, AE) in the

HE theory, or vice versa. For all the 44 cases of maximal enhancement we have verified that

(RO, AO) obtained from the (RE, AE) in (4.17) agree with the data found using the saturation

method [23]. These results are listed in Table 11.

4.2 All maximal rank groups for d = 1

As mentioned previously, there are 44 different groups of maximal rank that are realized in

heterotic compactification on S1. We collect them in Table 11 in appendix C, where they are

denoted by its root lattice L. The Table includes the moduli (RE, AE) and (RO, AO) in the
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HE and HO theories respectively. For both the moduli lie in the fundamental regions defined

in Tables 6 and 7. They can be obtained using the saturation method, or equivalently the

shift algorithm in the HE. The moduli for the HO can be derived from the map (2.2) too. In

all cases EE = EO = 1.

For each maximal group in Table 11 we also give its discriminant group AL = L∗/L, its

appropriate isotropic subgroup HL, and its complementary lattice T . For the lattice T , the

notation A1〈m〉 is simplified to 〈m〉. Besides, d(T ) = 2m. It is easy to check that in all cases

d(L) = d(T )|HL|2 holds. For all groups we have verified the isomorphism (AM , qM) ∼= (AT , qT ),

which is less trivial when HL 6= 1. Some examples were worked out in section 3.1.1.

It is a compelling exercise to deduce the lattice T from the moduli as explained in section

3.2. For d = 1 there is only one Wilson line and the simple result (3.10) is valid. Thus, T is

generated by

u =
√

2NR , (4.19)

where N is the order of A and we used e1 = R. The Gram matrix is then Q = 2N2R2 = d(T ).

On the lattice side, T = A1〈m〉 with d(T ) = 2m. Therefore, it must be that

2N2R2 = 2N2(1− 1
2
A2) = 2m, (4.20)

where we used E = 1 in all cases of maximal enhancing. It is straightforward to confirm this

relation using the data for m and A in Table 11. In the HE case the Wilson line AE is given

in (4.17) and the order is

NE =
κkκ

′
m

gcd(κk, κ′m)
. (4.21)

In the HO, AO and its order NO are of the form in (4.14).

Another interesting question is the relation of generic pR to the complementary lattice T .

In section 3.2 we argued that in general pR takes values in T ∗. When d = 1 the proof is rather

simple. Since E = 1, (4.1) reduces to

pR =
1√
2R

(n− w − π · A) . (4.22)

We now use that A has order N to set π · A = l̃/N , l̃ ∈ Z. Inserting in pR above gives
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pR = l√
2NR

, with l integer. Hence, pR lies in a lattice generated by u∗, with u the generator

of T in (4.19). We conclude that pR lies on T ∗ and the allowed values of p2
R are qT mod 2.

5 Compactifications on T 2

In heterotic compactification on T 2 there are 36 real moduli, namely {g11, g12, g22, b12}, plus

two 16-dimensional Wilson lines {AI1, AI2}. The II2,18 lattice vectors (pR; pL, p
I), which depend

on these moduli, are given in (2.2). For the purpose of studying enhancement of symmetries

it is actually more appropriate to use as moduli the components Eij, cf. (2.1), together with

the AIi . Indeed, as we have seen in section 3.2, enhancement requires the Eij to be rational

numbers and the Ai to be quantized in the sense of eq. (3.7). On the other hand, to discuss the

moduli space and duality symmetries it is also convenient to work with complex parameters.

In section 5.1, we introduce the complex moduli and their duality transformations, and review

the action of O(2, 3; Z), a subgroup of the duality group, on a particular slice of the moduli

space. Then we turn to the problem of determining all gauge groups Gr × U(1)18−r that can

appear, and the corresponding moduli.

The extension of the systematic procedure discussed in the previous section to compac-

tifications on T 2 would require the construction of a generalized Dynkin diagram for II2,18.

However, it has been argued that the even, self-dual lattices of signature (p, q) with both

p, q > 1 (that is, with a signature with more that one negative sign), do not possess a system

of simple roots and cannot be described in terms of generators and relations similar to Kac-

Moody or Borcherds algebras [45]. Nevertheless, although the addition of a new Kac-Moody

simple root introduces multiple links and loops in the structure of the quadruple extension of

simple Lie algebras, it was shown in [46] that the “simple-links” structure can be preserved

if the extra root is a Borcherds (imaginary) simple root. In any case, a generalized Dynkin

diagram for II2,18 is not known and it is not even clear whether it exists. Hence, we will

proceed in a constructive way.

In section 3 we explained that all allowed groups Gr × U(1)d+16−r in heterotic compacti-

fication on T d can be obtained by lattice embedding techniques. For T 2 the full results are

known from the work of Shimada and Zhang who classified all possible ADE types of singular
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fibers in elliptic K3 surfaces [20, 21]. The classification translates into all possible heterotic

gauge groups because the lattice embedding conditions are the same in the K3 and heterotic

contexts. This can also be seen as a further element in favor of the conjectured duality between

heterotic on T 2 and F-theory on K3.

Knowing all allowed groups it remains to compute the corresponding moduli. We will

focus in the HE since the moduli in the HO can be derived from the map elaborated in section

2.2. We will mostly consider the case of maximal enhancing, i.e. r = 18. As argued in section

3.2, this can occur only if the Eij are rational numbers and the Ai are quantized. In section

4.1.3 we explained a shift algorithm to find such Wilson lines. In particular, in the HE we

can find all pairs of quantized Wilson lines that break E8 × E′8 to a subgroup of rank 16,

hence with a Dynkin diagram having 16 nodes. We can then look for values of the Eij that

allow to add two additional nodes, thereby leading to a semisimple group of rank 18. This is

analogous to the procedure of finding all maximal enhancements from the EDD in the circle

compactification.

In section 5.2 we will explain the EDD inspired method in more detail. We will see that it

fails to give several of the known groups of maximal rank. In section 5.3 we will then develop

more general procedures in order to obtain all such groups. The results are summarized in

section 5.4.

5.1 Complex moduli

Without Wilson lines we know that it is revealing to combine the parameters from the metric

and the antisymmetric field into complex structure and Kähler moduli, denoted τ and ρ

respectively. In particular, the duality transformations and the fundamental moduli region

can be described very efficiently in terms of τ and ρ. It is then reasonable to use these complex

parameters in the presence of the AIi , which in turn can be combined into complex moduli ξI

as well. Altogether we have the 18 complex moduli

τ =
g12

g11

+ i

√
g

g11

, ρ = b12 + i
√
g +

1

2
AI1ζ

I ,

ζI = AI1τ − AI2 ,
(5.1)
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where g = det gij. The conditions gii > 0 and g > 0 imply the restrictions

τ2 > 0, ρ2 > 0, τ2ρ2 − 1
2
ζ2

2 > 0 , (5.2)

where the subscript 2 refers to the imaginary parts. The moduli (τ, ρ, ζI) were considered

in [47], see also [48, 49]. As expected, the Kähler modulus, which is more stringy, receives

corrections depending on the Wilson lines whereas τ , purely geometrical, is not affected.

The II2,18 lattice vectors (pR; pL, p
I) can also be written in terms of the complex moduli.

Now, we are mostly interested in the duality transformations of the moduli which can be

derived from invariance of the spectrum. By virtue of (2.4) it then suffices to determine p2
R.

We obtain

p2
R =

1

2(ρ2τ2 − 1
2
ζ2

2 )
|n2 − τn1 + ρw1 + (ρτ − 1

2
ζ2)w2 + π · ζ|2 . (5.3)

Imposing invariance of p2
R and (pL + pI)2 − p2

R = π · π + 2niw
i we deduce the duality trans-

formations

Z1 : τ ′ = ρ, ρ′ = τ, ζ ′ = ζ,

Z2 : τ ′ = −τ̄ , ρ′ = −ρ̄, ζ ′ = ζ̄ ,

A1 : τ ′ = τ + 1, ρ′ = ρ, ζ ′ = ζ,

S1 : τ ′ = −1

τ
, ρ′ = ρ− 1

2

ζ2

τ
, ζ ′ =

ζ

τ
,

Γ1 : τ ′ = τ, ρ′ = ρ+ ζ · Λ + 1
2
Λ2τ, ζ ′ = ζ + Λτ, Λ ∈ Υ16,

(5.4)

where we have dropped the superscript I in ζ to simplify the expressions. These transforma-

tions were also found in [47].

Together with Weyl automorphisms in Υ16, {Z1,Z2,A1,S1,Γ1} generate the duality group

O(2, 18,Z). We recognize A1 and S1 as the generators of SL(2,Z) changes of the (e1, e2) basis,

whereas Z2 is the parity e1 → −e1. The transformation Γ1 is the translation of AI1 by the

lattice vector Λ. The shift b12 → b12 +1, implying ρ→ ρ+1, is just Z1A1Z1. The composition

S1Z1S1Z1 gives the full T-duality (i.e. in directions e1 and e2), generalizing R → 1/R, with
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action

D : τ ′ = − ρ

ρτ − 1
2
ζ2
, ρ′ = − τ

ρτ − 1
2
ζ2
, ζ ′ =

ζ

ρτ − 1
2
ζ2
. (5.5)

The factorized duality in the direction e1 of T 2 is Z2Z1, while Z1 is ‘mirror symmetry’. The

Υ16 automorphisms include the transformation τ ′ = τ , ρ′ = ρ, ζ ′ = −ζ, which amounts to

A′i = −Ai.

The moduli Eij are related to (τ, ρ, ζ) by

E11τ − E21 = ρ, E12τ − E22 = τρ− 1
2
ζ2 ≡ ξ . (5.6)

The duality transformations of Eij and Ai can be efficiently derived as explained in section

2.1. For instance, the factorized duality in the direction e1, i.e. Z2Z1, is given in (2.41).

Analogously, the factorized duality in the direction e2, i.e. S1Z1S1Z2, amounts to

E ′ =
1

E22

detE E12

−E21 1

 , A′1 = A1 −
E12

E22

A2 , A′2 = − A2

E22

. (5.7)

The product of the two factorized dualities yields

E ′ = E−1,

A′1
A′2

 = −E−1

A1

A2

 , (5.8)

which corresponds to the transformation in (5.5).

It is instructive to consider a particular slice of moduli space defined by restricting the

Wilson lines to break an SU(2) in E8. This can be achieved taking Ai = aiw6 × 0, so that

ζ = βw6 × 0, β = a1τ − a2 . (5.9)

There are then three complex parameters (τ, ρ, β). The duality group acting on them reduces

to O(2, 3,Z), whose generators are given in (5.4), with Λ = w6 × 0 in Γ1. It is known that

O(2, 3,Z) has a subgroup which can be identified with Sp(4,Z), see e.g. [50]. A minimal set

of generators is provided by {Z1,A1,S1,Γ1}. The standard Dehn twists (shown e.g. in [51])

can be expressed in terms of the elements of this set. In fact, there is an isomorphism
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from the moduli space of (τ, ρ, β) to the genus-two Siegel upper half-plane parametrized by

Ω =
(
τ β
β ρ

)
, see [51] and references therein. Thus, (τ, ρ, β) can be regarded as the moduli of

a genus-two surface. Several useful results about the moduli space of genus-two curves are

known. In particular, the fundamental region and fixed points of finite subgroups have been

determined [52–54]. Some special duality transformations, needed for future purposes, are

Ω′ =

 ρ ρ− β

ρ− β τ + ρ− 2β

 , Ω′ = − 1

ξ + ρ

 ρ ξ − β

ξ − β 2ρ+ τ − 2β + ξ + 1

 , (5.10)

where ξ = ρτ − β2. At generic values of the moduli the gauge group is U(1)3 × E7 × E′8, but

at the fixed points the U(1)3 can enhance for instance to SU(2)× SU(3) or SU(4) [55]. More

details will be given in section 5.4. This slice of heterotic moduli space is specially interesting

because an explicit map to the moduli of elliptic K3 surfaces with E7 and E8 singularities was

established recently [50], see also [51] and references therein.

5.2 Generalizing the EDD algorithm to two Wilson lines

The EDD algorithm in circle compactifications uses the fact that the T-duality group O(1, 17,Z)

is completely generated by simple reflections. This ceases to be true for d > 1 and so it can-

not be generalized with its full power. What we can do, instead, is to develop a more general

method to find maximal groups and their associated moduli which works for all d, and reduces

to the EDD algorithm in d = 1.

The key idea is that the EDD algorithm in d = 1 can be stated in an equivalent but

qualitatively different way. Instead of breaking two nodes of the 19-node generalized diagram,

we do a step by step procedure: we first break E8×E′8 to a maximal subgroup with a Wilson

line given by the shift algorithm, and then enhance this subgroup by adding the node C which

corresponds to a massless state only when E = 1. The completeness of this algorithm relies

on the fact that there is a finite number of ways of breaking E8 × E′8 because a fundamental

region for a single Wilson line is known, and then the choice of E which enhances the resulting

group for the given Wilson line is unique.

In higher dimensions we lack a complete description of the fundamental domain. Wilson
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lines Ai, i = 1, . . . , d, can be turned on and there are more possibilities to break E8 × E′8 to a

maximal subgroup, but in general all Ai cannot be brought simultaneously into a fundamental

region of E8 × E′8. Besides, the options for the moduli Eij are less constrained. Nonetheless,

we will describe how a systematic choice of the Ai, and the Eij, leads to a class of extended

Dynkin diagrams with d+ 18 nodes such that by deleting nodes in an appropriate way allows

to read off the gauge group and the corresponding moduli.

Before outlining the procedure, let us remark that the generalization of the EDD algorithm

does not capture all the maximal enhancements. As we discuss in more detail in section 5.3,

there exist maximal rank d + 16 groups that cannot be obtained by enhancing a rank 16

subgroup of E8 × E8, for example SU(7)3 in d = 2.

5.2.1 Reformulating and generalizing the algorithm

In section 4.1.3 we explained how the shift algorithm can be used to find a Wilson line in the

fundamental region of E8×E′8 and which breaks to a maximal subgroup. Writing the Wilson

line as A = δ × δ′, we obtained

δ =
wk
κk

, δ′ =
w′m
κ′m

, (5.11)

for k and m taking fixed values in 0, . . . , 8, but with k = m = 8 excluded. This choice in the

circle compactification then implies that in the basis (4.4) the nodes ϕi, ϕ
′
j, i, j = 0, . . . , 8, with

i 6= k and j 6= m, correspond to massless states which satisfy the conditions n = Ew + π · A

and π2 + 2nw = 2. These conditions are also satisfied by node ϕC provided E = 1, while it

is not satisfied by the nodes ϕk and ϕ′m which are deleted. Notice that the node ϕC gives the

extension to a group of rank 17 and that actually ϕC ∈ II1,1.

These observations motivate a similar procedure for the T 2 compactification. The nodes in

the generalized diagram now have charge vectors |w1, w2, n1, n2; π〉. As before it is convenient

to introduce nodes associated to the simple roots of E8 × E′8, namely

ϕi = |0, 0, 0, 0;αi, 0
8〉 , ϕ′i = |0, 0, 0, 0; 08, α′i〉 i = 1, . . . , 8 . (5.12)

They will correspond to roots of the resulting gauge group whenever they satisfy the massless
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conditions pR = 0 and pL
2 = 2, leading in turn to (2.9) and (2.10). Explicitly,

n1 = E11w
1 + E12w

2 + π · A1, n2 = E21w
1 + E22w

2 + π · A2 , (5.13a)

π2 + 2w1n1 + 2w2n2 = 2 . (5.13b)

To proceed we need to specify the moduli.

The Wilson lines are conveniently written as

A1 = δ1 × δ′1 , A2 = δ2 × δ′2 . (5.14)

We are interested in the case in which the two Wilson lines together break E8 × E′8 to a

subgroup of rank 16 for generic Eij. To achieve this we first take δ1 and δ′1 exactly as in

(5.11). Thus, the subgroup left invariant by A1, denoted Hk×H′m, is found deleting the nodes

corresponding to the roots αk and α′m in the extended Dynkin diagram of E8 × E′8. For A2

we basically use the shift algorithm applied to Hk × H′m. To this end we first append two

affine roots α̂k and α̂′m of the subgroup Hk × H′m and delete two additional nodes, say those

corresponding to the roots αp, p 6= k, and α′q, q 6= m, of E8 × E′8, which are also roots of the

subgroup. The new affine roots are given by the lowest roots of one of the factors in Hk and

H′m respectively. The precise way will be explained shortly.

The combined effect of A1 and A2 is to leave a subgroup of E8×E′8 unbroken. The simple

roots that survive are αi, i 6= k, p, α′j, j 6= m, q, i, j = 0, . . . , 8, plus α̂k and α̂′m. For A1 we

have δ1 = wk/κk, δ
′
1 = w′m/κ

′
m, and by construction

δ1 · α̂k = 0 δ′1 · α̂′m = 0 . (5.15)

For A2 the shift algorithm dictates that

δ2 · αi = 0, i 6= k, p, δ2 · α̂k = −1 ; δ′2 · α′j = 0, j 6= m, q, δ′2 · α̂′m = −1 ; i, j = 0, . . . , 8 .

(5.16)

Here we are assuming that δ2 6= 0 and δ′2 6= 0. If δ2 = 0, then α̂k is not appended and αp is

not deleted. Likewise, if δ′2 = 0, α̂′m is absent and α′q remains.
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The advantage of choosing A1 and A2 as just described is that we can now construct

extended nodes that satisfy the massless conditions in (5.13). Indeed, to the original affine

roots of E8×E′8 we associate two extended nodes with momentum number in the direction 1

ϕ0 = |0, 0,−1, 0;α0, 0
8〉, ϕ′0 = |0, 0,−1, 0; 08, α′0〉 . (5.17)

Actually, when k = 0, so δ1 = 0, and/or m = 0, so δ′1 = 0, ϕ0 and/or ϕ′0 do not verify (5.13),

but in these cases they are meant to be deleted. The new affine roots of the subgroup Hk×H′m

lead instead to two different extended roots with momentum number in the direction 2

ϕ−1 = |0, 0, 0,−1; α̂k, 0
8〉 , ϕ′−1 = |0, 0, 0,−1; 08, α̂′m〉 . (5.18)

In section 5.2.3 we will explain in more detail how α̂k and α̂′m are determined.

To continue with the analogy with the EDD of O(1, 17,Z) we still have to add two nodes

corresponding to II2,2. For this purpose we need to make a choice of tensor Eij such that these

extra roots do correspond to massless states. In this section we allow for two possibilities

only, which cover most of the enhancement groups. Other possibilities are explored in the

next sections. The two choices are

E1 =

1 0

0 1

 , E2 =

1 −1

0 1

 . (5.19)

For E = E1 the following charge vectors satisfy the massless conditions (5.13)

ϕC1 = |1, 0, 1, 0; 08, 08〉 , ϕC2 = |0, 1, 0, 1; 08, 08〉 . (5.20)

Since they are orthogonal, they are not connected to one another in the Dynkin diagram.

Notice that ϕC1 corresponds to ϕC in the S1 compactification. On the other hand, setting

E = E2 gives the vectors

ϕC1 = |1, 0, 1, 0; 08, 08〉 , ϕC3 = |0, 1,−1, 1; 08, 08〉 , (5.21)
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which enter our extended diagram as an A2 subdiagram joined to ϕ0 and ϕ0
′. We finally have

to delete two nodes3.

Before giving some examples, let us point out once again that this algorithm does not

give all the possible enhancements. As we explain in more detail later, further generalizations

that do not involve extended diagrams are required to get all the possibilities, as explored in

section 5.3.

5.2.2 Extended diagrams with trivial second breaking

We now give some examples, starting from the simplest. For the sake of clarity, we will use a

color coding for the nodes which partly or completely lie in the II2,2 sublattice. We will paint

with green the roots ϕ0, ϕ′0 and ϕC1 , and with blue the roots ϕ−1, ϕ′−1, ϕC2 or ϕC3 . This will

help us keep track of the extensions of the diagram and how they relate to the Wilson lines.

The simplest example of an extended diagram in d = 2 compactifications is obtained by

taking our second breaking to be trivial, namely taking A2 = 0. For this choice, our task is

easier because there is no need at all to apply the conditions (5.16). In practice we just have

to supplement the EDD for S1 with the node ϕC2 or ϕC3 . Concretely, taking E = E1, we get

the extended diagram shown in Figure 3, where to obtain the rank 18 maximal groups we

have to delete two nodes. With this we can obtain all the groups of the form G17×A1, where

G17 is one of the 44 maximally enhanced groups in S1 compactifications.

1 2 3 4 5 6

7

8

0 C1

C2

0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 3: Simplest extended diagram for T 2 compactifications, reproducing the 44 maximal
enhancements of S1 compactifications times A1. All models have A2 = 0 and E = E1.

If we take instead E = E2, we get the diagram shown in Figure 4. With this simple

construction we are now able to get non-trivial enhancements by deleting two nodes such that

3We can also construct models with partial enhancement by deleting more nodes, but this is not the main
focus of the present work.
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the resulting diagram is ADE. For example, by deleting nodes 5 and 5′ we get the group E3
6,

with moduli A1 = 1
3
w5 × 1

3
w′5, A2 = 0, E = E2.

1 2 3 4 5 6

7

8

0 C1

C3

0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 4: Extended diagram with A2 = 0 and E = E2. This is the simplest example of an
extended diagram with non-trivial new results.

At this point it is useful to introduce an operation on the diagrams which consists of

interchanging the last eight components of the two Wilson lines, namely

A1 → δ1 × δ′2, A2 → δ2 × δ′1. (5.22)

This amounts to exchanging n′1 ↔ n′2 in ϕ′0 and ϕ′−1. If we follow the rule that nodes of the

same color couple together, then this operation simply exchanges the colors of the affine roots

relating to E′8. Because of the way the diagrams transform, we call this operation “twisting”.

Applying this operation to the diagram in Figure 3 we get the one shown in Figure 5, which

gives an explicit realization of the embedding II1,9 + II1,9 ⊂ II2,18. Since the automorphisms of

II1,9 form a Coxeter group (as in the II1,17 case), this diagram yields all ADE lattices which are

products of rank 9 positive definite lattices admitting an embedding in II1,9. In this diagram

E = E1 and effectively A1 = δ1 × 0 and A2 = 0 × δ′2, with shifts depending on the deleted

nodes. For instance, δ1 = 1
3
w1, δ′2 = 1

3
w′1, gives the group SU(10)2.

1 2 3 4 5 6

7

8

0 C1 C2 0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 5: Extended diagram with A1 = δ1 × 0, A2 = 0× δ′2, E = E1, which corresponds to
the lattice II1,9 + II1,9. Interestingly, these roots form a basis for II2,18.

If we twist the diagram in Figure 4, we get the one shown in Figure 6. Now we can
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get groups such as SU(19) with A1 = 1
3
w1 × 0 and A2 = 0 × 1

3
w′1, as well as SO(36) with

A1 = 1
3
w1 × 0 and A2 = 0× 1

2
w′8. In both cases E = E2.

1 2 3 4 5 6

7

8

0 C1 C3 0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 6: Extended diagram with A1 = δ1 × 0, A2 = 0× δ′2, E = E1. This also gives a basis
for II2,18.

Summarizing, the generalized diagrams with 20 nodes can be used to obtain maximal

enhancings which are read off from residual ADE diagrams found by deleting two nodes. The

Eij moduli are either of type E1 or type E2 in (5.19), while the Ai are determined from the

deleted nodes. However, it should be noted that in some cases the gauge group determined

from the predicted moduli might not be represented by the residual diagram. The problem is

that it is not enough to find a set of 18 nodes, specified by charge vectors |ϕµ〉, µ = 1, . . . , 18,

such that these nodes form a proper ADE Dynkin diagram with links given by 〈ϕµ|ϕν〉, defined

in (2.13). For these nodes to correspond to roots (0; pL), pL
2 = 2, belonging to II2,18, there

must exist moduli such that the charge vectors satisfy (5.13). If these moduli exist, we then

have to check if they allow other roots such that the ones in the set |ϕµ〉 are indeed simple

and can appear in the Dynkin diagram. For this reason, the diagrams presented here and

below have been confirmed to work as intended. We will see that the same problem arises in

the algorithms of section 5.3, but there is a systematic prescription to determine the correct

gauge group.

5.2.3 Extended diagrams with nontrivial second breaking

Now we construct some extended diagrams for models with A2 6= 0. To keep things clear and

unambiguous, we impose the restriction that the affine nodes ϕ0 and ϕ−1 cannot belong to

the same connected component of the diagram, and similarly for ϕ′0 and ϕ′−1.

As a first example we take A1 = 1
2
w6 × 1

2
w′6. In the notation of section 5.2.1, k = m = 6

and the unbroken subgroup is the product of H6 = E7×A1 and H′6 = E′7×A′1. Our algorithm

dictates that we add two affine nodes, and the restriction above says that these cannot extend
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A1 nor A′1, since these include the nodes ϕ0 and ϕ0′ . Hence we should add the affine roots for

E7 and E′7 and color them blue. With E = E1 we then get the extended diagram shown in

Figure 7.

1 2 3 4 5

7

8

−1

0 C1

C2

0′ 5′ 4′ 3′ 2′ 1′

7′

8′

−1′

Figure 7: Extended diagram for double breakings corresponding to the choice A1 = 1
2
w6 ×

1
2
w′6, E = E1.

In this example the new affine roots that build ϕ−1 and ϕ′−1 in (5.18) are the lowest roots

of E7 and E′7 given by

α̂6 = −(2α1 + 4α2 + 3α3 + 2α4 + α5 + 3α7 + 2α8) = w6 − w8 = (06,−1,−1) ,

α̂′6 = −(2α′1 + 4α′2 + 3α′3 + 2α′4 + α′5 + 3α′7 + 2α′8) = w′6 − w′8 = (1, 1, 06) .

(5.23)

The coefficients in the root expansion of α̂6 are the Kac labels for E7, and likewise for α̂′6. In

other examples the new affine roots are found in an analogous way. For example if k = 5,

H5 = E6 ×A2, and α̂5 is the lowest root of E6, i.e. α̂5 = −(2α1 + 3α2 + 2α3 + α4 + 2α7 + α8).

Deleting any one of ϕ−1 or ϕ′−1 in Figure 7 gives us a group that could have been obtained

with a simpler diagram, setting the first and/or last eight components of A2 to zero. Similarly,

the affine roots ϕ0 and ϕ′0 cannot be deleted, since this would lead to a non-ADE diagram.

But there are many other possibilities. For illustration we will derive the moduli for the gauge

group A1×A3×D14, found by deleting nodes 1 and 4′. According to (5.16), for A2 we require

δ2 · αi = 0, i = 0, 2, 3, 4, 5, 7, 8, δ2 · α̂6 = −1,

δ′2 · α′j = 0, j = 0, 1, 2, 3, 5, 7, 8, δ′2 · α̂′6 = −1.

(5.24)

These constraints are solved by

A2 =
(

1
2
w1 − 3

4
w6

)
×
(

1
2
w′4 − w′6

)
=
(

1
4
,−1

4

5
, 1

2

2
)
×
(
−1

2

2
, 1

2

2
, 04
)
. (5.25)
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Since we already know the values for E and A1, we are done.

If we take E = E2, we get an extended diagram in which the node C2 in Figure 7 is replaced

by C3, and is connected to C1. Here one cannot delete any pair of nodes as we would not get

an ADE group. This means that for A1 = 1
2
w6 × 1

2
w′6 and E = E2 there is no second Wilson

line with δ2 6= 0 and δ′2 6= 0 that gives maximal enhancement. What we can do is apply the

twisting operation (5.22), interchanging the colors of ϕ′0 and ϕ′−1. The resulting diagram is

shown in Figure 8. To get for example the group A1 × A9 × D8 we delete the nodes 1 and

4′. The Wilson lines are then obtained from those in the previous example by exchanging the

last eight components.

1 2 7 8 −1

3

4

5

0′ C1C2 0 −1′ 8′ 7′ 2′ 1′

3′

4′

5′

Figure 8: Extended diagram for Wilson lines A1 = 1
2
w6 × δ′1, A2 = δ2 × 1

2
w′6 and E = E2.

Curiously it corresponds to the product of what are referred to as over over-extended diagrams
for E7, in this case written as E++

7 + E++
7 .

5.2.4 Exceptional extended diagrams

The construction of extended diagrams considered so far can be thought of as gluing two

subdiagrams of nine nodes via the nodes {ϕC1 , ϕC2} or {ϕC1 , ϕC3}. The two subdiagrams are

in turn assembled via the two-step shift algorithm applied to E8 and E′8. There are, however,

three extra subdiagrams which do not exactly conform to this procedure, but arise naturally

when one considers how the affine roots α̂i, with i = 4, 5, 6, described in section 5.2.1, are

linked to the simple roots of E8. Similar considerations for the other affine roots do not lead

to analogous conclusions, in part due to the fact that they extend An diagrams.

In Figure 9 we have drawn the extended Dynkin diagram of E8, with its usual lowest root

α0, together with the three affine roots mentioned above. The black (red) links represent inner

products with value -1 (+1). The inner products between the α̂i are not shown, as they are

not of interest. The color coding is exactly as before, meaning that the charge vectors of the
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1

2 3 4

5

6

7

8

α̂5

α̂6
α̂4

0

→ 1

2 3 4

5

6

7

8

−α̂5

−α̂6−α̂4

0

Figure 9: Links between the affine roots α̂4, α̂5, α̂6 and the roots of the affine E8 diagram.
Black (red) links correspond to inner products with value -1 (+1). The diagram to the right
is obtained by flipping the signs of the α̂i .

nodes corresponding to α̂i have n2 = −1 and n1 = w1 = w2 = 0. We see that deleting the i-th

node, and adding the affine root α̂i, gives us three of the subdiagrams which are predicted by

the method of 5.2.1. However, as suggested by the right side of the figure, if we flip the sign

of the α̂i we are now able to construct three more subdiagrams. These are shown in Figure

10, with the blue extending nodes defined in each case as

ϕ−1 =


|0, 0, 0,−1;−α̂6, 0

8〉 = |0, 0, 0,−1; 06, 1, 1, 08〉 (a)

|0, 0, 0,−1;−α̂5, 0
8〉 = |0, 0, 0,−1;−1

2
, 1

2

4
,−1

2

3
, 08〉 (b)

|0, 0, 0,−1;−α̂4, 0
8〉 = |0, 0, 0,−1;−1

2

4
, 1

2

4
, 08〉 (c)

(5.26)

(a)

1 2 3 4 5 6

7 −1

0

(b)

2 3 4 5 6

7

8

−1

0

(c)

1 2 3 4 5 6

8

−1

0

Figure 10: Three extra subdiagrams which do not come from a two-step shift-vector con-
struction. They can be inferred from the right side of figure 9

These new subdiagrams are qualitatively different from those obtained in the previous

section in two ways. On one hand, they do not respect the restriction that a connected part

cannot have two extending nodes. On the other hand, they are not associated to fixed values

of δ1 or δ′1, as they do not come from a two-step shift algorithm. To illustrate this, consider

the diagram (a) in Figure 10 and break the fourth node, leaving out a 2D4 diagram. Solving
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1
2 3 4 5 6

7

−1

0 C1

C2

0′

6′ 5′ 4′ 3′ 2′

−1′

7′

1′

Figure 11: Extended Dynkin diagram constructed with the exceptional extension shown in
Figure 10 (a) for both E and E′8.

(5.13) for all the remaining nodes yields

A1 = 1
2
(w4 − w8)× δ′1, A2 = 1

2
(w4 − 2w8)× δ′2, (5.27)

with δ′1, δ′2 and Eij arbitrary, since the nodes are of the form |0, 0, n1, n2; π1, . . . , π8, 08〉. In-

stead, if we break the third node, corresponding to an A3 + D5 diagram, we obtain

A1 = 1
4
(2w3 − 3w8)× δ′1, A2 = 1

4
(2w3 − 5w8)× δ′2 . (5.28)

The Wilson line A1 clearly differs from that of the previous breaking.

Apart from the two considerations mentioned above, the construction of EDD’s with the

new subdiagrams is exactly as before. For example, we can take two copies of the subdiagram

(a) of Figure 10 and add the two nodes ϕC1 , ϕC2 to get the EDD shown in Figure 11. Some

enhancements obtained from this diagram are 2D6 + 2A3 and D5 + D6 + A7.

Exhausting the method of extended diagrams allows us to find 300 out of the 325 known

maximal rank groups obtained in [20]. Remarkably, without the three subdiagrams in Figure

10, this number is reduced to 150. The incompleteness of the method is due in part to the

complexity of the moduli space and the T-duality group O(2, 18,Z), which makes it hard to

establish ways of obtaining global data. This is in contrast with the situation for d = 1, where

a fundamental region can be easily constructed (see Tables 6 and 7).
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The maximal rank groups which are missing from our results so far are

3A6, A3 + A6 + A9, 6A3, 2A1 + 4A4, 2A2 + 2A3 + 2A4, 3A1 + 3A5,

A1 + 2A2 + A3 + 2A5, A1 + A2 + 2A3 + A4 + A5, 2A3 + 2A6,

2A1 + A2 + 2A4 + A6, A2 + 2A3 + A4 + A6, A1 + A3 + 2A7, A2 + 3A3 + A7,

2A1 + A4 + A5 + A7, A2 + A3 + A6 + A7, A2 + 2A3 + A10, 3D6, 2A2 + 2D7,

A2 + 3A3 + D7, A1 + A2 + 2A4 + D7, A2 + A3 + A6 + D7,

2A2 + 2A3 + D8, 2D5 + D8, D5 + D7 + E6, 2D5 + E8.

(5.29)

As we will see, these can be obtained with the more powerful algorithms developed in section

5.3. Actually, among the 300 groups found with the EDD method, there are 3 that can only be

obtained with one of the possible T lattices. The algorithms presented shortly also determine

the moduli corresponding to the other T lattices. The full set of maximally enhanced models,

taking into consideration inequivalent models with the same gauge group, are collected in

Table 12 and further discussed in section 5.4.

5.3 Exploring the moduli space

In section 4 we have seen that to find maximal enhancements in the circle compactification,

it is enough to give the value of the Wilson line, since we can always take E = 1. Moreover,

all the maximal enhancements can be obtained with a Wilson line that leaves unbroken a

subgroup of E8 × E8 of rank 16 and which can be obtained systematically using the shift

algorithm described in 4.1.3. These results actually rest on the existence of the EDD for

O(1, 17,Z).

In the case of T 2 compactifications things are not so simple. The techniques of section 5.2

do lead to many maximal enhancement points starting from a collection of extended Dynkin

diagrams, but this construction requires taking the particular values of Eij defined in (5.19).

With this limitation it is impossible to get some maximal enhancements, such as SU(4)6,

known to exist from the lattice embedding results in [20]. In section 5.3.1 we will develop

an algorithm that determines if there are maximal enhancements for other values of Eij, but

as in section 5.2 still starting from a pair of Wilson lines that leave unbroken a subgroup of

E8 × E8 of rank 16 for generic Eij. However, as argued shortly, such Wilson lines are not
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enough to reach all the known maximal enhancements: we miss the groups with algebras 3A6

and A3 + A6 + A9. In section 5.3.2 we will solve this issue by implementing an alternative

algorithm which does not fix the Wilson lines.

We will apply the algorithms in the E8×E8 heterotic theory. The moduli for the Spin(32)/Z2

theory will then be determined using the map described in section 2.2.

5.3.1 Fixed Wilson lines algorithm

This algorithm assumes a pair of Wilson lines fixed by the shift algorithm in such a way that

E8×E′8 is broken to a maximal subgroup, say G16. This is the same assumption of section 5.2

where we explained that A1 and A2 take the form (5.14) or (5.22). For A1, δ1 =
wk
κk

, δ′1 =
wm
κm

,

k,m = 0, . . . , 8, but k = m = 8 excluded. For A2, δ2 and δ′2 are determined according to

(5.16). Setting E = E1, i.e. Eij = δij, or E = E2, i.e. E11 = E22 = −E12 = 1, E21 = 0, as in

(5.19), we can read off the maximal enhancement from the extended diagrams constructed in

section 5.2. Relaxing the choice of Eij would give the same diagrams but without the nodes

Ca. For each choice of Wilson lines the resulting gauge group would generically be G16×U(1)2.

We now want to explore the available four-dimensional region of the moduli space searching

for values of Eij that give new maximal enhancements to a group of rank 18.

The great advantage of starting with Wilson lines fixed by the shift algorithm is that the 16

simple roots of G16 are determined systematically. Moreover, we know the associated charge

vectors |w1, w2, n1, n2; π〉 of the 16 nodes, cf. eqs. (5.12), (5.17) and (5.18). These charge

vectors satisfy the massless conditions (5.13) regardless of the values of Eij. Therefore, they

will still correspond to roots of the enhanced gauge group if we take special values for Eij. At

points of maximal enhancement we must have these 16 roots plus 2 additional simple roots.

The algorithm first finds a subset of the possible pairs of extra roots and then computes the

values of Eij by demanding that they satisfy the quantization conditions in (5.13a). It is also

necessary to check that the moduli correspond to a physical torus, i.e. that the resulting torus

metric satisfies gii > 0 and det g > 0. The gauge group is determined from the 18 simple roots.

In agreement with the lattice analysis of section 3.2, we will see that maximal enhancement

can only be obtained when the Eij take rational values.

The fact that the Eij can now take generic rational values means that we will get new
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maximally enhanced groups that could not have appeared with the method of the previous

section. However, as already mentioned, the algorithm still misses known groups with maximal

enhancement as we now argue. For simplicity, we will mostly denote the groups by their

algebras. With only one Wilson line A1 the first E8 can only be broken to

E8, A8, A1 + A2 + A5, 2A4, A3 + D5, A2 + E6, A1 + E7, A1 + A7, D8 . (5.30)

These subgroups are just obtained with δ1 =
wk
κk

, k = 0, . . . , 8. Combining with A2 gives more

possibilities. For example, 2A1 + D6 can occur breaking first to A1 + E7 with δ1 = 1
2
w6, then

extending E7 with α̂6 and deleting the node 4, so that δ2 = 1
2
w4−w6. The additional distinct

groups that can originate from two Wilson lines are4

2A1 + D6, 2A1 + 2A3, 2D4, 4A2 . (5.31)

Thus, necessarily G16 = G8 + G′8, where each factor can only be one of the above 13 groups

of rank 8. Now, the possible maximal groups G18 that can appear for specific values of Eij

should have a Dynkin diagram (DD) that consists of the nodes of the G16 diagram plus two

additional ones. If we want G18 = 3A6, then we should be able to remove two nodes from its

DD and get one of the algebras G8 + G′8. It is easy to see that there is no way of removing

only two nodes without leaving behind at least an A6. Since none of the possible G8 has an

A6 factor, we conclude that 3A6 cannot be found starting with Wilson lines fixed by the shift

algorithm. Although a bit longer, a similar reasoning shows that A3 + A6 + A9 cannot be

obtained either. Except for these two groups, with the algorithm we can reproduce all the

other known maximal enhancements found in the K3 context [20].

We will explain how the algorithm works with an example leading to 6A3, which cannot

appear with the Eij of (5.19). To begin, we delete the nodes 6 and 6′ and then 2 and 2′. The

shift algorithm fixes the Wilson lines to be

A1 = 1
2
w6 × 1

2
w′6, A2 =

(
1
4
w2 − 3

4
w6

)
×
(

1
4
w′2 − 3

4
w′6
)

(5.32)

4With 3 and 4 Wilson lines one can obtain D4 + 4A1 and 8A1, respectively. Altogether there are 15
subalgebras of rank 8 that can be embedded in E8. The embeddings are unique up to Weyl automorphisms [56].
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The 16 unbroken simple roots provide the nodes

ϕj = |0, 0, 0, 0;αj , 0
8〉 , ϕ′j = |0, 0, 0, 0; 08, α′j〉 , j = 1, 3, 4, 5, 7, 8,

ϕ0 = |0, 0,−1, 0;α0, 0
8〉 , ϕ′0 = |0, 0,−1, 0; 08, α′0〉 ,

ϕ−1 = |0, 0, 0,−1;w6 − w8, 0
8〉 , ϕ′−1 = |0, 0, 0,−1; 08, w′6 − w′8〉

(5.33)

The two Wilson lines break E8 × E′8 to the rank 16 subgroup 4A1 + 4A3 with DD shown in

Figure 12. It can be obtained from the extended diagram in Figure 7 by removing the nodes

2 and 2′, as well as the nodes Ca associated to II2,2.

1 3 4 5

7

8

−1

0 0′ 5′ 4′ 3′ 1′

7′

8′

−1′

Figure 12: Dynkin diagram corresponding to the 16 simple roots that survive the breaking
by the Wilson lines (5.32).

For maximal enhancement we have to add two additional nodes. To illustrate the procedure

we first add a single node denoted N1. The charge vector ϕN1 must have norm 2 and the inner

product with the 16 nodes in (5.33) must be 0 or −1. We then generate a list of all possible

single nodes satisfying these conditions. The second node to be added is also picked from this

list.

Without demanding the corresponding DD to be ADE, we would have 216 ways to connect

the new node with the 16 original ones. Since the nodes of ADE diagrams never have more

than 3 links, the possibilities for the new node are reduced to
∑3

i=0

(
16
i

)
= 697. Each of

these 697 ways of connecting gives a set of 16 equations which we use to determine 16 of

the 20 components of the new simple root. We solve the system of equations for πI and π′I ,

I = 1, . . . , 8, leaving the four w1, w2, n1 and n2 undetermined. Afterwards, we compile a list

of possible choices for wi and ni. In principle, we could assign to these quantum numbers

arbitrarily large values. Since we want to consider many (but finite number of) possibilities,

we truncate the possible choices by demanding |wi|≤ λ1 and |ni|≤ λ2, where λ1 and λ2 are

two positive integers which we take as input parameters. In this example it is necessary to
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take at least λ1 = λ2 = 2, otherwise the algorithm would just not find the enhancement to

6A3. Considering the whole set of Wilson lines fixed by the shift algorithm, these bounds give

all the maximal enhancements of the T 2 compactification except for 3A6 and A3 + A6 + A9.

Some possibilities for the new node are depicted in Figure 13. The links in cyan or red

would give 5A3 +2A1, whereas those in blue or magenta would give A7 +2A3 +4A1. The gray

connections would lead to a DD which is not ADE and will be discarded later. The orange

line implies A4 + 3A3 + 4A1. We could also disconnect the node from everything, obtaining

4A3 + 5A1.

1 3 4 5

7

8

−1

0 0′ 5′ 4′ 3′ 1′

7′

8′

−1′
N1

Figure 13: Dynkin diagram showing in different colors some (arbitrary) possible connections
for the new node N1.

The next step is to determine the charge vector ϕN1 for each of the connections. For

example, for the cyan connections, putting λ1 = λ2 = 1 we identify the candidates

|1, 0, 1, 0; 08, 08〉 , |1, 0, 1,±1; 08, 08〉 , |−1, 0, 1, 0;w6, w
′
6〉 , |−1, 0, 1,±1;w6, w

′
6〉 . (5.34)

For the red links, no states appear if the bounds λ1 = λ2 = 1 are kept. It is thus necessary to

consider higher winding and momentum numbers. Choosing λ1 = λ2 = 2 we find

|1,−2, 1, 2; w̃1, w̃
′
1〉 , |1, 2, 1,−2; w̃3, w̃

′
3〉 ,

|1,−2,−1, 1; w̃1, w̃
′
1〉 , |1, 2,−1,−1; w̃3, w̃

′
3〉 ,

|−1,−2,−1, 2; w̃2, w̃
′
2〉 , |−1, 2,−1,−2; w̃4, w̃

′
4〉 ,

|−1,−2, 1, 1; w̃2, w̃
′
2〉 , |−1, 2, 1,−1; w̃4, w̃

′
4〉 ,

(5.35)

w̃1 ≡ −w1 + w2 − 2w6 , w̃2 ≡ −w1 + w2 − w6 , w̃3 ≡ −w1 + w6 , w̃4 ≡ −w1 + 2w6 .

The quantization conditions (5.13a) will be imposed later, thereby determining the Eij.

At this stage we have assembled a list of all the possible simple roots that can be added such
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that the resulting DD is admissible, although not necessarily ADE. This means that the Cartan

matrix is symmetric, with diagonal elements equal to two, and off-diagonal elements equal to

0 or −1. In our example, considering all the possible connections, and with λ1 = λ2 = 2,

there are 1082 possible simple roots. From this list we can extract all possible pairs of simple

roots that can be adjoined to the original 16. The two roots must be compatible, i.e. their

inner product must be 0 or −1. We then collect all the allowed pairs. In the case at hand

there are 191501 such pairs. For example, some of the possible partners ϕN2 for the simple

root ϕN1 = |1, 0, 1, 0; 08, 08〉 (correlated with the cyan connections) are

(1) |−1,−2, 1, 1;−w1 + w2 − w6,−w′1 + w′2 − w′6〉, (2) |−1, 0, 1, 0;w6, w
′
6〉,

(3) |−1, 1, 1, 0;−w5 + 2w6,−w′5 + 2w′6〉, (4) |0, 1, 0, 1; 08, 08〉 .
(5.36)

The corresponding Dynkin diagrams are shown in Figure 14. The green connections for the

node N2 should be discarded because they give an affine A3 subdiagram which is not ADE.

If we choose the pink connections we would have 6A3, and A7 + 3A3 + 2A1 if we choose the

yellow or the brown. Next, for each of the possible pairs, distinguished by two sets of charged

vectors |w1, w2, n1, n2; π〉, we substitute in (5.13a) to compute the four components Eij. In

all cases we find E11 = 1 and E21 = 0. For the pink links, E12 = −1
2
, E22 = 1; for the yellow

E12 = −1, E22 = 3
2
; and for the brown, E12 = 0, E22 = 1. For the green connections E12

and E22 remain undetermined, reflecting the fact that the associated DD is not ADE. We still

have to check that gij = 1
2
(Eij + Eji − Ai · Aj) verifies gii > 0, and det g > 0. In the end we

have a list of all consistent pairs of simple roots that can be added, with the corresponding

moduli. In this example there are 192 elements on the list.

We finally deduce the gauge group from the 18 simple roots. We developed a routine

that takes a base of simple roots and detects if its Dynkin diagram is of ADE type and, in

that case, it identifies the group. We also compute the Gram matrix Q corresponding to the

moduli, as explained in section 3.2.1. We apply this algorithm to all the elements in our list.

In our example, this process yields 53 maximal enhancement points, but there are only 3

inequivalent enhancements because 50 of these points are T-dual to the 3 presented in Table

8. The corresponding diagrams are displayed in Figure 15.

In general, there will be various pairs (N1, N2) that return the same moduli. In the simplest
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N1

N2

1 3 4 5

7

8

−1

0 0′ 5′ 4′ 3′ 1′

7′

8′

−1′

Figure 14: Dynkin diagram showing the chosen connection for the node N1 (in cyan, corres-
ponding to the root |1, 0, 1, 0; 08, 08〉) and the possible connections for the node N2 (in pink,
green, yellow and brown; corresponding respectively to the roots (1)-(4) in (5.36)).

N1 N2 L E g Q

red green 6A3

(
1 − 1

2
0 1

) (
1
2
− 1

4

− 1
4

1
4

)
( 4 0

0 4 )

blue green 2A1 + 3A3 + A7 ( 1 0
0 1 )

(
1
2

0

0 1
4

)
( 4 0

0 8 )

blue yellow 4A1 + 2A7

(
1 0
− 1

2
1

) (
1
2
− 1

4

− 1
4

1
4

)
( 4 0

0 4 )

Table 8: Three maximal enhancement points for the Wilson lines given in (5.32) and different
values of E. The torus metric g and the Gram matrix Q of the complementary lattice T are
also given.

case, all corresponding sets of 18 simple roots will have the same Dynkin diagram and, in

consequence, the same gauge group. In this situation we simply discard all except one of the

pairs. However, in some cases there might be pairs that, combined with the 16 original roots,

actually give a subgroup of the real group which is obtained with different (N1, N2) but same

moduli. This is the same problem noticed at the end of section 5.2.2. The solution in this

situation is to keep only one of the pairs belonging to the group of highest dimension.

5.3.2 Neighborhood algorithm

The previous algorithm starts with fixed Wilson lines that determine 16 initial simple roots.

It is then plausible to search for consistent ways of adding two nodes to the original Dynkin

diagram, deducing in the process the remaining Eij moduli. If we do not want to make any

assumptions on the Ai, nor the Eij, for a procedure based on adding nodes to be feasible,

it would be necessary to know beforehand most of the simple roots. The new Neighborhood
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N1

N2
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7

8

−1

0 0′ 5′ 4′ 3′ 1′

7′

8′

−1′

Figure 15: Dynkin diagrams for the maximal enhancements in Table 8

algorithm goes in this direction.

The main idea is to find new maximal enhancements that are close to those already found,

but whose Wilson lines are not necessarily given by the shift algorithm. More precisely, we

start at a point of maximal enhancement where the group G18, and its 18 simple roots, are

known. Then we move along surfaces in moduli space where the symmetry is broken to

G17×U(1). On each of these 18 surfaces G17 will have 17 of the 18 original simple roots. For

each surface we collect the candidate extra simple root that would give back an ADE group

of rank 18. For each candidate we compute the moduli, Ai and Eij, by imposing that the 18

simple roots correspond to states that satisfy the massless conditions (5.13). We then check

that the torus metric gij is well defined and finally read the gauge group from the simple roots.

We end with a list of points of maximal enhancement that are on the neighborhood of the

original point, i.e. they are connected through a 17-dimensional enhancement surface. The

algorithm can be repeated to explore regions of the moduli space that are far away from the

starting point.

We illustrate the algorithm with an example defined by the starting point A1 = A2 = 0,

Eij = δij, where the gauge group is 2A1 + 2E8. The charge vectors of the 18 simple roots are

ϕj = |0, 0, 0, 0;αj , 0
8〉 , ϕ′j = |0, 0, 0, 0; 08, α′j〉 , j = 1, . . . , 8,

ϕC1 = |1, 0, 1, 0; 08, 08〉 , ϕC2 = |0, 1, 0, 1; 08, 08〉 .
(5.37)

They form the DD of Figure 3, with the nodes 0 and 0′ deleted. Now we want to move along

directions that preserve 17 of the 18 simple roots by deleting one node. Since the DD is

symmetric under the interchange of the node [j] with the node [j′], it suffices to remove one of
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the nodes [j]. We are then effectively breaking E8+2A1 by erasing one node. The nodes C1 and

C2 are also interchangeable. We choose to always keep C2. There are thus only 9 inequivalent

breakings, obtained by deleting either C1 or one of the 8 nodes of E8. Altogether, the 17

surviving simple roots are the 18 original ones in (5.37), except for the one corresponding to

the removed node. Afterwards we add a new node which clearly cannot be connected to any

of the 8 nodes [j′] associated to the second E8, since the resulting diagram has to be of type

ADE. Hence, only algebras of the form G10 + E8 can arise. For convenience we ignore the

second E8 unless otherwise stated.

To further elaborate on the algorithm we analyze first the case in which the node C1 is

removed. The effect is simply to break E8 + 2A1 to E8 + A1. We then add one node, called N,

to its Dynkin diagram. The 2 possibilities for the connections of the new node are displayed

in Figure 16. Generically, the charge vector corresponding to N is

ϕN = |w1, w2, n1, n2; π1, . . . , π8, 08〉 . (5.38)

The last 8 components of π are zero just because the new node is always disconnected from

the second E8. The way that N is linked in each of the possible Dynkin diagrams gives 9

conditions for the 12 unknowns wi, ni, plus the eight non-zero components of π. We use these

conditions to determine all except 3 of the unknowns. It is convenient, and always possible,

to leave w1 and w2 undetermined.

1 2 3 4 5 6

7

8

C2

N 1 2 3 4 5 6

7

8 C2

N

Figure 16: Dynkin diagrams corresponding to the possible ways of adding a node N to the
diagram of E8 + A1.

The following steps are very similar to those in the algorithm described in 5.3.1. We just

consider all possible values for the 3 unknowns, with a fixed bound for the maximum of their

absolute values. As in the previous section, for computational reasons, this truncation is

necessary to avoid infinitely many possibilities. Concretely, we introduce two parameters λ1
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and λ2, which define the truncation, and consider only states with

|wi| ≤ λ1, |ni| ≤ λ2, |πI | ≤ λ2 . (5.39)

For this example it is enough to use λ1 = 1 and λ2 = 2. Afterwards, we filter all the candidates

by imposing that ϕN has norm squared 2 and π ∈ Υ16. In some cases it might occur that,

regardless of the values of λ1 and λ2, there are actually no solutions with wi, ni ∈ Z and

π ∈ Υ16.

The case of E8 +2A1, on the left in Figure 16, is rather trivial because we are just restoring

the deleted node C1. The algorithm will find charge vectors ϕN which are not necessarily equal

to ϕC1 , but at the end of the day all of them should be equivalent to it. When we compute

the moduli we obviously get Eij = δij, A1 = A2 = 0, or some T-dual point. We just restored

the simple root that we removed, thus returning to the original point in the moduli space. In

general, this possibility will occur in all the breakings.

In the less trivial case E8 + A2, on the right of Figure 16, N is linked to C2. Imposing

〈ϕC2|ϕN〉 = −1, implies n2 = −1−w2. Considering all the possible values for the 3 unknowns

w1, w2 and n1, with the bounds in (5.39), and filtering by requiring 〈ϕN|ϕN〉 = 2, gives the list

|1, 0, 1,−1; 08, 08〉, |−1,−1,−1, 0; 08, 08〉, |1,−1, 1, 0; 08, 08〉, |−1, 0,−1,−1; 08, 08〉 . (5.40)

We next deduce the moduli by demanding that the charge vectors of the full set of 18 simple

roots satisfy the quantization conditions (5.13a). This is a well posed problem because in

general there are 36 moduli to determine and the 18 simple roots give two equations each.

In this case we readily find A1 = 0 and A2 = 0. From ϕC2 we obtain E12 = 0 and E22 = 1,

whereas from ϕN, n1 = E11w
1 and −2w2 − 1 = E21w1. The 4 elements in the list (5.40)

solve these equations with E11 = 1, and E21 equal to 1 or −1. It is easy to see that the

corresponding gij is well defined and that these points are T-dual to each other.

The algorithm proceeds in the same fashion for all the 9 possible breakings of E8 + 2A1.

For a more fruitful example, let us consider the breaking to A7 + 2A1, obtained by removing

the node ϕ1. Appending a new node N leads to various possible enhancements. For instance,

N can connect only to ϕ8 to form A8 + 2A1. With λ1 = 1 and λ2 = 2 in the bounds (5.39), we
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find that the charge vectors of ϕN can be one of

|−1, 0, 1, 0;−w8, 0
8〉 , |0,−1, 0, 1;−w8, 0

8〉 , |1, 0,−1, 0;−w8, 0
8〉 , |0, 1, 0,−1;−w8, 0

8〉 . (5.41)

The moduli are determined as explained before. Taking into account all nodes except N, we

arrive at

Eij = δij, A1 = γ1w1 × 0, A2 = γ2w1 × 0 , (5.42)

where (γ1, γ2) are some free parameters. The above moduli determine a slice of moduli space

with group SU(8)×SU(2)2×E8×U(1). Finally imposing the quantization conditions (5.13a)

to the possible charge vectors for ϕN, cf. (5.41), fixes (γ1, γ2) = ±(2
5
, 0), where underlining

means permutations. With these values we reach the rank 18 group with algebra A8+2A1+E8.

There is a feature of the algorithm than can be explained considering again the enhancing

to A8 + 2A1, but now with A8 formed by connecting ϕN to ϕ6. The algorithm finds the

charge vector |0, 0, 0, 0;−w6, 0
8〉 for ϕN. The moduli are again of the form (5.42), but now

the quantization conditions from ϕN imply (γ1, γ2) = (0, 0). Thus, the predicted moduli are

A1 = A2 = 0, E = δij, and we know that this point has trivial enhancement to 2E8 + 2A1.

On the other hand, the Dynkin diagram that results adding N indicates enhancement to

A8 + 2A1 + E8. The problem here is that the ϕN, which has zero winding and momenta,

corresponds to a root of E8. In fact, −w6 = α0 is the lowest root. Since the quantization

conditions are linear equations, if we replace one of the original simple roots of 2E8 +2A1 with

any other root, the moduli that solve the system will be the same, but the other root is no

longer simple. This is the same issue discussed at the end of section 5.2.2. Our prescription

to solve it is to classify all the enhancements, originating from the same starting point, by the

resulting moduli. If there is more than one enhancement for the same moduli we just pick the

one with higher dimensional group. In this case, we choose 2E8 + 2A1 over E8 + A8 + 2A1.

In Table 9 we collect the maximal enhancements in the neighborhood of the original point

A1 = A2 = 0, E = δij, which has G18 = 2E8 + 2A1. The node shown in the first column is

removed from the set in (5.37) at the start. The effect is to break G18 to G9 × E8 × U(1),

with G9 given in the second column. Appending a new node then leads to G10×E8, with the

various possibilities for G10 listed in the third column. To arrive at this list we have only kept

the groups of higher dimension as explained before, and we have used λ1 = 1 and λ2 = 2 in
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the bounds in (5.39).

deleted
node

G9 G10

C1 E8 + A1 E8 + 2A1, E8 + A2

1 A7 + 2A1 A9 + A1, A8 + 2A1, D10

2 A4 + A2 + 3A1 D7 + A2 + A1, D5 + A4 + A1, A6 + A2 + 2A1, 2A4 + 2A1

3 A4 + A3 + 2A1 D6 + A4,A8 + 2A1,A6 + A3 + A1,E6 + A3 + A1,A5 + A4 + A1

4 D5 + A2 + 2A1 2D5, D7 + A2 + A1, E7 + A2 + A1, D5 + A4 + A1

5 E6 + 3A1 E6 + D4, E6 + A3 + A1

6 E7 + 2A1 E7 + A3,E7 + A2 + A1

7 A6 + 3A1 D9 + A1, A8 + 2A1, A6 + A3 + A1, A6 + A2 + 2A1

8 D7 + 2A1 D9 + A1, D7 + A2 + A1

Table 9: Maximal enhancements G10 + E8 in the neighborhood of A1 = 0, A2 = 0, Eij = δij,
found setting λ1 = 1 and λ2 = 2 in the bounds of (5.39).

The Neighborhood algorithm can be iterated and can ramify from a different point of

maximal rank. In particular, in this way we can find the maximal enhancements A3 +A6 +A9

and 3A6, which, as we have argued, cannot be deduced using the algorithm with fixed Wilson

lines. To this end we will set the bounds (5.39) as before. We will see that this is enough

to obtain the missing groups, although a priori there was no guarantee for it. We now start

at a point with group G18 = A6 + A3 + A1 + E8, which in turn was found by the algorithm

initiating from the point Eij = δij, A1 = 0, A2 = 0, cf. Table 9. Concretely, G18 arises

after deleting the node ϕ3 in (5.37) and then appending the extra node N with charge vector

ϕN = |0,−1,−1, 1;w3−w1, 0
8〉. The corresponding moduli are A1 = −1

8
w3× 0, A2 = 1

4
w3× 0,

Eij = δij. We can now readily apply the algorithm to G18 whose Dynkin diagram is shown in

Figure 17.a. All the enhancement points on the neighborhood of this point can be computed.

However, to reach the desired maximal enhancements, the nodes C1 and C2 will be maintained

during the whole process. Therefore, Eij will remain equal to the identity as we move through

the neighborhood. To proceed we remove the node 1′, thereby breaking G18 to G17 × U(1),

with G17 = A1+A3+A6+A7, as shown in Figure 17.b. The neighboring point is on the surface

characterized by A1 = −1
8
w3 × γ1w

′
1, A2 = 1

4
w3 × γ2w

′
1. The algorithm then searches for new

nodes that can be consistently added. It finds N′ with charge vector |−1,−1, 1, 0; 08,−w′8〉,
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which leads to A3 +A6 +A9, as seen in Figure 17.c. The point is (γ1, γ2) = (−2
5
,−1

5
). Luckily,

from this point we can attain 3A6 in a couple of steps. With the algorithm it is easy to see what

is needed. As displayed in Figure 17.d, the node 8′ is next removed to break the symmetry

to 2A6 + A3 + A2, plus U(1). The surface is given by A1 = −1
8
w3 × (−1

2
w′8 + µ1(4w′1 − 5w′8)),

A2 = 1
4
w3 × (−1

4
w′8 + µ2(4w′1 − 5w′8)). The algorithm then discovers the extra node S, with

charge vector |−1, 0, 1,−1;−w6, w
′
8 − w′1〉, which has enhancement to 3A6, as indicated in

Figure 17.e. The point is (µ1, µ2) = (−1
8
, 0).

1 2 4 5 6

7

8C1

N C2

6′ 5′ 4′ 3′ 2′ 1′

7′

8′

1 2 4 5 6

7

8C1

N C2

6′ 5′ 4′ 3′ 2′

7′

8′

(a) (b)

1 2 4 5 6

7

8C1

N C2 N′

6′ 5′ 4′ 3′ 2′

7′

8′

1 2 4 5 6

7

8C1

N C2 N′

6′ 5′ 4′ 3′ 2′

7′

(c) (d)

1 2 4 5 6

7

8C1

N C2S N′

6′ 5′ 4′ 3′ 2′

7′

(e)

Figure 17: Dynkin diagrams for the steps leading to the enhancements A3 + A6 + A9 (c)
and 3A6 (e), starting from a point with A6 + A3 + A1 + E8 (a). Intermediate stages where the
symmetry is broken are shown in (b) and (d).

In conclusion, we have arrived at A3 + A6 + A9 and 3A6. The former has Wilson lines

A1 = −(1
8
w3 × 2

5
w′1), A2 = 1

4
w3 × (−1

5
w′1), and complimentary lattice T with Gram matrix

Q = [2, 0, 140]. For the latter A1 = −1
8
w3 × (−1

2
w′1 + 1

8
w′8), A2 = 1

4
w3 × (−1

4
w′8), and

Q = [2, 1, 4]. For both, E = δij.

5.4 All maximal rank groups for d = 2

From the results in [20] we infer that there are 359 distinct maximally enhanced heterotic

models on T 2, some of which share the same gauge group. The number of distinct maximal
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rank gauge groups found is 325. Using the extended diagram formalism of section 5.2 we

are able to obtain the moduli for 331 of these models. The more powerful computational

methods described in sections 5.3.1 and 5.3.2 allow us to obtain the moduli for the remaining

28 models, as well as alternative moduli for the other 331.

In Table 12, displayed in appendix C, we show a representative for each of the 359 models

in the E8 × E′8 heterotic theory. The data for each point consists of the root lattice L, which

gives the gauge group, the isotropic subgroup HL, the complementary lattice T , and the

moduli Eij, A1, A2. The lattice T is conveyed by its Gram matrix, computed from the moduli

as described in section 3.2.1. Once T is known we can determine the order of HL using the

relation (3.1). We can then check that the appropriate isotropic subgroup of AL exists as in

the examples worked out in section 3.1.2. In this way we can confirm the results of [20] for

the HL corresponding to each pair (L, T ).

In contrast to the d = 1 case, we do not have an explicit form of the fundamental domain

of the moduli space, which would give us a clear criterion for choosing the moduli. Instead,

we have selected those that have the simplest form. In some cases we present two different

sets of moduli, one in which the Wilson lines are simple but the Eij are different from the

standard ones in (5.19), and another where the opposite happens. Moduli obtained with the

Fixed Wilson lines algorithm of section 5.3.1, or the Neighborhood algorithm of section 5.3.2,

are respectively distinguished by a † or by a ∗, next to the Wilson line A2. The remaining

331 moduli were obtained using the EDD method of section 5.2. Notice that for the groups

18, 23 and 40, the EDD method only gives the data for one of the possible T lattices.

As expected from the general arguments of section 3.2, in all cases the Eij are rational

numbers and the Wilson lines are quantized in the sense of eq. (3.1). Moreover, it can be

shown that for every pair (L, T ), it is always possible to find Wilson lines such that Eij = δij.

Examples of this result are # 15 or # 19 in Table 12.

The torus metric and the b-field can be easily derived from the moduli Eij and Ai sub-

stituting in gij = 1
2
(Eij + Eji − Ai · Aj) and bij = 1

2
(Eij − Eji). The complex structure and

Kähler moduli, τ and ρ, can then be computed from their definition in (5.1), or alternatively

from the relations to the Eij in (5.6). Note that in most cases in Table 12, the enhancements

occur at points with ρ = τ . The exception is # 2, but as mentioned before, this group can
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also be reached with Eij = δij and suitable Wilson lines.

The transformations of the moduli under the duality group are best found as explained in

section 2.1. We conjecture that all possible heterotic models on T d with maximal rank gauge

group and given pair (L, T ), are unique up to T-dualities. We know that this is true in d = 1,

since the extended Dynkin diagram for the lattice II1,17 uniquely encodes all such models

within a fundamental region of the moduli space. Indeed, the only freedom in the diagram in

Figure 1 corresponds to a reflection about the central node, which is an automorphism of the

lattice II1,17. For d = 2, the conjecture implies that Table 12 exhibits all maximally enhanced

HE models up to T-dualities. In particular, we have checked that in cases such as # 15, the

two sets of moduli can be connected by an element of O(2, 18,Z).

For each model in Table 12, the moduli in the Spin(32)/Z2 heterotic can be obtained by

using the map described in section 2.2. We have explicitly verified that the Gram matrices of

the lattices L and T are preserved under this map, which is to be expected from an orthogonal

transformation. Some examples of these transformed HO models are given in Table 13.

As for d = 1, we can compute the Weyl transformation for each simple root of the enhanced

gauge group to obtain the reflexive subgroup of O(2, 18,Z) that fixes the corresponding moduli.

However, since O(2, 18,Z) is not reflexive, computing the whole set of dualities which fix a

given point is not generally straightforward, although a complete answer can be given in

simpler cases. For instance, as discussed in section 5.1, we can restrict to Wilson lines of the

form Ai = aiw6 × 0 and work with the complex moduli (τ, ρ, β), defined in (5.1) and (5.9).

As explained in section 5.1, Ω =
(
τ β
β ρ

)
parametrizes the genus-two Siegel upper half-plane,

and the fundamental region, as well as fixed points of Sp(4,Z), have been determined by

Gottschling [52–54]. In particular, in Theorem 4, Lemma 7 in [54], it is shown that the point

ΩG =
(

η 1
2

(η−1)
1
2

(η−1) η

)
, with η given in (5.43), is fixed by the octahedral group (O) of order 24.

In fact, this point ΩG can be shown to be precisely dual to the maximally enhanced point of

entry # 325 in Table 12, which corresponds to

ΩP =

 η − 1 1
2
(η − 1)

1
2
(η − 1) η − 1

 , η =
1

3
(1 + 2i

√
2) . (5.43)

At a generic point Ω, the gauge group is G = U(1)3 × E7 × E′8, while at ΩP (or equivalently
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ΩG) it is enlarged to GP = SU(4)×E7×E′8. It is natural to propose that the transformations

that leave ΩP fixed are generated by Weyl reflections about the simple roots that extend G to

GP . We have checked that this is indeed the case. The simple roots of SU(4) are associated to

the nodes ϕ0, ϕC1 and ϕC3 , shown in (5.17) and (5.21). As expected, the group generated by

the Weyl transformations is the permutation group S4, which is isomorphic to the octahedral

group O. It is easy to verify that ΩP is fixed by the transformations of order 3 and 4 displayed

in (5.10), which are just products of Weyl reflections about ϕ0, ϕC1 and ϕC3 .

Actually, the maximal enhancements in # 296, #297 and # 324 in Table 12, which also lie

in the slice of moduli space with ζ = βw6 × 0, correspond to fixed points analyzed in [53,54].

However, at the fixed points of cyclic subgroups there is no maximal enhancement. Similar

results can be obtained in HO. It would be interesting to find more connections between

the Narain moduli space and other kinds of moduli spaces, and to further study maximal

enhancements as fixed points of duality transformations.

6 Compactifications on T d

In heterotic compactifications on T d there are d(d + 16) moduli from background values

of the metric, the b-field and the 16-dimensional Wilson lines. The IId,d+16 lattice vectors

(pR; pL, p
I), which depend on these moduli, are given in (2.2). The generalization of the

algorithms discussed in the preceding sections to study the enhancement of symmetries and

the corresponding moduli in higher dimensional compactifications is straightforward. Here we

briefly outline the procedures and present some examples.

In section 2 we worked out the transformation rules of the moduli under O(d, d+ 16), for

arbitrary dimension d. In particular, the Buscher rules found in [26,27] for the heterotic string

were easily reobtained from a factorized duality as shown in eq. (2.28). We further generalized

the HE ↔ HO map that was derived for the circle in [17] to compactifications on T d with

d > 1. As an application, we can map the simple cases 2E8 + G̃d in the HE, or D16 + G̃d in

the HO, with moduli Ai = 0 and Eij, i, j = 1, ..., d, given in (3.15), respectively to HO or HE.

We find E ′ii = Eii = 1, E ′1j = 1
4
E1j for j > 1, E ′ij = Eij for i 6= 1, A′i = 0, i > 1, whereas

A′1 = ΛO − 1
4
ΛE for HE→ HO and A′1 = ΛE − 1

4
ΛO for HO→ HE.
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In section 3 we explained that all allowed groups Gr × U(1)d+16−r can be obtained by

lattice embedding techniques. We gave examples in d = 1, 2 and 8, but the machinery can

be applied to other dimensions. An interesting observation is that for d = 8 any semisimple

ADE group of rank 24 seems to be allowed, as indicated by the fact that the group of lowest

dimension, namely SU(2)24, does occur as shown in section 3.1.3.

The generalization of the algorithms developed in section 5 is straightforward, as they

are based on general ideas that do not depend on d. In particular, the method of extended

diagrams described in section 5.2.1, requires to find suitable values of Eij that can account

for the possible ways to connect the toroidal nodes, i.e. the nodes corresponding to IId,d, to

the affine diagram of E8 × E′8, or a subgroup of rank 16 obtained with the shift algorithm.

Specifically, we can take the Eij given in (3.15) in terms of the Cartan metric g̃ij of an ADE

group of rank d, which have the properties |Eij| equal to 0 or 1, and detE = 1. One can

then construct extended diagrams with d+ 18 nodes in arbitrary dimensions in a completely

analogous way as done for d = 2, also taking into account the twisting operation in (5.22).

A simple example of an EDD, for generic d, can be constructed in HE by choosing the Eij

in (3.15) with g̃ij equal to the Cartan matrix of Ad. The affine nodes ϕ0 and ϕ′0 are taken to

have n1 = −1 and nd = −1, respectively, with all other values for wi and ni set to zero. The

resulting diagram is shown in figure 18. Note that in this construction the Wilson lines Ai,

with i = 2, ..., d−1 are always turned off, while A1 = δ1×0 and Ad = 0×δ′d. This EDD yields

maximal enhancements such as SO(32 + 2d) and SU(17 + d). More generally we can arrange

the toroidal nodes into an Ap ×Ad−p diagram, with p = 1, ..., d− 1, in order to obtain groups

such as SO(18 + 2p)× SO(18 + 2(d− p)) and SU(9 + p)× SU(9 + d− p).

1 2 3 4 5 6

7

8

0 C1 Cd 0′ 6′ 5′ 4′ 3′ 2′ 1′

7′

8′

Figure 18: Extended diagram for generic values of d, yielding for example the maximal
enhancements SO(32 + 2d) and SU(17 + d).

To apply the Fixed Wilson lines algorithm of section 5.3.1 in T d, one may take some of the

Wilson lines obtained from the previous construction, then delete the toroidal nodes in the
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corresponding diagram and add d generic nodes to be determined by the algorithm. Finally,

the Neighborhood algorithm of section 5.3.2 may be implemented starting from a point with

maximal enhancement and 16 + d simple roots, e.g. 2E8 + dA1, eliminate one of the simple

roots and replace it by a generic one of 16 + 2d components to be fixed by the algorithm.

Some results obtained applying this algorithm in d = 3 are presented in Table 10. All of them

were found taking 3 or less steps from 2E8 + 3A1, and setting (λ1, λ2) = (1, 2) in (5.39).

L HL T E A1 A2 A3

A2 + A7 + D10 1
(

2 0 0
0 2 0
0 0 24

) (
1 −1 0
0 1 0
0 1 1

)
0× w4

6 −w3
5 ×

w4
15 −w3

5 ×
7w4
30

A1 + 3A3 + A9 Z2

(
4 0 0
0 8 4
0 4 12

) (
1 0 0
0 1 0
0 0 1

) (
−w4

38 −
5w7
19

)
× 4w7

19

(
5w7
19 −

9w4
19

)
× 4w7

19

(
7w4
19 −

6w7
19

)
× w7

19

A10 + 3A3 1
(

4 0 0
0 8 4
0 4 24

) (
1 0 0
0 1 0
0 0 1

)
2w7

7 ×
(
w3
4 −

11w8
56

)
−w7

7 ×
(
−w3

2 + 27w8
28

)
0×

(
w3
4 −

5w8
8

)
3A4 + D7 1

(
10 5 5
5 10 0
5 0 10

) (
1 0 0
0 1 0
0 0 1

)
−w3

5 ×
w3
5 −w3

5 ×−
w3
5

(
w6
2 −

w3
5

)
× 0

A4 + 3A5 1
(

6 0 0
0 6 0
0 0 30

) (
1 0 0
0 1 0
0 0 1

)
−w3

5 × 0
(

2w3
5 − w8

)
× 0 0× w3

5

4A3 + D7 Z4

(
4 0 0
0 4 0
0 0 4

) (
1 0 0
0 1 0
0 0 1

) (
−w3

6 −
w8
6

)
× w4

6

(
w8
12 −

w3
6

)
×−w4

3

(
w3
2 −

5w8
4

)
× 0

2A6 + A7 1
(

4 2 1
2 8 4
1 4 16

) (
1 0 0
0 1 0
0 0 1

)
2w7

7 ×
(

2w1
7 −

3w6
7

)
−w7

7 ×
(

8w6
7 −

3w1
7

)
0×

(
3w1

7 −
w6
7

)
D4 + D9 + E6 1

(
4 2 0
2 4 0
0 0 4

) (
1 0 0
0 1 0
0 0 1

)
−w8

2 × 0 0× w5
3 0× w5

3

D6 + D7 + E6 1
(

2 0 0
0 2 0
0 0 12

) (
1 0 0
0 1 0
0 0 1

)
−w3

5 ×
2w5
15 −w3

5 ×
2w5
15 0× w5

3

2D6 + E7 Z2

(
2 0 0
0 2 0
0 0 2

) (
1 0 0
0 1 0
0 0 1

)
−w6

2 ×
w6
2 −w8

2 × 0
(
w8
2 − w6

)
× 0

Table 10: Data for some groups of maximal rank, for the E8 × E′8 heterotic on T 3.

In this exploration of the d = 3 moduli space we have chosen at each step of the Neigh-

borhood algorithm one representative model for each maximal enhancement, i.e. for each

embedding (L, T ) ⊂ II3,19. This was also done in d = 2, as explained in section 5.3.2. This

procedure would be exhaustive only if any two models corresponding to the same pair (L, T )

are equivalent under T-duality. Indeed, we posed this conjecture in section 5.4 for generic

d. It would be interesting to understand this better, for example by using the techniques

of lattice embeddings of Nikulin [18, 31], or by further studying the dependence of the full

heterotic spectrum on the data of L and T .

We also remark that all the examples in table 10 have Eij = δij or can be shown to be

T-dual to a model satisfying this condition. Taking into account the fact that all maximal
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enhancements in d = 1 and 2 can be constructed with Eij = δij, we expect that this fact

extends to the case at hand with d = 3. In fact, we conjecture that this is a generic feature of

all Narain moduli spaces, with arbitrary d. To see the physical significance of this statement,

note that the condition Eij = δij implies that the antisymmetric field bij is turned off. In

many cases it is also true that the Wilson lines are orthogonal, Ai · Aj = 0, i 6= j, further

implying that the metric gij is diagonal and so T d = S1 × · · · × S1. However, we do not have

a formal proof that this can be done for all the maximally enhanced models.

7 Final remarks

In this paper we have explored the rich landscape of perturbative heterotic string compacti-

fications on T d. These lead to non-chiral theories in (10−d) dimensions with rank (d + 16)

gauge groups, which realize the upper bound on the rank arising in string constructions with

16 supercharges [15]. At special points in moduli space, the (d + 16) U(1) symmetries can

get enhanced, and we stated lattice embedding criteria to determine whether a given gauge

group is realized or not in a toroidal compactification. The use of these criteria was explained

in several examples.

We also introduced different algorithms to systematically explore the moduli space and

applied them to obtain all the semi-simple groups of maximal rank for d = 1 and d = 2, as well

as the values of the corresponding background fields. The algorithms can be implemented in

arbitrary dimension. A few examples are provided in section 6 and a more exhaustive analysis

is left for a future publication. Specifying the moduli is important for various reasons. First of

all, the vertex operators and the full 1-loop modular invariant partition function of the theory

explicitly depend on the momenta (2.2) [1, 2]. Besides, the moduli could be relevant in the

study of dualities with other constructions and in phenomenological applications (combining

with additional orbifold actions).

All maximal enhancements in the heterotic compactification on T 2 coincide with all pos-

sible singular fibers of extremal K3 surfaces classified in [20]. This gives additional evidence

for the duality between compactifications of the heterotic string on T 2 and F-theory on K3,

as well as relevant information for the study of extremal K3 surfaces. Some realizations of
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these surfaces have been studied in detail, see [28, 57] and references therein. In the early

days some examples were found by analyzing F-theory on orbifold limits of K3 [58]. Other

examples have been obtained more recently by considering enhancements at special points in

the moduli space of K3 surfaces with Picard number less than 20 [55,59,60]. The identification

of the moduli that give particular enhancement points supplies further ingredients for a closer

examination of the explicit map between heterotic and K3 moduli. This map was constructed

in [61], in the particular case when all Wilson lines vanish, hence with two complex moduli τ

and ρ. A step further is the map of [50], which includes Wilson lines that break a SU(2) in E8

such that the 16 complex moduli ζI reduce to the single complex parameter in (5.9). In the

latter case the matching of the moduli was presented in [55], where also the moduli at points

of maximal enhancement were identified.

Many other interesting questions deserve further study. For instance, we would like to

identify the fundamental region in moduli space for d ≥ 2. In the HE theory compactified

on the circle, this region is given in Table 6, and it was nicely described in [40] in terms of a

chimney with side walls at certain values of AI , and bottom bounded by a spherical wall at

E = 1. In general it is also practical to use as moduli the Wilson lines AIi together with the Eij

that depend on the torus metric and the Kalb-Ramond field, cf. (2.1). Our work hints at two

important features of the fundamental region. One is that all groups of maximal enhancement

arise at detE = 1. This is obvious in d = 1, as the central node in the Extended Dynkin

diagram of Figure 1, corresponding to E = 1, cannot be deleted. In d = 2 we have explicitly

verified it, and for higher d it seems to be always possible. The second observation is that all

groups of maximal enhancement arise at a single point in the fundamental domain. These two

features imply that any maximal enhancement point at detE 6= 1 is not in the fundamental

region, and can be brought to detE = 1 by dualities. This suggests that detE = 1 is always

a component of the boundary of the fundamental region (it corresponds to the bottom of

the chimney for d = 1). We conjecture that these two features are generic properties of the

fundamental region and leave the proof for future work.

Classification of all allowed groups that can appear in compactifications of the perturbative

heterotic string on T d is an important problem, posed already in the early days [1] and revived

recently in the context of the swampland program [15]. In this work we have stated criteria to
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solve this problem, and given the answer for d = 1, 2. Actually, the solution includes not only

the groups with maximal enhancement, but also groups Gr × U(1)d+16−r, with r ≤ (16 + d).

For d = 1 all possible Gr can be deduced from the EDD, and for d = 2 they are listed in [21].

A natural question is whether different Gr could arise in other non-chiral string constructions

with 16 supercharges. For d = 2, our results contain the groups with maximal enhancement

found in the covariant lattice formulation [62]. On the other hand, it is well known that

(10−d)-dimensional theories with semisimple non-ADE groups of rank (8 + d), e.g. USp(20)

for d = 2, can be built in the fermionic formulation [63]. It would be interesting to know if some

other CFT construction could give for instance 8-dimensional theories with 16 supercharges

and an ADE gauge group of rank 18, such as E8 × SO(14)× SU(4), which is forbidden in the

heterotic on T 2. It would also be helpful to understand if a theory with a forbidden group

could suffer from global anomalies as discussed in [64].

Finally, we have observed that the landscape becomes less constrained as the internal torus

dimension increases. Presumably, in d = 8, i.e. in two-dimensional theories, any rank 24 ADE

group can appear in a toroidal compactification of the heterotic string.
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A Notation and basics concerning lattices

L, even positive definite lattice of rank r

Typically L will be the sum of ADE root lattices. There is a basis formed by roots αi with

α2
i = 2. The Gram matrix of L has elements αi · αj. It is equal to the Cartan matrix when L

is the root lattice of an ADE group.

d(L), discriminant of L

It is defined to be the determinant of the Gram matrix of L. By assumption d(L) 6= 0.

L∗, dual lattice

Lattice generated by the weights wi defined by wi · αj = δij. Clearly L ⊂ L∗.

AL, discriminant group

It is defined as AL = L∗/L, also named DL or GL in the literature.

It can be shown that AL is a finite Abelian group of order d(L).

Since E8 is unimodular, its discriminant group is trivial. For L = An,D2m+1,D2m,E6,E7,

AL ∼= Zn+1,Z4,Z2 × Z2,Z3,Z2.

`(AL), minimal number of generators of AL

For example, for L = 2E6 + A6, `(AL) = 2, because Z3 × Z3 × Z7 ∼ Z3 × Z21. Notice that

`(AL) ≤ r.

qL, discriminant quadratic form

It is a map qL : AL → Q/2Z, x+ L 7→ x2 mod 2.

For example for L = An, AL = Zn+1 is generated by the class of the fundamental weight

[w1]. Thus qL([w1]) = w2
1 = n

n+1
, whereas qL([wj]) = w2

j = j(n+1−j)
n+1

= j2n
n+1

, with equalities mod

2.

For L = D2m+1, AL = Z4 is generated by the spinor class [s] with qL([s]) = 2m+1
4

.

For D2m, AL = Z2 ×Z2. One Z2 is generated by the spinor class [s] with qL([s]) = m
2

, and

the other Z2 by the vector class [v] with qL([v]) = 1.

For E6, AL = Z3 is generated by the fundamental weights of [27] with qL([27]) = 4
3
.

For E7, AL = Z2 is generated by the fundamental weights of [56] with qL([56]) = 3
2
.

T , even positive definite lattice of rank d
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It is characterized by the Gram matrix (Q)ij = ui · uj, where ui are the basis vectors.

A generic even 1 dimensional lattice, denoted A1〈m〉, is a multiple by m of the A1 lattice.

It is generated by a vector u1 with u2
1 = 2m and has discriminant group Z2m, in turn generated

by (u∗1)2 = 1
2m

.

We will mostly consider d = 2 and as in [20], represent Q as [u2
1, u1·u2, u

2
2]. For classification

of even 2-dimensional lattices see chapter 15 in [35], and section 2 in [20] for a short account.

Q can be brought to Smith normal form diag(s1, s2), with positive integer entries. Then

AT ∼= Zs1 × Zs2 . Notice that if s1 and s2 are coprimes then AT ∼= Zs1s2 . We will also need

to compute the discriminant form qT . From Q−1 we can read off u∗i · u∗j , where u∗1, u∗2 are the

basis vectors of the dual lattice T ∗. Besides, Q−1 gives the e∗i in terms of ei. With this data

we can then find the generators of AT and derive qT . For example, for T with Q = [2, 1, 4],

AT ∼= Z7 and Q−1 = [4
7
,−1

7
, 2

7
]. The generator of AT can be taken to be u∗2 which satisfies

7u∗2 = −u1 + 2u2 ∈ T , and has the lowest norm. Then qT takes values 2j2

7
mod 2, j = 0, . . . , 6.

HL, isotropic subgroup of AL

HL ⊂ AL is isotropic if qL|H = 0.

For instance, for L = A8, with AL = Z9, the subgroup HL = Z3 generated by w3 ∼ 3w1 is

isotropic because qL([w3]) = 18
9

= 2 = 0 mod 2.

Another example is L = D8, with AL = Z2 × Z2. Now there is an isotropic HL = Z2

generated by the spinor class with s2 = 8
4

= 2 = 0 mod 2.

An important example is L = D16 which has an isotropic group HL = Z2 generated by the

spinor weight with s2 = 16
4

= 4 = 0 mod 2.

Orthogonal complement

Given a sublattice S of Γ, S ⊂ Γ, the orthogonal complement of S in Γ is defined to be

the set S⊥ = {x ∈ Γ |x.y = 0 ∀y ∈ S}.

M , overlattice of L

If L ⊂ M and the index [M : L] is finite then M is an overlattice of L. This means that

M and L have the same rank. In fact, [M : L]2 = d(L)/d(M). The index is also denoted by

|M/L|.

The important Proposition 1.4.1 of Nikulin states that the set of even overlattices of

L corresponds bijectively with the set of isotropic subgroups of AL [18]. The overlattice
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corresponding to HL can be constructed as MH = {x ∈ L∗|[xmodL] ∈ HL}. (see e.g.

proposition α in [30]). This means that the elements of MH are weights that can be written as

roots plus generators in HL. Besides, the discriminant form qMH
is given by the discriminant

form qL restricted to H⊥L /HL. Orthogonality is defined with respect to the bilinear quadratic

form bL [30]. In practice, y ∈ H⊥L if y ∈ AL and y · x = integer for all x ∈ HL. To avoid

cluttering we will drop the subscript in MH when HL has been specified.

As an example, take L = A8 and HL = Z3 so that M/L ∼= Z3 and d(M) = 9
32

= 1. Then

M has elements x = y + nw3, with y ∈ L and n = 0, 1, 2. It can be shown that this M is

isomorphic to E8, which is the unique rank 8 even unimodular lattice.

For L = D8 the overlattice associated to HL = Z2 has elements x = y + ns, with y ∈ L

and n = 0, 1. This is nothing but E8, as expected since the overlattice has d(M) = 4
22

= 1.

For L = D16 the overlattice corresponding to HL = Z2 is the even unimodular lattice Γ16

with elements x = y + ns, with y ∈ L and n = 0, 1. Unimodularity follows from M/L ∼= Z2

implying d(M) = 4
22

= 1. Γ16 is the HO lattice.

Mroot, root sublattice of M

It is the sublattice of M generated by roots, i.e. by vectors of norm 2.

For example, for the overlattice of L = D16, Mroot = L. For L = D8 this is not the

case because the overlattice E8 has many more roots. This reflects the fact that for D8 the

additional element s in the overlattice has s2 = 2.

Primitive embedding

A lattice S is primitively embedded in another lattice Γ if S ⊂ Γ and Γ/S is torsion-free.

For example, A8 ⊂ E8 but the embedding is not primitive because E8/A8
∼= Z3 as explained

above. An example of primitive embedding is A3 ⊂ E8. Since A3 has rank 3 and E8 is even

unimodular, this follows from Theorem 1.12.4 of Nikulin [18] quoted below. It can then be

shown that D5 ⊂ E8 is primitive because D5 is the orthogonal complement of A3 in E8, and

also that E8 is an overlattice of D5 + A3.

Nikulin’s Theorem 1.12.4 [18]

Every even lattice of signature (t(+), t(−)) admits a primitive embedding in an even unim-
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odular lattice of signature (l(+), l(−)), with l(+) − l(−) ≡ 0 mod 8, if

t(+) ≤ l(+), t(−) ≤ l(−), t(+) + t(−) ≤
1

2
(l(+) + l(−)) . (A.1)

In particular, if r ≤ (8+d) then L of signature (r, 0) admits a primitive embedding in IId+16,d.

B Complements to section 3

In this appendix we present some additional material for the discussion of the lattice embed-

ding formalism.

B.1 Embeddings of groups with rank r < d+ 16

The problem is now to embed L of signature (r, 0), r < d+ 16, in the even unimodular Narain

lattice IId+16,d. In this case there are also three criteria that read

Criterion 1, from Corollary 1.12.3 [18]

If `(AL) < 16 + 2d− r then L has an embedding in IId+16,d.

Criterion 2, from Theorem 1.12.2(c) [18]

L has a primitive embedding in IId+16,d if and only if there exists a lattice T of

signature (d, d+ 16− r) such that (AT , qT ) is isomorphic to (AL, qL).

Criterion 3, from Theorem 7.1 [21]

L has an embedding in IId+16,d if and only if L has an overlattice M with the

following properties:

(i) there exists an even lattice T of signature (d, d + 16 − r) such that (AT , qT )

is isomorphic to (AM , qM),

(ii) the sublattice Mroot of M coincides with L.

Recall that Theorem 1.12.4 [18] further implies that when r ≤ (8+d) there is always a primitive

embedding. The above criteria clearly reduce to those in section 3.1 setting r = d + 16. The

lattice T now has indefinite signature so the application would be more complicated.
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B.2 More on the complementary lattice T of signature (d, 0)

In section 3.2 we have argued that T = K〈−1〉. To complete the proof that (AM , qM) ∼=

(AK ,−qK) we can use the following theorem of [35]: Let L1 and L2 be two sublattices of a

unimodular lattice L3 such that5

L1 ⊕ L2 ⊂ L3, L1 = (L1 ⊗ R) ∩ L3, L2 = (L2 ⊗ R) ∩ L3.

Then the discriminant groups L∗1/L1 and L∗2/L2 are isomorphic. The isomorphism is given by

y1 + L1 → y2 + L2, where y1 ∈ L∗1/L1 and y2 ∈ L∗2/L2, whenever y = y1 + y2 generates an

isotropic subgroup of L1 ⊕ L2.

To apply this theorem to our problem we take L1 = M , L2 = K, and L3 = IId,d+16,

with K and M given in (3.3) and (3.8). We have M ⊗ R = R0,d+16 and K ⊗ R = Rd,0.

Moreover, R0,d+16 ∩ IId,d+16 = M and Rd,0 ∩ IId,d+16 = K. It follows that M and K have

isomorphic discriminant groups. It remains to show that they have isomorphic discriminant

forms. The Narain lattice IId,d+16 is generated by the lattice sum M ⊕K together with some

isotropic vectors (glue vectors in the language of [35]). These vectors are generically of the

form y = y1 + y2, where y1 and y2 are non trivial vectors in the discriminant groups of M

and K, respectively, and are connected by the discriminant group isomorphism. Since y must

be even, we have y2 = 0 mod 2. Therefore, y2
1 + y2

2 = 0 mod 2, because M and K are

orthogonal. We thus find y2
1 = −y2

2 mod 2. This shows that qM ∼= −qK , and so T as defined

is the complementary lattice of M .

C Groups of maximal enhancement in d = 1 and d = 2

In this appendix we present the Tables containing all the groups of maximal enhancement in

one and two dimensions. The list of groups realized in S1 compactifications of the heterotic

string is displayed in Table 11. The groups realized in T 2 compactifications of the E8 × E′8

heterotic string are shown in Table 12. To simplify notation we dropped the primes in the

E′8 weights. In Table 13 we give the realization of some of these groups in the Spin(32)/Z2

5L⊗ R means the set of all points obtained by real linear combinations of the basis vectors of L
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theory.

# L AL HL T R2
E AE R2

O AO

1 2E8 + A1 Z2 1 〈1〉 1 0× 0 1
16

1
4 (w7 + w9)

2 E8 + E7 + A2 Z6 1 〈3〉 3
4

1
2w6 × 0 1

12
1
6 (w6 + 2w9)

3 E8 + E6 + A3 Z12 1 〈6〉 2
3

1
3w5 × 0 3

32
1
8 (w5 + 3w9)

4 E8 + D9 Z4 1 〈2〉 1
2 0× 1

2w8
1
8

1
2w7

5 E8 + D5 + A4 Z20 1 〈10〉 5
8

1
4w4 × 0 1

10
1
10 (w4 + 4w9)

6 E8 + A9 Z10 1 〈5〉 5
9 0× 1

3w1
5
49

1
7 (3w7 + w15)

7 E8 + A8 + A1 Z18 1 〈9〉 9
16

1
4w7 × 0 1

9
4
9w9

8 E8 + A6 + A2 + A1 Z42 1 〈21〉 7
12

1
6w2 × 0 3

28
1
14 (w2 + 6w9)

9 E8 + A5 + A4 Z30 1 〈15〉 3
5

1
5w3 × 0 5

48
1
12 (w3 + 5w9)

10 E7 + E7 + A3 Z2 × Z2 × Z4 Z2 〈2〉 1
2

1
2w6 × 1

2w6
1
8

1
4 (w6 + w10)

11 E7 + E6 + A4 Z30 1 〈15〉 5
12

1
3w5 × 1

2w6
3
20

1
10 (2w5 + 3w10)

12 E7 + D10 Z2 × Z2 × Z2 Z2 〈1〉 1
4

1
2w6 × 1

2w
′
8

1
4

1
2w6

13 E7 + D5 + A5 Z2 × Z4 × Z6 Z2 〈6〉 3
8

1
4w4 × 1

2w6
1
6

1
6 (w4 + 2w10)

14 E7 + A10 Z22 1 〈11〉 11
36

1
2w6 × 1

3w1
11
64

1
8 (3w6 + 2w15)

15 E7 + A9 + A1 Z2 × Z2 × Z10 Z2 〈5〉 5
16

1
4w7 × 1

2w6
1
5

2
5w10

16 E7 + A7 + A2 + A1 Z2 × Z6 × Z8 Z2 〈12〉 1
3

1
6w2 × 1

2w6
3
16

1
8 (w2 + 3w10)

17 E7 + A6 + A4 Z70 1 〈35〉 7
20

1
5w3 × 1

2w6
5
28

1
14 (2w3 + 5w10)

18 E6 + E6 + A5 Z3 × Z3 × Z6 Z3 〈3〉 1
3

1
3w5 × 1

3w5
3
16

1
4 (w5 + w11)

19 E6 + D11 Z12 1 〈6〉 1
6

1
3w5 × 1

2w8
3
8

1
2w5

20 E6 + D5 + A6 Z84 1 〈42〉 7
24

1
4w4 × 1

3w5
3
14

1
14 (3w4 + 4w11)

21 E6 + A11 Z3 × Z12 Z3 〈2〉 2
9

1
3w1 × 1

3w5
2
9

1
3 (w1 + w11)

22 E6 + A10 + A1 Z66 1 〈33〉 11
48

1
4w7 × 1

3w5
3
11

4
11w11

23 E6 + A8 + A2 + A1 Z3 × Z6 × Z9 Z3 〈9〉 1
4

1
6w2 × 1

3w5
1
4

1
6 (w2 + 2w11)

24 E6 + A7 + A4 Z120 1 〈60〉 4
15

1
5w3 × 1

3w5
15
64

1
16 (3w3 + 5w11)

25 D17 Z4 1 〈2〉 1
18

1
3w1 × 1

2w8
1
2 w1

26 D16 + A1 Z2 × Z2 × Z2 Z2 〈1〉 1
16

1
4w7 × 1

2w8 1 0

27 D14 + A2 + A1 Z2 × Z2 × Z6 Z2 〈3〉 1
12

1
6w2 × 1

2w8
3
4

1
2w2

28 D13 + A4 Z20 1 〈10〉 1
10

1
5w3 × 1

2w8
5
8

1
2w3
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29 D12 + D5 Z2 × Z2 × Z4 Z2 〈2〉 1
8

1
4w4 × 1

2w8
1
2

1
2w4

30 D5 + A12 Z52 1 〈26〉 13
72

1
4w4 × 1

3w1
13
50

1
10 (3w4 + 4w15)

31 D5 + A11 + A1 Z4 × Z12 × Z2 Z4 〈3〉 3
16

1
4w7 × 1

4w4
1
3

1
3w12

32 D5 + A9 + A2 + A1 Z4 × Z10 × Z6 Z2 〈30〉 5
24

1
6w2 × 1

4w4
3
10

1
10 (2w2 + 3w12)

33 D5 + A8 + A4 Z180 1 〈90〉 9
40

1
5w3 × 1

4w4
5
18

1
18 (4w3 + 5w12)

34 D5 + D5 + A7 Z4 × Z4 × Z8 Z4 〈4〉 1
4

1
4w4 × 1

4w4
1
4

1
4 (w4 + w12)

35 A17 Z18 Z3 〈1〉 1
9

1
3w1 × 1

3w1
1
4

1
2 (w1 + w15)

36 A16 + A1 Z34 1 〈17〉 17
144

1
4w7 × 1

3w1
17
49

4
7w15

37 A15 + A1 + A1 Z16 × Z2 × Z2 Z4 〈2〉 1
8

1
4w7 × 1

4w7
1
2

1
2w16

38 A14 + A2 + A1 Z15 × Z6 Z3 〈5〉 5
36

1
3w1 × 1

6w2
5
16

1
4 (2w1 + w14)

39 A13 + A4 Z70 1 〈35〉 7
45

1
5w3 × 1

3w1
35
121

1
11 (3w3 + 5w15)

40 A13 + A2 + 2A1 Z14 × Z6 × Z2 Z2 〈21〉 7
48

1
4w7 × 1

6w2
3
7

2
7w14

41 A12 + A4 + A1 Z130 1 〈65〉 13
80

1
5w3 × 1

4w7
5
13

1
13 (4w3 + 5w16)

42 A11 + 2A2 + 2A1 Z12 × Z6 × Z6 Z6 〈6〉 1
6

1
6w2 × 1

6w2
3
8

1
4 (w2 + w14)

43 A10 + A4 + A2 + A1 Z330 1 〈165〉 11
60

1
5w3 × 1

6w2
15
44

1
22 (6w3 + 5w14)

44 A9 + 2A4 Z10 × Z5 × Z5 Z5 〈5〉 1
5

1
5w3 × 1

5w3
5
16

1
4 (w3 + w13)

Table 11: Data for allowed groups of maximal rank, d = 1. (RE, AE) and (RO, AO) are the
radius and Wilson line in the E8 × E′8 and Spin(32)/Z2 heterotic theory.

# L HL T E11E21E22 E12 A1 A2

1 6A3 Z4 × Z4 [4, 0, 4] 1 0 1 1
2

w6
2
× w6

2

(
w2
4
− 3w6

4

)
×

(
w2
4
− 3w6

4

)
†

2 2A1 + 4A4 Z5 [10, 0, 10] 1 1
5

1 − 1
5

w3
5
× w3

5

(
w1 −

3w3
5

)
×

(
w1 −

3w3
5

)
†

3 2A2 + 2A3 + 2A4 1 [60, 0, 60] 1 0 11
12

5
12

w5
3
× w6

2

(
w2
3
− 2w5

3

)
×

(
w2
4
− 3w6

4

)
†

4 3A1 + 3A5 Z2 × Z6 [2, 0, 6] 1 0 1 0
w6
2
× w8

2

(
3w6
4
− w2

4

)
×

(
w2
2
− 3w4

4

)
∗

5 4A2 + 2A5 Z3 × Z3 [6, 0, 6] 1 0 1 0
w5
3
× w5

3

(
w2
3
− 2w5

3

)
×

(
w2
3
− 2w5

3

)
6 A3 + 3A5 Z2 × Z3 [4, 0, 6] 1 0 1 0

w5
3
× w5

3

(
w1
2
− w5

2

)
×

(
w1
2
− w5

2

)
7 2A1 + 2A3 + 2A5 Z2 × Z2 [12, 0, 12] 1 0 1 0

w4
4
× w6

2

(
w7
2
− w4

2

)
×

(
w2
4
− 3w6

4

)
8 A1 + 2A2 + A3 + 2A5 Z2 × Z3 [6, 0, 12] 1 0 1 0

w5
3
× w2

6

(
w2
3
− 2w5

3

)
×

(
2w4
3
− w2

3

)
∗

9 2A4 + 2A5 1 [30, 0, 30] 1 0 1 0
w3
5
× 0 0× w3

5

10 2A2 + A4 + 2A5 Z3 [6, 0, 30] 1 0 1 0
w5
3
× w5

3

(
w1
2
− w5

2

)
×

(
w2
3
− 2w5

3

)
11 A1 + A3 + A4 + 2A5 Z2 [12, 0, 30] 1 0 1 0

w4
4
× w6

2

(
w7
2
− w4

2

)
×

(
w7
3
− 2w6

3

)
12 A1 + A2 + 2A3 + A4 + A5 Z2 [24, 12, 36] 1 0 1 0

w6
2
× w2

6

(
w7
3
− 2w6

3

)
×

(
3w3
4
− w2

2

)
∗

13 3A6 Z7 [2, 1, 4] 1 0 1 0
w6
2
× w8

2

(
2w6
3
− w7

3

)
×

(
2w8
3
− w1

3

)
∗

14 2A1 + 2A2 + 2A6 1 [42, 0, 42] 1 0 1 0
w2
6
× 0 0× w2

6

15 2A3 + 2A6 1 [28, 0, 28]
1 0 19

20
7
20

w3
5
× w6

2

(
w1 −

3w3
5

)
×

(
w2
4
− 3w6

4

)
†

1 0 1 0
2w5
7
×

(
4w1
7

+
w5
7
− 2w7

7

) (
w1
2
− 5w5

8

)
×

(
w1
4

+
3w7
8
− 3w5

4

)
∗

16 A2 + A4 + 2A6 1 [28, 7, 28] 1 0 1 0
w3
5
× w6

2
0×

(
w3
3
− 5w6

6

)
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17 2A1 + A2 + 2A4 + A6 1 [50, 20, 50]
1 1

5
13
15
− 4

15
w2
6
× w3

5

(
w7 −

2w2
3

)
×

(
w1 −

3w3
5

)
†

1 0 1 0
(

w3
3

+
w6
2
− 5w7

12

)
× w7

4

(
2w3
5
− w6

)
×

(
2w2
5
− w7

2

)
∗

18 A1 + A3 + 2A4 + A6 1
[20, 0, 70] 1 0 1 0

w3
5
× w6

2
0×

(
w2
4
− 3w6

4

)
[10, 0, 140] 1 0 1 0

w6
2
× w7

4

(
w7
3
− 2w6

3

)
×

(
8w2
15
− 2w7

3

)
∗

19 A2 + 2A3 + A4 + A6 1 [24, 12, 76]
1 0 21

20
7
20

w3
5
× w6

2

(
w8 −

2w3
5

)
×

(
w2
4
− 3w6

4

)
†

1 0 1 0
w6
2
× w2

6

(
w1
5

+
w7
5
− 7w6

10

)
×

(
3w3
4
− w2

2

)
∗

20 A1 + 2A2 + A3 + A4 + A6 1 [30, 0, 84] 1 0 1 0
w4
4
× w5

3

(
w7
2
− w4

2

)
×

(
w2
3
− 2w5

3

)
21 2A1 + 2A5 + A6 Z2 [12, 6, 24] 1 0 1 0

w4
4
× w5

3

(
w2
2
− 3w4

4

)
×

(
w1
2
− w5

2

)
22 A1 + 2A3 + A5 + A6 Z2 [4, 0, 84] 1 0 1 0

w4
4
× w5

3

(
w7
2
− w4

2

)
×

(
w1
2
− w5

2

)

23 A1 + A2 + A4 + A5 + A6 1
[18, 6, 72]

1 0 1 − 5
12

w5
3
× w6

2

(
w7
2
− 2w5

3

)
×

(
w7
3
− 2w6

3

)
†

1 0 1 0
(

w1
3

+
w4
3
− 2w7

3

)
× w2

6

(
10w1
21

+
w7
21
− 4w4

21

)
×

(
w8 −

w2
3

)
∗

[30, 0, 42] 1 0 1 0
w2
6
× 0 0× w3

5

24 A3 + A4 + A5 + A6 1 [12, 0, 70] 1 0 1 0
w3
5
× w6

2
0×

(
w7
3
− 2w6

3

)
25 4A1 + 2A7 Z2 × Z4 [4, 0, 4] 1 0 1 0

w4
4
× w4

4

(
w2
2
− 3w4

4

)
×

(
w2
2
− 3w4

4

)
26 2A2 + 2A7

Z2 [12, 0, 12] 1 0 1 0
w6
2
×

(
w3
3
− 5w6

6

) (
w3
3
− 5w6

6

)
× w6

2

1 [24, 0, 24] 1 0 1 0
w3
5
× w5

3

(
w1 −

3w3
5

)
×

(
w2
3
− 2w5

3

)
27 A1 + A3 + 2A7 Z8 [2, 0, 4]

1 0 1 1
2

w6
2
× w6

2

(
w1
2
− 3w6

4

)
×

(
w2
4
− 3w6

4

)
†

1 0 1 0
w6
2
×

(
w2
2
− w7

2

) (
w7
3
− 2w6

3

)
×

(
− 2w2

3
+

2w3
3

+
w7
3

)
∗

28 2A1 + 3A3 + A7 Z2 × Z4 [4, 0, 8] 1 0 1 0
w4
4
× w4

4

(
w4
2
− w7

2

)
×

(
w4
2
− w7

2

)
29 A2 + 3A3 + A7 Z4 [4, 0, 24] 1 0 1 0

w1
6
× w5

3
w1
3
×

(
w2
3
− 2w5

3

)
∗

30 2A2 + A3 + A4 + A7 1 [12, 0, 120] 1 0 1 0
w3
5
× w5

3
0×

(
w2
3
− 2w5

3

)
31 2A1 + A2 + A3 + A4 + A7 Z2 [20, 0, 24] 1 0 1 0

w2
6
× w6

2
0×

(
w2
4
− 3w6

4

)
32 A1 + 2A5 + A7 Z2 [6, 0, 24] 1 0 1 0

w2
6
× w6

2

(
w7 −

2w2
3

)
×

(
w7
3
− 2w6

3

)
33 3A1 + A3 + A5 + A7 Z2 × Z2 [8, 0, 12] 1 0 1 0

w4
4
× w4

4

(
w2
2
− 3w4

4

)
×

(
w4
2
− w7

2

)
34 A1 + A2 + A3 + A5 + A7 Z2 [12, 0, 24] 1 0 1 0

w2
6
× w6

2
0×

(
w7
3
− 2w6

3

)
35 2A1 + A4 + A5 + A7 Z2 [2, 0, 120]

1 0 23
24

5
12

w5
3
× w6

2

(
w3
2
− 5w5

6

)
×

(
w2
4
− 3w6

4

)
†

1 0 1 0
w6
2
×

(
w2
2
− w7

2

) (
2w3
5
− w6

)
×

(
−w2

2
+

w3
2

+
w7
4

)
∗

36 A2 + A4 + A5 + A7 1
[6, 0, 120] 1 0 1 0

w3
5
× w5

3
0×

(
w1
2
− w5

2

)
[24, 0, 30] 1 0 1 0

w6
2
×

(
w3
3
− 5w6

6

) (
w7
3
− 2w6

3

)
× w6

2

37 A1 + 2A2 + A6 + A7 1 [24, 0, 42] 1 0 1 0
w2
6
× w6

2
0×

(
w3
3
− 5w6

6

)
38 2A1 + A3 + A6 + A7 Z2 [12, 4, 20] 1 0 1 0

w4
4
× w5

3

(
w4
2
− w7

2

)
×

(
2w5
3
− w7

2

)
39 A2 + A3 + A6 + A7 1 [4, 0, 168] 1 0 1 0

3w1
16
× w6

2
w1
3
×

(
w7
3
− 2w6

3

)
∗

40 A1 + A4 + A6 + A7 1

[18, 4, 32] 1 0 1 0
w3
5
× w5

3
0×

(
w3
2
− 5w5

6

)
[2, 0, 280]

1 0 37
40
− 7

20
w3
5
×

(
w7
2
− w4

2

) (
w1 −

3w3
5

)
× w4

4
†

1 0 1 0
w6
2
×

(
w2
2
− w7

2

) (
w3
3
− 5w6

6

)
×

(
− 7w2

12
+

7w3
12

+
7w7
24

)
∗

41 A5 + A6 + A7 1 [16, 4, 22] 1 0 1 0
w3
5
× w5

3

(
w1 −

3w3
5

)
×

(
w1
2
− w5

2

)
42 2A1 + 2A8

1 [18, 0, 18] 1 0 1 0
w7
4
× 0 0× w7

4

Z3 [4, 2, 10] 1 0 1 0
w3
5
× w4

4

(
w1 −

3w3
5

)
×

(
w2
2
− 3w4

4

)
43 A1 + 3A2 + A3 + A8 Z3 [12, 0, 18] 1 0 1 0

w2
6
× w5

3
0×

(
w2
3
− 2w5

3

)
44 2A1 + 2A4 + A8 1 [20, 10, 50] 1 0 1 0

w3
5
× w4

4
0×

(
w2
2
− 3w4

4

)
45 3A2 + A4 + A8 Z3 [12, 3, 12] 1 0 1 0

w5
3
×

(
w3
3
− 5w6

6

) (
w2
3
− 2w5

3

)
× w6

2

46 A1 + A2 + A3 + A4 + A8 1 [6, 0, 180] 1 0 1 0
w3
5
× w4

4
0×

(
w4
2
− w7

2

)
47 A1 + 2A2 + A5 + A8 Z3 [6, 0, 18] 1 0 1 0

w2
6
× w5

3
0×

(
w1
2
− w5

2

)
48 A2 + A3 + A5 + A8 Z3 [4, 0, 18] 1 0 1 0

w5
3
×

(
w3
3
− 5w6

6

) (
w1
2
− w5

2

)
× w6

2

49 A1 + A4 + A5 + A8 1 [18, 0, 30] 1 0 1 0 0× w7
4

w3
5
× 0

50 2A1 + A2 + A6 + A8 1 [18, 0, 42] 1 0 1 0 0× w7
4

w2
6
× 0

51 A1 + A3 + A6 + A8 1 [10, 4, 52] 1 0 1 0
w3
5
× w4

4

(
w1 −

3w3
5

)
×

(
w4
2
− w7

2

)
52 A4 + A6 + A8 1 [18, 9, 22] 1 0 1 0

w3
5
× w6

2
0×

(
w1
2
− 3w6

4

)
53 A1 + A2 + A7 + A8 1 [18, 0, 24] 1 0 1 0

w2
6
× w6

2
0×

(
w1
2
− 3w6

4

)
54 2A9

Z5 [2, 0, 2] 1 0 1 0
w3
5
× w3

5

(
w1 −

3w3
5

)
×

(
w1 −

3w3
5

)
1 [10, 0, 10] 1 0 1 0

w1
3
× 0 0× w1

3

55 A1 + A2 + 2A3 + A9 Z2 [4, 0, 60] 1 0 1 0
w4
4
×

(
w3
3
− 5w6

6

) (
w7
2
− w4

2

)
× w6

2

56 2A1 + 2A2 + A3 + A9 Z2 [6, 0, 60] 1 0 1 0
w2
6
× w4

4
0×

(
w4
2
− w7

2

)
57 A1 + 2A4 + A9 Z5 [2, 0, 10] 1 0 1 0

w3
5
× w3

5
0× 0

58 3A1 + A2 + A4 + A9 Z2 [20, 10, 20] 1 0 1 0
w2
6
× w4

4
0×

(
w2
2
− 3w4

4

)
59 2A1 + A3 + A4 + A9 Z2 [10, 0, 20] 1 0 1 0

w6
2
× w7

4

(
w2
4
− 3w6

4

)
× 0
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60 2A1 + A2 + A5 + A9 Z2 [12, 6, 18] 1 0 1 0
w4
4
×

(
w3
3
− 5w6

6

) (
w2
2
− 3w4

4

)
× w6

2

61 A1 + A3 + A5 + A9 Z2 [10, 0, 12] 1 0 1 0
w6
2
× w7

4

(
w7
3
− 2w6

3

)
× 0

62 A4 + A5 + A9

1 [10, 0, 30] 1 0 1 0
w1
3
× 0 0× w3

5

Z2 [10, 5, 10] 1 0 1 0
w6
2
×

(
w1
2
− 3w6

4

) (
w7
3
− 2w6

3

)
× w6

2

63 3A1 + A6 + A9 Z2 [4, 2, 36] 1 0 1 0
w2
6
× w4

4

(
w7 −

2w2
3

)
×

(
w2
2
− 3w4

4

)
64 A1 + A2 + A6 + A9 1 [10, 0, 42] 1 0 1 0

w1
3
× 0 0× w2

6

65 A3 + A6 + A9 1 [2, 0, 140] 1 0 1 0
w6
2
× w8

2

(
w7
3
− 2w6

3

)
×

(
4w8
5
− 8w1

15

)
∗

66 A2 + A7 + A9 1 [10, 0, 24] 1 0 1 0
(

w1
2
− 3w6

4

)
× w6

2
w6
2
×

(
w3
3
− 5w6

6

)
67 A1 + A8 + A9 1 [10, 0, 18] 1 0 1 0

w1
3
× 0 0× w7

4

68 A10 + A2 + 2A3 1 [24, 12, 28] 1 0 1 0
(

w3
8
− 3w1

8

)
× w6

2

(
2w1
3
− 2w3

9

)
×

(
w7
3
− 2w6

3

)
∗

69 A1 + A10 + 2A2 + A3 1 [12, 0, 66] 1 0 1 0
w5
3
× w7

4

(
w2
3
− 2w5

3

)
× 0

70 A10 + 2A4 1 [10, 5, 30] 1 0 1 0
(

2w4
5
− w1

5

)
× w3

5

(
3w4
5
− 4w1

5

)
× 0

71 A10 + 2A2 + A4 1
[6, 3, 84] 1 0 1 0

w3
5
×

(
w3
3
− 5w6

6

)
0× w6

2

[24, 9, 24] 1 0 1 0
w5
3
×

(
w1
2
− 3w6

4

) (
w2
3
− 2w5

3

)
× w6

2

72 2A1 + A10 + A2 + A4 1 [2, 0, 330] 1 0 1 0
w2
6
× w3

5
0× 0

73 A1 + A10 + A3 + A4 1
[12, 4, 38] 1 0 1 0

w2
6
× w3

5

(
w7 −

2w2
3

)
× 0

[20, 0, 22] 1 0 1 0
w1
3
× w6

2
0×

(
w2
4
− 3w6

4

)
74 A1 + A10 + A2 + A5 1

[6, 0, 66] 1 0 1 0
w5
3
× w7

4

(
w1
2
− w5

2

)
× 0

[18, 6, 24] 1 0 1 0
w2
6
× w3

5
0×

(
w1 −

3w3
5

)
75 A10 + A3 + A5 1

[4, 0, 66] 1 0 1 0
w5
3
×

(
w1
2
− 3w6

4

) (
w1
2
− w5

2

)
× w6

2

[12, 0, 22] 1 0 1 0
w1
3
× w6

2
0×

(
w7
3
− 2w6

3

)
76 2A1 + A10 + A6 1 [12, 2, 26] 1 0 1 0

w5
3
× w7

4

(
w3
2
− 5w5

6

)
× 0

77 A10 + A2 + A6 1
[4, 1, 58] 1 0 1 0

w3
5
×

(
w3
3
− 5w6

6

) (
w1 −

3w3
5

)
× w6

2

[16, 5, 16] 1 0 1 0
w1
3
× w6

2
0×

(
w3
3
− 5w6

6

)
78 A1 + A10 + A7 1

[2, 0, 88] 1 0 1 0
w2
6
× w3

5

(
w7 −

2w2
3

)
×

(
w1 −

3w3
5

)
[10, 2, 18] 1 0 1 0

w2
6
× w3

5

(
w7 −

2w2
3

)
×

(
w8 −

2w3
5

)
79 A10 + A8 1 [10, 1, 10] 1 0 1 0

w1
3
× w6

2
0×

(
w1
2
− 3w6

4

)
80 A1 + A11 + 3A2 Z3 [6, 0, 12] 1 0 1 0

w2
6
×

(
w3
3
− 5w6

6

)
0× w6

2

81 3A1 + A11 + 2A2 Z2 × Z3 [2, 0, 12] 1 0 1 0
w2
6
× w2

6
0× 0

82 A1 + A11 + 2A3 Z4 [4, 0, 6] 1 0 1 0
w4
4
×

(
w1
2
− 3w6

4

) (
w7
2
− w4

2

)
× w6

2

83 A11 + 2A2 + A3

Z3 [4, 0, 12] 1 0 1 0
w1
3
× w5

3
0×

(
w2
3
− 2w5

3

)
Z2 × Z3 [4, 2, 4] 1 0 1 0

(
w3
3
− 5w6

6

)
×

(
w3
3
− 5w6

6

)
w6
2
× w6

2

84 2A1 + A11 + A2 + A3

Z4 [6, 0, 6] 1 0 1 0
w4
4
× w7

4

(
w4
2
− w7

2

)
× 0

Z2 [12, 0, 12] 1 0 1 0
w2
6
× w2

6
0×

(
w7 −

2w2
3

)
85 3A1 + A11 + A4 Z2 [6, 0, 20] 1 0 1 0

w4
4
× w7

4

(
w2
2
− 3w4

4

)
× 0

86 A1 + A11 + A2 + A4 1 [12, 0, 30] 1 0 1 0
(

2w4
5
− w1

5

)
× w2

6

(
3w4
5
− 4w1

5

)
× 0

87 2A1 + A11 + A5

Z2 × Z3 [2, 0, 4] 1 0 1 0
w2
6
× w2

6

(
w7 −

2w2
3

)
×

(
w7 −

2w2
3

)
Z2 [6, 0, 12] 1 0 1 0

w2
6
× w2

6

(
w7 −

2w2
3

)
×

(
w8 −

w2
3

)
88 A11 + A2 + A5 Z3 [4, 0, 6] 1 0 1 0

w1
3
× w5

3
0×

(
w1
2
− w5

2

)
89 A1 + A11 + A6 1 [4, 0, 42] 1 0 1 0

w1
3
× w5

3
0×

(
w3
2
− 5w5

6

)
90 2A1 + A12 + 2A2 1 [12, 6, 42] 1 0 1 0

w2
6
×

(
2w3
3
− 5w7

6

)
0×

(
w3
3
− w7

6

)
91 A1 + A12 + A2 + A3 1 [6, 0, 52] 1 0 1 0

w1
3
× w4

4
0×

(
w4
2
− w7

2

)
92 2A1 + A12 + A4 1

[2, 0, 130] 1 0 1 0
w3
5
× w7

4
0× 0

[18, 8, 18] 1 0 1 0
w1
3
× w4

4
0×

(
w2
2
− 3w4

4

)
93 A12 + A2 + A4 1 [6, 3, 34] 1 0 1 0

w3
5
×

(
w1
2
− 3w6

4

)
0× w6

2

94 A1 + A12 + A5 1 [10, 2, 16] 1 0 1 0
w3
5
× w7

4

(
w1 −

3w3
5

)
× 0

95 A12 + A6 1 [2, 1, 46] 1 0 1 0
w3
5
×

(
w1
2
− 3w6

4

) (
w1 −

3w3
5

)
× w6

2

96 A1 + A13 + 2A2

1 [6, 0, 42] 1 0 1 0
(

w3
3
− 5w6

6

)
× w7

4
w6
2
× 0

Z2 [6, 3, 12] 1 0 1 0
w2
6
×

(
w1
2
− 3w6

4

)
0× w6

2

97 3A1 + A13 + A2 Z2 [2, 0, 42] 1 0 1 0
w2
6
× w7

4
0× 0

98 2A1 + A13 + A3 Z2 [6, 2, 10] 1 0 1 0
w2
6
× w7

4

(
w7 −

2w2
3

)
× 0

99 A13 + A2 + A3 1 [4, 0, 42] 1 0 1 0
(

w1
2
− 3w6

4

)
×

(
w3
3
− 5w6

6

)
w6
2
× w6

2

100 A1 + A13 + A4

1
[2, 0, 70] 1 0 1 0

w1
3
× w3

5
0× 0

[8, 2, 18] 1 0 1 0
(

2w4
5
− w1

5

)
× w7

4

(
3w4
5
− 4w1

5

)
× 0

Z2 [2, 1, 18] 1 0 1 0
w2
6
×

(
w1
2
− 3w6

4

) (
w7 −

2w2
3

)
× w6

2

101 A13 + A5 1 [4, 2, 22] 1 0 1 0
w1
3
× w3

5
0×

(
w1 −

3w3
5

)
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102 A14 + 2A2 Z3 [4, 1, 4] 1 0 1 0
w1
3
×

(
w3
3
− 5w6

6

)
0× w6

2

103 2A1 + A14 + A2

Z3 [2, 0, 10] 1 0 1 0
w1
3
× w2

6
0× 0

1 [12, 6, 18] 1 0 1 0
(

2w3
3
− 5w7

6

)
× w7

4

(
w3
3
− w7

6

)
× 0

104 A1 + A14 + A3 1 [10, 0, 12] 1 0 1 0
w1
3
× w2

6
0×

(
w7 −

2w2
3

)
105 A14 + A4 1 [10, 5, 10] 1 0 1 0

w1
3
×

(
2w4
5
− w1

5

)
0×

(
3w4
5
− 4w1

5

)
106 3A1 + A15 Z4 [2, 0, 4] 1 0 1 0

w7
4
× w7

4
0× 0

107 A1 + A15 + A2

Z2 [4, 0, 6] 1 0 1 0
(

w1
2
− 3w6

4

)
× w7

4
w6
2
× 0

1 [10, 2, 10] 1 0 1 0
w1
3
×

(
2w3
3
− 5w7

6

)
0×

(
w3
3
− w7

6

)
108 A15 + A3 Z2 × Z2 [2, 0, 2] 1 0 1 0

(
w1
2
− 3w6

4

)
×

(
w1
2
− 3w6

4

)
w6
2
× w6

2

109 2A1 + A16 1
[4, 2, 18] 1 0 1 −1

w7
4
× 0 0× w7

4

[2, 0, 34] 1 0 1 0
w1
3
× w7

4
0× 0

110 A16 + A2 1 [6, 3, 10] 1 0 1 0
w1
3
×

(
w1
2
− 3w6

4

)
0× w6

2

111 A1 + A17

1 [4, 2, 10] 1 0 1 −1
w1
3
× 0 0× w7

4

Z3 [2, 0, 2] 1 0 1 0
w1
3
× w1

3
0× 0

112 A18 1 [2, 1, 10] 1 0 1 −1
w1
3
× 0 0× w1

3

113 2A4 + 2D5 1 [20, 0, 20] 1 0 1 0
w4
4
× 0 0× w4

4

114 A3 + 2A5 + D5 Z2 [12, 0, 12] 1 0 1 0
w4
4
× w6

2
0×

(
w7
3
− 2w6

3

)
115 2A4 + A5 + D5 1 [20, 0, 30] 1 0 1 0

w3
5
× 0 0× w4

4

116 A1 + A3 + A4 + A5 + D5 Z2 [12, 0, 20] 1 0 1 0
w4
4
× w6

2
0×

(
w2
4
− 3w6

4

)
117 A1 + 2A6 + D5 1 [14, 0, 28] 1 0 1 0

w4
4
× w5

3
0×

(
w3
2
− 5w5

6

)
118 2A2 + A3 + A6 + D5 1 [12, 0, 84] 1 0 1 0

w4
4
× w5

3
0×

(
w2
3
− 2w5

3

)
119 A1 + A2 + A4 + A6 + D5 1 [20, 0, 42] 1 0 1 0

w2
6
× 0 0× w4

4

120 A2 + A5 + A6 + D5 1
[6, 0, 84] 1 0 1 0

w4
4
× w5

3
0×

(
w1
2
− w5

2

)
[12, 0, 42] 1 0 1 0

w4
4
× w6

2
0×

(
w3
3
− 5w6

6

)
121 A1 + A7 + 2D5 Z4 [2, 0, 8] 1 0 1 0

w4
4
× w4

4
0× 0

122 A1 + A2 + A3 + A7 + D5 Z4 [6, 0, 8] 1 0 1 0
w4
4
× w4

4
0×

(
w4
2
− w7

2

)
123 2A1 + A4 + A7 + D5 Z2 [8, 0, 20] 1 0 1 0

w4
4
× w4

4

(
w2
2
− 3w4

4

)
× 0

124 A8 + 2D5 1 [8, 4, 20] 1 0 1 0
w3
5
× w4

4

(
w2 −

6w3
5

)
× 0

125 A1 + A4 + A8 + D5 1
[2, 0, 180] 1 0 1 0

w3
5
× w4

4
0× 0

[18, 0, 20] 1 0 1 0 0× w7
4

w4
4
× 0

126 A5 + A8 + D5 1 [12, 0, 18] 1 0 1 0
w3
5
× w4

4

(
w1 −

3w3
5

)
× 0

127 2A2 + A9 + D5 1 [6, 0, 60] 1 0 1 0
w4
4
×

(
w3
3
− 5w6

6

)
0× w6

2

128 2A1 + A2 + A9 + D5 Z2 [2, 0, 60] 1 0 1 0
w2
6
× w4

4
0× 0

129 A1 + A3 + A9 + D5 Z2 [8, 4, 12] 1 0 1 0
w2
6
× w4

4

(
w7 −

2w2
3

)
× 0

130 A4 + A9 + D5 1 [10, 0, 20] 1 0 1 0
w1
3
× 0 0× w4

4

131 A1 + A10 + A2 + D5 1 [14, 4, 20] 1 0 1 0
w2
6
× w3

5
0×

(
w2 −

6w3
5

)
132 2A1 + A11 + D5 Z4 [2, 0, 6] 1 0 1 0

w4
4
× w7

4
0× 0

133 A11 + A2 + D5 Z2 [6, 0, 6] 1 0 1 0
w4
4
×

(
w1
2
− 3w6

4

)
0× w6

2

134 A1 + A12 + D5 1
[2, 0, 52] 1 0 1 0

w1
3
× w4

4
0× 0

[6, 2, 18] 1 0 1 0
w3
5
× w7

4

(
w2 −

6w3
5

)
× 0

135 A13 + D5 1 [6, 2, 10] 1 0 1 0
w1
3
× w3

5
0×

(
w2 −

6w3
5

)
136 3D6 Z2 × Z2 [2, 0, 2] 1 0 1 0

w6
2
× w6

2

(
w8
2
− w6

2

)
×

(
w8
2
− w6

)
∗

137 2A3 + 2D6 Z2 × Z2 [4, 0, 4] 1 0 1 0
w6
2
× w6

2

(
w6
2
− w8

2

)
×

(
w6
2
− w8

2

)
138 2A2 + 2A4 + D6 1 [30, 0, 30] 1 0 1 0

w5
3
× w6

2

(
w2
3
− 2w5

3

)
×

(
w6
2
− w8

2

)
139 2A1 + 2A5 + D6 Z2 × Z2 [6, 0, 6] 1 0 1 0

w4
4
× w6

2

(
w2
2
− 3w4

4

)
×

(
w6
2
− w8

2

)
140 A1 + 2A3 + A5 + D6 Z2 × Z2 [4, 0, 12] 1 0 1 0

w4
4
× w6

2

(
w4
2
− w7

2

)
×

(
w6
2
− w8

2

)
141 A3 + A4 + A5 + D6 Z2 [4, 0, 30] 1 0 1 0

w5
3
× w6

2

(
w1
2
− w5

2

)
×

(
w6
2
− w8

2

)
142 2A6 + D6 1 [14, 0, 14] 1 0 1 0

w3
5
× w6

2

(
w1 −

3w3
5

)
×

(
w6
2
− w8

2

)
143 A2 + A4 + A6 + D6 1 [6, 0, 70] 1 0 1 0

w3
5
× w6

2
0×

(
w6
2
− w8

2

)
144 A1 + 2A2 + A7 + D6 Z2 [6, 0, 24] 1 0 1 0

w2
6
× w6

2
0×

(
w6
2
− w8

2

)
145 A2 + A3 + A7 + D6 Z2 [4, 0, 24] 1 0 1 0

w6
2
×

(
w3
3
− 5w6

6

) (
w8
2
− w6

2

)
× w6

2

146 A1 + A4 + A7 + D6 Z2 [6, 2, 14] 1 0 1 0
w2
6
× w6

2

(
w7 −

2w2
3

)
×

(
w6
2
− w8

2

)
147 A4 + A8 + D6 1 [4, 2, 46] 1 0 1 0

w3
5
× w4

4
0×

(
w8 −

w4
2

)
148 A1 + A2 + A9 + D6 Z2

[4, 2, 16] 1 0 1 0
w2
6
× w4

4
0×

(
w8 −

w4
2

)
[6, 0, 10] 1 0 1 0

w6
2
× w7

4

(
w8
2
− w6

2

)
× 0

149 A3 + A9 + D6 Z2 [4, 0, 10] 1 0 1 0
w6
2
×

(
w1
2
− 3w6

4

) (
w8
2
− w6

2

)
× w6

2
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150 A10 + A2 + D6 1 [6, 0, 22] 1 0 1 0
w1
3
× w6

2
0×

(
w6
2
− w8

2

)
151 A1 + A11 + D6 Z2 [4, 0, 6] 1 0 1 0

w4
4
× w7

4

(
w8 −

w4
2

)
× 0

152 A12 + D6 1 [4, 2, 14] 1 0 1 0
w1
3
× w4

4
0×

(
w8 −

w4
2

)
153 A2 + A5 + D5 + D6 Z2 [6, 0, 12] 1 0 1 0

w4
4
× w6

2
0×

(
w6
2
− w8

2

)
154 A7 + D5 + D6 Z2 [4, 0, 8] 1 0 1 0

w4
4
× w4

4
0×

(
w8 −

w4
2

)
155 2A2 + 2D7 1 [12, 0, 12]

1 0 1 1
2

w5
3
×

(
w4
2
− w8

) (
w2
3
− 2w5

3

)
×

(
w4
2
− w8

2

)
†

1 0 1 0
(

w1
4

+
w2
4
− w7

2

)
× w8

2

(
w1
8

+
5w7
4
− 7w2

8

)
× 3w8

8
∗

156 A2 + 3A3 + D7 Z4 [8, 4, 8] 1 0 1 0
(

w6
3
− w1

3

)
× w5

3

(
w1
3
− w6

3

)
×

(
w2
3
− 2w5

3

)
∗

157 A1 + A2 + 2A4 + D7 1 [10, 0, 60] 1 0 1 0
(

w1
4

+
w4
4
− w7

2

)
× w8

2

(
3w1
4

+
w4
12
− w7

2

)
× w8

4
∗

158 A2 + A3 + A6 + D7 1 [8, 4, 44] 1 0 1 0
(

w1
2
− w7

2

)
× 3w8

8

(
2w1
3
− w7

3

)
× w8

3
∗

159 A1 + A4 + A6 + D7 1 [4, 0, 70] 1 0 1 0
w3
5
× w6

2
0×

(
w4
2
− w6

)
160 A5 + A6 + D7 1 [2, 0, 84] 1 0 1 0

(
w5
2
− w1

2

)
×

(
w8 −

w4
2

)
w5
3
× w4

4

161 2A1 + A2 + A7 + D7 Z2 [4, 0, 24] 1 0 1 0
w2
6
× w6

2
0×

(
w4
2
− w6

)
162 A1 + A3 + A7 + D7 Z4 [2, 0, 8] 1 0 1 0

w4
4
× w4

4

(
w7
2
− w4

2

)
×

(
w8 −

w4
2

)
163 2A1 + A9 + D7 Z2 [4, 0, 10] 1 0 1 0

w6
2
× w7

4

(
w4
2
− w6

)
× 0

164 A2 + A9 + D7 1 [2, 0, 60] 1 0 1 0
w4
4
×

(
w3
3
− 5w6

6

) (
w8 −

w4
2

)
× w6

2

165 A1 + A10 + D7 1 [4, 0, 22] 1 0 1 0
w1
3
× w6

2
0×

(
w4
2
− w6

)
166 A11 + D7 Z4 [2, 1, 2] 1 0 1 0

w4
4
×

(
w1
2
− 3w6

4

) (
w8 −

w4
2

)
× w6

2

167 A1 + A5 + D5 + D7 Z2 [4, 0, 12] 1 0 1 0
w4
4
× w6

2
0×

(
w4
2
− w6

)
168 A5 + D6 + D7 Z2 [2, 0, 12] 1 0 1 0

(
w8 −

w4
2

)
× w6

2
w4
4
×

(
w6
2
− w8

2

)
169 2A1 + 2D8 Z2 × Z2 [2, 0, 2] 1 0 1 0

w6
2
×

(
w4
2
− w6

) (
w4
2
− w6

)
× w6

2

170 2A2 + 2A3 + D8 Z2 [12, 0, 12] 1 0 1 0
w6
2
× w2

6

(
w8
2
− w6

2

)
×

(
3w3
4
− w2

2

)
∗

171 2A5 + D8 Z2 [6, 0, 6] 1 0 1 0
w5
3
×

(
w8 −

w4
2

) (
w5
2
− w1

2

)
× w4

4

172 2A1 + A3 + A5 + D8 Z2 × Z2 [2, 0, 12] 1 0 1 0
w6
2
×

(
w4
2
− w6

) (
w2
4
− 3w6

4

)
× w6

2

173 A1 + A4 + A5 + D8 Z2 [2, 0, 30] 1 0 1 0
w6
2
×

(
w4
2
− w6

) (
w7
3
− 2w6

3

)
× w6

2

174 2A2 + A6 + D8 1 [12, 6, 24] 1 0 1 0
(
w8 −

w4
2

)
× w5

3
w4
4
×

(
w2
3
− 2w5

3

)
175 A1 + A2 + A7 + D8 Z2 [2, 0, 24] 1 0 1 0

w6
2
×

(
w4
2
− w6

) (
w3
3
− 5w6

6

)
× w6

2

176 A1 + A9 + D8 Z2 [2, 0, 10] 1 0 1 0
w6
2
×

(
w4
2
− w6

) (
w1
2
− 3w6

4

)
× w6

2

177 2D5 + D8 Z2 [4, 0, 4] 1 0 1 0
w4
4
× w4

4
0×

(
w5 −

w4
2

)
∗

178 A1 + A3 + D6 + D8 Z2 × Z2 [2, 0, 4] 1 0 1 0
w6
2
×

(
w4
2
− w6

) (
w8
2
− w6

2

)
× w6

2

179 2D9 1 [4, 0, 4] 1 0 1 0
w8
2
× 0 0× w8

2

180 A1 + 2A2 + A4 + D9 1 [12, 0, 30] 1 0 1 0
w5
3
×

(
w4
2
− w6

) (
w2
3
− 2w5

3

)
× w6

2

181 A1 + A3 + A5 + D9 Z2 [4, 0, 12] 1 0 1 0
w4
4
×

(
w8 −

w4
2

) (
w7
2
− w4

2

)
× w4

4

182 A4 + A5 + D9 1 [4, 0, 30] 1 0 1 0 0× w8
2

w3
5
× 0

183 A1 + A2 + A6 + D9 1 [4, 0, 42] 1 0 1 0 0× w8
2

w2
6
× 0

184 2A1 + A7 + D9 Z2 [4, 0, 8] 1 0 1 0
w4
4
×

(
w8 −

w4
2

) (
w2
2
− 3w4

4

)
× w4

4

185 A1 + A8 + D9 1 [4, 0, 18] 1 0 1 0 0× w8
2

w7
4
× 0

186 A9 + D9 1 [4, 0, 10] 1 0 1 0 0× w8
2

w1
3
× 0

187 A4 + D5 + D9 1 [4, 0, 20] 1 0 1 0 0× w8
2

w4
4
× 0

188 2A1 + 2A3 + D10 Z2 × Z2 [4, 0, 4] 1 0 1 0
w4
4
×

(
w4
2
− w6

) (
w7
2
− w4

2

)
× w6

2

189 2A4 + D10 1 [10, 0, 10] 1 0 1 0
w3
5
×

(
w8 −

w4
2

)
0× w4

4

190 A1 + A3 + A4 + D10 Z2 [2, 0, 20] 1 0 1 0
w6
2
× w8

2

(
w2
4
− 3w6

4

)
× 0

191 3A1 + A5 + D10 Z2 × Z2 [4, 2, 4] 1 0 1 0
w4
4
×

(
w4
2
− w6

) (
w2
2
− 3w4

4

)
× w6

2

192 A3 + A5 + D10 Z2 [2, 0, 12] 1 0 1 0
w6
2
× w8

2

(
w7
3
− 2w6

3

)
× 0

193 A2 + A6 + D10 1 [2, 0, 42] 1 0 1 0
w6
2
× w8

2

(
w3
3
− 5w6

6

)
× 0

194 A8 + D10 1 [2, 0, 18] 1 0 1 0
w6
2
× w8

2

(
w1
2
− 3w6

4

)
× 0

195 A1 + A2 + D10 + D5 Z2 [4, 0, 6] 1 0 1 0
w4
4
×

(
w4
2
− w6

)
0× w6

2

196 A2 + D10 + D6 Z2 [2, 0, 6] 1 0 1 0
w6
2
× w8

2

(
w6
2
− w8

2

)
× 0

197 A1 + D10 + D7 Z2 [2, 0, 4] 1 0 1 0
w6
2
× w8

2

(
w4
2
− w6

)
× 0

198 2A2 + A3 + D11 1 [12, 0, 12] 1 0 1 0
w5
3
× w8

2

(
w2
3
− 2w5

3

)
× 0

199 A1 + A2 + A4 + D11 1 [6, 0, 20] 1 0 1 0
w2
6
×

(
w8 −

w4
2

)
0× w4

4

200 A2 + A5 + D11 1 [6, 0, 12] 1 0 1 0
w5
3
× w8

2

(
w1
2
− w5

2

)
× 0

201 A1 + A6 + D11 1 [6, 2, 10] 1 0 1 0
w5
3
× w8

2

(
w3
2
− 5w5

6

)
× 0

202 2A1 + 2A2 + D12 Z2 [6, 0, 6] 1 0 1 0
w2
6
×

(
w4
2
− w6

)
0× w6

2

203 A1 + A2 + A3 + D12 Z2 [4, 0, 6] 1 0 1 0
w4
4
× w8

2

(
w4
2
− w7

2

)
× 0
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204 2A1 + A4 + D12 Z2 [4, 2, 6] 1 0 1 0
w4
4
× w8

2

(
w2
2
− 3w4

4

)
× 0

205 A1 + D12 + D5 Z2 [2, 0, 4] 1 0 1 0
w4
4
× w8

2
0× 0

206 D12 + D6 Z2 [2, 0, 2] 1 0 1 0
w4
4
× w8

2

(
w8 −

w4
2

)
× 0

207 A1 + A4 + D13 1 [2, 0, 20] 1 0 1 0
w3
5
× w8

2
0× 0

208 A5 + D13 1 [2, 0, 12] 1 0 1 0
w3
5
× w8

2

(
w1 −

3w3
5

)
× 0

209 D13 + D5 1 [4, 0, 4] 1 0 1 0
w3
5
× w8

2

(
w2 −

6w3
5

)
× 0

210 2A2 + D14 1 [6, 0, 6] 1 0 1 0
(

w3
3
− 5w6

6

)
× w8

2
w6
2
× 0

211 2A1 + A2 + D14 Z2 [2, 0, 6] 1 0 1 0
w2
6
× w8

2
0× 0

212 A1 + A3 + D14 Z2 [2, 0, 4] 1 0 1 0
w2
6
× w8

2

(
w7 −

2w2
3

)
× 0

213 A4 + D14 1 [4, 2, 6] 1 0 1 0
w1
3
×

(
w8 −

w4
2

)
0× w4

4

214 A1 + A2 + D15 1 [4, 0, 6] 1 0 1 0
w1
3
×

(
w4
2
− w6

)
0× w6

2

215 2A1 + D16 Z2 [2, 0, 2] 1 0 1 0
w7
4
× w8

2
0× 0

216 A2 + D16 Z2 [2, 1, 2] 1 0 1 0
(

w1
2
− 3w6

4

)
× w8

2
w6
2
× 0

217 A1 + D17 1 [2, 0, 4] 1 0 1 0
w1
3
× w8

2
0× 0

218 D18 1 [2, 0, 2] 1 0 1 −1
w1
3
× 0 0× w8

2

219 3E6 Z3 [2, 1, 2] 1 0 1 −1
w5
3
× w5

3
0× 0

220 2A3 + 2E6 1 [12, 0, 12] 1 0 1 0
w5
3
× 0 0× w5

3

221 A1 + A3 + 2A4 + E6 1 [20, 0, 30] 1 0 1 0
w5
3
× w6

2
0×

(
w2
4
− 3w6

4

)
222 A1 + A5 + 2E6 Z3 [2, 0, 6] 1 0 1 0

w5
3
× w5

3
0× 0

223 A2 + 2A5 + E6 Z3 [6, 0, 6] 1 0 1 0
w5
3
× w5

3

(
w1
2
− w5

2

)
× 0

224 2A2 + A3 + A5 + E6 Z3 [6, 0, 12] 1 0 1 0
w5
3
× w5

3

(
w2
3
− 2w5

3

)
× 0

225 A3 + A4 + A5 + E6 1 [12, 0, 30] 1 0 1 0
w3
5
× 0 0× w5

3

226 A6 + 2E6 1 [6, 3, 12] 1 0 1 0
w4
4
× w5

3

(
w3 −

5w4
4

)
× 0

227 A1 + A2 + A3 + A6 + E6 1
[6, 0, 84] 1 0 1 0

w4
4
× w5

3

(
w7
2
− w4

2

)
× 0

[12, 0, 42] 1 0 1 0
w2
6
× 0 0× w5

3

228 2A1 + A4 + A6 + E6 1 [20, 10, 26] 1 0 1 0
w4
4
× w5

3

(
w2
2
− 3w4

4

)
× 0

229 A2 + A4 + A6 + E6 1 [18, 3, 18] 1 0 1 0
w5
3
× w6

2
0×

(
w3
3
− 5w6

6

)
230 A1 + A5 + A6 + E6 1 [6, 0, 42] 1 0 1 0

w5
3
× w5

3
0×

(
2w5
3
− w7

2

)
231 A1 + A4 + A7 + E6 1 [2, 0, 120] 1 0 1 0

w3
5
× w5

3
0× 0

232 A5 + A7 + E6 1 [6, 0, 24] 1 0 1 0
w3
5
× w5

3

(
w1 −

3w3
5

)
× 0

233 2A2 + A8 + E6 Z3 [6, 3, 6] 1 0 1 0
w5
3
×

(
w3
3
− 5w6

6

)
0× w6

2

234 2A1 + A2 + A8 + E6 Z3 [2, 0, 18] 1 0 1 0
w2
6
× w5

3
0× 0

235 A1 + A3 + A8 + E6 1 [12, 0, 18] 1 0 1 0 0× w7
4

w5
3
× 0

236 A4 + A8 + E6 1 [12, 3, 12] 1 0 1 0
w5
3
× w6

2
0×

(
w1
2
− 3w6

4

)
237 A1 + A2 + A9 + E6 1 [12, 6, 18] 1 0 1 0

w2
6
× w4

4
0×

(
w3 −

5w4
4

)
238 A3 + A9 + E6 1 [10, 0, 12] 1 0 1 0

w1
3
× 0 0× w5

3

239 2A1 + A10 + E6 1 [2, 0, 66] 1 0 1 0
w5
3
× w7

4
0× 0

240 A10 + A2 + E6 1 [6, 3, 18] 1 0 1 0
w5
3
×

(
w1
2
− 3w6

4

)
0× w6

2

241 A1 + A11 + E6

Z3 [2, 0, 4] 1 0 1 0
w1
3
× w5

3
0× 0

1 [6, 0, 12] 1 0 1 0
w4
4
× w7

4

(
w3 −

5w4
4

)
× 0

242 A12 + E6 1 [4, 1, 10] 1 0 1 0
w1
3
× w4

4
0×

(
w3 −

5w4
4

)
243 A3 + A4 + D5 + E6 1 [12, 0, 20] 1 0 1 0

w4
4
× 0 0× w5

3

244 A1 + A6 + D5 + E6 1 [2, 0, 84] 1 0 1 0
w4
4
× w5

3
0× 0

245 A7 + D5 + E6 1 [8, 0, 12] 1 0 1 0
w4
4
× w4

4

(
w3 −

5w4
4

)
× 0

246 D6 + 2E6 1 [6, 0, 6] 1 0 1 −1
w5
3
× w6

2
0×

(
w6
2
− w8

2

)
247 A2 + A4 + D6 + E6 1 [6, 0, 30] 1 0 1 0

w5
3
× w6

2
0×

(
w6
2
− w8

2

)
248 A6 + D6 + E6 1 [4, 2, 22] 1 0 1 0

w4
4
× w5

3

(
w8 −

w4
2

)
× 0

249 A1 + A4 + D7 + E6 1 [4, 0, 30] 1 0 1 0
w5
3
× w6

2
0×

(
w4
2
− w6

)
250 D5 + D7 + E6 1 [4, 0, 12] 1 0 1 0

w4
4
× w8

2
0× w8

4
∗

251 A4 + D8 + E6 1 [8, 2, 8] 1 0 1 0
(
w8 −

w4
2

)
× w5

3
w4
4
× 0

252 A1 + A2 + D9 + E6 1 [6, 0, 12] 1 0 1 0
w5
3
×

(
w4
2
− w6

)
0× w6

2

253 A3 + D9 + E6 1 [4, 0, 12] 1 0 1 0 0× w8
2

w5
3
× 0

254 A1 + D11 + E6 1 [2, 0, 12] 1 0 1 0
w5
3
× w8

2
0× 0

255 D12 + E6 1 [4, 2, 4] 1 0 1 0
w4
4
× w8

2

(
w3 −

5w4
4

)
× 0

256 2A2 + 2E7 1 [6, 0, 6] 1 0 1 0
w6
2
× 0 0× w6

2

257 A1 + A3 + 2E7 Z2 [2, 0, 4] 1 0 1 0
w6
2
× w6

2
0× 0

258 A4 + 2E7 1 [4, 2, 6] 1 0 1 0
(
w4 −

4w5
3

)
× 0

w5
3
× w6

2
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259 A1 + 2A3 + A4 + E7 Z2 [4, 0, 20] 1 0 1 0
w6
2
× w6

2

(
w2
4
− 3w6

4

)
× 0

260 2A2 + A3 + A4 + E7 1 [12, 0, 30] 1 0 1 0
w5
3
× w6

2

(
w2
3
− 2w5

3

)
× 0

261 2A3 + A5 + E7 Z2 [4, 0, 12] 1 0 1 0
w6
2
× w6

2

(
w7
3
− 2w6

3

)
× 0

262 A1 + A2 + A3 + A5 + E7 Z2 [6, 0, 12] 1 0 1 0
w4
4
× w6

2

(
w7
2
− w4

2

)
× 0

263 2A1 + A4 + A5 + E7 Z2 [8, 2, 8] 1 0 1 0
w4
4
× w6

2

(
w2
2
− 3w4

4

)
× 0

264 A2 + A4 + A5 + E7 1 [6, 0, 30] 1 0 1 0
w3
5
× 0 0× w6

2

265 A1 + 2A2 + A6 + E7 1 [6, 0, 42] 1 0 1 0
w2
6
× 0 0× w6

2

266 A2 + A3 + A6 + E7 1 [4, 0, 42] 1 0 1 0
w6
2
× w6

2

(
w3
3
− 5w6

6

)
× 0

267 A1 + A4 + A6 + E7 1
[2, 0, 70] 1 0 1 0

w3
5
× w6

2
0× 0

[8, 2, 18] 1 0 1 0
w5
3
× w6

2

(
w3
2
− 5w5

6

)
× 0

268 A5 + A6 + E7 1 [4, 2, 22] 1 0 1 0
w3
5
× w6

2

(
w1 −

3w3
5

)
× 0

269 2A2 + A7 + E7 1 [6, 0, 24] 1 0 1 0
(

w3
3
− 5w6

6

)
× w6

2
w6
2
× 0

270 2A1 + A2 + A7 + E7 Z2 [2, 0, 24] 1 0 1 0
w2
6
× w6

2
0× 0

271 A1 + A3 + A7 + E7 Z2 [4, 0, 8] 1 0 1 0
w2
6
× w6

2

(
w7 −

2w2
3

)
× 0

272 A4 + A7 + E7 1 [6, 2, 14] 1 0 1 0
w3
5
× w5

3
0×

(
w4 −

4w5
3

)
273 A1 + A2 + A8 + E7 1 [6, 0, 18] 1 0 1 0 0× w7

4
w6
2
× 0

274 A3 + A8 + E7 1 [4, 0, 18] 1 0 1 0
w6
2
× w6

2

(
w1
2
− 3w6

4

)
× 0

275 2A1 + A9 + E7 Z2 [2, 0, 10] 1 0 1 0
w6
2
× w7

4
0× 0

276 A2 + A9 + E7

Z2 [4, 1, 4] 1 0 1 0
(

w1
2
− 3w6

4

)
× w6

2
w6
2
× 0

1 [6, 0, 10] 1 0 1 0
w1
3
× 0 0× w6

2

277 A1 + A10 + E7 1
[2, 0, 22] 1 0 1 0

w1
3
× w6

2
0× 0

[6, 2, 8] 1 0 1 0
w5
3
× w7

4

(
w4 −

4w5
3

)
× 0

278 A11 + E7 1 [4, 0, 6] 1 0 1 0
w1
3
× w5

3
0×

(
w4 −

4w5
3

)
279 D4 + 2E7 Z2 [2, 0, 2] 1 0 1 −1

w6
2
× w6

2
0× 0

280 A2 + A4 + D5 + E7 1 [6, 0, 20] 1 0 1 0
w4
4
× 0 0× w6

2

281 A1 + A5 + D5 + E7 Z2 [2, 0, 12] 1 0 1 0
w4
4
× w6

2
0× 0

282 A6 + D5 + E7 1 [6, 2, 10] 1 0 1 0
w3
5
× w6

2

(
w2 −

6w3
5

)
× 0

283 A2 + A3 + D6 + E7 Z2 [4, 0, 6] 1 0 1 0
w6
2
× w6

2
0×

(
w6
2
− w8

2

)
284 A5 + D6 + E7 Z2 [4, 2, 4] 1 0 1 0

w4
4
× w6

2

(
w8 −

w4
2

)
× 0

285 D5 + D6 + E7 Z2 [2, 0, 4] 1 0 1 −1
w6
2
× w4

4
0× 0

286 A1 + A3 + D7 + E7 Z2 [4, 0, 4] 1 0 1 0
w6
2
× w6

2

(
w4
2
− w6

)
× 0

287 A4 + D7 + E7 1 [2, 0, 20] 1 0 1 −1
w6
2
× w3

5
0× 0

288 A1 + A2 + D8 + E7 Z2 [2, 0, 6] 1 0 1 −1
w6
2
× w2

6
0× 0

289 A2 + D9 + E7 1 [4, 0, 6] 1 0 1 0 0× w8
2

w6
2
× 0

290 A1 + D10 + E7 Z2 [2, 0, 2] 1 0 1 0
w6
2
× w8

2
0× 0

291 D11 + E7 1 [2, 0, 4] 1 0 1 −1
w6
2
× w1

3
0× 0

292 A2 + A3 + E6 + E7 1 [6, 0, 12] 1 0 1 0
w5
3
× 0 0× w6

2

293 A1 + A4 + E6 + E7 1 [2, 0, 30] 1 0 1 0
w5
3
× w6

2
0× 0

294 A5 + E6 + E7 1 [6, 0, 6] 1 0 1 0
w5
3
× w5

3

(
w4 −

4w5
3

)
× 0

295 D5 + E6 + E7 1 [2, 0, 12] 1 0 1 −1
w6
2
× w5

3
0× 0

296 2A1 + 2E8 1 [2, 0, 2] 1 0 1 0 0× 0 0× 0

297 A2 + 2E8 1 [2, 1, 2] 1 0 1 −1 0× 0 0× 0

298 2A2 + 2A3 + E8 1 [12, 0, 12] 1 0 1 0
w5
3
× 0

(
w2
3
− 2w5

3

)
× 0

299 2A1 + 2A4 + E8 1 [10, 0, 10] 1 0 1 0
w4
4
× 0

(
w2
2
− 3w4

4

)
× 0

300 A1 + A2 + A3 + A4 + E8 1 [6, 0, 20] 1 0 1 0
w4
4
× 0

(
w4
2
− w7

2

)
× 0

301 2A5 + E8 1 [6, 0, 6] 1 0 1 0
w3
5
× 0

(
w1 −

3w3
5

)
× 0

302 A2 + A3 + A5 + E8 1 [6, 0, 12] 1 0 1 0
w5
3
× 0

(
w1
2
− w5

2

)
× 0

303 A1 + A4 + A5 + E8 1 [2, 0, 30] 1 0 1 0
w3
5
× 0 0× 0

304 2A2 + A6 + E8 1 [6, 3, 12] 1 0 1 0
(

w3
3
− 5w6

6

)
× 0

w6
2
× 0

305 2A1 + A2 + A6 + E8 1 [2, 0, 42] 1 0 1 0
w2
6
× 0 0× 0

306 A1 + A3 + A6 + E8 1 [6, 2, 10] 1 0 1 0
w2
6
× 0

(
w7 −

2w2
3

)
× 0

307 A4 + A6 + E8 1 [2, 1, 18] 1 0 1 −1 0× w3
5

0× 0

308 A1 + A2 + A7 + E8 1 [2, 0, 24] 1 0 1 −1 0× w2
6

0× 0

309 2A1 + A8 + E8 1 [2, 0, 18] 1 0 1 0
w7
4
× 0 0× 0

310 A2 + A8 + E8 1 [6, 3, 6] 1 0 1 0
(

w1
2
− 3w6

4

)
× 0

w6
2
× 0

311 A1 + A9 + E8 1 [2, 0, 10] 1 0 1 0
w1
3
× 0 0× 0

312 A10 + E8 1 [2, 1, 6] 1 0 1 −1 0× w1
3

0× 0
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313 2D5 + E8 1 [4, 0, 4] 1 0 1 0
w4
4
× w4

4
0×−w4

4
∗

314 A1 + A4 + D5 + E8 1 [2, 0, 20] 1 0 1 0
w4
4
× 0 0× 0

315 A5 + D5 + E8 1 [2, 0, 12] 1 0 1 −1 0× w4
4

0× 0

316 2A2 + D6 + E8 1 [6, 0, 6] 1 0 1 0
w6
2
× 0

(
w6
2
− w8

2

)
× 0

317 A4 + D6 + E8 1 [4, 2, 6] 1 0 1 0
(
w8 −

w4
2

)
× 0

w4
4
× 0

318 A1 + A2 + D7 + E8 1 [4, 0, 6] 1 0 1 0
(

w4
2
− w6

)
× 0

w6
2
× 0

319 A1 + D9 + E8 1 [2, 0, 4] 1 0 1 0
w8
2
× 0 0× 0

320 D10 + E8 1 [2, 0, 2] 1 0 1 −1 0× w8
2

0× 0

321 A1 + A3 + E6 + E8 1 [2, 0, 12] 1 0 1 0
w5
3
× 0 0× 0

322 A4 + E6 + E8 1 [2, 1, 8] 1 0 1 −1 0× w5
3

0× 0

323 D4 + E6 + E8 1 [4, 2, 4] 1 0 1 0
(

w4
2
− w8

2

)
× 0

(
w4
2
− w8

)
× 0

324 A1 + A2 + E7 + E8 1 [2, 0, 6] 1 0 1 0
w6
2
× 0 0× 0

325 A3 + E7 + E8 1 [2, 0, 4] 1 0 1 −1
w6
2
× 0 0× 0

Table 12: Data for all allowed groups of maximal rank, for the E8×E′8 heterotic on T 2. The
† or ∗ next to A2 indicates that the moduli were derived with the Fixed Wilson line or the
Neighborhood algorithm. Other moduli were obtained with the method of extended diagrams.

# L E11 E21 E22 E12 A1 A2

1 6A3 1 0 3
2

1
4

1
4 (w6 + w10) 1

4 (w2 − w6 − w10 + w14)

2 2A1 + 4A4 1 0 1 − 1
4

1
4 (w3 + w13) w1 + w15 + 1

5 (w8 − 3w3 − 3w13)

13 3A6 1 0 1 0 1
2w6

1
3 (2w6 − w9 − w15)

21 2A1 + 2A5 + A6 1 0 1 0 1
14 (3w4 + 4w11) 1

28 (14w2 − 15w4 − 6w11 + 14w15)

65 A3 + A6 + A9 1 0 1 0 1
2w6

1
30 (3w6 − 16w15)

177 2D5 + D8 1 0 1 0 1
2 (w4 + w12) 1

4 (w4 − w12)− w9 − w11

196 A2 + D10 + D6 1 − 1
2 1 0 1

2w6 0

219 3E6 1 0 1 − 3
4

1
4 (w11 + w5) 0

297 A2 + 2E8 1 0 1 − 1
4

1
4 (w7 + w9) 0

319 A1 + D9 + E8
5
4 0 1 0 1

2w9 0

Table 13: Data for some groups of maximal rank, for the Spin(32)/Z2 heterotic on T 2.
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Yau Threefolds, R. Laza, M. Schütt and N. Yui (Eds.), Fields Institute Communications 67,

Springer, 2013.

[30] A. P. Braun, Y. Kimura and T. Watari, “On the Classification of Elliptic Fibrations modulo

Isomorphism on K3 Surfaces with large Picard Number,” arXiv:1312.4421 [math.AG].

[31] D. Morrison, “On K3 surfaces with large Picard number,” Invent. Math., 75(1) (1984) 105-121.

[32] G. W. Moore, “Arithmetic and attractors,” [arXiv:hep-th/9807087 [hep-th]].

[33] M. R. Gaberdiel, S. Hohenegger and R. Volpato, “Symmetries of K3 sigma models,” Commun.

Num. Theor. Phys. 6 (2012), 1-50 [arXiv:1106.4315 [hep-th]].

[34] M. C. N. Cheng, S. M. Harrison, R. Volpato and M. Zimet, “K3 String Theory, Lattices and

Moonshine,” [arXiv:1612.04404 [hep-th]].

[35] J. Conway and N. Sloane, “Sphere Packings, Lattices and Groups”, Springer (1988).

[36] SageMath, the Sage Mathematics Software System (Version 8.8), The Sage Developers, 2019

https://www.sagemath.org.

[37] P. Goddard and D. I. Olive, “Algebras, Lattices and Strings,” in Vertex Operators in Mathem-

atics and Physics, edited by J. Lepowsky et al. (Springer, Berlin, 1985).

93



[38] G. Aldazabal, E. Andrés, M. Mayo and J. A. Rosabal, “Gauge symmetry enhancing-breaking

from a Double Field Theory perspective,” JHEP 07 (2017), 045 [arXiv:1704.04427 [hep-th]].

G. Aldazabal, E. Andrés, M. Mayo and V. Penas, “Double Field Theory description of Het-

erotic gauge symmetry enhancing-breaking,” JHEP 10 (2017), 046 [arXiv:1708.07148 [hep-th]];

“Symmetry enhancement interpolation, non-commutativity and Double Field Theory,” JHEP

03 (2019), 012 [arXiv:1805.10306 [hep-th]].

[39] S. M. Harrison, S. Kachru, N. M. Paquette, R. Volpato and M. Zimet, “Heterotic sigma models

on T 8 and the Borcherds automorphic form Φ12,” JHEP 10 (2017), 121. [arXiv:1610.00707

[hep-th]].

[40] F. A. Cachazo and C. Vafa, “Type I’ and real algebraic geometry,” hep-th/0001029.

[41] E. B. Vinberg, “On groups of unit elements of certain quadratic forms”, Math. USSR Sb. 16

(1972) 17.

[42] L. J. Dixon, “Symmetry Breaking In String Theories Via Orbifolds,” UMI-86-27933.

[43] T. J. Hollowood and R. G. Myhill, “The 112 Breakings of E8,” Int. J. Mod. Phys. A 3 (1988)

899.

[44] R. V. Moody and J. Patera, “Characters Of Elements Of Finite Order In Lie Groups,” SIAM

J.Alg. Disc.Meth. 5 (1984) 359.

[45] A. Kleinschmidt, “Lattice vertex algebras on general even, selfdual lattices,” JHEP 0307, 069

(2003) [math/0210451 [math-qa]].

[46] L. A. Forte and A. Sciarrino, “Standard and non-standard extensions of Lie algebras,” J. Math.

Phys. 47, 013513 (2006) [hep-th/0506048].

[47] E. Kiritsis and N. Obers, “Heterotic type I duality in D ¡ 10-dimensions, threshold corrections

and D instantons,” JHEP 10 (1997), 004 [arXiv:hep-th/9709058 [hep-th]].
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gruppe zweiten Grades,” Math. Ann. 138 (1959) 103-124.
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