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Domain‑specific cues improve 
robustness of deep learning‑based 
segmentation of CT volumes
Marie Kloenne1,2,6, Sebastian Niehaus1,3,6, Leonie Lampe1, Alberto Merola1, Janis Reinelt1, 
Ingo Roeder3,4 & Nico Scherf3,5*

Machine learning has considerably improved medical image analysis in the past years. Although data-
driven approaches are intrinsically adaptive and thus, generic, they often do not perform the same 
way on data from different imaging modalities. In particular computed tomography (CT) data poses 
many challenges to medical image segmentation based on convolutional neural networks (CNNs), 
mostly due to the broad dynamic range of intensities and the varying number of recorded slices of 
CT volumes. In this paper, we address these issues with a framework that adds domain-specific data 
preprocessing and augmentation to state-of-the-art CNN architectures. Our major focus is to stabilise 
the prediction performance over samples as a mandatory requirement for use in automated and semi-
automated workflows in the clinical environment. To validate the architecture-independent effects of 
our approach we compare a neural architecture based on dilated convolutions for parallel multi-scale 
processing (a modified Mixed-Scale Dense Network: MS-D Net) to traditional scaling operations (a 
modified U-Net). Finally, we show that an ensemble model combines the strengths across different 
individual methods. Our framework is simple to implement into existing deep learning pipelines 
for CT analysis. It performs well on a range of tasks such as liver and kidney segmentation, without 
significant differences in prediction performance on strongly differing volume sizes and varying 
slice thickness. Thus our framework is an essential step towards performing robust segmentation of 
unknown real-world samples.

The geometry of tumours, as described by, e.g. its size, shape or location, is a central clinical feature. Changes in 
these geometric characteristics are essential indicators of disease progression and can be used to measure treat-
ment effects. An automated, quantitative assessment of these aspects and their changes from radiological images 
would yield an efficient and objective tool for radiologists to monitor the course of the disease. Thus, a reliable 
and accurate automated segmentation method is desirable to extract spatial tumour and organ characteristics 
from computed tomography (CT) volumes.

In recent years, convolutional neural networks (CNNs)1 became the state of the art method for image segmen-
tation, as well as many other tasks in computer vision2, such as image classification, object detection and object 
tracking3. The applications of CNNs are diverse, but the general data handling or preprocessing is often very 
similar in each case since the feature extraction is performed internally by the CNN itself. Improvements in the 
application of CNNs for medical image processing often address changes in the neural network architecture, the 
training algorithm or the use case4,5. At the same time, most authors tend to ignore the data handling itself, treat-
ing medical images such as CT volumes the same way as grayscale or RGB images with additional dimensions.

However, this approach neglects prior information about the specific physical processes that underlie images 
acquisition and determine image contrast, possibly leading to suboptimal and sometimes inaccurate image 
analysis. For instance, most image formats map pixels on relative scales of a few hundred values. The voxels in CT 
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volumes carry values from to the much wider Hounsfield scale6. This is a quantitative mapping of radiodensity 
calibrated such that the value for air is − 1,000  Hounsfield Units (HU) and for water 0 HU, with values in the 
human body reaching up to about 2000 HU (cortical bone). Therefore, in contrast to most standard images where 
pixel intensities themselves might not be meaningful, the actual grey values of CT volumes carry tissue-specific 
information7, and special consideration is required to leverage it.

The tissue-specific information also means, that CT data typically contains a range of values that are not 
necessarily relevant for a particular diagnostic question8,9. Thus, when radiologists inspect CT volumes for diag-
nosis, they typically rely on windowing, i.e. they restrict the range of displayed grey values to focus the image 
information to relevant values. CNN-based image segmentation frameworks rarely include such potentially 
essential steps from the expert workflow, assuming that the data only has to be normalised and the network will 
then learn by itself to focus on the relevant image regions.

In this paper, we address the challenges of a clinically meaningful CT volume processing and present a 
domain-specific framework for CNN based image segmentation. The proposed framework is inspired by insights 
into the data acquisition and the diagnostic process performed by the radiologist, addressing, in particular, the 
spatial information in CT volumes and the use of the HU scale.

From a technical point of view, our primary aim is to obtain a reliable segmentation result (i.e. a low vari-
ation in segmentation quality across a variety of inputs) rather than pursuing high accuracy only. Robustness 
is an essential requirement when we want to use a segmentation model as part of a (semi-)automated analysis 
process. In this case, significant segmentation errors can go undetected as we might not directly analyse the 
actual segmentation result but only downstream results derived from it. Thus, we require algorithms to analyse 
each volume consistently and without significant differences in output quality. To estimate the robustness of the 
model output, we evaluate the standard deviation of the Dice score.

We evaluated the framework with different neural architectures: We implemented a mixed-scale dense con-
volutional neural network (MS-D Net)10 with dilated convolutions and the nnU-Net11 (a modified U-Net)12 
with traditional scaling operations. We consider both a 2D-CNN and a 3D-CNN implementation for each 
architecture. Finally, we show that an ensemble CNN allows combining the volumetric information leveraged 
in 3D-CNNs with the proportionally higher value of each segmented voxel in the 2D-CNNs training process, 
resulting in more accurate results.

The typical assumption behind cross-validation is that the data set is representative of yet to be seen real data, 
and the test or validation sample should also reflect this. Thus, we would usually balance all folds, so they contain 
typical samples and also possible outliers. However, we want to assess how robust the trained models are, and 
thus here we do not randomly mix the folds. Instead, we assign each sample to a fold depending on the number 
and thickness of its slices. This way, we will always have samples in the test set that are independent of the train-
ing data, and we simulate the worst-case scenario for the application in the clinical environment. In order to 
make the results reproducible, we use open datasets for training and evaluation. We train and validate the CNN-
models for kidney tumour segmentation on the dataset of the 2019 Kidney Tumor Segmentation Challenge13. 
For the liver segmentation, we use the dataset of the CHAOS—Combined (CT-MR) Healthy Abdominal Organ 
Segmentation Challenge14.

It seems like the rise of deep learning methods in medical image analysis has split the community into two 
factions: those who embrace such methods and those who do not trust them. We think that to apply deep learning 
in a clinical setting, the CNN architectures and the entire workflow for data processing and augmentation need 
to be adapted, requiring considerable knowledge of the diagnostic question and the imaging modality at hand. 
In this work, we want to show that in order to build clinically applicable CNN-based frameworks, we require 
different expertise and input from technical and medical domain experts.

Methods
In the following, we describe the data processing and augmentation in “Preprocessing and augmentation” section, 
and the network architectures in “Architecture” section. The preprocessing includes volume shape reduction and 
grey-value windowing. The proposed augmentation addresses the scarcity of data, to provide additional samples 
for the training procedure. For the CNN architectures, we consider two models to compare dilated convolutions 
(MS-D) to traditional scaling operations (U-Net). We further explain the construction of the stacked CNN model. 
The training procedure for the two considered architectures is described in “Training” section.

Preprocessing and augmentation.  In order to ensure adequate data quality in the training process for 
each model, we adapt the data preprocessing and augmentation for CT data. We developed the preprocessing 
based on the dataset of the KiTS Kidney Tumor Segmentation Challenge13 and the dataset of the CHAOS—
Combined (CT-MR) Healthy Abdominal Organ Segmentation Challenge14. However, the same can be applied 
to any other CT dataset with minor changes.

Image preprocessing.  We adapted the image normalisation from11 to better suit real-world applications. To 
reduce the complexity and optimise the dynamic range, we apply a windowing to each volume by clipping the 
voxels grey value range to a (0.6, 0.99) percentile range that corresponds to the window a radiologist would use 
for decision-making. For other segmentation problems, the percentiles must be adjusted to fit the intensity dis-
tribution of the relevant body parts (We show examples in Fig. 1). We then normalise the windowed data using 
the z-score using the intensity statistics (mean, standard deviation) from a random subset of the data set. Using 
the intensity statistics from the entire dataset might give slightly better normalisation results, but this approach 
would not always reflect the typical conditions in a clinical environment. Often, we continuously collected the 
image data over time and thus, only a subset of the data is available before the training process starts.
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In order to save costs and time and reduce exposure to radiation in CT, the radiologist typically confines an 
acquisition to the region of interest (ROI) (Fig. 2). This ROI is typically defined liberally not to miss an area that 
is potentially relevant to the diagnosis. Thus, in a clinical setting, the number of acquired slices in a CT volume 
varies considerably. The varying slice number poses a challenge to the application of standard CNN pipelines 
which often assume a regular data sampling. To standardise the data, we decided to reduce each volume to 16 
slices as we do not need to upsample volumes that contain only a few slices. Instead, our method selects slices at 
random positions from each volume, and by repeating the sampling process per volume, we also get a simultane-
ous data augmentation effect. We exclude background slices during the training phase since these are also not 
considered in the test phase. We observed that increasing the number of slices did not yield better results, which 
is consistent with the observation that most CNNs only use a small semantic context for decision making15,16.

In order to save GPU memory, we downsampled each slice from 512× 512 voxels to 128× 128 voxels as in 
our experiments larger slice sizes did not yield better segmentation performance.

Image augmentation.  As additional augmentation steps we used image noising with a normally distributed 
noise map, a cluster-wise voxel intensity range shift, slice skipping and slice interpolation to address potential 
variation in the CT acquisition process (Fig. 2). We introduce a cluster-wise voxel intensity range shift (CWVRS) 
to make the network more robust to slight, vendor—or patient-specific variations in the exact tissue intensities 

Fig. 1.   Windowing highlights tissues of interests and reduces the complexity of background structures. Three 
examples for the use of case-oriented windowing for bones (a–c), organs (d–f), and lungs (g–i). We used the 
organ oriented windowing in this work, while we show the other two examples for comparison. We derived the 
intensity windows for CNN processing by slightly extending the standard ranges used by radiologists in practice 
to allow for uncertainties in the exact ranges.
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that lead to different spatial patterns after windowing. To simulate these changes, we slightly increase, decrease, 
or shift the exact intensity windows and rescale the intensity values in this range during augmentation. The base 
intensity windows were defined in advance and correspond to the typical intensity ranges used in routine radio-
logical workflows (Supplementary Table S1 online). We further rotated the images by a random angle (maxi-
mum of 16°) to simulate the inevitable variability in patient positioning, that occurs in clinical routine despite 
fixation. These augmentation steps should more realistically model the expected data variation when applying 
the deep learning models in clinical practice.

Architecture.  To demonstrate the independence of our preprocessing and augmentation framework from 
the concrete underlying neural architecture, we compared two conceptually different CNN models. The first 
architecture we consider here is a modified version of the widely-used U-Net called nnU-Net11. This architecture 
extends the original U-Net architecture12 by replacing batch normalization17 with instance normalization18 and 
ReLUs with LeakyReLU units of slope 1e−219. For comparison, we chose the mixed-scale dense convolutional 
neural network (MS-D net)10. We modified it in the same way as the U-Net to remove the influence of the acti-

Fig. 2.   Differences in CT scanning configurations pose challenges for CNN-based segmentation. (a) Varying 
slice thickness maps the same anatomical region of interest to different numbers of slices. Thicker slices reduce 
the scan time for larger regions of interest, but 3D details and semantic context can be lost. (b) Volume size 
varies depending on the chosen region of interest. Normalising to a standardised volume size then requires 
strong interpolation.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10712  | https://doi.org/10.1038/s41598-020-67544-y

www.nature.com/scientificreports/

vation function in our comparison. We have chosen these two rather extreme variants of CNNs to compare the 
traditional down- and upscaling flow with the parallel multi-scale approach using dilated convolutions.

In clinical diagnoses, the radiologist locates the tumour and relevant adjacent structures not only by examin-
ing the individual slice but also the adjacent slices. Thus, a 3D CNN might seem like the obvious choice in order 
to not lose the spatial information from the 3D context. However, previous work has clearly shown that 3D seg-
mentation methods perform worse than 2D approach when the data is anisotropic20,21, which is regularly the case 
in medical imaging. Another reason why medical image segmentation with 3D CNNs often proves challenging is 
the variable number of slices per volume. The slice number depends on various external factors like body region 
under investigation, diagnostic question, different size of the subjects and other trade-offs between data quality, 
minimal scanning time and radiation exposure. Thus somewhat counterintuitively, 3D CNNs do not necessar-
ily perform better than 2D versions in many circumstances, and robust models should consider both options.

Finally, we combined different models into a single, stacked CNN model to leverage the different strengths 
of each architecture as ensemble methods showed superior performance in several detection tasks22–24. For 
the kidney-tumour segmentation, we stacked a set of 3D MS-D Nets trained to classify voxels into kidney and 
background (without a distinction between the healthy kidney tissue and the tumour tissue), and a set of 2D 
nnU-Nets trained to perform classification into healthy tissue, tumour and background. For the liver segmenta-
tion, both models perform binary classification of voxels into liver and background.

Training.  We trained all networks independently from scratch. The overall training procedure shown in 
Algorithm 1 was implemented in Python with Tensorflow 1.14 and performed on an IBM Power System Accel-
erated Compute Server (AC922) with two NVIDIA Tesla V100 GPUs. This setup allowed us to parallelise the 
experiments, but our proposed approach also works on typical systems with an NVIDIA GTX 1080.

In each epoch, the volumes of a randomly selected batch are preprocessed and augmented (lines 9–12). 
We used a batch size of 28 for the 2D networks, while we had to reduce the batch size to 1 (stochastic gradient 
descent) for the 3D versions of the modified architectures. We use data augmentation in 80% of the training 
batches for 3D and 90% of training batches in 2D. We applied the intensity range shift to 20% of data in both 
cases.

To update the weights θi of the neural network function f, we used the ADAM optimisation with the parameter 
configuration proposed in25. Our loss function L (line 16 in Algorithm 1) is a combination of the Tanimoto loss 
LTanimoto and the categorical crossentropy LCE , weighted by α = 0.6 and β = 0.4 respectively. We implemented 
the Tanimoto loss as shown in Eq. 1, where ŷ ∈ Ŷ  denotes the set of predicted voxel-wise annotations and y ∈ Y  
denotes the set of ground truth voxel-wise annotations. The advantage of the Tanimoto coefficient is that it treats 
each class independently and is thus particularly suitable for problems with a high class imbalance which is 
typically the case in medical imaging. However, this also leads to a maximum error if a particular class does not 
occur in the current sample. This effect is attenuated by the smooth factor smooth. We empirically chose a small 
smooth of 1e−5. A more detailed discussion is given in26.

Evaluation
We compared our domain-specific augmentation to the state-of-the-art multidimensional image augmentation 
method from27 implemented in TensorFlow across different image dimensionalities and neural architectures 
(Table 1). We illustrate the overview of the different experiments in Fig. 3.

We kept the same normalisation and windowing preprocessing steps in both cases. Since the normalisation 
and windowing of the CT volume reduce the anatomical structures that are visible in the volume, some parts of 
(e.g. the skull) with values outside the range become background after windowing. This effect leads to different 
results in cropping and selection of slices.

(1)LTanimoto(Ŷ ,Y) = 1−
ŶY + smooth

|Ŷ |2 + |Y |2 − ŶY + smooth

Table 1.   Comparison of the CT-specific image augmentation (CTIA) and the multidimensional image 
augmentation (MIA).

Transformation CTIA MIA

Spatial transformation

Random patch extraction Scaling

Slice skipping Random rotation

Slice interpolation Without restriction

Random rotation (maximum of 16°) Image shearing

Cropping

Intensity transformations

Cluster-wise voxel intensity range shift Gamma-corrections

Contrast

Image noising with Gaussian noise Brightness

Image noising

with Gaussian noise
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An exact comparison of the two preprocessing approaches would not be possible under these circumstances, 
because we would effectively compare pipelines that work on images of different sizes. To show that preprocessing 
does not negatively influence results, we show an experiment without windowing in Supplementary Table S2 
online and Supplementary Table S3 online. However, we cropped the images to the same regions as obtained 
from windowing to ensure comparability and to avoid any performance benefits related to smaller image crops. 
We point out that using windowing as a preprocessing step considerably reduced training time (number of 
epochs until convergence) in our experiments. This effect is likely due to the suppression of anatomical regions 
that are not of interest, and thus windowing effectively decreases the complexity of the background regions that 
the network has to learn.

For comparing the effect of image augmentation across different segmentation models, we implemented both 
CNN architectures in a 2D and 3D version and evaluated each model in 5-fold cross-validation. To include the 
influence of edge cases in our validation, we sorted the data according to the number of slices, so we could always 
validate the models on CT volumes that did not occur in the training data set in a similar form. We numerically 
evaluated the model predictions volume-wise using the Dice score, as shown in Eq. 2 using the same annota-
tion as in Eq. 1. We report the resulting scores averaged over volumes and cross-validation folds for the kidney 
tumour segmentation in Table 2 and for the liver segmentation in Table 3.

The results show that the average prediction performance of models trained with CT-specific image augmenta-
tion is on par with the performance of models using multidimensional augmentation. However, the CT-specific 
preprocessing yields stable results whose standard deviation is an order of magnitude lower than the state-of-the-
art multidimensional approach from27. Supplementary Fig. S2 online and Supplementary Fig. S3 online highlight 
the clinical relevance of these more stable predictions by showing the impact of a reduced standard deviation in 
numerical segmentation accuracy on actual segmentation results. Our results further confirm existing empiri-
cal findings that including 3D spatial information in models does not necessarily lead to a better segmentation 
performance for anisotropic data.

We found that performance varied across the different neural architectures. For the kidney segmentation, our 
findings indicate that multi-scale architecture could detect whole objects very well as the 3D MS-D Net shows 
fewer background errors in binary segmentation. However, the finer distinction between foreground classes 
(kidney and tumour tissue) worked comparatively poorly as. For liver segmentation, we found that the MS-D 
Net generally led to more segmentation errors. However, the MS-D Net errors typically differ from the type of 
segmentation errors of the U-Net approach. In particular, slices with only small regions of interest (shown in 
Fig. 4) pose a challenge.

Since the errors of the MS-D Net are complementary to the errors of the nnU-Net for both cases, a stacked 
CNN leads to consistently better results, as it can learn to balance the strengths and weaknesses of the different 
models. Here, we constructed a stacked CNN consisting of a set of 3D MS-D Nets and a set of 2D nnU-Nets 
trained with CT-specific image augmentation. For each set, we selected the top-5 models based on their valida-
tion score in the previous experiment. The stacked ensemble of neural network predictor consistently delivered 
the most accurate and stable predictions by combining the different individual strengths of their members (see 
Tables 2, 3).

Conclusion
In this work, we propose a robust machine learning framework for medical image segmentation addressing the 
specific demands of CT images for clinical applications. Our analysis focused on the often neglected influence 
of preprocessing and data augmentation on segmentation accuracy and stability. We systematically evaluated 
this framework for two different state-of-the-art CNN architectures and 2D and 3D input data, respectively. In 
line with previous findings20,21, our results show that 3D spatial information does not necessarily lead to better 
segmentation performance in particular concerning detailed, small-scale image structures. In our experiments, 
the types of segmentation errors varied between neural network models, and we showed that a stacked CNN 
model combining a top-n selection from each model indeed outperformed all other approaches considered 
in this work. Thus, our findings suggest an ensemble approach as an effective way to achieve more robust and 
thus, reliable performance in a routine setting. Most importantly, our work shows that a domain-specific data 
augmentation scheme can yield highly robust segmentation results with an order of magnitude lower variation 

(2)sDice(Ŷ ,Y) =
2ŶY

|Ŷ |2 + |Y |2

Fig. 3.   Overview of the different segmentation workflows that we considered in our experiments. The 
arrows (both solid and dashed) indicate different combinations of input dimension, augmentation and CNN 
architectures. The solid arrows specifically highlight the best combination.
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while maintaining the same average segmentation accuracy as the general-purpose state-of-the-art approach. 
The improvements are independent of the underlying CNN architecture. Although the reduced variability in the 
Dice score might seem like a minor numerical effect, the individual differences in segmentation quality do have a 
clinical impact. Errors of models trained with CT-specific image augmentation are mostly limited to minor dif-
ferences in the size of segmented regions and finer details in the outlines. Models trained with multidimensional 
image augmentation show more severe errors like unrecognised tumour parts or misclassified tissue regions 
(Fig. 5). In particular small tumours or tumour regions that appear disconnected from to the kidney in the image 
are typically not recognised correctly. These cases occur even for 3D segmentation models in particular when 
the distance between the slices becomes higher, and the network does not properly learn the 3D connectivity 
of the tissue. Thus, the slice interpolation and slice skipping in the data augmentation have a substantial impact 
and lead to more reliable results. Furthermore, we found the cluster-wise voxel intensity range shift to improve 
segmentation stability. We speculate that this augmentation step might help focus the feature extraction in the 
networks more on reliable spatial structures in the image and less on actual voxel intensities.

Robust and simple machine learning pipelines such as the one outlined in this paper have the potential to 
improve clinical nephometry substantially. Existing scores used in clinical routine have a poor predictive power13 
and massively reduce the underlying information contained in CT volumes. The improved characterisation of 

Fig. 4.   Examples of challenging 2D segmentation cases. Examples are shown for kidney and tumor 
segmentation (a) and liver segmentation (b). Segmentation errors typically occur more frequently in the first 
and last slice of the ROI.

Table 2.   Results for the kidney tumor segmentation: Total Dice scores are reported (mean ± stdv.) for each 
segmentation class, the different architectures and input dimensionalities (2D and 3D). Each approach is 
validated with the multidimensional image augmentation (MIA) for Tensorflow and with our CT-specific 
image augmentation (CTIA).

Kidney Tumor Total

nnU-Net + MIA 2D 0.962± 0.006 0.840± 0.013 0.929± 0.009

nnU-Net + CTIA 2D 0.961± 0.001 0.844± 0.007 0.931± 0.002

nnU-Net + MIA 3D 0.960± 0.012 0.839± 0.021 0.929± 0.014

nnU-Net + CTIA 3D 0.960± 0.002 0.841± 0.008 0.925± 0.003

MS-D Net + MIA 2D 0.950± 0.011 0.774± 0.022 0.913± 0.014

MS-D Net + CTIA 2D 0.950± 0.001 0.779± 0.009 0.914± 0.003

MS-D Net + MIA 3D 0.947± 0.012 0.764± 0.024 0.906± 0.018

MS-D Net + CTIA 3D 0.948± 0.002 0.765± 0.009 0.907± 0.003

Stacked CNN + MIA 0.968± 0.008 0.841± 0.011 0.943± 0.008

Stacked CNN + CTIA 0.968± 0.001 0.845± 0.004 0.947± 0.002



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:10712  | https://doi.org/10.1038/s41598-020-67544-y

www.nature.com/scientificreports/

kidney tumours through a more efficient, objective and reliable segmentation, should yield better clinical evalu-
ation, better prediction of clinical outcomes, and ultimately a better treatment of the underlying pathology. In 
our view, to pave the way to routine clinical applications of machine learning methods for diagnostic decision 
support, we must focus on improving the robustness and reliability of our segmentation methods. We advocate 
to increase the interpretability and acceptance of those models by explicitly incorporating prior knowledge, 
for example by recapitulating processing steps from clinical workflows. As a step into this direction, our work 
addresses fundamental methodological challenges in automated segmentation of CT volumes for medical use, 
to yield reliable organ and tumour segmentation.

Data Availability
A preprint version of this article is available at: https​://arxiv​.org/abs/1907.10132​.
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