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1 Experimental details

1.1 CuGeO3 optical properties

Copper Germanate (CuGeO3, see Fig.1.c) is a model edge-sharing cuprate known for his spin-Peierls
transition near 14K [1]. It is composed by chains of Copper-Oxygen octahedral structures whose
direction corresponds to the c-axis of the crystal. In this study, we have used a 100 µm thick sample
of single crystal CuGeO3 (provided by A. Revcolevschi). The results along the c-axis are presented in
the main article and few ones about the b-axis are presented in this supplementary.

Figure 1: (Left) Optical conductivity of CuGeO3 for two polarizations: along the c-axis (parallel to
the chain) or the b-axis (perpendicular to the chain). The pump (resp. probe) wavelength range is
indicated by red (resp. orange) dashed line. (Right) Zoom on the electronic transitions which shows
that the d-d transitions are split from higher electronic transitions. Data issued from [2, 5].

For the purpose of this study, it is also interesting to detail the optical properties of CuGeO3. Indeed,
it owns many intense phonon modes at low energy [2, 3] (Supplementary Fig.1-left) and a group of
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three phonon-assisted d-d transitions that is isolated in energy from other electronic transitions (Supp.
Fig. 1-right). These properties are suitable if one wants to excite specific low energy modes and to
probe the response of the three d-d transitions, located between 1.5 and 2 eV, independently from the
response of other electronic transitions.

1.2 Scheme of principle of the experimental setup (Figure 2)

Figure 2: Scheme of the experimental setup used to measure the transient transmissivity with an
accuracy down to 10−5.

1.3 Analysis

Zero delay shifts. Due to technical details related with the NOPA-design, it was not possible to
keep a constant zero delay while changing the probe wavelength. Thus, for each probe wavelength, the
zero delay has been fixed in a post-measurement treatment. In particular, it has been chosen as the
starting point of the dynamics, i.e. the beginning of the decreasing or increasing edge of ∆T/T. This
choice is justified if we assume that the mechanism leading to the decrease or the increase of ∆T/T
is “suddenly” triggered by the pump pulse, in other words, if there is no delay between the variation
of ∆T/T and the true excitation moment. If so, the ∆T/T decreasing (resp. increasing) edge is fixed
by the cross-correlation duration between the pump and the probe. In our case, the probe duration is
much shorter than the pump duration (30 fs comparing to 260 fs), therefore the ∆T/T dynamics edge
corresponds to the delay when both pulses start to interact which is then chosen as the “zero delay”.

Fitting procedure. As described in the Methods, we have performed a fit of the measured
response in the energy-domain and we have repeated this fit for each time delay. In particular,
we have firstly fitted the optical absorption of the d-d transitions (linear response), which has been
measured by O’Neal et al. [4], by three Gaussians plus a background in order to obtain a set of initial
parameters. We want to emphasize that we have tried other distributions to fit this optical absorption,
especially by using Lorentzian shapes or Fano profiles. However, using Gaussian distributions seems
to be the most reproducible and stable manner of fitting the data, i.e. the less sensitive one to initial
guess of the parameters. Note also that it might be probable that a non-trivial kind of distribution
could correspond to the absorption shape of these phonon-assisted transitions. Indeed, we have shown,
through a minimalist model (see 3.3 Supp. Fig.8), that the distribution shape could rather be similar
to a “full and displaced” Maxwell-Boltzmann distribution1 whose central energy is the one of the d-d
transition. Obviously, this kind of distribution has the drawback to be hard to interpret whereas

1By “full”, we mean that we include the positive and negative part of a typical Maxwell-Boltzmann distribution of

type p(E) ∝ E2

σ3
E
exp(− E2

2σ2
E

). By “displaced”, we mean that the energy axis has to be shifted in such a way that E is

replaced by E′ = E − ε in the previous formula.
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the Gaussian distribution parameters are easily intelligible. Therefore, we have used the extracted
parameters from the Gaussian fits of the linear response as input parameters to construct a fitting
function for the transient transmissivity map which results are plotted in Supp. Fig. 3. The evolution
of each Gaussian parameter is plotted in Supp. Fig. 3.e and we can observe that it is possible to
differentiate the response of each transition since the variation of the amplitudes are dynamically
specific. Moreover, for the first d-d transition, the best way to fit the observed transient transparency
is to let free the central energy and bandwidth of the transition (E1 and σ1). Note that the background
constant (BG) has to evolve in order to reproduce the low energy features (below 1.45 eV). We interpret
this as if an ingredient was missing in the chosen distribution used to fit the linear response. Indeed,
we could imagine that a realistic distribution could have some contributions in an energy range out
of the measured features of the d-d transitions. Even if this point remains unclear, we can however
claim that the lowest energy observed dynamics is induced by the coherent midIR excitation since it
is not only negative as it was the case in previous studies [5, 6].

Figure 3: (a) Measured data same as in the main article Fig.2. (b) Retrieved fitted map obtained by
varying the extracted parameters of the (c) fit with three Gaussians of the optical absorption (adapted
from [4]. (d) Difference between the data and the fitted map in order to appreciate the quality of the
fit. (e) Variation of the free parameters used in (b).

2 Complementary results and discussion

2.1 Thermal effects

Effects of the sample initial temperature. The CuGeO3 d-d transitions have a strong de-
pendence as a function of the temperature. In particular, the d-d absorption amplitude increases when
the temperature increases and we can justify this behavior thanks to the developed theoretical model
(see. section 3). Besides, all the d-d transitions shift towards lower energies at higher temperatures
(see Supplementary Fig.4.a) and they also broaden in the linear response case. Therefore, we also
wanted to study the effects of the sample initial temperature on the transient response of the d-d
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transitions. These results are shown in Supplementary Fig.4.b-c, where we compare two transient
maps measured at 8 K and 300 K, in the same pump and probe conditions (λpump = 9µm). We can
observe that, at 300 K, the transient signal is very similar (in time and amplitude) to the one at 8 K
but it has been shifted towards lower energy. We have also plotted some colored lines that indicate
the central energy of the fitted Gaussians in both cases. The energy shift of the overall map is similar
to the one that is observable in the linear absorption response case (about 60 meV), which supports
the idea of midIR-induced distortions that would similarly impact the d-d transitions whatever the
temperature is. It notably opens the perspectives in providing a way to induce some specific electronic
properties at room temperature. Finally, note that CuGeO3 has a Spin-Peierls transition around 14
K but no particular signature of this transition has been observed in this experiment.

Figure 4: (a) Linear absorption measurements adapted from [4] at 8 K (gray circle) and 300 K (black
cross) and their respective fit (plain dark red at 8K, dashed red at 300K). As a guide for the eyes, we
have also plotted the central energy of the 3 fitted Gaussians representing the 3 d-d transitions. (b-c)
Transmissivity maps at 8 K and 300 K for the same conditions of pump and probe beams.

Pump-induced thermal effects As discussed in the main text, it is important to estimate the
possible temperature increase due to the pump excitation in order to understand its potential role in
the transmissivity maps. For that purpose, we have considered that the absorbed energy from the
pump (∆Qpump) is transferred into heat, which allows defining the temperature increase as:

δT =
∆Qpump

CT × nCuGeO3

,


∆Qpump = FS(1−R− T ) in [J ]

nCuGeO3 =
S × L

Vcell ×NA
in [mol]

(1)

where F is the midIR fluence (1 mJ.cm−2), S is the focus area (disk of radium r = 75µm), R is the
reflection on the surface (' 6.5% at 9µm [2]), T is the transmission coefficient (see below, eq.2), L
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is the sample thickness (100µm), Vcell is the volume of one CuGeO3 unit cell (59.9Å
3
), NA is the

Avogadro constant and CT is the heat capacity (0.43 J.K−1.mol−1 at 8 K [7], and 100 J.K−1.mol−1 at
300 K[8]). To compute ∆Qpump, one needs the transmission coefficient which can be measured (not
done in this study) or computed by the following standard formula [9] :

T =
(1−R)2exp(−αλLsample)
1 +R2exp(−2αλLsample)

(2)

where αλ is the absorption coefficient which depends on the wavelength. Then, we base our reasoning
on the measurements of R and T of ref. [2] on a very broad spectral range. They have found R = 0.065
and T = 0.78 at λ = 9µm which gives, thanks to eq.2, α9µmLsample ' 0.11. As they did not specify
their sample thickness, we had to retrieved it by using their measurements, done one the same sample,
at λ = 730nm = 1.7eV (R = 0.114 and T = 0.016). This wavelength corresponds to the d-d band
whose absorption coefficient has been previously reported to lay between 200 and 600 cm−1 (depending
on the source [4, 10]). Therefore, we can retrieve Lsample that has been used by Damascelli et al. (195
µm to 65 µm) and then estimate α9µm: between 5.6 cm−1 and 16.9 cm−1. This last values permit
to get ∆Qpump and finally to estimate a range of pump-induced temperature increase δT : between
0.94 K and 1.66 K for an initial temperature of 8 K and between 4 mK and 7.3 mK for an initial
temperature of 300 K.
According to this estimation, the temperature increase, linked to a complete transfer into heat of
the absorbed pump energy, is about 2 orders of magnitude higher at 8 K than the one at 300 K.
Nevertheless, we have observed that the transmissivity maps at these two sample temperatures are
very similar: we only observe a shift of the overall map toward lower energy (see Supplementary Fig.4).
In particular, this shift seems to be linked with the difference in the sample initial temperature which
induces a overall shift of the d-d band features toward lower energies of about 60 meV. In other word,
the pump-induced thermal effects are certainly negligible or not visible on the probed timescale with
respect to the effect of the sample initial temperature. Moreover, the developed model results (see
Supplementary Fig.10 for T = 300 K), are also in favor of this interpretation. These theoretical results
show that the absorption spectral distribution variations (central energy and the energy bandwidth
shifts) which are induced by a δT = 10−2 K at 300 K (resp. a δT = 1 K at 8 K) are negligible with
respect to the ones induced by a relevant displacement variation (∆Bt) in the same conditions.

2.2 Pump wavelength dependency

In order to obtain a better insight on the role of the pump in the probed dynamics, we have performed
some preliminary transmissivity measurements along the c-axis and the b-axis of CuGeO3, at 300 K,
as a function of the pump wavelength and for two given probe photon energies (Supp. Fig.5). Besides,
in the current subsection, the data are issued from an anterior set of measurements for which the
pump duration and the probe duration were longer: it justifies the mismatches comparing to the data
that are shown in the main text (Fig.2(b)).

Pump wavelength dependence at Eprobe = 1.7, c-axis vs b-axis (Supplementary Fig.5.(a)-
(b)). Compared to the c-axis (main text Fig.2(a)), the b-axis does not show a quick variation of
∆T/T around delay zero but only long timescale population dynamics are observed. These slow pop-
ulation dynamics are especially intense for two pump wavelengths around 9 µm and 11 µm. Such as
for the c-axis, these long timescale dynamics appear for pump wavelengths which correspond to rea-
sonable dips in the optical transmission (displayed in the right panels of Supplementary Fig.5.(a)-(b)),
that are around 9 µm and 10.7 µm for the b-axis. Besides, for both axis, some measurements have
been performed for pump wavelength from 13 µm to 17 µm, but nothing clear was observed (very
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noisy signals). This is is notably justified by the fact that the midIR light cannot propagate inside
the media at these wavelengths (see 2.2).

Pump wavelength dependence at Eprobe = 1.37, c-axis vs b-axis (Supplementary Fig.5.(c)-
(d)). We also wanted to understand better the role of the pump concerning the transient trans-
parency that has been observed in the low-energy range (below 1.45 eV), namely out of the d-d
transitions. Therefore, we have performed a set of pump wavelength dependent measurements keep-
ing the probe photon energy at 1.37 eV and the results are shown in Supp. Fig.5.e-h. We can clearly
observe that, on the c-axis, the maximum of this transient transparency is around λpump ≈ 9µm
whereas on the b-axis a maximum of this transparency appears around λpump ≈ 8µm. The c-axis map
clearly confirms that the maximum amplitude of the coherent effects is obtained for λpump = 8µm
which is located out of the phonon modes.

Figure 5: (a-b): Comparison of the pump-wavelength dependence transmissivity maps for (a) the
c-axis and (b) the b-axis in the case of Eprobe = 1.7eV . For each crystallographic axis, the optical
transmission has been plotted on the same energy range on the right panel (reproduced from [2]. (c-d)
Comparison of pump-wavelength dependence transmissivity maps for the c-axis and the b-axis in the
case of Eprobe = 1.37eV .

Finite difference time domain (FDTD) simulation of electromagnetic wave propa-
gation The lattice polarization (P(x,t)) induced by the pump pulse has been computed using a
finite-difference time-domain (FDTD) code [11, 12]. First, we have calculated the maximum polar-
ization amplitude that develops inside the material as a function of pump wavelength. The optical
properties of CuGeO3 have been retrieved by fitting the measured reflectivity. Typically, this maxi-
mum is reached at the sample surface and at time zero, i.e. when the pulse hits the material. The
result of this calculation is displayed in Supp. Fig.6 for a pump pulse duration of 200 fs (green curve).
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As expected the maximum value is reached for photon energies within the reststrahlen band(s), i.e.
around 750 cm−1 (≈ 13.5µm) and 530 cm−1 (≈ 19µm), which is where the screening is more efficient.
Secondly, we have estimated the effects of penetration dept mismatch between the pump and the probe
in a transmission experiment. While the probe is transmitted by the material, thus probing the entire
sample thickness, the pump penetration depth strongly depends on the frequency. In the reststrahlen
band, the pump excites, albeit with maximum intensity, only few hundreds of nanometers. On the
other hand, for pump frequencies higher than the reststrahlen band, the coupling to the phonon is still
sizeable while the penetration depth grows (hundreds of microns). As a result, the overall effect seen
by the probe is maximized in this spectral region. In first approximation, for each pump wavelength
this effect can be estimated by first integrating the polarization in space for a given pump-probe de-
lay and then by taking the maximum value of the resulting vector. The maximum of the integrated
polarization estimates the effect of the pump-probe penetration depth mismatch and is depicted in
Supp. Fig.6 (red curve) as a function of pump wavelength. We can clearly observe that the integrated
polarization peaks around 900 cm−1 (≈ 11µm), on the right side of the reststrahlen band. This value
is not so far from the one that was used during the experiment (9 µm). Many factors could be con-
sidered to get results that are more realistic: (i) by integrating the polarization in space for a given
pump-probe delay, we assume the probe group velocity to be infinite, therefore neglecting the probe
dispersion, (ii) The simulated phononic response to the pump field is considered to be linear. However,
pump-activated non-linearities could reshape the phononic spectrum thus affecting the dynamics. (iii)
Our simulations only consider infrared-active single-phonon resonances. Multiple-phonon resonances
or impurity centers also appear in the mid-infrared optical properties, albeit with smaller oscillator
strengths.

Figure 6: Computed polarization vector maximum for CuGeO3 (blue curve is the reflectivity) at the
surface (green) or taking into account the propagation effect inside (red) compared to the experimental
optical conductivity σ1 (gray circle) or transmission (black dot); data reproduced from [2].

The blue shift of the effect observed in our simulations is compatible with the measurements shown
in Supplementary Fig.5, where higher coherent effects are detected for pump wavelengths blueshifted
with respect to the targeted phonon mode. Overall, our measurements demonstrate the presence of
a coherent response associated to mid-IR excitation which appears to be resonant at 9µm and is well
described by the phonon assisted dd-transition gated by a coherent vibrational states involving the
octaherdral ions. The mechanism for generating such a coherent motion of the ions is compatible
with phonon non-linearities but the presence of a mid-IR resonance at 9µm invisible to linear response
cannot be excluded and will be the subject of further studies.
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2.3 Phonon mode on long timescale

The zoom in the transmissivity map at 8 K shows an additional feature on long timescale: a phonon
mode is excited (see Supplementary Fig.7 for 8K). The extracted frequency is about 182 cm−1 which
is thus associated to the Ag phonon mode at 187 cm−1 [3]. This demonstrates the possibility to excite
Raman modes through anharmonic couplings on long timescale.

Figure 7: (a) Right part: zoom in transmissivity map at 8 K, the color scale has been divided by 20.
(b) Right part: zoom on < ∆T/T > that has been averaged between 1.46 and 1.53 eV (dashed lines
on (a)). The inner panel shows the Fourier transform of the right panel signal and the red dashed line
corresponds to the lowest Ag phonon mode at 187 cm−1.
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3 Theory

In the following, we discuss the details of the theoretical model used in the main text. A localized d-d
transition is described by means of a two-level system interacting with a single vibrational mode of the
crystal represented by a quantum harmonic oscillator. As discussed in the main text, our theoretical
model assumes the electronic transitions to be induced by the interaction of the sample electronic
and phononic degrees of freedom with the probe light. The probe light is first described as a classical
field in Section 3.2 while in Section 3.3 we adopt a fully quantum picture. In this latter context,
by choosing a dipolar electron-phonon-photon interaction we can compute the average number of
transmitted photons at a certain frequency, up to leading order in perturbation theory. This in turn
gives information about the absorption spectrum of the sample in the frequency range pertaining
to the electronic degrees of freedom, which, for sake of simplicity, have been restricted to a single
dressed electronic transition. The theoretical expressions for the relevant quantities are derived firstly
by considering the sample in thermal phononic equilibrium and afterwards by taking into account
the phonon displacement induced by the pump pulse. The expected temperature dependence of the
absorption profile, consistent with the experimental findings [4], is correctly predicted by our model.
An overall enhancement of the integrated absorption is predicted as well, together with a shift of the
average frequency of the transmitted photon distribution. Finally, in Section 3.4 a justification of the
dipolar three-body interaction is given in terms of the standard theoretical treatment of molecular
spectroscopy which is well suited for this kind of localized transitions. Summarizing, our theoretical
model allows us to generalize the Fermi Golden Rule to the case of states that are not diagonal
(have quantum coherence) in the sample energy eigenbasis. Moreover, it is consistent with previously
known results, inasmuch it predicts the correct temperature dependence of the frequency integrated
absorption. More remarkably, it predicts the shift of the absorption profile due to the pump-induced
displacement of atoms in the lattice, that in turn causes transient transparency in some frequency
ranges as detected by our experiment.

3.1 Phonon-dressed d-d transition

In absence of probe light, the dynamics of the relevant electronic and phononic degrees of freedom is
described through the following model Hamiltonian:

Hph−el ≡ H = ω b†b+ ε d†d+Md†d (b+ b†), (3)

where b, b† are bosonic operators describing the vibrational degree of freedom modulating the electronic
transitions, with the electronic degrees of freedom described by the fermionic operators d, d†. The
parameters ω and ε represent the bare phonon frequency and electronic transition energy, respectively,
while M is the coupling between the two degrees of freedom.
This model Hamiltonian can be explicitly diagonalized [13]. Indeed, one can find a diagonal Hamilto-
nian H̃

H̃ = ω b†b+

(
ε− M2

ω

)
d†d (4)

that is related to H by a unitary transformation U

H̃ = U †H U, U = e−
M
ω
d†d(b†−b). (5)

As a consequence, the eigenvalues of H̃ correspond to the eigenvalues of H

sp(H) =
{
nω
∣∣∣n ∈ N

}
∪
{
nω + ε− M2

ω

∣∣∣n ∈ N
}
, (6)
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while the eigenvectors |ψ〉mn of H are obtained from the eigenvectors |ψ̃〉mn of H̃ through the unitary
operator U

|ψ〉mn = U |ψ̃〉mn , |ψ̃〉mn = |n〉 ⊗ |m〉 =
(b†)n√
n!
|0〉 ⊗ (d†)m|0〉, (7)

with n ∈ N and m ∈ {0, 1}. More explicitly, the action of U has no effect on the eigenstates |ψ̃〉0n
corresponding to the electronic ground state, namely |ψ〉0n = |ψ̃〉0n, while the phonon eigenstates
describing the electronic excited state are displaced proportionally to the coupling constant M

|ψ〉1n = e−
M
ω

(b†−b)|n〉 ⊗ |1〉. (8)

Therefore, the Hamiltonian H accounts for a potential energy surface corresponding to the electronic
excited state whose minimum is shifted with respect to the ground state. This fact can be easily
recognized comparing the average phonon position quadrature b + b† in the two states |ψ〉10 and |ψ〉00
(electron in the excited or ground state respectively and no vibrational excitation)

0
0〈ψ|(b+ b†)|ψ〉00 = 0, 1

0〈ψ|(b+ b†)|ψ〉10 = −2
M

ω
. (9)

3.2 Probe-target interaction (phonon thermal equilibrium)

In the pump-probe setup of our experiment two different light pulses interact with the sample. An
infrared pump pulse induces coherent vibrations in the crystal (along a specific normal mode) and
after a delay-time t a visible probe pulse induces electronic transitions.
Let us concentrate for the moment on the interaction between the probe light and the electron-phonon
system. We assume the sample system to be in the electronic ground state with a thermal distribution
of the relevant vibrational excitation. Using the notation introduced in the previous section, the initial
state for the electron-phonon system at a given inverse temperature β reads

% = %β ⊗ |0〉〈0|, %β =
e−βωn

Tr(e−βωb†b)
|n〉〈n|. (10)

Notice that, since d†d|0〉 = 0, such a state % is invariant under the time-evolution generated by H in
(3). The electronic transitions are therefore induced by the interaction with the probe light that we
describe in this section as a classical electric field E(t) =

∑
k(αke

iνkt + α∗ke
−iνkt), so that we have an

effective time-dependent Hamiltonian for the evolution of the phonon-electron system

H̃int = µ0E(t)P, P = (b+ b†)(d+ d†), (11)

where the operator P is a dipole moment operator for the sample. In general, the term d+ d† has to
be expected because it gives transitions from the electronic ground state to the electronic excited state
while the further term b + b† describes how the phonon position quadrature influences the electronic
transitions. This choice for the dipole operator will be justified in Section 3.4 by means of molec-
ular physics arguments. Given the perturbation H̃int, standard considerations of atomic/molecular
spectroscopy [14] and the Fermi Golden Rule yield an absorption spectrum of the form

A(ν) =
∑
`

Γ` δ(ν − ε+M2/ω − ω`), (12)

where the quantities Γ` are related to the transition probability rates induced by the electronic dipole
moment operator P from the electronic ground state to the electronic excited state, producing `
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phonons. In particular, considering a thermal phononic initial state (10) one has for Γ` the following
expression

Γ` =
∑
n

e−βωn

Zβ
|〈n+ `| ⊗ 〈1|e

M
ω

(b†−b) P |n〉 ⊗ |0〉|2. (13)

In the case of a phonon-electron Hamiltonian entirely dependent on the phonon population, there
would be no unitary operator U = exp(Mω (b† − b)) in (13) and the absorption would be the same as
in absence of electron-phonon coupling (M = 0). Note that the Fermi Golden Rule could be used
because the electronic transitions considered are between eigenstates of the Hamiltonian H for the
initial electron-phonon state that is diagonal in the eigenbasis of H. A theoretical model will be
presented in the next section to account for the case of a non diagonal state. Such a model is based on
a change in perspective: the probe light will be no longer treated as an external classical field but as a
collection of quantum degrees of freedom. The model we will introduce allows to study the backaction
of the sample on the probe light (that is the quantity actually measured in the experiment), so that
we can extend the perturbative treatment to more general initial states.
Instead, with an energy diagonal initial state, using the previously defined model, the overall absorption
coefficient at finite temperature reads

Γ =

∫
dνA(ν) = |α|2µ2

0

∑
m

∑
n

e−βωn

Zβ
|〈m|e

M
ω

(b†−b)(b+ b†)|n〉|2

= |α|2µ2
0Tr

[
%β(2b†b+ 1)

]
= α2µ2

0 coth

(
βω

2

)
. (14)

where |α|2 is proportional to the intensity of the electromagnetic field. For simplicity, we use
|α|2 = 1 in what follows. The expression of Γ is in agreement with experimental findings [4, 10] and
previous theoretical studies [15]. Notice that, if b+ b† is replaced by a mean field scalar quantity, then
the temperature dependence disappears and this is a clear indication that it is the phonon displacement
that really maters, rather the phonon population. The computation of the single absorption lines is
a bit more involved. Explicitly, the quantity to be determined is the amplitude of the absorption line
corresponding to the transition energy ∆E(`) = ε− M2

ω + ω`, namely

Γ` = µ2
0

∑
n

e−βωn

Zβ
|〈n+ `|e

M
ω

(b†−b)(b+ b†)|n〉|2. (15)

The first step is the computation of the matrix element 〈m|e
M
ω

(b†−b)|n〉. Using the following algebraic
property

e
M
ω

(b†−b) = e
M
ω
b†e−

M
ω
be−

M2

2ω2 , (16)

one can rewrite the matrix element in a convenient way (for n ≥ m)

〈m|e
M
ω

(b†−b)|n〉 = e−
M2

2ω2

m∑
j=0

n∑
i=0

(−1)i
(
M

ω

)i+j 1

i!j!

√
n!m!√

(n− i)!(m− j)!
〈m− j|n− i〉

= e−
M2

2ω2

m∑
j=0

(−1)n−m+j

(
M

ω

)n−m+2j
√
n!m!

(n−m+ j)! j! (m− j)!
=

= e−
M2

2ω2 (−1)n−m
(
M

ω

)n−m √m!√
n!
Ln−mm

(
M2

ω2

)
, (17)
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where the generalized Laguerre polynomials Lji (x) are defined as follows [16]

Lji (x) =

i∑
t=0

(−1)t

t!
xt

(i+ j)!

(j + t)! (i− t)!
. (18)

Also, for n ≤ m one can use 〈m|X|n〉 = (〈n|X†|m〉)∗ and arrive at

〈m|e
M
ω

(b†−b)|n〉 = e−
M2

2ω2

(
M

ω

)m−n √n!√
m!
Lm−nn

(
M2

ω2

)
. (19)

Coming back to equation (15) one can see that the action of b† + b gives two matrix elements of the
kind discussed before, namely

√
n 〈n+ `|e

M
ω

(b†−b)|n− 1〉+
√
n+ 1 〈n+ `|e

M
ω

(b†−b)|n+ 1〉, (20)

that in turn can be rewritten using (19) (assume ` ≥ 1 for now)

e−
M2

2ω2

[(
M

ω

)`+1
√
n!√

(n+ `)!
L`+1
n−1

(
M2

ω2

)
+ (n+ 1)

(
M

ω

)`−1
√
n!√

(n+ `)!
L`−1
n+1

(
M2

ω2

)]
=

= e−
M2

2ω2

(
M

ω

)`−1
√
n!√

(n+ `)!

[
M2

ω2
L`+1
n−1

(
M2

ω2

)
+ (n+ 1)L`−1

n+1

(
M2

ω2

)]
. (21)

One can now exploit the recurrence relation of Laguerre polynomials [16]

(n+ 1)L`−1
n+1(x) + xL`+1

n−1(x) = (`− x)L`n(x), (22)

and arrive at

〈n+ `|e
M
ω

(b†−b)(b+ b†)|n〉 = e−
M2

2ω2

(
M

ω

)`−1
√
n!√

(n+ `)!

(
`− M2

ω2

)
L`n

(
M2

ω2

)
. (23)

Therefore, it remains to compute the quantity

Γ` = µ2
0

∞∑
n=0

e−βωn

Zβ
e−

M2

ω2

(
M2

ω2

)`−1
n!

(n+ `)!

(
`− M2

ω2

)2(
L`n

(
M2

ω2

))2

. (24)

This can be done by means of the so-called Hardy-Hille formula [16]

∞∑
n=0

n!

(n+ `)!
tnL`n(x)L`n(y) =

e−
(x+y)t
1−t

(xyt)`/2(1− t)
I`

(
2
√
xyt

1− t

)
, (25)

where I`(x) is a modified Bessel function of the first kind. The final expression reads

Γ` = µ2
0

ω2

M2

(
`− M2

ω2

)2

eβω`/2e−
M2

ω2
coth(βω/2)I`

(
M2

ω2 sinh(βω/2)

)
. (26)

A similar treatment can be used to study the case ` < 1 and it turns out that the expression (26)
is true for any `, using the property I−` = I`. Some information can be extracted by looking at the
asymptotic behavior of the modified Bessel function for small or large argument

I`(x) ' 1

`!

(x
2

)`
, 0 < x�

√
`+ 1. (27)
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In particular, when the phonon-electron coupling is small M → 0, so that one can use the relation
(27), it turns out that

Γ` ' µ2
0`

2 eβω`/2

|`|!
1

2 sinh|`|(βω/2)

(
M2

2ω2

)|`|−1

` 6= 0, (28)

Γ0 ' µ2
0

M2

ω2
. (29)

As a consequence, for vanishing coupling M only the absorption lines with ` = 1 or ` = −1 are non-
zero and the line with ` = −1 is e−βω smaller than the other. In the zero-temperature limit β → ∞
only the latter survives (the system is initially in the ground state and cannot lower the number of
phonons).

3.3 Probe-target interaction (general case)

In the general case, when the initial state is not diagonal in the electron-phonon energy eigenbasis
because it has been modified by the pump pulse, the Fermi Golden Rule cannot be applied. Therefore,
we use here a more general treatment where the probe light is considered explicitly as a quantum field
and it is measured after the interaction with the sample. The interaction between the probe light
pulse and the excited sample is described trough the following interaction Hamiltonian

Hint = µ0P
∑
k

(a†k + ak), P = (b+ b†)(d+ d†), (30)

where the annihilation and creation operators ak and a†k are related to the light mode of frequency νk.
Because of the perturbative character of the interaction Hamiltonian Hint, the evolution of the mean
photon number a†jaj relative to the mode νj in a time-interval τ can be computed by a second order
truncation of the Dyson series

Tr
(
%U †(τ)a†jajU(τ)

)
' (31)

Tr

(
%

(
a†jaj + iλ

∫ τ

0

[
Hint(s), a

†
jaj

]
ds− λ2

∫ τ

0
ds

∫ s

0
du
[
Hint(u),

[
Hint(s), a

†
jaj

]]))
. (32)

The first term Tr
(
% a†jaj

)
is the unperturbed light intensity corresponding to |αj |2, by choosing the

initial phonon-electron-photon state in the form:

% = %⊗ |α〉〈α|, % =
∑
`

p0
` |`, 0〉〈`, 0|, (33)

where |α〉 is a multi-photon coherent state, describing the probe pulse, aj |α〉 = αj |α〉. One gets a
vanishing first order contribution, so that a second order calculation is needed. The above choice
of an initial state diagonal in the energy basis provided by the Hamiltonian H (3) is made here to
compare this approach to the previous one. More general non diagonal displaced thermal states will
be considered later on. The second order term Γ(2) reads

Γ(2) = µ2
0

(
8i
∑
k

αjαk

∫ τ

0
ds

∫ s

0
duTr(%[P (s), P (u)]) sin(sνj) cos(uνk)

)
(34)

+ µ2
0Tr
(
%P (s)P (u)

)
ei(s−u)νj + c.c. (35)
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The term in the second line is due to the bosonic commutation relations of the quantized field and
is negligible with respect to the other one for intense light pulses |αk| � 1 and for any mode in the
considered frequency range. Moreover, in order to avoid complications due to the spectral structure
of the incident probe light, we consider from now on the simplifying assumption that αk be constant
for any k in a relevant frequency range. The quantity in the trace can then be easily evaluated

Tr
(
%P (s)P (u)

)
=
∑
`m

p0
` e−i(E

1
m−E0

` )(s−u)
∣∣∣〈`, 0|P |m, 1〉∣∣∣2. (36)

As a result, the time dependence is given by the following integral

8i

∫ τ

0
ds

∫ s

0
du (−2i) sin

(
(E1

m − E0
` )(s− u)

)
sin(sνj) cos(uνk) =

= 4

(
1

νk −∆m`
− 1

νk + ∆m`

)
×

× 2

(
sin2

(
τ
νj+νk

2

)
νj + νk

+
sin2

(
τ
νj−νk

2

)
νj − νk

−
sin2

(
τ
νj+∆m`

2

)
νj + ∆m`

−
sin2

(
τ
νj−∆m`

2

)
νj −∆m`

)
(37)

with ∆m` = E1
m − E0

` . By defining the function Dτ (x) = 4 sin2(τx/2)
x2

we see that the function δτ (x) =
1

2πτDτ (x) is a representation of the Dirac delta in the limit τ →∞. Therefore, one finds for the rate
of change in transmissivity at frequency νj

lim
τ→∞

Γ(2)(τ)

τ
= −4πµ2

0

∑
`m

p0
`

∣∣∣〈`, 0|P |m, 1〉∣∣∣2δ(νj −∆m`) (38)

This corresponds to the rate computed through the Fermi golden rule with a minus sign.
We now perform the same calculation for a state % of the form

% =
∑
`

p0
` D|`, 0〉〈`, 0|D†, (39)

where D = eBt(b
†−b) is a phononic displacement operator sending b into b − Bt, with Bt a time

modulated real parameter. The case we are particularly interested in is when the operator % is obtained
acting with the displacement operator on the thermal state, namely when % = D%βD

†. In this case %
is a so-called displaced thermal state, that accounts for large fluctuations of the position quadrature
at high temperature, and at the same time yields a nonzero average value of the position quadrature
depending on the amount of phononic displacement (quantified by the parameter Bt). This kind of
description is used in the following in order to account for the excitation of the vibrational degree of
freedom in the sample due to the infrared pump pulse. Indeed, in the following, we model the dynamics
induced by the pump as a time-dependent displacement operator acting on the vibrational degree of
freedom. This is a realistic scenario when describing, for instance, stimulated Raman scattering [17].
In what follows, the effects of the interaction of the sample with the pump are implicitly encoded in
the external phonon displacing parameter Bt, without dynamically predicting its functional form.
The absorption rate can be calculated as before, but now the correlation function Tr

(
%P (s)P (u)

)
reads

Tr
(
%P (s)P (u)

)
=
∑
`mnv

p0
` 〈`, 0|D†|m, 0〉〈m, 0|P |n, 1〉〈n, 1|P |v, 0〉〈v, 0|D|`, 0〉×

× e−is∆nm eiu∆nv . (40)
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Integrating in time and performing the same limit as before for the rate one finds

lim
τ→∞

Γ(2)(τ)

τ
= µ2

0δ(νj − ε− ω`)
∑
n

〈n|D%βD†(b+ b†)e−
M
ω

(b†−b)|n+ `〉×

× 〈n+ `|e
M
ω

(b†−b)(b+ b†)|n〉+ c.c.

Therefore, the spectral line Γ` reads

Γ` = µ2
0

∑
n

〈n|D%βD†(b+ b†)e−
M
ω

(b†−b)|n+ `〉〈n+ `|e
M
ω

(b†−b)(b+ b†)|n〉. (41)

We can first discuss the total absorption as in the equilibrium case. The calculation is quite straight-
forward as it amounts to summing over all ` indexes and the result is

Γ =

+∞∑
`=−∞

Γ` = µ2
0

(
coth

(βω
2

)
+ 4B2

t

)
. (42)

With respect to the thermal state calculation (14), we see a displacement-dependent offset to the
temperature dependence. According to this model, the correction to the total absorption is always
positive and again independent of whether the phonon mode ω is electronically active (M 6= 0) or not
(M = 0) and of whether the phonon-electron coupling is via the phonon-population. However, it is
interesting to see how the spectral weight shifts depending on Bt, because such is the experimental
evidence we would like to reproduce. This is done in the following, computing each single absorption
term Γ`. Notice that for, large times, due to dissipative effects resulting from the phonon interacting
with other sample degrees of freedom, the vibrational initial state is expected to relax to a thermal
state at higher temperature, possibly still displaced but, unlike the initial one subjected to the pump
pulse, by a quantity B independent of time. Therefore, unlike the displacement at short times, the
one in the long time regime will not give rise to the temporal shift of the absorption lines that are
associated with transparency effects.
Let us start with the case ` > 0. The first matrix element can be conveniently rewritten exploiting
the bosonic commutation relations

〈n|D%βD†(b+ b†)e−
M
ω

(b†−b)|n+ `〉 =

=µ2
0

e−βωn

Zβ
〈n|eBt(eβωb†−e−βωb)(b† + b+ 2Bt)e

−(M
ω

+Bt)(b†−b)|n+ `〉 =

=µ2
0

e−βωn

Zβ
〈n|(b† + b− 2Bt cosh(βω) + 2Bt)e

Bt(eβωb†−e−βωb)e−(M
ω

+Bt)(b†−b)|n+ `〉 =

=µ2
0

e−βωn

Zβ
e−Bt(

M
ω

+Bt) sinh(βω)〈n|
(
b+ b† − 4Bt sinh2

(βω
2

))
eb
†x+by|n+ `〉 (43)

where the coefficients x and y are defined as follows

x = −M
ω

+Bt(e
βω − 1), y =

M

ω
+Bt(1− e−βω). (44)

Finally one has

〈n|D%βD†(b+ b†)e−
M
ω

(b†−b)|n+ `〉 =

=µ2
0

e−βωn

Zβ
e−

M2

2ω2
(1+2

ωBt
M

(1+
ωBt
M

)(1−e−βω))〈n|
(
b+ b† − 4Bt sinh2

(βω
2

))
exb
†
eyb|n+ `〉 (45)

15



Using again the properties of bosonic operators one can write for m > n

〈n|exb†eyb|m〉 =

√
n!√
m!
ym−nLm−nn (−xy), (46)

where the product −xy explicitly reads

− xy =
M2

ω2
− 4Bt

(M
ω

+Bt

)
sinh2

(βω
2

)
. (47)

The matrix element 〈n|
(
b+ b† − 4Bt sinh2

(βω
2

))
exb
†
eyb|n+ `〉 then reads

√
n〈n− 1|X|n+ `〉+

√
n+ 1〈n+ 1|X|n+ `〉 − 4Bt sinh2

(βω
2

)
〈n|X|n+ `〉, (48)

where X = exb
†
eyb, and can be rewritten accordingly as

√
n!√

(n+ `)!

[
y`−1

(
y2L`+1

n−1(−xy) + (n+ 1)L`−1
n+1(−xy)

)
− 4Bt sinh2

(βω
2

)
y`L`n(−xy)

]
. (49)

Using the recurrence relations for the Laguerre polynomials one finds
√
n!√

(n+ `)!
y`−1

[(
(`+ xy)− 4Bty sinh2

(βω
2

))
L`n(−xy) + (y2 + xy)L`+1

n−1(−xy)
]
. (50)

The first term can be summed as in the time-independent case. In particular, one finds

∞∑
n=0

n!

(n+ `)!
e−βωnL`n

(
− xy

)
L`n

(M2

ω2

)
=

e
−(M

2

ω2
−xy) 1

eβω−1

(1− e−βω)e−
βω`
2

(
− xyM2

ω2

) `
2

I`

((
− xyM2

ω2

) 1
2

sinh(βω/2)

)
(51)

The other one can be also treated explicitly using the property

L`+1
n−1(z) = − d

dz
L`n(z). (52)

Indeed one can write

∞∑
n=0

n!

(n+ `)!
tnL`+1

n−1(z)L`n(w) =

= − d

dz

∞∑
n=0

n!

(n+ `)!
tnL`n(z)L`n(w) =

=
(zwt)−`/2

1− t
e−

(z+w)t
1−t

[ t

1− t
I`

(
2
√
zwt

1− t

)
−

√
wt√

z(1− t)
I`+1

(
2
√
zwt

1− t

)]
. (53)

The exchange of derivative and summation is allowed by the uniform convergence of the series in
compact sets |z| < a, |w| < b. In order to prove uniform converegence it is sufficient to notice that

|L`n(z)| ≤ L`n(−a), |z| ≤ a. (54)

Indeed, the quantity |an| is bounded as follows

|an| =
n!

(n+ `)!
tn|L`n(z)||L`n(w)| ≤ n!

(n+ `)!
tnL`n(−a)L`n(−b) ≡Mn (55)
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and
∑

nMn < ∞. This proves the uniform convergence according to the Weierstrass criterion. The
sum reads explicitly

∞∑
n=0

n!

(n+ `)!
tnL`+1

n−1

(
− xy

)
L`n

(M2

ω2

)
=

=
e
−(M

2

ω2
−xy) 1

eβω−1

(1− e−βω)e−
βω`
2

(
− xyM2

ω2

) `
2

 1

eβω − 1
I`

((
− xyM2

ω2

) 1
2

sinh(βω/2)

)
−

M
ω

2 sinh(βω/2)(−xy)1/2
I`+1

((
− xyM2

ω2

) 1
2

sinh(βω/2)

)
(56)

A similar calculation can be performed in the case ` ≤ 0 :

Γ` = µ2
0(`−A)

e−A coth(C)eC`(
1− 4B̃t(1 + B̃t) sinh2(C)

)`/2(1 + B̃t(1− e−2C)
)`−1

A−1×

×

[(
`−A+AB̃t

(
1 + e−2C + 2B̃t(1− e−2C)

))
I`

(A(1− 4B̃t(1 + B̃t) sinh2(C))1/2

sinh(C)

)
+

−AB sinh(2C)(1 + B̃t(1− e−2C))

sinh(C)(1− 4B̃t(1 + B̃t) sinh2(C))1/2
I`+1

(A(1− 4B̃t(1 + B̃t) sinh2(C))1/2

sinh(C)

)]
, ` > 0,

(57)

Γ` = µ2
0(|`|+A)

e−A coth(C)eC`(
1− 4B̃t(1 + B̃t) sinh2(C)

)|`|/2(1− B̃t(e2C − 1)
)|`|−1

A−1×

×

[(
|`|+A− 2AB̃t

(e2C sinh(2C)

e2C − 1
− B̃t(e2C − 1)

))
I|`|

(A(1− 4B̃t(1 + B̃t) sinh2(C))1/2

sinh(C)

)
+

−AB̃t
− sinh(2C) + 2B̃t sinh2(C)(e2C + 1)

sinh(C)(1− 4B̃t(1 + B̃t) sinh2(C))1/2
I|`|+1

(A(1− 4B̃t(1 + B̃t) sinh2(C))1/2

sinh(C)

)]
, ` ≤ 0,

(58)

where we defined the three adimensional parameters A, B̃t, C as

A =
M2

ω2
, B̃t = Bt

ω

M
, C =

βω

2
. (59)

These three parameters completely specify the model in the approximation we used. The parameter A
quantifies the phonon-electron coupling and therefore the displacement of the nuclear positions in the
electronic excited state. The parameter B̃t instead is a dynamical one, originated by the pump pulse,
and given by the ratio between the light-induced instantaneous displacement and the one due to the
electron-phonon coupling, only. Finally, the third parameter, C, specifies the temperature in units of
the phonon frequency. In the Supplementary Figure 8.a-c the distributions of the Γ` are plotted for
different values of the parameters A, B̃t, and C keeping, for each subfigure, two parameters constant
and varying the third one. In particular, we have assumed that: (i) the relevant phonon mode to
have a frequency ω = 16 meV, (ii) the coupling constant to be M = ω in order to match the width of
the experimental outcome and (iii) the temperature to be T = 300 K (C = 0.31) for Supplementary
Fig.8.a-b. One can also numerically compute the central energy (< E >) and the energy bandwidth
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(σE) of these distributions. In this respect, Figure 8.a shows that a stronger e-p couplings increases the
number of possible transitions, which broadens the distribution, and pushes it toward higher energy.
Figure 8.b shows that a higher Bt mostly displaces the overall distribution toward higher energy.
Figure 8.c shows that a lower temperature mostly narrows the distribution.

Figure 8: Absorption probability distributions (eq.57-58) for a variation of the three parameters
(eq.59): (a) A (strength of the e-p couplings), (b) B (amplitude of the displacement) and (c) C
(temperature). For each graph, the values of the two other parameters are kept constant and indicated
on the top of the graph. Moreover the central energy (resp. the energy bandwidth) is represented by
a vertical dashed line (resp. a horizontal line below the graph).

Then, we can also study the behaviors of the central energy and the energy bandwidth of the dis-
tribution as functions of a wide range of temperatures and displacements, in the case M = ω = 16
meV. The results are plotted in Supplementary Fig.9.a-d. Each point of these curves can be seen as
if the sample were in different initial conditions Teq and Bt,eq. The results confirm the trends; indeed,
the observed profiles are mostly monotonic and most of them do not change behavior (increase or
decrease) with a change of the secondary parameter: Bt for the T-dependency (subfigures a-b) and
T for the Bt-dependency (subfigures c-d). Interestingly, the central energy < E > as a function of
the temperature displays a different behavior depending on Bt: < E > decreases with T if Bt . 0.25
but < E > increases with T if Bt & 0.35. As matter of fact, we know that the central energy of the
d-d transitions should decrease when increasing the sample temperature. Thus, it gives us a range of
validity of the model and, in the following, we choose Bt,eq = 0.1 to respect this experimental evidence.
As explained in the main text, we are particularly interested in comparing the impact of a temperature
variation around an equilibrium value Teq in relation to the effects of a displacement variation around
an equilibrium Bt,eq. Thus, we have studied the trend of the central energy and the energy bandwidth
as a function of different variations of the temperature (Supplementary Fig.10.a-b) or as a function
of the displacement (Supplementary Fig.10.c-d)) around some experimentally relevant parameters:
M = ω = 16 meV, Teq = 300 K, Bt,eq = 0.1. As it is shown by all the figures, the trend is rather
linear for positive or negative variations of the parameters δT and ∆Bt. The logarithm scale allows to
better estimate ∆ < E > or ∆σE as a function of δT or ∆Bt. In particular, we can observe that the
retrieved ∆ < E > or ∆σE for δT = 10−2 K is one to two order of magnitude lower than the retrieved
variation for ∆Bt = 10−3, which would be equivalent to a pump-induced displacement of 10−4Å. This
again demonstrates that the displacement variation around an equilibrium condition has a major role
to play in the subsequent dynamical variations of the d-d transitions electronic properties. Note that
the computation of these variations at Teq = 8 K confirms this trend (taking into account δT = 1 K
and ∆Bt = 10−3).
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Figure 9: Central energy as a function of (a) the temperature and (c) the displacement. Energy
bandwidth as a function of (b) the temperature and (d) the displacement. In each graph, a given
color corresponds to a given secondary parameter: Bt for a-b and T for c-d.

3.4 Molecular electronic excitations

In our model we considered an interaction Hamiltonian between the light and the sample that is
proportional to the phonon position operator b+ b†. In order to justify this choice we recall here some
basic notions of molecular physics.
Consider the wave function of a molecule in the Born-Oppenheimer approximation

Φ`ν(r,R) = ψ`(r;R)χν,`(R), (60)

where the electronic wave function ψ`(r;R) is a solution of the clamped-nuclei Schrödinger equation
and depends parametrically on R, and the nuclear wave function χν,`(R) is the ν−th level eigenfunction
relative to the harmonic potential corresponding to level `.
The transition probability rate between two electronic states, labeled by ` = 0 and ` = 1, and
vibrational levels n→ m, can be computed according to the Fermi Golden rule and reads

Γ0→1(ω) = |〈ν = m, ` = 1|µ|ν = n, ` = 0〉|2δ(ω − Em−n), (61)

where the energy of the transition is Em−n = ε + ω0(m − n) and the operator µ = eZ · R − er =
µel(r) +µnu(R) is the electric dipole moment containing both nuclear and electronic coordinates. The
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Figure 10: Central energy shift as a function of (a) the temperature and (c) the displacement. Energy
bandwidth shift as a function of (b) the temperature and (d) the displacement. Positive parameter
variations are represented by red cross and in the case of a negative parameter variation, the opposite
of the computed shift is plotted as a function of the absolute value of the variation (blue circle).

matrix element reads

〈ν = m, ` = 1|µ|ν = n, ` = 0〉 =

∫
dR dr ψ∗1(r;R)χ∗m,1(R)(µ)ψ0(r;R)χn,0(R)

=

∫
dRχ∗m,1(R)µnu(R)χn,0(R)

∫
drψ∗1(r;R)ψ0(r;R)+

+

∫
dRχ∗m,1(R)χn,0(R)

∫
drψ∗1(r;R)µel(r)ψ0(r;R). (62)

The first term is vanishing because the electronic wave functions form an orthonormal basis in the
electronic Hilbert space for each fixed position of the nuclei R. For the same reason, we can expand
a generic ψn(r;R) in terms of the wave functions at the equilibrium position ψm(r;R0)

ψn(r;R) =
∑
m

cnm(R−R0)ψm(r;R0). (63)

For later convenience, we can define the integral

Imn :=

∫
drψ∗m(r;R0)µel(r)ψn(r;R0). (64)
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Using this notation, the integral over the electronic coordinates in the second term of (62) becomes∫
drψ∗1(r;R)µel(r)ψ0(r;R) = c∗11c00I10 +

∑
m6=1

c∗1mc00Im0+

+
∑
n6=0

c∗11c0nI1n +
∑

m6=1,n6=0

c∗1mc0nImn. (65)

If the bare electronic transition is allowed by symmetry selection rules, then the first term I10 is the
dominant contribution to the matrix element. On the contrary, if symmetry forbids the transition in
equilibrium, namely I10 = 0, the other contributions become relevant [14, 18]. In particular, for small
displacement from the equilibrium position we can expand the coefficients c in a Taylor series

cnn = 1 + αn(R−R0) +O((R−R0)2),

cnm = αnm(R−R0) +O((R−R0)2), m 6= n

with some complex parameters α. The dominant terms in (65) are then

∫
drψ∗1(r;R)µel(r)ψ0(r;R) ' (R−R0)

∑
m 6=1

α∗1mIm0 +
∑
n6=0

α0nI1n

 . (66)

Coming back to the full expression for the matrix element (62) we get

〈ν = m, l = 1|µ|ν = n, l = 0〉 =

∑
m6=1

α∗1mIm0 +
∑
n6=0

α0nI1n

× ∫ dRχ∗m,1(R)(R−R0)χn,0(R). (67)

Therefore, our model is consistent with the previous findings, because the height of the spectral lines
is proportional to the modulus squared of the following matrix element

〈m|e
M
ω

(b†−b)(b+ b†)|n〉. (68)

3.5 Relevant length scale estimation

In order to estimate the relevant length scale in our model, we consider a displaced harmonic potential
of the form

V =
1

2
mω2x2 + λx, (69)

where ω is the frequency, m is the mass of the oscillator and λ represents the coupling. In natural
units (c = ~ = kb = 1), mass and frequency have the same physical units of energy, say eV , while the
position x is expressed in eV −1. For dimensional consistency λ has units of eV 2. The minimum of the
harmonic trap Vmin and the corresponding position xmin are

xmin = − λ

mω2
, Vmin = −1

2

λ2

mω2
. (70)

By comparing the energy shift with the calculation done in the manuscript we can infer the relation
between λ and M

λ =
√

2mωM, (71)

and rewrite the position of the minimum in terms of M
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xmin = −M
ω

√
2√
mω

. (72)

This is also consistent with the evaluation of the average position in the displaced ground state
computed using the quantum model

xground =
1√

2mω
〈b+ b†〉 = −2

M

ω

1√
2mω

= −M
ω

√
2√
mω

. (73)

In order to get numerical values for the quantity xmin we assume ω = 16meV and consider the mass
of Copper as reference m = 63.546 a.m.u. = 5.9 · 1010eV .
It turns out that

√
2√
mω
' 0.46 · 10−4eV −1 (74)

and using the conversion factor 1eV −1 = 1.97 ·10−7m we can find the connection between the physical
displacement ∆x and the adimensional parameter M

ω

∆x ∼ M

ω
· 0.9 · 10−11m =

M

ω
0.09Å. (75)

The role of Bt is analogous to that of M/ω in the previous equation.

4 DFT calculation

We support our interpretation of the experimental observations using DFT (Density Functional The-
ory) simulations of the sample CuGeO3. In particular, after obtaining the optimized structure we
compared the ground state properties (band structure, insulating gap, antiferromagnetism of Cu
chains) with the existing literature. Finally, we performed the calculation of the phonon modes of the
crystal and computed the force field on the octahedron by displacing the atoms along the mode B2u

(see Methods for details).

4.1 Ground state calculations

The obtained band structures (Supplementary Fig.11.a and Supplementary Fig.11.b) are compatible
and in turn they are in agreement with the result presented in [19]. Moreover, the spin-polarized
calculation correctly converges to a solution with a finite atomic magnetic moment between 0.52µB
(QE) and 0.66µB (octopus) in the antiferromagnetic Cu chain that is a bit lower than 0.76µB, the
value found in [19]. However, the different methods that are used there can justify this mismatch.

4.2 Phonons

The calculation of the phonon modes has been performed with the software QE. The diagonalization
of the dynamical matrix has been performed without the Hubbard correction because this function is
currently not available in the software. The result is shown in the Table 1.
The remaining force field, which is computed by the sum of the force fields for opposite displacements,
is detailed in Table 2 and it shows that the apical oxygen atoms are forced to move along the y
direction as it is depicted in Figure 1.(c).
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Figure 11: (a) Band structure of Copper Germanate obtained with octopus, using a spin-polarized
PBE+U calculation, with pseudo-dojo pseudopotentials. A U value of 6.7 eV has been considered
in order to compare results with [19]. (b) Band structure of Copper Germanate obtained with QE,
using a spin-polarized PBE+U calculation, with pseudodojo pseudopotentials. A U value of 6.7 eV
has been considered in order to compare results with [19].

Table 1: Phonon modes retrieved with QE.

frequency symmetry IR vs R
(cm−1)

-41.9 B3u I

-22.8 B2u I

31.9 B1u I

60.2 B1u I

79.9 Au
115.4 B1g R

120.0 B2g R

124.7 B3u I

157.6 B2u I

178.4 Ag R

191.0 B1u I

224.0 B2g R

262.2 B3u I

272.2 B1u I

284.8 B3u I

frequency symmetry IR vs R
(cm−1)

289.5 Ag R

341.8 B1u I

366.3 B2g R

377.3 B3g R

395.1 B1g R

547.7 Au
550.5 B2u I

582.2 Ag R

586.6 B3u I

686.3 B1u I

700.5 B1g R

702.6 B2u I

733.7 B2g R

745.2 B3u I

781.6 Ag R
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Table 2: Remaining force field acting on atoms (cartesian axes, Ry/au) and resulting from sum of the
force fields for a positive (+∆x) and a negative (-∆x) displacement.

Atom Type ∆Fx ∆Fy ∆Fz
1 O -2.7e-07 -0.00026 -0.000122

2 O -2.7e-07 0.00026 0.000122

3 O -2.2e-07 -0.00026 0.000119

4 O -2.2e-07 0.00026 -0.000119

5 O 2.9e-07 -0.03425 1.4e-06

6 O 2.9e-07 0.03425 -1.4e-06

7 Cu -2.7e-07 0 0

8 Cu -4.3e-07 0 0

9 Ge 5.5e-07 0.03318 5.6e-06

10 Ge 5.5e-07 -0.03318 -5.6e-06
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