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I. Synthesis of lead halide perovskite sample 

The single crystals used in this study were prepared by the antisolvent vapor assisted 

crystallization method. MACl(1 mmol, Tokyo Chemical Industry Co. Ltd) and PbCl2(1 

mmol, anhydrous, Sigma Aldrich) were first dissolved in 1mL of dimethyl sulfoxide 

(FUJIFILM Wako Pure Chemical Corporation), then 1mL of N,N-dimethylformamide 

(Tokyo Chemical Industry Co. Ltd.) was added to the resulting solution. A small vial 

partially filled with this perovskite precursor solution was placed in a bigger vial 

containing Toluene. The lid for this bigger vial is closed tightly for vapor diffusion. The 

crystals of MAPbCl3 normally are obtained within a few days. 
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II. HHG measurement 

The HHG experiments used mid-infrared (MIR) pulses at 3.5 μm (0.35 eV) from a KTA-

based optical parametric amplifier. The MIR pulses were compressed by spectral 

broadening in a germanium plate followed by dispersion compensation in sapphire and 

fused silica plates. The pulse duration was measured to be 60 fs by second harmonic 

generation frequency-resolved optical gating (SHG-FROG). The harmonic yields as a 

function of the peak electric field or the crystallographic orientation angle were measured 

by rotating the variable neutral density filter or half-waveplate. The harmonics generated 

in and transmitted through the sample were measured with a charge-coupled-device 

camera sensitive to the visible and ultraviolet regions and an InGaAs array detector 

sensitive to the near-infrared region. 

 

III. Theoretical method 

We perform time-evolution of density-matrix, calling TD-DM, relying on time-dependent 

one-body Hamiltonian based on the velocity gauge: 

𝑖ℏ
d

d𝑡
𝜌 = [ℎ(𝑡), 𝜌] + 𝑠, ℎ (𝑡) = ℎ଴ +

1

𝑚
𝒑 ⋅ 𝑨(𝑡) +

1

2𝑚
𝑨ଶ(𝑡) + 𝛴(𝑡), (1) 

where ℎ଴, 𝒑, 𝑨, 𝛴, and 𝑠 are the field-free Hamiltonian, the momentum operator, the 

vector potential, the scissors operator for correcting gap, and the collision term accounting 

for the interband relaxation. In the actual calculation, taking matrix elements of both sides 

of the equation with a basis set leads to the working equation. We employ orbitals derived 

from density-functional theory with local-density approximation (DFT-LDA) [S1,S2], 

and corresponding matrix elements are chosen as 

⟨𝜙௕𝒌|ℎ଴|𝜙௖𝒌⟩ = 𝜖௕𝒌𝛿௕௖, ⟨𝜙௕𝒌|𝒑|𝜙௖𝒌⟩ = 𝒑௕௖
𝒌 , 𝜌௕௖

𝒌 (𝑡) = ⟨𝜙௕𝒌|𝜌(𝑡)|𝜙௖𝒌⟩, (2)

where 𝜖௕𝒌  and 𝒑௕௖
𝒌   are an eigenvalue and a momentum operator matrix element 

derived by DFT-LDA. Band gaps derived from DFT-LDA is usually underestimated 

compared to values of more sophisticated theories and experimental values. Then, we 

introduced the scissors operator to let the gap widen. To investigate the effect on interband 

relaxation against nonlinear absorption, we introduce the scattering term into (1).  

 

III-1. Intraband and interband decomposition of the induced current 

Let us introduce a basis set to define a diagonal and an off-diagonal component of our 

density matrix. The basis set is denoted as 𝜑ఈ୩ . The diagonal and the off-diagonal 

components are 𝛼 = 𝛽  and 𝛼 ≠ 𝛽  for 𝜌෤ఈఉ
𝒌 (𝑡) = ൻ𝜑ఈ𝒌ห𝜌(𝑡)ห𝜑ఉ𝒌ൿ . Any observable, 

𝑂(𝑡) = tr(𝜌𝑜), can be decomposed to diagonal and off-diagonal components according 

to the density-matrix as  
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𝑂(𝑡) = ෍ 𝜌෤ఈఉ
𝒌 𝑜෤ఉఈ

𝒌

ఈఉ𝒌

= ෍ 𝜌෤ఈఈ
𝒌 𝑜෤ఈఈ

𝒌

ఈ𝒌

+ ෍ 𝜌෤ఈఉ
𝒌 𝑜෤ఉఈ

𝒌

ఈఉ(ఈஷఉ)𝒌

≡ 𝑂ୈ(𝑡) + 𝑂୓ୈ(𝑡). (3) 

 

A proper physical picture must be introduced for the choice of the basis set. A physically 

reasonable way is that instantaneous eigenfunction of the time-dependent Hamiltonian: 

ℎ(𝑡)𝜑ఈ𝒌
(௧)

= 𝜀ఈ𝒌
(௧)

𝜑ఈ𝒌
(௧)

(4) 

where superscript (𝑡) means that this function and value parametrically depend on time, 

namely we do not impose any relation between different times, ቀ𝜀ఈ𝒌
(௧)

, 𝜑ఈ𝒌
(௧)

ቁ  and 

ቀ𝜀
ఈ𝒌

൫௧ᇲ൯
, 𝜑

ఈ𝒌

൫௧ᇲ൯
ቁ . To think about the physics behind the choice, let us argue an adiabatic 

situation under a slowly varying field. Under the slowly varying field, the system does 

not undergo any excitation guaranteed by the adiabatic theorem. For the lattice periodic 

part of the orbital function, we have an equation of motion: 

𝑖ℏ
d

d𝑡
𝑢௕𝒌 = ℎ𝒌(𝑡)𝑢௕𝒌, ℎ𝒌(𝑡) = ℎ଴,𝒌 +

1

𝑚
𝒑 ⋅ ൫𝒌 + 𝑨(𝑡)൯ +

1

2𝑚
൫𝒌 + 𝑨(𝑡)൯

ଶ
+ 𝛴𝒌(𝑡),

𝜓௕𝒌(𝒓, 𝑡) = 𝑒௜𝒌⋅𝒓𝑢௕𝒌(𝒓, 𝑡) (5)
 

which is equivalent to Eq. (1). Since the time dependence in the Hamiltonian appears 

time-dependent momentum shift via the vector potential ℎ𝒌(𝑡) = ℎ𝒌ା𝑨(௧), the adiabatic 

limit of the wave function is 𝑢௕𝒌
ୟୢ୧ୟୠୟ୲୧ୡ ∝ 𝑣௕𝒌ା𝑨(௧), ℎ𝒌ା𝑨(௧)𝑣௕𝒌ା𝑨(௧) = 𝜀௕𝒌ା𝑨(௧)𝑣௕𝒌ା𝑨(௧) 

if energy eigenvalues do not face crossing each other. The adiabatic wave function is 

nothing but the eigenfunction of instantaneous Hamiltonian. 

 We further discuss the reason why this choice that the adiabatic basis is reasonable. We 

are interested in the induced current as an observable: 

𝑱(𝑡) = 𝑱୧୬୲୰ୟ(𝑡) + 𝑱୧୬୲ୣ୰(𝑡),

𝑱୧୬୲୰ୟ(𝑡) = −
𝑒

𝛺𝑚
෍ 𝜌෤ఈఈ

𝒌 (𝑡) ቀ𝒑෥ఈఈ
𝒌,(௧)

+ 𝑨(𝑡)ቁ

ఈ𝒌

, 𝑱୧୬୲ୣ୰(𝑡) = −
𝑒

𝛺𝑚
෍ 𝜌෤ఈఉ

𝒌 (𝑡)𝒑෥ఉఈ
𝒌,(௧)

ఈఉ(ఈஷఉ)𝒌

(6) 

where 𝑒(> 0) , 𝛺 , and 𝑚 , are the electron charge, volume of crystal, and mass of 

electron. Intraband and interband current densities are defined as the diagonal and the off-

diagonal component in Eq. (3). The superscript (𝑡)  of the momentum operator 

represents the parametric time dependence on time as in the adiabatic wave function. Let 

us concentrate on the intraband contribution because this is the dominant term in our 

simulation results. The momentum operator diagonal component has the following 

relation: 𝒑ఈఈ
𝒌 = 𝜕𝜀ఈ𝒌 𝜕𝒌⁄ , namely just group velocity derived from the band dispersion. 

Therefore, the intraband current can be summarized as 
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𝑱୧୬୲୰ୟ(𝒕) = −
𝑒

𝛺𝑚
෍ 𝑛ఈ𝒌(𝑡) ൬

𝜕𝜀ఈ𝒌

𝜕𝒌
൰

𝒌ା𝑨(௧)
ఈ𝒌

, 𝑛ఈ𝒌(𝑡) = 𝜌෤ఈఈ
𝒌 (𝑡). (7) 

 

The first term is interpreted as population times group velocity, invoking intraband current 

in which the population is sometimes regarded as time-independent constant. While 

anharmonicity of the band dispersion is the source of high-order harmonics (HH), the 

population is the source as well. The former aspect is totally determined by a band 

dispersion and the acceleration theorem, d𝒌 d𝑡⁄ = d𝑨 d𝑡⁄ .  Later aspect is somewhat 

thought of as transient excitation amount due to the electric field reflecting the orientation 

dependence of driving field polarization.   

 

III-2. Band averaged intraband current 

To get more insight from the detail of intraband current formula, Eq. (7), we decompose 

the total to band-by-band contribution. By looking at the band structure in Fig. 3(a), many 

crossing points in the valence bands (VBs), the group of 9 energy bands at topmost energy 

among valence bands composed by s-nature orbitals of Pb and p-nature orbitals Cl atoms. 

The band crossing leads to a breakdown of adiabatic discussion within a single-band 

picture. When we think of a single band treatment, the population jump into another band 

happens when a crystal momentum 𝒌(𝑡) = 𝒌(𝑡 = 0) + 𝑨(𝑡)  passes through the 

crossing point leading to unphysical sharp stepwise time dependence. This single-band 

intraband current shows much larger high harmonic components due to the sharp structure 

from the unphysical reason. To overcome this failure, we introduce a band averaged 

intraband current collecting multi-band intraband current components over a particular 

range such that bands, as a group, are isolated energetically from other band groups, e.g. 

VBA. By the multi-band averaging, the sharp jump of a population is significantly 

canceled by the counter sharp jump.  

 We define the band averaged intraband current density over VBs as  

𝑱୚୆ୱ(𝑡) = −
𝑒

𝛺𝑚
෍ [𝑛ఈ𝒌(𝑡) − 𝑛ఈ𝒌(𝑡 = 0)]ർ𝜑ఈ𝒌

(௧)
ቚ𝒑 + 𝑨(𝑡)ቚ𝜑ఈ𝒌

(௧)
඀

ఈ(∈୚୆ୱ)𝒌

,

𝑛ఈ𝒌(𝑡) = ർ𝜑ఈ𝒌
(௧)

ቚ𝜌(𝑡)ቚ𝜑ఈ𝒌
(௧)

඀. (8)

 

Note that the detailed description of the population, 𝑛௕௞(𝑡), will be discussed in Section 

IV. The subtraction of the initial population, 𝑛ఈ𝒌(𝑡 = 0) , is introduced to discuss 

population change from the ground state. The contribution from this term is ideally zero 

for when we have infinite Hilbert space for each 𝒌 and infinite number for the Brillouin 

zone sampling because the valence bands are initially fully occupied and do not have any 
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current. The band averaged intraband current for VBs shows much smoother behavior 

and is well coincide with the total intraband current as shown in Fig. S1. The band-

averaged population of VBs is similarly defined as 

Δ𝑛୚୆ୱ =
1

𝛺
෍ [𝑛ఈ௞(𝑡) − 𝑛ఈ௞(𝑡 = 0)]

ఈ(∈୚୆ୱ)௞

. (9) 

 

III-3. Numerical scheme to evaluate velocity from the band averaged current density and 

population 

A velocity derived by the band averaged current density and population is defined by 

𝐽୚୆ୱ(𝑡) = 𝑒Δ𝑛୚୆ୱ(𝑡)𝑉୚୆ୱ(𝑡). This velocity can be interpreted as an averaged velocity 

over VBs. When we numerically evaluate the velocity, the denomination of the time-

dependent population appears. The time-dependent population could be very tiny for 

weak-field, especially at the very beginning of the simulation, leading to numerical 

instability. To avoid instability, we introduce a window function in the time domain such 

that extracting values around the strong field. Precisely, we use a Gaussian function for 

the window as, 

𝑉෨୚୆ୱ(𝑡) =
𝐽୚୆ୱ(𝑡)

Δ𝑛୚୆ୱ(𝑡) − 2.0 × 10ିଵ଼
𝑒ି(௧ି் ଶ⁄ )మ ௨మ⁄ , (10) 

where 𝑇 =400 fs and 𝑢 = 20 fs. Fourier transforms of this velocity is shown in Fig. 5. 

 

III-4. Interband relaxation within the velocity gauge 

The interband relaxation is usually introduced for a field-free system, to imitate that 

interband polarization decoherence due to interactions among electrons and to other 

subsystems such as phonon. The DM of the system undergoes diagonal via the relaxation. 

The diagonal and off-diagonal components depend on the choice of representation for 

DM. Usually, eigenfunctions of the one-body Hamiltonian are employed for 

representation. The choice of the representation becomes ambiguous when the external 

field is. We employ the instantaneous eigenfunction of the time-dependent Hamiltonian 

based on the velocity-gauge in Eq. (4). According to the adiabatic theorem, no interband 

relaxation happens with this representation.  

The explicit expression of the relaxation term is  

𝑠 = −𝑖 ෍
1

𝜏
ቚ𝜑ఈ𝒌

(௧)
඀ ർ𝜑ఈ𝒌

(௧)
ቚ

ఈఉ(ఈஷఉ)𝒌

, (11) 

where 𝜏 is the relaxation constant.  
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III-5. Numerical dimension of the simulation 

Before time-dependent simulation of Eq. (1), we perform DFT-LDA calculation for 

CsPbCl3 crystal using the Elk code [S3]. The lattice constant is chosen as 0.561 nm [S4], 

experimental value for the crystal. The localize orbital is included in the DFT-LDA 

calculation. The number of empty bands is 81, i.e. totally 108 bands including the valence 

bands, spanning 98.5 eV energy range. The number of k-grid in the first-Brillouin zone is 

323 without symmetry restriction for the time-dependent simulation. The momentum 

operator matrix elements evaluated with the DFT-LDA Kohn-Sham orbital are provided 

by also the Elk code, written in PMAT.OUT on the disk. The DFT-LDA calculation with 

the finite Brillouin zone sampling predicts 1.79 eV at the R-point. 

 For the electron dynamics simulation, we use 1.25 eV gap correction to obtain 3.04 eV 

bandgap by using the scissors operator. The time-step is 24 as, 1.0 a.u. We use an applied 

electric field shape: 

𝐴(𝑡) =
𝐸଴

𝜔
sinସ ൬

𝜋𝑡

𝑇
൰ sin ቆ𝜔 ൬𝑡 −

𝑇

2
൰ቇ (0 ≤ 𝑡 < 𝑇), 𝐸(𝑡) = −𝐴̇, (12) 

where 𝐸଴ , 𝜔 , and 𝑇  are maximum electric field strength, angular frequency of the 

electric field, and pulse duration parameter. We employ ℏ𝜔 = 0.34 eV and 𝑇 = 400 fs 

in which the full width at half maximum of the envelope square is 104 fs. We integrate k-

dependent expectation value over the entire first-Brillouin zone, not only a direction, to 

evaluate the values, the current densities and the population. 

 

IV. Evaluation of temporal population dynamics 

Here, we revisit the derivation of the transient population, 𝑛௔𝒌(𝑡), in Eq. (8) based on 

the many-body wavefunction. For this purpose, we first define the many-body ground 

state of a semiconductor with the independent particle approximation. For simplicity, we 

assume that electrons occupy only a single valence band. The corresponding ground state 

is described by the following Slater determinant,  

Φ଴(𝒓ଵ, ⋯ , 𝒓ே) =
ଵ

√ே!
ቦ

𝑒௜𝒌భ⋅𝒓భ𝑢௩𝒌𝟏

଴ (𝒓ଵ) ⋯ 𝑒௜𝒌ಿ⋅𝒓భ𝑢௩𝒌𝑵

଴ (𝒓ଵ)

⋮ ⋱ ⋮
𝑒௜𝒌భ⋅𝒓ಿ𝑢௩𝒌𝟏

଴ (𝒓ே) ⋯ 𝑒௜𝒌ಿ⋅஻ಿ𝑢௩𝒌𝑵

଴ (𝒓ே)
ቧ , (13)

where the ground-state Bloch orbitals, 𝑢௩𝒌
଴ (𝒓), with the Bloch wavevector, 𝒌, satisfy the 

following single-particle Schrödinger equation 

ℎ(𝑡 = −∞)𝑢௩𝒌
଴ (𝒓) = 𝜀௩𝒌

଴ 𝑢௩𝒌
଴ (𝒓), (14) 

with the Hamiltonian of Eq. (5). Likewise, the time-dependent many-body wavefunction 

of the system is given by 
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Ψ(𝒓ଵ, ⋯ , 𝒓ே, 𝑡) =
ଵ

√ே!
ቦ

𝑒௜{𝒌భା𝑨(௧)}⋅𝒓భ𝑢௩𝒌𝟏
(𝒓ଵ, 𝑡) ⋯ 𝑒௜{𝒌ಿା𝑨(௧)}⋅𝒓భ𝑢௩𝒌𝑵

(𝒓ே , 𝑡)

⋮ ⋱ ⋮
𝑒௜{𝒌భା𝑨(௧)}⋅𝒓ಿ𝑢௩𝒌𝟏

(𝒓ே, 𝑡) ⋯ 𝑒௜{𝒌ಿା𝑨(௧)}⋅𝒓ಿ𝑢௩𝒌𝑵
(𝒓ே , 𝑡)

ቧ , (15)

where the time-dependent Bloch orbitals, 𝑢௩𝒌(𝒓, 𝑡) , satisfy the single-particle 

Schrödinger equation, Eq. (5). 

 To evaluate the state population, we then introduce a single particle-hole state with the 

bracket notation as 

|Φ௩௖,𝒌భ
ൿ = 𝑎ො௖𝒌భ

ற 𝑎ො௩𝒌భ
 |Φ଴⟩, (16) 

where |Φ଴⟩  is the ket vector of the ground state wavefunction, Eq. (13), 𝑎ො௖𝒌
ற   is the 

creation operator for a conduction state at 𝒌, and 𝑎ො௩𝒌 is the annihilation operator of the 

valence state. In the Slater determinant expression, |Φ௩௖,𝒌భ
ൿ is described as 

Φ௩௖,𝒌భ
(𝒓ଵ, ⋯ , 𝒓ே) =

1

√𝑁!
ቦ

𝑒௜𝒌భ⋅𝒓భ𝑢௖௞𝟏

଴ (𝒓ଵ) ⋯ 𝑒௜𝒌ಿ⋅𝒓భ𝑢௩௞𝑵

଴ (𝒓ଵ)

⋮ ⋱ ⋮
𝑒௜𝒌𝟏⋅𝒓ಿ𝑢௖𝒌𝟏

଴ (𝒓ே) ⋯ 𝑒௜𝒌ಿ⋅𝒓ಿ𝑢௩௞𝑵

଴ (𝒓ே)
ቧ . (17) 

The temporal population of the single particle-hole state can be evaluated as 

หൻΦ௩௖,𝒌భ
หΨ(t)ൿห

ଶ
= ൻΨ(t)ห𝑎ො௖𝒌భ

ற 𝑎ො௩𝒌భ
 |Φ଴⟩⟨Φ଴|𝑎ො௩𝒌భ

ற 𝑎ො௖𝒌భ
หΨ(t)ൿ , (18) 

where |Ψ(𝑡)⟩  is the ket vector of the time-dependent many-body state in Eq. (15).  

Thanks to the plane wave modulation of the Bloch orbitals, 𝑒௜𝒌⋅𝒓, in the fine Brillouin 

zone sampling limit (𝑁 → ∞), the population of the single particle-hole state, Eq. (18), 

can be evaluated as 

หൻΦ௩௖,𝒌భ
หΨ(t)ൿห

ଶ
= หൻ𝑢௖𝒌భ

଴ ห𝑢௩,𝒌𝟏ି𝑨(𝒕)(𝑡)ൿห
ଶ

× หൻ𝑢௩𝒌మ

଴ ห𝑢௩,𝒌𝟐ି𝑨(𝒕)(𝑡)ൿห
ଶ

× ⋯ × หൻ𝑢௩𝒌ಿ

଴ ห𝑢௩,𝒌𝑵ି𝑨(𝒕)(𝑡)ൿห
ଶ

 . (19)
 

Here, we note that the overlap between the two Bloch orbitals with the wavevector shift, 

𝒌 and 𝒌 − 𝑨(𝑡), are naturally introduced as a consequence of the overlap of the many-

body wavefunctions. Employing a similar procedure in Eq. (18) and Eq. (19), one can 

further evaluate the population of a conduction state at 𝒌  with the number operator 

𝑛ො௖𝒌 = 𝑎ො௖𝒌
ற 𝑎ො௖𝒌 by 

𝑛௖𝒌(𝑡) = ⟨Ψ(t)|𝑛ො௖𝒌|Ψ(t)⟩ = หൻ𝑢௖𝒌
଴ ห𝑢௩,𝒌ି𝑨(𝒕)(𝑡)ൿห

ଶ
 . (20) 

By changing the label, we obtain 

𝑛௖𝒌ା𝑨(௧)(𝑡) = ൻΨ(t)ห𝑛ො௖𝒌ା𝑨(௧)หΨ(t)ൿ = หൻ𝑢௖𝒌ା𝑨(௧)
଴ ห𝑢௩,𝒌(𝑡)ൿห

ଶ
 . (21) 

Thus, the temporal population can be evaluated by the overlap of the time-dependent 
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single-particle orbital and the wavenumber-shifted ground-state Bloch orbital. 

 

V. Decomposition of calculated HHG spectra 

  

 

 

VI. Rabi oscillation and virtual population dynamics 

Here, we revisit the Rabi oscillation and virtual population dynamics with a simple two-

level model. The dynamics of the two-level system is described by the time-dependent 

Schrödinger equation 

iℏ
∂

∂t
|𝜓(𝑡)⟩ = 𝐻(𝑡)|𝜓(𝑡)⟩ (22), 

with the following two-by-two Hamiltonian matrix 

𝐻(𝑡) =
Δ

2
ቀ

1 0
0 −1

ቁ + ൬
0 𝐸(𝑡)

𝐸(𝑡) 0
൰ (23), 

where 𝛥 is the energy gap of the two-level system, and 𝐸(𝑡) is an external electric field. 

For simplicity, we consider the following sinusoidal form for the electric field, 𝐸(𝑡) =

𝐸଴ sin(𝜔𝑡)  , where 𝐸଴ is the amplitude of the electric field, and 𝜔 is its frequency. To 

investigate the population dynamics, we numerically solve the Schrödinger equation (9) 

by setting the initial wavefunction to the ground state, |𝜓(𝑡 = 0)⟩ = |𝑔⟩ = (0, 1)். Here, 

we evaluate the dynamics of the population of the excited state, |𝑒⟩ = (1, 0)் , as 

𝜌௘(𝑡) = |⟨𝜓(𝑡)|𝑒⟩|ଶ. 

Fig. S1. Decomposition of the 

harmonic spectra calculated with a peak 

electric field E = 10 MV/cm. Solid lines 

for the total HHG spectra of 0 (blue) 

and 45 degrees (green), and dashed 

lines for those from VBs of 0 (red) and 

45 degrees (orange). The spectra of 

VBs closely dominate the total HHG for 

the both angle cases. 
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 First, we investigate the population dynamics in the resonant regime by setting 𝜔 =

𝛥/ℏ. Figure S2 (a) shows the computed population 𝜌௘(𝑡) as a function of time in the 

resonant regime. Note that the time-axis is described in the unit of the optical-cycle. The 

population dynamics is computed with two different amplitudes of the electric field, 𝐸଴. 

Both results show the population oscillation under the continuous driving. During the 

oscillation, the population reaches one and returns to zero. This oscillatory behavior is 

known as Rabi oscillation, and the frequency of Rabi oscillation is given by Ωோ = 𝐸଴/ℏ. 

The evaluated Rabi cycle, 2𝜋/Ωோ, is one hundred optical cycles for the field strength 𝐸଴ 

of 0.01Δ (red line), and it is two hundred optical cycles for 𝐸଴ = 0.005Δ (blue line). As 

seen from Fig. S2 (a), these evaluated Rabi cycles are consistent with the numerical 

results. 

 Next, we investigate the population dynamics in a slightly off-resonant regime by setting 

𝜔 = 0.995Δ/ℏ. Figure S2 (b) shows the computed population dynamics in the slightly 

off-resonant regime. The computed population shows the similar oscillatory behavior to 

the Rabi oscillation shown in Fig. S2 (a). However, the frequency of the oscillation is 

detuned, and the population does not reach to one anymore. This feature is known as the 

off-resonant Rabi oscillation. 

 Finally, we investigate the population dynamics in a deeply off-resonant regime by 

Fig. S2. Computed population dynamics of the two-level model as a function 

of time in (a) the resonant regime 𝜔 = Δ/ℏ, (b) the slightly off-resonant 

retime 𝜔 = 0.995Δ/ℏ , and (c) the deeply off-resonant regime 𝜔 =

0.001Δ/ℏ. 
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setting 𝜔 = 0.001Δ/ℏ. Figure S2 (c) shows the computed population dynamics in the 

deeply off-resonant regime with different electric field amplitudes 𝐸଴; 0.01Δ (red line) 

and 0.05Δ (blue line). The black line shows the square of the applied electric field 𝐸ଶ(𝑡). 

Although the population dynamics shows an oscillatory behavior, it is qualitatively 

different from the Rabi oscillation in Fig. S2 (a) or the off-resonant Rabi oscillation in 

Fig. S2 (b): the amplitude of the population oscillation in the strongly off-resonant regime 

is tiny while the substantial amount of the population is transferred to the excited state in 

the resonant and off-resonant Rabi regimes. Furthermore, the cycle of the oscillation in 

the strongly off-resonant regime does not depend on the field strength and is half of the 

optical cycle although the (detuned) Rabi cycle significantly depends on the field strength 

and is much longer than the optical cycle for the present field strength. Importantly, we 

note that the population dynamics (quasi)-adiabatically follows the instantaneous field 

strength in the deeply off-resonant regime. Therefore, the excited population can exist 

only during the field driving, and it returns to zero after the driving as shown in Fig. 4 (e) 

in the main text. In this sense, the excited population in the off-resonant regime is not real 

but virtual as it disappears after the field driving. We shall call such population virtual 

population in order to clearly distinguish it from real population appearing in the (off-

resonant) Rabi oscillation. 

 

VI. Anisotropy of virtual population and high-order harmonic generation 

 

 

Fig. S3. (a) Schematics of chemical bonding in MAPbCl3 crystal for the calculation. (b) 

Calculated angular dependence of virtual population for different harmonic orders. 

 

Here, we elucidate the microscopic mechanism of the anisotropy of virtual population 
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dynamics on different harmonic orders, as shown in Fig. 4 in the main text. Due to the 

strong electronegativity of Cl, Cl ions attract electrons from Pb, and thus the chemical 

bond may have strong directivity. Based on this directivity of chemical bonds, we develop 

a simple model to describe the anisotropy of virtual population dynamics, which is 

responsible for the high-order harmonic generation in MAPbCl3 crystal. To construct a 

model, we consider the configuration as described in Fig. S3 (a). We expect that the 

chemical bonds, which are denoted as b1, b2, b3, and b4 in Fig. S3, have the strong 

directivity. Based on the strong directivity, we further assume that the horizontal bonds 

(b1 and b3) respond to only the x-component of applied electric fields, 𝐸௫, while the 

vertical bonds (b2 and b4) respond to only the y-component, 𝐸௬. Thus, the x-component 

of electric fields induces the virtual population only on b1 and b3 bonds while the y-

component of electric fields induces the virtual population only on b2 and b4 bonds: 

𝑛௕ଵ = 𝑛௕ଷ = 𝑛[𝐸௫] = 𝑛[𝐸଴ cos 𝜃], 𝑛௕ଶ = 𝑏௕ସ = 𝑛ൣ𝐸௬൧ = 𝑛[𝐸଴ sin 𝜃] (24). 

For simplicity, we assume that n-th order harmonics of the virtual population is 

proportional to n-th order electric fields as 

𝑛௕ଵ
(௡)

= 𝑛௕ଷ
(௡)

= 𝑛(௡)[𝐸௫] ∝ 𝐸௫
௡ = 𝐸଴

௡ cos௡ 𝜃 (25), 

𝑛௕ଶ
(௡)

= 𝑛௕ସ
(௡)

= 𝑛(௡)ൣ𝐸௬൧ ∝ 𝐸௬
௡ = 𝐸଴

௡ sin௡ 𝜃 (26). 

By summing the contributions from all the bonds (b1, b2, b3, and b4), the n-th order 

harmonics of the virtual population can be evaluated as 

𝑛(௡)(𝜃) ∝ 𝐸௡[cos௡ 𝜃 + sin௡ 𝜃] (27). 

Note that, as discussed in the main text, only even order harmonic components exist 

because of the spatial inversion symmetry. Figure S3 (b) shows the angle dependence of 

the virtual population on each harmonic order. The results are computed with Eq. (27) 

and are normalized at 0°. One sees that the second order harmonics (purple line) has the 

circular symmetry, and the signal intensities at 0° and 45° are identical. In contrast, the 

4th, 6th, and 8th order harmonics show the strong reduction of the signal intensity at 45°. 

The signal intensity reduction becomes more significant in higher order harmonics. This 

behavior is consistent with that of the virtual population in Fig. 4 of the main text. 

Furthermore, the overall angular dependence of the simple model in Fig. S3 (b) is 

qualitatively consistent with the angular dependence of the high order harmonic 

generation shown in Fig. 2 of the main text. This fact indicates that the strong directivity 

of chemical bonds in MAPbCl3 plays an important role in the characteristic angular 

dependence of the high-order harmonic generation from perovskites. 
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