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Notes S1. Standardising CO2 responses with a β factor
In order to compare across studies that measure different variables at different CO2 
concentrations and at different periods in time, we calculate a standardised CO2 response 
metric. This metric is often referred to as the β factor (Friedlingstein et al., 1995; Bacastow and 
Keeling 1973). Multiple methods have been proposed and here we explore just a few to make 
an informed choice on the method to calculate β that best suits our purposes and so that the 
reader can visualise how β relates to different CO2 response scenarios across a range of 
realistic CO2 concentrations. We investigated three methods to calculate β, the normalised 
response ratio:   

β  =  (rry - 1) / (rrCO2 - 1) , (Eq. S1)

log-β (Bacastow and Keeling 1973):

βlog  =  (rry - 1) / ln(rrCO2), (Eq. S2)

and log-log-β:

βlog-log  =  ln(rry) / ln(rrCO2), (Eq. S3)

where rry = ye/ya and rrCO2 = CO2,e/CO2,a. ya and ye are the value of any response variable at low 
CO2 and higher CO2, and CO2,a and CO2,e are the CO2 concentrations. 

Figure S1 shows the value of the two variations of the β-factors under different CO2 response 
scenarios. As is clear from these figures βlog-log provides the most consistent characterisation of 
the CO2 response. βlog-log is independent of the magnitude of the change in CO2 (Figure S1), and 
also has a value of 1 when y is proportional to CO2 (and thus rry is directly proportional to rrCO2 
which is important to identify to evaluate theory, see Section 2.1). We therefore choose βlog-log as
our standardised CO2 response metric.       

Calculation of uncertainty in βlog-log is by error propagation:

σf(x) =  f(x) . ( (σx1/x1)2 + (σx2/x2)2 … + (σxn/xn)2 )0.5 (Eq. S4)

σln(x) = σx / x (Eq. S5)

where f(x) is a function of the vector x that combines the elements of x through multiplication or 
division, σx is a vector of the uncertainty in x, and σln(x) is the uncertainty in the scalar ln(x).



Figure S1. Calculation of response ratio (rry, column second from left), βlog (Eq. S2, 
column third from left), and βlog-log (Eq. S3, right column) from theoretical CO2 responses 
of an arbitrary variable (y, left column) that responds to CO2 in proportion (lower row) or 
as a saturating function (upper row). Three different magnitudes of the change in CO2 
are used to calculate the response ratio and βs, 5 pmm (green), 40 ppm (blue), and 100 
ppm (black). 



Notes S2. Calculation of β from different data types
For time-series that use regression to infer trends we use the y-value of the regression for the 
first year of data and the last year of data (for ya and ye). Where regressions were not given we 
use means of the first and last five years of the data to calculate x and CO2. Where response 
variables were presented per year or per ppm we calculated the full change over the time period
by multiplying by the length of, or by the change in CO2 over, the time period of the data used in 
the study. Where studies presented only an absolute change, where possible we calculated xa 
from a mean value (xt) recorded at time t by subtracting the cumulative change up until time t. 
We then calculated xe from xa plus the total change.   

For iCO2 studies CO2 concentrations for the beginning and end of the time series were taken 
from the global annual values used in the most recent TRENDY simulations for the Global 
Carbon Project (Friedlingstein et al., 2019). For multi-site datasets we use the mean treatment 
CO2 values for eCO2 experiments, and the mean start and end year for iCO2 studies (primarily 
inventory studies). For meta-analysis studies that synthesised results from many different 
studies but did not report mean CO2 concentrations, we assume a value of 380 ppm for ambient
CO2 conditions and 550 ppm for elevated CO2 conditions. To calculate uncertainties in CO2 we 
assume a 20 ppm in eCO2 treatments and 5 ppm error in ambient CO2 treatments or historical 
iCO2 studies (themes 2-4) to account for spatial variability from the global mean. 

We report uncertainties as 95 % confidence intervals, converting from standard error of the 
mean by a factor of two. Where asymmetric confidence intervals were reported we take the 
mean of the absolute differences to estimate a single error term. 95 % confidence intervals for β
were calculated using error propagation. 

Where possible, for small net fluxes (i.e. where both input and output fluxes were of similar 
magnitude) we calculate β based on the standing stock of carbon. Where mean stocks (yx) and 
annual or per ppm changes were reported at source, we calculated the cumulative change (Δy),
calculated the initial value (ya) at CO2,a from the mean stock minus half the change (ya =  yx - 
Δy/2). The value at CO2,e was calculated as: ya + Δy.



Notes S3. Modelling leaf and canopy physiology
All modelling was done with the Multi-Assumption Architecture and Testbed (MAAT; Walker et 
al., 2018). Scripts to generate these data will be posted on Github 
(https://github.com/walkeranthonyp/MAAT). Leaf-scale photosynthesis was modelled following 
Farquhar et al. (1980) for C3 plants and Collatz et al., (1992) for C4 plants. Stomatal 
conductance was modelled following Dewar et al. (2018), which is very closely related to 
Medlyn et al. (2011). Jmax was related to Vcmax using the relationship commonly employed in 
many terrestrial biosphere models from Wullscheleger (1993).  

Canopy-scale modelling was based on that in SDGVM (see Supporting Information Walker et 
al., 2017; Woodward and Lomas 2004) a 10-layer, multi-layer approach that includes sun and 
shade leaves and radiative transfer following Goudriaan (1977). Temperature scaling of Vcmax 
and Jmax was using the modified Arrhenius (Medlyn et al., 2002). Similar to SDGVM, a daily 
integral was achieved by assuming sine-wave scaling of photosynthetically active radiation at 20
points throughout the day with the peak scaled to a maximum daily value (2000 μmol m-2 s-1). 
Integration was through trapezoidal integration. A clear sky was assumed and solar zenith angle
was assumed zero.   

A 1000 member ensemble was run for each scale—instantaneous leaf, instantaneous canopy, 
and daily canopy. The ensemble copmprised a factorial combination of 100 top-of-canopy Vcmax 
values (mean = 60, sd = 10) and 10 values of the Jmax to Vcmax slope (mean = 1.63, sd = 0.2). For
the daily canopy simulations the 1000 member ensemble was run for a factorial combination of 
three levels of temperature (10, 15, 25 °C) and three levels of relative humidity (50, 70, 90 %). 

For each ensemble member of these three scales, βdir was calculated according to Eq. S3 (also 
Eq. 1 of the main text). Weighted mean β’s were calculated by weighting according to the 
absolute change in a variable with CO2. Weighted 95 %iles were calculated using the weighted 
standard deviation multiplied by 2.

https://github.com/walkeranthonyp/MAAT


Table S1. Weighted βdir’s (and 95 percentiles) from the model ensembles for Anet, light-saturated 
photosynthesis (Ac), light-limited photosynthesis (Aj), iWUE, and gs. 

Scale ΔCO2 βdir Anet βdir Ac βdir Aj βdir iWUE βdir gs

Leaf historical 0.86 (0.002) 0.86 (0.000) 0.31 (0.003) -0.28 (0.002)
future 0.70 (0.175) 0.74 (0.000) 0.23 (0.002) -0.44 (0.25)

Canopy historical 0.60 (0.2) - - 1.12 (0.01) -0.56 (0.19)
future 0.36 (0.2) - - 1.06 (0.01) -0.75 (0.17)

Diurnal canopy historical 0.60 (0.27) - - 1.07 (0.10) -0.53 (0.17)
future 0.46 (0.21) - - 1.03 (0.07) -0.62 (0.15)



Figure S2. β’s with 95 % confidence intervals from Table 2 for GPP, WUE, BP. Data are 
organised by CO2 response category—iCO2 (blue), attribution to iCO2 (green), and 
eCO2 (purple). Also shown are PDFs of merged data for each CO2 response category. 
PDFs are generated by drawing 1,000 random samples from the (assumed normal) β 
distribtions for each study, and then combining all of these samples within each CO2 
response category. Studies with no CI were not included in the PDFs. In presenting 
variables together we have combined a number of related variables and at different 
scales, e.g. iWUE, WUE, and inherent WUE at scales from leaf, plant, ecosystem, to 
global are all presented on the WUE panel (see Table 2 for details).



Figure S3. β’s with 95 % confidence intervals from Table 2 for k_veg, k_soil, NEP, and Cveg 
increment. Details same as for Fig. S2.



Figure S4. β’s with 95 % confidence intervals from Table 2 for Cveg , Csoil, and Ceco. Details same 
as for Fig. S2.
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