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Summary 

Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf-scale 

photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to 

increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the 

atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink 

would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2-responses 

are complex or confounded by concurrent changes in multiple agents of global change and evidence 

for a [CO2]-driven terrestrial carbon sink can appear contradictory. Here we synthesise theory and 

broad, multi-disciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial 

carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industry. 

Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half 

of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a 

historical carbon sink, and these apparent iCO2-responses are high in comparison with experiments 

and theory. Plant mortality and soil carbon iCO2-responses are highly uncertain. In conclusion, a 

range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with 

uncertain magnitude and strong suggestion of a role for additional agents of global change. 

Key words: global carbon-cycle, land-atmosphere feedback, carbon dioxide, terrestrial ecosystems, 

free-air CO2 enrichment (FACE), CO2-fertilisation hypothesis, CO2-fertilization, beta factor 
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I. Introduction

Photosynthesis uses the energy in sunlight to bind CO2 to a five-carbon sugar, transferring CO2 from 

the atmosphere to plants (Calvin & Benson, 1948; Farquhar et al., 1980). Sugars produced by 

photosynthesis provide the building blocks and the primary fuel for much of life on Earth. Plant 

tissues, many microbes, animals, and dead organic matter are all composed of carbon-rich 

compounds formed from these photosynthetic sugars. In many environments, an increase in 

atmospheric CO2 concentration [CO2] increases photosynthesis. Thus an increase in [CO2] leads to 

greater plant sugar availability with the potential to increase the total amount of carbon stored in the 

live and dead organic matter in an ecosystem. These observations have led to the CO2-fertilisation 

hypothesis (Box 1): that plant responses to increasing atmospheric [CO2] drive increases in 

terrestrial-ecosystem carbon storage creating negative feedback on atmospheric [CO2] growth.

Since the industrial revolution human activities have increased [CO2] by 48 % (1760-2019, 277-411 

ppm), an increase in atmospheric CO2-carbon of 277 Pg C (Friedlingstein et al., 2019). However, 

global-scale carbon accounting quantifies anthropogenic emissions to the atmosphere at 645 Pg C 

and suggests a substantial ‘natural’ terrestrial carbon sink (a net flux of carbon from the atmosphere 

to intact terrestrial ecosystems) which currently removes the equivalent of 33±9 % of anthropogenic 

atmospheric CO2 (2009-2018 (Friedlingstein et al., 2019). Along with the ocean carbon sink, this 

terrestrial carbon sink is mitigating the rate of climate change. Process-based carbon-cycle models 

attribute increasing [CO2] (iCO2, Table 1) as the primary driver of the terrestrial carbon sink, albeit 

with substantial uncertainty (Huntzinger et al., 2017; Arora et al., 2019). However, iCO2 is not the 

only global-change factor that can influence terrestrial carbon stocks. Anthropogenic land-use and 

land-cover change (hereafter land-use change) and recovery (Pugh et al. 2019), nitrogen cycle 

changes (Fowler et al., 2013), and climate change all affect ecosystem carbon stocks (Keenan & 

Williams, 2018). A vast and overwhelming literature often disagrees on the size and duration of CO2-

driven increases in terrestrial carbon storage and predictive understanding of this process is a long-

standing and unresolved scientific goal.

Predictive understanding of how terrestrial ecosystems respond to iCO2 requires knowledge of a 

range of processes, their interactions, and how these processes scale. For example, terrestrial 

ecosystem responses begin with photosynthesis inside the leaf, yet scale to have long-term global 

impacts. All the relevant processes must be understood across scales, and ultimately at the global 

scale because iCO2 and climate change are global-scale phenomena with decadal to centennial A
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dynamics.

Given that around 50 % of plant biomass is carbon acquired via photosynthesis, it is reasonable to 

assume that increased photosynthesis increases plant biomass production (BP) and experimentally 

elevated [CO2] (eCO2) commonly increases BP (e.g. Baig et al., 2015). However, in natural 

ecosystems iCO2 may not always increase BP, primarily because plant tissues require nutrients, and 

BP responses to iCO2 will interact with soil nutrient availability and other limiting factors (Strain & 

Bazzaz, 1983; Rastetter et al., 1997). A related argument is that present day [CO2] is likely to supply 

plants with unprecedented carbon availability that may be surplus to BP requirements (Körner, 

2003a). This is because for at least one million years prior to the industrial revolution [CO2] was 

much lower (170-300 ppm) (Bereiter et al., 2015). 

Ecosystem carbon stocks are the result of both inputs (BP for plants or litter production for soils) and 

outputs. Thus for the CO2-fertilisation hypothesis to hold true, the residence time of carbon in an 

ecosystem must not be reduced by an amount that would negate effects of increased BP on 

terrestrial carbon pools. However, it has been suggested that both vegetation and soil carbon 

residence times may be reduced by iCO2 (van Groenigen et al., 2014; Körner, 2017). 

Drawing from multiple disciplines, vast quantities of diverse data have been collected on the [CO2]-

responses of many processes. Often this evidence can appear conflicting. For example, many Free 

Air CO2 Enrichment (FACE) experiments show BP gains (Walker et al., 2019), while others show 

none (Bader et al., 2013; Ellsworth et al., 2017). Many tree-ring studies indicate historical increases 

in intrinsic water-use efficiency (iWUE) but no detectable change in BP (Peñuelas et al., 2011; van 

der Sleen et al., 2015), while the majority of forest-inventory analyses suggest biomass gains 

(Brienen et al., 2015; Hubau et al., 2020). Flux-tower data, global CO2-flask networks, and remote-

sensing data are now of sufficient timescales (decades) to study CO2 responses against background 

variability, but have led to different inferences (Kolby Smith et al., 2016; Fernández-Martínez et al., 

2017). 

This literature represents a wealth of information and inference that can appear fragmented, posing 

an opportunity for integration. Thus our overall goal is to provide a synthetic review of key lines of 

evidence related to the CO2-fertilisation hypothesis, specifically:

1. overview of theory and potential mechanisms within the CO2-fertilisation hypothesis;

2. quantitative evaluation of the evidence, identifying agreement and major conflicts; 

3. resolution of apparent conflicts and, where not possible, identification of key knowledge gaps A
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to guide future studies. 

We structure this multi-disciplinary review within the mechanistic theory of the five broad processes 

that are key to the CO2-fertilisation hypothesis (Box 1, Fig. 1a): gross primary production (GPP), 

plant biomass production (BP), vegetation mortality rate (kveg), soil organic matter decomposition rate 

(ksoil), and terrestrial carbon storage (Ceco). Within each of these high-level processes, numerous 

inter-related mechanisms and sub-processes shape terrestrial ecosystem CO2 responses (Fig. 1b, 

Section II).

Within these processes we integrate four primary evidence themes (Box 2). eCO2 studies in 

evidence theme 1 provide the only direct evidence for CO2 responses but are restricted in space and 

time. Observation studies (evidence themes 2-4) span a broader range of evidence types covering 

larger spatial-scales and longer temporal-scales but provide only indirect evidence for the effect of 

iCO2 on terrestrial ecosystems. 

To quantify and standardise CO2 effects across variables and varying ranges of [CO2] we report data 

as a relativised β-factor:

β  =  ln(ye/ya) / ln(CO2,e/CO2,a) (Eq. 1)

where ya and ye are the value of any response variable at lower [CO2] (CO2,a) and higher [CO2] 

(CO2,e). Other methods to calculate the β-factor have been proposed (e.g. Friedlingstein et al., 1995) 

but we use Eq. 1 for ease of interpretation that results from scale-independence (Supporting 

Information Notes S1, Fig. S1). A β of 1 represents direct proportionality between a variable’s CO2 

response and the change in CO2. Where possible (i.e. when reported at source) we report 

uncertainties as 95 % confidence intervals.

As described above, attributing iCO2 as the cause of trends is confounded by covarying factors 

which also drive variability in the terrestrial carbon sink. We discuss these other global-change 

factors in the context of attribution, but do not cover them in depth. The difference between direct 

evidence from eCO2 experiments and indirect evidence from historical data (concurrent with a suite 

of global-change factors) motivates our use of two abbreviations: eCO2 and iCO2. As with eCO2 and 

iCO2, we distinguish direct CO2 responses (βdir) from indirect apparent CO2 ‘responses’ (βapp).
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II. Theory – a hierarchy of mechanism

1 Direct plant physiological responses to CO2 

Photosynthesis is limited by CO2 or light (Farquhar et al., 1980). When CO2 is limiting, theory predicts 

that eCO2 increases leaf-scale net carbon assimilation (Anet) (βdir,hist = 0.86, Table S1). The enzyme 

that fixes CO2 (RuBisCO) also catalyses an oxygenation reaction, which results in CO2 loss 

(photorespiration; Farquhar et al., 1980). eCO2 also suppresses photorespiration (Fig. 2a). Given 

that photorespiration always occurs during C3 photosynthesis, the suppression of photorespiration 

by eCO2 increases Anet also when light is limiting, but with a lower response (βdir,hist = 0.31). Canopy-

scale Anet results from a mixture of CO2 and light-limited photosynthesis, thus has an intermediate 

eCO2 response that depends on the fraction of light-saturated leaves in the canopy (βdir,hist = 

0.60±0.3, c. 280 to 400 ppm; Fig 2c). As [CO2] increases, the fraction of light-saturated leaves in the 

canopy is expected to decrease and therefore historical eCO2 response of GPP is expected to be 

higher than the future response (βdir,fut = 0.46±0.2, c. 400 to 550 ppm; Fig 2c).    

C4 plants have evolved to concentrate carbon, thus saturating photosynthesis and suppressing 

photorespiration at low [CO2] (Ehleringer & Björkman, 1977). Therefore Anet in C4 plants is not 

directly influenced by [CO2] above c. 200 ppm (Fig. 2a), though water savings from reduced gs may 

stimulate Anet indirectly (Leakey et al., 2004).

Photosynthesis requires the acquisition of other resources and eCO2-stimulation of Anet increases 

Anet per unit resource consumption, i.e. increases resource use-efficiencies (UE) of: water (WUE), 

light (LUE), and leaf nitrogen (Cowan, 1982; Drake et al., 1997). Increased use-efficiencies imply a 

shift in a plant’s resource-use economy (Bloom et al., 1985) which is commonly studied using 

optimisation theory. 

Optimisation theory predicts that a change in the ratio of Anet to gs (intrinsic WUE, iWUE) in 

proportion to the change in [CO2] (βdir c. 1; Fig 2d) maximises the benefit of carbon gain while 

minimising the cost of water lost for C3 (Medlyn et al., 2011) and C4 plants (Lin et al., 2015). 

Canopy-scaling theory predicts that the increase in iWUE is preserved at the canopy scale (Fig 2e). 

Where the response of Anet to eCO2 is less than proportional (βdir < 1) the increase in iWUE (i.e. 

Anet/gs) implies a reduction in gs (canopy-scale iWUE βdir,hist = 1.1±0.1, Anet βdir,hist = 0.60±0.3, thus gs 

βdir,hist = -0.53.±0.2; Fig. 2f,i). Due to the lower predicted Anet in the future, the predicted decrease in 

gs is greater (βdir,fut = -0.62.±0.1).  A
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Optimisation theory also predicts reduction in photosynthetic carboxylation capacity (Vcmax), reducing 

nitrogen demand (Bowes, 1991; Drake et al., 1997). A reduction in leaf nitrogen may also occur due 

to limited plant-available soil nitrogen (Section II.2) or physiological competition for the products of 

electron transport (Bloom et al., 2012). 

2 Plant biomass production 

BP of leaf, wood, and root tissues is controlled by the interplay of source (resource acquisition), sink 

(metabolic tissue production) (Muller et al., 2011; Fatichi et al., 2019), and regulatory processes 

(phenology, hormones) (Schwartz, 2013; Bahuguna & Jagadish, 2015). Within this framework eCO2 

can increase BP when BP is either carbon-source limited or when eCO2 can alleviate other 

limitations. Plant BP is carbon-source limited when in competition with respiration for available 

carbon and when light limits BP (Lloyd & Farquhar, 2008). Sustained periods of high growth may 

also reduce carbon stores (Würth et al., 2005), potentially leading to carbon-source limitation. 

BP is also carbon-sink limited by stoichiometric nutrient requirements (Elser et al., 2010). Thus 

increased BP requires either increased nutrient acquisition or increased stoichiometric carbon-to-

nutrient ratios. Increased plant-available carbon may be able to “pay” for increased nutrient 

acquisition via a number of mechanisms (e.g. increased fine-root BP, mycorrhizal investment, 

exudation, atmospheric N fixation) (Luxmoore, 1981; Hungate et al., 1999; Fleischer et al., 2019). 

Changing stoichiometry may result in feedbacks that compound nutrient limitations by reducing 

decomposition rates and nutrient availability (Comins & McMurtrie, 1993), known as progressive 

nitrogen limitation (Luo et al., 2004).

In environments where BP is primarily sink-limited, e.g. tree-lines (temperature-limitation), arid and 

semi-arid (water-limitation), increased carbon availability may have little effect on BP (Kramer, 1981; 

Körner, 2003b). However, in water-limited environments, increased iWUE could increase BP 

(Mooney et al., 1991; Wullschleger et al., 2002). Leaf area index (LAI) may also be limited by water 

availability (Woodward, 1987; Yang et al., 2018) and increased WUE may increase LAI and light 

absorption leading to indirect positive feedback on GPP and transpiration (Fatichi et al., 2016; 

Trancoso et al., 2017). 

If BP is restricted by sink limitation, biomass production efficiency (BP per unit GPP) would decrease 

and the labile products of photosynthesis would accumulate. If BP is stimulated this may be as short-

lived, primary tissues (leaves and fine-roots) or long-lived, secondary tissues (wood) (De Kauwe et A
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al., 2014). Division of carbon among these tissues determines residence time of carbon in plant 

biomass. Wood has greater residence time and thus greater potential to increase Cveg accumulation 

over multiple years. Greater production of short-lived tissues (i.e. leaves and fine-roots) may 

increase resource capture and will increase litter carbon inputs to the soil.

3 Plant mortality

Increases in mortality rates reduce vegetation residence times and have the potential to offset any 

biomass gains resulting from increased BP (Eq. B3) (Bugmann & Bigler, 2011; Körner, 2017). 

Hydraulic failure, and less-so, carbon starvation are thought to be interrelated mechanisms of plant 

death (McDowell et al., 2008). By easing the carbon and hydraulic impacts of abiotic and biotic 

stressors such as drought, or pest and pathogen attack, eCO2 could potentially decrease mortality. 

Greater carbon resources could supply greater maintenance respiration, stored carbon reserves, or 

synthesis of defense compounds (McDowell et al., 2008). More efficient water use (Section II.1) 

could delay the onset or the intensity of drought, which could reduce the risk of xylem-conductivity 

losses. 

Indirect influences on mortality may emerge from the acceleration of individual size-growth. 

Increased growth could reduce small-size related mortality by speeding individuals out of the hazards 

of early life (e.g., browsing) and increasing their ability to acquire resources (Metcalfe et al., 2014; 

Hülsmann et al., 2018). Conversely, increased growth could increase large-size mortality risk, with 

tall trees being more susceptible to hydraulic stress, windthrow, lightning, and certain pests or 

pathogens (Bugmann & Bigler, 2011; Bennett et al., 2015; Körner, 2017; Trugman et al., 2018). 

At the stand-scale, increased growth may accelerate post-disturbance successional dynamics 

(McDowell et al., 2020). Intensified competition for light, water, and nutrients could lead to early 

reorganisation and transition (self-thinning) phases of development (Bormann & Likens, 1979), but 

also an earlier switch from transition to steady-state phases (Miller et al., 2016). Acceleration of 

stand-development by eCO2 may or may not change self-thinning relationships (tree-size to stem-

density) of a forest stand, with no change leading to no change in biomass. However, acceleration of 

stand-development could increase biomass at the landscape scale by closing forest gaps more 

quickly. Differential mortality effects on different plant species could alter competitive dynamics, 

community composition, and associated stand properties, e.g. among fast-growing, ruderal/pioneer 

species and more conservative, slow-growing species (Ruiz-Benito et al. 2017).A
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4 Organic matter decomposition

Residence times of litter and soil organic matter (SOM) vary from minutes to millenia and can 

respond rapidly to environmental perturbation (Trumbore, 2009; Schmidt et al., 2011; Dwivedi et al., 

2019). Increases in SOM decomposition rates reduces SOM residence times and has the potential to 

offset any eCO2-related increases in litter inputs. Accelerated decomposition of litter and particulate 

SOM (i.e. priming) can result from microbial responses to increased labile-carbon availability 

(Kuzyakov et al., 2000; Blagodatskaya et al., 2014), including at depth  (Fontaine et al., 2007). 

Organic acids produced by roots can destabilise mineral-associated SOM (Keiluweit et al., 2015). 

eCO2 effects on environmental conditions could also affect SOM decomposition. CO2-related 

increases in soil water (Section II.1) would likely stimulate decomposition in water-limited 

ecosystems (Castanha et al., 2018), but could reduce oxygen availability (slowing decomposition) in 

energy-limited ecosystems. 

Microbial activity has also been linked to the formation of mineral-associated SOM (Cotrufo et al., 

2013; Liang et al., 2017), and potentially soil aggregates (Ge et al., 2018), which might slow 

decomposition by restricting microbial access to SOM (Kögel-Knabner et al., 2008). Changing 

stoichiometry might slow decomposition (Section II.2). Roots can distribute carbon deeper in the soil 

where decomposition is slower and capacity for mineral stabilization is higher (Jackson et al., 2017; 

Hicks Pries et al., 2018).

Greater decomposition rates might also increase soil nutrient availability, potentially reducing plant 

nutrient limitation (Treseder, 2004; Dijkstra, 2008) or increasing microbial immobilisation. Over longer 

timescales, nutrient immobilisation can reduce nutrient losses, leading to accumulation of ecosystem 

nutrient stocks which may enhance mineralisation and progressively release plants from nutrient 

limitation (Rastetter et al., 1997; Walker et al., 2015). 

5 Terrestrial ecosystem carbon responses to CO2

The  response of terrestrial carbon storage to eCO2 (ΔCeco) is the net result of the above discussed 

processes. Potential increases in BP and litter production are balanced by potential increases in loss 

rates (Eqs. B3 and B4). Increased BP of short-lived primary tissues such as leaves and fine-roots 

could lead to greater biomass of these transient Cveg pools and to increased litter inputs to the soil. If 

wood BP is stimulated by eCO2, over medium timescales (annual to several decades) ecosystem 

biomass could increase due to the longer residence time of wood. However, wood BP is tied to tree A
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size-growth rates and the effects of tree size on mortality rates may be either positive or negative 

(Section II.3). Greater wood BP or greater wood mortality rates would result in greater coarse woody 

debris, which may immobilise nutrients (e.g. Zimmerman et al., 1995).   

Increased plant inputs to litter and soil (e.g., wood, leaf and root litter, root exudates, and mycorrhizal 

subsidies) could increase Csoil. However, the complex processes that drive the formation and 

decomposition of SOM make the response of Csoil to eCO2 difficult to predict (Schmidt et al., 2011; 

Dwivedi et al., 2019; Section II.4). Increased soil mineralisation rates could lead to greater Ceco if 

nutrients are redistributed from soils to plants, which have higher carbon:nutrient ratios and hence 

can store more carbon per unit nutrient (Rastetter et al., 1992; Zaehle et al., 2014). 

A one-pool ecosystem carbon model (Box 1) with simplifying assumptions (BP βdir = GPP βdir; 

residence time βdir = 0) provides baseline expected βdir for carbon storage (Fig. 2j-l). The model 

indicates that when starting carbon storage is non-zero, βdir depends on the time of measurement 

(Fig. 2j,k). Based on the observed [CO2] trend (Le Quéré et al., 2018), the model indicates that βdir 

calculations over a 30 year period (typical of forest-inventory analysis) are generally a little smaller 

(βdir,hist c. 0.5) than steady-state (βdir,hist = 0.6; Fig 2. l). Departures from these expected β’s derived 

from GPP responses alone provide a guide to the magnitude of positive and negative feedbacks in 

eCO2 studies and can help to guide iCO2 attribution in historical studies.  

III. The evidence

1 Physiology

Carbon assimilation and GPP

Evidence across FACE experiments (11 sites, 45 species) showed that eCO2 increased leaf-level, 

light-saturated photosynthesis (βdir = 0.73±0.2, see Supporting Information Notes S3 for methods), 

and supports differences between C3 (βdir = 0.79±0.2) and C4 species (βdir = 0.27±0.2) (Ainsworth & 

Long, 2005; all reported β’s are in Table 2). Evidence suggests that maximum photosynthetic 

capacity acclimated (reduced) to eCO2, primarily maximum carboxylation capacity (βdir = -0.38±0.1) 

(Ainsworth & Long, 2005; Ainsworth & Rogers, 2007). Nevertheless, in many forest eCO2 

experiments photosynthetic stimulation  (>5 years) was only minimally affected by acclimation (Crous 

et al., 2008; Bader et al., 2010; Ellsworth et al., 2017).

Indirect evidence also suggests increased photosynthesis with iCO2. Deuterium isotopomers of A
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glucose in plant archives indicate that the leaf-level photorespiration:assimilation ratio decreased 

since pre-industry (βapp = -0.99) (Ehlers et al., 2015), which translates to an increase in 

photosynthesis (βapp = 1.0) (Ehlers et al., 2015). GPP estimates from eddy-covariance (23 sites, c. 20 

years) suggest a recent increase (βapp = 1.6±0.9), implicating a substantial iCO2 contribution (βdir,hist = 

1.2±0.6) (Fernández-Martínez et al., 2017). Eddy-covariance data used to calibrate a model 

suggests a lower iCO2 response (βdir,hist = 0.5±0.2) (Ueyama et al., 2020). 

Ice-core measurements of atmospheric carbonyl sulfide (OCS) combined with mass-balance 

analysis suggests that global GPP has increased since pre-industry (βapp = 0.95±0.2) (Campbell et 

al., 2017). As do ice-core measurements of atmospheric O2 isotopes combined with models (βapp = 

1.3±2.3) (Ciais et al., 2012). Satellite-based evapotranspiration combined with an ecosystem WUE 

model estimated increased GPP during recent decades (βapp = 1.1±0.5) (Cheng et al., 2017). 14 

methods to estimate GPP from satellite-based fAPAR resulted in wide-ranging iCO2 sensitivities (βdir 

range = -0.39±0.34 to 1.6±1, mean = 0.52±0.3; 2000-2014) (Sun et al., 2019).

Water use efficiency, stomatal conductance, and transpiration 

Experimental evidence also supports increased iWUE in response to eCO2 (βdir = 1.2±0.4; 4 sites, 7 

species) (Ainsworth & Long, 2005). At two FACE experiments (Duke University and Oak Ridge 

National Laboratory, ORNL), tree-ring δ13C implies increased iWUE (βdir = 1.4 and 1.3, respectively) 

(Battipaglia et al., 2013). Tree-ring δ13C samples from across the globe suggest increased iWUE in 

many biomes since pre-industry in: northern boreal gymnosperms (βapp = 1.2±2 to 1.5±1.6) (Saurer et 

al., 2004), tropical forests (βapp = 1.0) (van der Sleen et al., 2015), and a wide range of forest biomes 

(βapp = 1.19; Keller et al., 2017). Attribution to iCO2 also suggests increases in iWUE in European 

Pinus and Quercus (βdir = 1.0±0.6 and 0.67±0.9; 9-14 sites) (Frank et al., 2015). Additional 

environmental factors have contributed to observed iWUE trends, e.g. drying trends have increased 

iWUE (Saurer et al., 2014).  

δ13C in atmospheric CO2 combined with mass-balance modelling suggests a global increase in iWUE 

since pre-industry (βapp = 0.94±0.2) (Keeling et al., 2017).

Evidence from Duke and ORNL FACE experiments supports increases in ecosystem-scale plant 

WUE (annual BP/T; βdir,hist = 0.76 and 1.1, respectively) (De Kauwe et al., 2013). Inferred from eddy-

covariance, ‘inherent’ WUE (VPD.GPP/ET) increased in temperate and boreal forests with notably 

higher magnitude (βapp = 4.72; 21 sites) (Keenan et al., 2013). A follow up study reduced this 

estimate (βapp = 2.5) (Mastrotheodoros et al., 2017). An eddy-covariance calibrated, canopy-scale A
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model suggested iCO2 reduced gs (βdir,hist = -0.28±0.09) and increased iWUE (βdir,hist = 0.73±0.2) 

(Ueyama et al., 2020). Satellite-based models (2000-2013) of GPP and ET suggest smaller or 

decreased WUE (GPP/ET) (βapp = -0.49 and 0.28) (Tang et al., 2014; Xue et al., 2015). 

Experimental evidence has thoroughly demonstrated reduced leaf-scale gs in response to eCO2 

(βdir,fut = -0.22±0.15) (Medlyn et al., 2001). Averaged across FACE experiments (12 sites, 40 

species), eCO2 reduced gs (βdir,fut = -0.60±0.2) but with substantial variability across functional groups 

(Ainsworth & Long, 2005) and disturbance history (Donohue et al., 2017). Notably for Eucalyptus 

saligna in whole-tree chambers, canopy-scale iWUE was very tightly constrained (βdir,fut = 0.98±0.2), 

and variability in the Anet response controlled the gs response (Barton et al., 2012).

Across four FACE experiments (Duke, EucFACE, ORNL, Swiss Canopy Crane), transpiration 

responses were only reduced by eCO2 at ORNL (βdir,fut = -0.54), an ecosystem that is rarely water 

limited (Leuzinger & Körner 2010) (De Kauwe et al., 2013; Gimeno et al., 2018). Airborne remote 

sensing suggested decreased evapo-transpiration with long-term volcanically-derived eCO2 in 

California (Cawse-Nicholson et al., 2018). Stream-gauge networks indicate global increases in runoff 

(Gedney et al. 2006), in agreement with reduced gs over the northern hemisphere extratropics 

(Knauer et al., 2017). However, decreases in runoff have also been observed (Ukkola et al., 2016; 

Trancoso et al., 2017) and modest run-off increases across the tropics have been driven by 

precipitation increases (Yang et al., 2016). 

2 Biomass production

eCO2 increased BP in four temperate-forest, stand-scale (25-30 m diameter) FACE experiments in 

the early years (βdir,fut = 0.56±0.2) (Norby et al., 2005) and over a full decade (βdir,fut = 0.49±0.3) 

(Walker et al., 2019). These forest ecosystems were in the early phases of secondary succession 

(initiated 1-13 years following a major disturbance). In three later-succession forests (c. 100 years 

old), BP did not respond to eCO2 (note fine-root BP was often not measured): deciduous 

broadleaved trees (βdir,fut = -0.097±1.0 to 0.55±1.7) (8 years; Bader et al., 2013), Picea abies (βdir,fut = 

-0.30±0.7, 5 years eCO2; Klein et al., 2016), and a low productivity Eucalyptus woodland (βdir,fut = -

0.26±0.6, 4 years eCO2; Ellsworth et al., 2017; Jiang et al., 2020).

eCO2 consistently decreased specific leaf area (βdir,fut = -0.16±0.07) (Ainsworth & Long, 2005), which 

requires increased leaf BP at a given LAI (De Kauwe et al., 2014). Synthesis of experiments (19 

sites) suggests that eCO2 increased grassland leaf and stem BP (βdir,fut = 0.17±0.07) (Hovenden et A
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al., 2019), related to summer water savings and spring water availability (Morgan et al., 2004; 

Hovenden et al., 2019). Meta-analysis found eCO2 increased fine-root BP across experiments (βdir,fut 

= 0.56) (βdir,fut = 0.56), in forests (βdir,fut = 0.92), and to a lesser degree in grasslands (βdir,fut = 0.18) 

(Nowak et al., 2004).

Tree-ring analysis at CO2-springs in Italy (two sites) suggests that eCO2 increased Quercus ilex tree 

ring-width (a proxy for wood BP) initially (βapp = 0.49-0.81), and the increase diminished as trees 

aged (Hättenschwiler et al., 1997). Basal-area increment (BAI) analysis showed the eCO2 response 

stabilised at around 10 years (βapp = 0.27) (Norby et al., 1999). 

A large number of tree-ring studies have found little evidence for increases in wood BP. No 

detectable trends in BAI were found across tropical forests (3 sites, 12 species) (van der Sleen et al., 

2015), and both increasing and decreasing trends were found across North American boreal forests 

(598 sites, 19 species) (Girardin et al., 2016). Syntheses across biomes found no significant increase 

in tree ring-width since 1950 (βapp = 0.23±0.8; 40 sites) (Peñuelas et al., 2011) and variable 

responses of BAI (βapp = 0.45±0.7; 37 sites, 22 species) (Silva & Anand, 2013). Conversely, Pinus 

and Quercus tree-rings from Missouri showed a positive response to iCO2 that diminished with tree 

age (βapp = 3.3, at age one; βapp = 1.1, at age 50) (Voelker et al., 2006). 

Evidence from multi-plot inventory data consistently show increasing wood biomass (Section III.5), 

but few of these studies quantify wood BP. A single census interval of eastern-US Forest Inventory 

Analysis plots (20,000) suggested very little change in wood BP (Caspersen, 2000), but with high 

uncertainty (Joos et al., 2002). Two large tropical-forest plots showed no change in aboveground 

wood BP (Clark et al., 2010; Rutishauser et al., 2019). In contrast, tropical forest-plot networks (321 

and 244) suggest that aboveground wood BP increased in Amazonia (βapp = 1.2±0.6) (Brienen et al., 

2015) and Africa (βapp = 0.69±0.63) with a regression-attributed iCO2 response (βapp = 0.54±1) 

(Hubau et al., 2020). Analysis of worldwide forest plots (695) suggested that wood BP increased (βapp 

= 0.94±1.1) in recent decades (Yu et al., 2019).

BP-nutrient interactions and progressive nitrogen limitation

At Duke FACE, nitrogen availability influenced the magnitude of BP responses (McCarthy et al., 

2010) and experiments in later-succession systems with no BP response were limited by nitrogen 

(Flakaliden; Sigurdsson et al., 2013) and phosphorus (EucFACE; Ellsworth et al., 2017). Limiting 

factors were not examined for a number of the other later-succession experiments (Bader et al., 

2013; Klein et al., 2016).A
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eCO2 experiments in early-succession ecosystems suggest that BP gains were supported by 

increased nitrogen acquisition rather than changes in stoichiometry (Finzi et al., 2007; Zaehle et al., 

2014). Nitrogen acquisition was increased through increased fine-root BP (see above), changing root 

traits (Iversen, 2010; Nie et al., 2013; Beidler et al., 2015), and below-ground carbon flux to 

mycorrhizal symbionts and rhizosphere microbial associations (Section III.4; (Drake et al., 2011; 

Phillips et al., 2011; Terrer et al., 2018). Meta-analysis suggests that eCO2 increased nitrogen 

fixation in more intensively manipulated experiments but not in more natural settings (total 441 

studies, rates were scaled to plant or ground-area units; B.A. Hungate, unpublished).

Experimental evidence for progressive nitrogen limitation is limited to a single forest (ORNL; Norby et 

al., 2010) and a single grassland (Biocon; Reich et al., 2006). Paleo-climatic evidence suggests that 

despite increasing carbon storage the nitrogen cycle became more open between the last glacial 

maximum and the industrial revolution (Fischer et al., 2019; Jeltsch-Thömmes et al., 2019).

Leaf area, water, and land cover interactions

In some low LAI ecosystems, eCO2 increased LAI, but did not in higher LAI (c. 5) ecosystems 

(Norby & Zak, 2011; Bader et al., 2013). However, low LAI (c. 1) at EucFACE did not respond to 

eCO2 (Duursma et al., 2016). The LAI response to eCO2 in low LAI systems has been interpreted as 

CO2 accelerating open canopies towards closure (Körner, 2006). However, evidence from two FACE 

sites (Duke and Rhinelander) suggests that LAI can be higher at canopy closure (Walker et al., 

2019). Higher above-ground biomass in some grasslands (Hovenden et al., 2019) indicates potential 

LAI increases, though increases in leaf mass per unit area would reduce the LAI response relative to 

the biomass response. High grassland biomass responses have been linked to low soil matric 

potential (Morgan et al., 2004), though more complex interactions with precipitation seasonality have 

also been indicated (Hovenden et al., 2019).     

Satellite data show “greening” trends over much of the planet, inferred as increasing LAI (Zhu et al., 

2016; Mao et al., 2016) and with model-based attribution primarily to iCO2 (Zhu et al., 2016). 

Consistent with theory, satellite greeness data suggests increased foliage cover in warm and semi-

arid regions, likely an iCO2 effect via increased WUE (Donohue et al., 2013). Tree-rings have 

indicated decreasing sensitivity to rainfall or drought in the Eastern US, possibly indicating WUE-

mediated iCO2 response (Wyckoff & Bowers, 2010; Helcoski et al., 2019). However, less severe 

droughts, noted in the Eastern US, likely appear as reduced growth sensitivity (Maxwell et al., 2016). 

At the Florida scrub oak experiment, eCO2 alleviated drought-related declines in NEP (Li et al., A
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2007) but the opposite was observed at the Nevada desert FACE (Jasoni et al., 2005). 

3 Plant mortality

Greenhouse experiments with potted plants have found little benefit of eCO2 on survival during 

drought or high temperature (e.g. Duan et al., 2014; Bachofen et al., 2018). However, remote 

sensing evidence shows increased vegetation cover in drylands (Donohue et al., 2013; Section III.2) 

which possibly suggests a reduction in mortality in those regions. 

We are unaware of direct or indirect evidence for CO2-related increases in individual-scale mortality, 

but growth-mortality relationships provide insight. Evidence supports both an inter-specific growth-

survival tradeoff (Wright et al., 2010; Bugmann & Bigler, 2011) and an intra-specific tradeoff (Bigler & 

Veblen, 2009; Di Filippo et al., 2012, 2015; Büntgen et al., 2019). However, there are common 

exceptions with some high-growth-rate species with long lifespans (Rüger et al., 2020), and other 

species that show no, or even negative, growth-mortality relationships (Ireland et al., 2014; Cailleret 

et al., 2017).

Experimental evidence for stand-scale mortality responses to eCO2 is rare. In the young, 

regenerating stand at Rhinelander FACE, over 11 years of eCO2 lowered rates of self-thinning (i.e. 

higher stand basal area for any given stem density) (Kubiske et al., 2019). 

At broader scales, most inventory networks have shown increases in stand-scale mortality rates. 

Increases in biomass mortality have been observed in Amazon forests (βapp = 2.4) (Brienen et al., 

2015) and across continents (βapp = 1.6-3.9) (Yu et al., 2019). Tree stem mortality rates have 

increased, across species, elevation, and tree size, in the western US (βapp = 6.2±3; van Mantgem et 

al., 2009) and in Canada  (βapp = 6.1) (Peng et al., 2011). However, none of these studies 

conclusively attribute trends to iCO2 and other global change (e.g. temperature) and biotic (e.g. pest 

and pathogens) agents have often been attributed drivers of mortality trends (Peng et al., 2011; Luo 

& Chen, 2015). Finally, several networks observed decreases or non-significant changes, e.g. in 

stem mortality rates in Germany (Pretzsch et al., 2014) and biomass mortality in tropical Africa (βapp 

= -0.88±2), although multiple-regression estimated that CO2 increased mortality (βdir,hist = 1.8±4) 

(Hubau et al., 2020).

4 Organic matter decomposition

Evidence for changes in SOM-decomposition rates comes primarily from experiments. Many eCO2 A
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experiments have demonstrated increased plant litter production and allocation of carbon 

belowground (e.g. Drake et al., 2011; Iversen et al., 2012). Meta-analysis (53 experiments, primarily 

FACE and OTC) showed that eCO2 increased litter production (βdir,fut = 0.4±0.1) and SOM-

decomposition rates (βdir,fut = 0.34±0.2) (van Groenigen et al., 2014), yet priming effects are difficult to 

detect in field studies (van Groenigen et al., 2014; Georgiou et al., 2015).

Results from ecosystem-scale experiments indicate some heterogeneity and nuance in these 

responses. For example, in a scrub oak ecosystem, 6 years of eCO2 increased SOM decay despite 

unchanged microbial biomass (Carney et al., 2007), and at ORNL FACE a decade of eCO2 resulted 

in a small but non-significant increase in surface-soil SOM decomposition along with a reduction in 

microbial nitrogen (Iversen et al., 2012). In a later-succession forest, eCO2 increased microbial 

biomass (βdir,fut = 0.40±0.4) but with no change in soil respiration (βdir,fut = -0.18±0.7) (Bader & Körner, 

2010). At EucFACE +30 ppm eCO2 increased soil respiration (βdir,fut = 1.3), but a further increase of 

120 ppm produced no additional effect after 3 months (βdir,fut = 0.3) or 3 years (βdir,fut = 0.21) (Drake et 

al., 2016, 2018). This 3-year response was non-significant but accounted for about half of the 

additional carbon acquired under eCO2 (Jiang et al., 2020).

Data on long-term changes in SOM decomposition in response to iCO2 remains limited. Synthesis of 

23 flux-towers with increased GPP (Section III.1) suggested a non-significant increase in ecosystem 

respiration (Re) (βapp =0.58±1) (Fernández-Martínez et al., 2017). Synthesis and statistical upscaling 

of chamber measurements suggested that global soil respiration has increased (βapp =0.22) (Bond-

Lamberty & Thomson, 2010). Statistical predictors of this trend include temperature anomaly and 

year (possibly an iCO2 effect). Notably, heterotrophic respiration would be expected to increase if 

Csoil increased, even with no change in decomposition rates.

Accelerated SOM decomposition may release nutrients and feed back onto the activity of plant 

processes. For example, at Duke FACE increased root exudation (βdir,fut = 1.1±0.6) was coupled with 

a non-significant but substantial increase in microbial biomass (βdir,fut = 1.1±1.3) and production of 

nitrogen-acquiring extracellular enzymes (Phillips et al., 2011). Exoenzyme activity was increased at 

Duke and Rhinelander FACE (Larson et al., 2002; Finzi et al., 2006), although no change in nitrogen 

mineralisation was observed in lab incubations (Zak et al., 2003), perhaps suggesting that 

stimulation of microbial activity required plant inputs. Conversely, leaf δ15N suggests that eCO2 may 

have increased nitrogen mineralisation but not ring-width in mature trees in a European forest (Bader 

et al., 2013). eCO2 increased nitrogen and phosphorus mineralisation for a limited period at A
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EucFACE (Hasegawa et al., 2016) and enzyme activity in an alpine forest (Souza et al., 2017). 

Conversely, meta-analysis suggests eCO2 increased fine root C:N ratios (βdir,fut = 0.13) (Nie et al., 

2013), which are associated with lower decomposability.

Contrasting mycorrhizal associations have been linked to biomass responses under low soil nitrogen 

conditions (Phillips et al., 2013; Terrer et al., 2016). Ectomycorrhizal (ECM) fungi are assumed 

capable of stimulating SOM decomposition, while arbuscular mycorrhizal (AM) fungi are not, 

resulting in increased nitrogen in aboveground BP in ECM trees but not in AM plants, primarily 

grasses (Terrer et al., 2018). Conversely, AM association with Avena fatua in a lab and field setting 

increased SOM-decomposition rates under eCO2 (βdir,fut = 1.4) (Cheng et al., 2012).

5 Terrestrial ecosystem carbon

Direct evidence from site-scale studies

In the four longest-running FACE experiments eCO2 over a decade increased Cveg increment (βdir,fut 

= 0.60±0.4) in these early-succession temperate forests (Walker et al., 2019). eCO2 of geological 

origin increased tree basal area in 30 year old trees (βdir,fut = 0.23-0.39) (Hättenschwiler et al., 1997). 

Conversely, in the later-succession forest at EucFACE, four years of eCO2 did not increase Cveg 

increment (Jiang et al., 2020), likely because of phosphorus limitation (Ellsworth et al., 2017). Other 

experiments in later-succession forests did not quantify Cveg. Meta-analysis and extrapolation (138 

experiments) predicted a global increase in Cveg (βdir,fut = 0.22±0.1) related to soil C:N ratio in AM-

associated ecosystems and soil phosphorus in ECM-associated ecosystems (Terrer et al., 2019). 

Biomass responses were generally higher in ECM systems than in AM systems (Terrer et al., 2016), 

while another meta-analysis showed analogous biomass responses in trees compared with grasses 

(Song et al., 2019).    

Synthesis of meta-analyses found that eCO2 increased Csoil across all (>200) experiments analysed 

(βdir,fut = 0.039±0.03) but not in field experiments lasting ≥2 years without nitrogen addition (25) (βdir,fut 

= 0.0054±0.03) (Hungate et al., 2009). However, Csoil responses to eCO2 at individual sites are 

mixed. For example, a decade of eCO2 increased Csoil at ORNL FACE (βdir,fut = 0.51±0.6, 0-90 cm) 

(Iversen et al., 2012) and in a desert ecosystem (βdir,fut = 0.59±0.62) (Evans et al., 2014), but not in a 

scrub oak ecosystem (βdir,fut = -0.15±0.5) (Hungate et al., 2013). In the desert ecosystem, inorganic 

carbonate pools may have contributed to increases in Csoil through nocturnal CO2 uptake (Hamerlynk 

et al. 2013) though net effects are likely small (Soper et al., 2016). A
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Given limited data, litter addition experiments can also provide insight. Synthesis of priming 

responses to litter addition (26 studies) suggested that 32 % of litter inputs accumulate as Csoil (Liang 

et al., 2018). 10-30 years of doubled aboveground-litter inputs in temperate forests increased Csoil at 

two sites (29±13 % and 33±28 %) but had no effect at three sites (Lajtha et al., 2018), nor in one 

tropical forest (Sayer et al., 2019). Based on these responses and assuming doubled CO2 doubles 

litter production (which is unlikely), βdir,hist would range from 0 to 0.41±0.3. 

Measurement of NEP requires whole-ecosystem enclosure, thus data are few. In a US salt-marsh 

higher rates of NEP were sustained over 19 years in both C3 and C4 communities (Drake 2014). A 

data-assimilation approach provided a comprehensive carbon budget at EucFACE showing no 

change in Ceco (Jiang et al., 2020). 

Indirect evidence from global and regional studies

Spatially-explicit atmospheric [CO2] measurements, fossil-fuel emissions, and other data are 

integrated using atmospheric transport models to infer terrestrial net biome production (NBP). These 

“inversions” suggest a global NBP of 2.3±0.9 (MACC-II), 2.3±1.5 (Jena-CarboScope) (1995-2014; 

Fernández-Martínez et al., 2019), and 1.9±0.5 PgC y-1 (2010-2014) (Li et al., 2018) and all estimated 

positive trends in global NBP (βapp = 19±7, 11±4, 9.8±5). These estimates of NBP include both 

‘natural’ NBP and land-use change-related (instantaneous and legacy) NBP. 

Global land-use change-related NBP was estimated from bookkeeping models at -1.4±1.4 PgC y-1 

(2000-2009; Friedlingstein et al., 2019), and are predominantly in the tropics (-1.4±0.3 PgC y-1) with 

fluxes outside the tropics balancing to a net flux of near zero (Houghton & Nassikas, 2017). Regional 

analysis of NBP show a strong sink in Northern Hemisphere extra-tropics 2.3±0.6 PgC y-1 (1992-

1996), 2.2±0.5 PgC y-1 (2001-2004) but a substantial source in the tropics -1.1±1.5 (1992-1996) and 

-0.9±0.9 PgC y-1 (2001-2004) (Gurney et al., 2004; Peylin et al., 2013). Combined with land-use 

change-related NBP, these inversion results suggest small ‘natural’ NBP in the tropics (c. 0.3-0.5). 

However, analysis of the vertical atmospheric [CO2] gradient suggested close-to-neutral tropical NBP 

(Stephens et al., 2007), implying ‘natural’ NBP of similar magnitude and opposite sign to land-use 

change-related NBP, attributed primarily to iCO2 (Schimel et al., 2015). 

Flask, aircraft, and satellite-based measurements show trends in the seasonal-cycle amplitude of 

[CO2] since c. 1960 (Keeling et al., 1996; Graven et al., 2013; Yin et al., 2018), implying seasonal 

intensification of northern NBP (βapp = 2.2±0.6) (Graven et al., 2013). iCO2 has been implicated as a 

major driver of these trends (Forkel et al., 2016; Bastos et al., 2019), though increasing crop A
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production (Gray et al., 2014; Zeng et al., 2014) and warming-induced increasing vegetation cover 

(Keenan & Riley, 2018) are also likely candidates. 

Carbon budgeting estimated global ‘natural’ NBP at 3.6±1.0 PgC y-1 (2009-2018) and 141 PgC since 

1959 from the budget residual, and 3.2±1.2 PgC y-1 and 130 PgC from process-based models 

(Friedlingstein et al., 2019). Based on the residual estimate of ‘natural’ NBP and the lower and upper 

bounds of either global vegetation or global ecosystem carbon stocks results in βapp = 0.93-1.4 

(assuming all the sink is in vegetation) or βapp = 0.18-0.29 for ecosystem carbon (global vegetation 

and non-permafrost soils).

Synthesis and extrapolation of global inventory data suggested increased Ceco (βapp = 1.0±0.6), Cveg 

(βapp = 1.9), Csoil (βapp = 0.31), litter carbon (βapp = 0.92), and dead wood carbon (βapp = 0.64) (Pan et 

al., 2011). Little additional data on Csoil changes over the historical period are available. Evidence 

from multi-plot forest-inventory data consistently shows net gains in wood Cveg in recent decades in 

tropical Africa (βapp = 0.77) (Hubau et al., 2020), the Amazon (βapp = 0.69) (Brienen et al., 2015), 

Borneo  (βapp = 0.48±0.3) (Qie et al., 2017), and in large 50 ha plots across the tropics (βapp = 

0.30±0.24) (Chave et al., 2008). Wood Cveg also increased in plots across the Eastern US (βapp = 

2.9±1.5) (McMahon et al., 2010) and globally (βapp = 0.82±0.5) (Yu et al., 2019). Long-term 

geological CO2 release was associated with reduced lidar-estimated aboveground Cveg (Cawse-

Nicholson et al., 2018). 

Flux-towers measure NEP directly, yet have been running for a relatively short time. Synthesis of 23 

flux-towers indicate increased NEP (βapp = 4.3±2), with high CO2 sensitivity (βdir,hist = 4.6±2) 

(Fernández-Martínez et al., 2017). 

IV. Synthesis 

1 Evidence for the CO2-fertilisation hypothesis

In this section we integrate and interpret the evidence for change in the components of the carbon 

cycle during the historical record concurrent with increasing [CO2] (iCO2; c. 280-400 ppm), in 

response to elevated [CO2] (eCO2; c. 390-500 ppm), and the probability and magnitude of iCO2 as a 

driving factor in the historical change. In doing so we acknowledge that we are mixing evidence 

across scales, measurements, methods of analysis, and in some cases different variables that may 

not be perfectly comparable. However, this is required for a broad synthesis and a formal meta-A
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analysis is not our intention. We assign confidence as either “high” (all estimates agree), “medium” 

(estimate means disagree, substantial overlap in confidence intervals), or “low” (estimate means 

disagree, little overlap in confidence intervals). 

Physiology 

A number of independent lines of indirect evidence—ice-core OCS (Campbell et al., 2017) and O18 

(Ciais et al., 2012), glucose isotopomers (Ehlers et al., 2015), satellite ET (Cheng et al., 2017), and 

flux-partitioned eddy-covariance (Fernández-Martínezet al., 2017)—provide high confidence that 
terrestrial GPP has increased concurrently with iCO2. Estimates of the GPP increase disagree 

by a factor of 1.7 (βapp = 0.95-1.6, mean = 1.2; Table 2), but overlap in confidence intervals (Fig. 3, 

Fig. S2) indicates that these estimates are consistent and suggests medium confidence in the 
magnitude of the increase in GPP concurrent with iCO2. Above the canopy-scale GPP can be 

measured only indirectly, and most of these estimates are a function of the [CO2] trend (Box 3; 

isotopomers, satellite, OCS) which introduces a circularity. However, we place less confidence in 

estimates (usually satellite-based) that omit a CO2 effect from the theory used in their GPP 

estimation (Box 3; De Kauwe et al., 2016). Flux-partitioned eddy-covariance provides the only 

estimate of GPP that does not require [CO2] in its calculation and provides the highest βapp of 1.6±0.9 

(Fernández-Martínez et al., 2017). A smaller proportion of this change was attributed to iCO2 (βdir,hist 

= 1.2±0.6). 

Synthesis of direct evidence from experiments provides high confidence that ecosystem-scale 
eCO2 increases diurnal photosynthesis in leaves (βdir,fut = 0.68±0.2). This increase is very similar 

to the theoretical value for a light-saturated leaf (βdir,fut = 0.70±0.2, Table S1). The theoretical value 

for the canopy-scale photosynthesis response to iCO2 (280-410 ppm, βdir,fut = 0.60±0.3, Table S1) is 

about half the observed mean increase in GPP concurrent with iCO2 (βdir,hist = 1.2). For iCO2 to be 

the sole driver of the observed responses would require all leaves to be operating at the light-

saturated rate of increase and would require additional positive feedbacks of equivalent magnitude. 

The majority of global models tend to follow the theoretical response to iCO2 (Keenan et al., 2016). A 

carbon cycle model was able to replicate the OCS increase in GPP (βapp = 0.95±0.2) and change in 

northern seasonal [CO2] amplitude by hypothesising leaf optimisation and predicting a substantial 

increase in LAI (note the phosphorus cycle was disabled) (Haverd et al., 2020). However, it is not 

clear that leaves optimise as hypothesised (Smith and Keenan, 2020), and models consistently 

represent allocation and LAI simplistically. For example, LAI trends are inferred in high-LAI tropical A
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rainforests (Zhu et al., 2016). In these regions models are likely predicting an increase in maximum 

LAI, which conflicts with experimental evidence and resource investment theory. An alternative 

hypothesis is that iCO2 accelerates the recovery of forest-gaps such that landscape-scale LAI is 

greater—a hypothesis not represented by any of the models used for attribution. Outside of tropical 

forests, changes in LAI are related to both iCO2 (Donohue et al., 2013) and temperature-stimulated 

increases in growing season length (Keenan and Riley, 2018). An additional consideration is that 

models tend to under-estimate GPP relative to solar-induced fluorescence (a GPP proxy) in 

agricultural regions (Guanter et al., 2014; Walker et al., 2017), agriculture being another major factor 

of global change. Taken together, we place high confidence that the historical GPP increase was 
primarily driven by iCO2 and also that iCO2 was not the sole driving factor. However, it is 

unclear which factors might be driving the additional change in GPP. 

A number of independent lines of indirect evidence—tree-ring δ13C (e.g. Saurer et al., 2004; 

Peñuelas et al., 2011; Frank et al., 2015), flux-partitioned eddy-covariance (Keenan et al., 2013; 

Mastrotheodorus et al., 2017), and atmospheric δ13C (Keeling et al., 2017)—provide high 
confidence that iWUE (across leaf to global scales) and WUE (across leaf to ecosystem 
scales) have increased over the historical period (βapp = 0.85-3.9, mean = 1.5). There remain 

large differences (factor of 5) between these estimates of the increase, primarily due to the eddy-

covariance estimates (βapp = 2.4±2.0 and 3.9±2.5). The causes for these differences are not fully 

understood, though scale (Medlyn et al., 2017), plasticity (Mastrotheodorus et al., 2017), high 

variability and short time scales (indicated by the high uncertainty), and GPP trends that are higher 

than expected from iCO2 alone (see above) all play a role. Eddy covariance estimates skew the 

mean and the modal change is around βapp = 1 (Fig. 3), similar to the mean for iCO2-attribution 

studies (βdir,hist = 0.80) and the theoretical value for iWUE (βdir,hist = 1.1). As with GPP, other than 

eddy-covariance these indirect methods use [CO2] in their calculation (Box 3). Satellite estimates of 

WUE suffer from very short time-periods (13 years) with low signal-to-noise ratio, leaving little 

confidence in these trend estimates. Direct evidence from multiple experiments support iWUE and 

WUE increases  (βdir,fut = 0.65-1.6, mean=1.1) in agreement with predictions from theory (Figure 2). 

Taken together this evidence provides high confidence that iCO2 has increased iWUE, medium 
confidence that the magnitude is in accordance with theory, and low confidence in the 
magnitude of the historical change in WUE. 

How do these changes in iWUE translate to changes in water use? Theory predicts that iWUE 

(Anet/gs) responses are very tightly constrained (βdir c. 1), so if the change in Anet is below 1, gs will A
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decrease (Barton et al., 2012). The observed changes in GPP (βapp c. 1) suggest that widespread 

and broad-scale reductions in gs may not have occurred. Reductions in stomatal conductance may 

occur at points in time or space but as spatial and temporal scale increases, iCO2-induced 

decreases in stomatal conductance likely translate into smaller decreases in transpiration (Field et al. 

1995; Körner et al., 2007). 

Increased vegetation cover in semi-arid regions (Donohue et al., 2013; Ukkola et al. 2016), increased 

rooting depth (Y. Yang et al., unpublished; Iversen 2010), soil-water feedback on gs, competition, and 

atmospheric coupling (Jarvis & McNaughton, 1986; Buckley et al., 2017; Sperry et al., 2019; Sabot et 

al., 2020) are all mechanisms that  may lead to no change in water use at larger scales. This is 

especially likely to be the case in water-limited regions where long-term transpiration is primarily 

precipitation driven (Fatichi et al. 2016) i.e. plants use the water that is available. 

Biomass production

Ecosystem-scale forest-inventory networks suggest increases in wood BP concurrent with iCO2 

(mean βapp c. 1; Brienen et al., 2015; Yu et al., 2019, Hubau et al., 2020). Conversely, evidence from 

tree-rings is mixed (e.g. Peñuelas et al., 2011; Silva & Anand et al., 2013). Both of these methods 

are subject to potential sampling biases (Box 3). However, the tree-ring biases are potentially larger 

and can be either positive (Nehbas-Ahles et al., 2014) or negative (Brienen et al., 2016). The 

inventory evidence provides medium confidence in an increase in wood BP over the historical 
period, with low confidence in the magnitude (βapp c. 1). However, this is an area of 

disagreement among several in our authorship group. 

Many studies show increased BP in response to eCO2 (e.g. Baig et al., 2015), but these studies are 

often short-lived and under artificial conditions. Evidence from long-term, large-scale FACE 

experiments (<10 experiments) is mixed, with both increases (e.g. Norby et al., 2005) and no change 

in BP observed (e.g. Jiang et al., 2020; Bader et al., 2013) (βdir,fut = -0.3-0.56, mean = 0.19). Many 

studies show a BP response to eCO2 that is higher at sites with higher nutrient availability (e.g. 

Terrer et al., 2018), that is greater when nutrients were added (e.g. Sigurdsson et al., 2013; Reich et 

al., 2006), or no response when nutrients are low (e.g. Sigurdsson et al., 2013; Ellsworth et al., 

2017). However, strong evidence for the widely held progressive nitrogen limitation hypothesis is 

restricted to two experiments (Biocon, ORNL) (Reich et al., 2006; Norby et al., 2010). At both of 

these experiments nutrient dynamics also caused declining BP in the ambient treatments, indicating 

that eCO2 responses can be tied, via nutrient availability, to underlying ecosystem dynamics. A
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BP responses were observed in earlier-succession more-disturbed ecosystems, which also tend to 

have higher nutrient availability (Körner 2006). The experiments with no response were often 

situated in later-succession forests, some of which were also severely limited by nutrients. The forest 

inventories in which BP increases concurrently with iCO2 were observed in later-succession, 

primarily tropical, forests that are assumed to be strongly nutrient limited. These inventory responses 

are high (βapp c. 1) compared with the results from experiments even in earlier-succession forests 

(βdir,fut = 0.49±0.3). However, the evidence is insufficient to robustly evaluate how eCO2 affects late-

successional and tropical forests. Taken together, this evidence suggests high confidence that 
eCO2 can stimulate BP (βdir,fut c. 0.5), that the response is diminished by nutrient limitations, 
and that the observed inventory response is likely due to iCO2 and additional factors.     

Vegetation mortality

A number of independent plot networks provide high confidence that tree mortality has increased 
over the historical period but low confidence in the magnitude (βapp = -1.2-7.4, mean = 2.8; Fig. 
3, Fig. S3). The greatest changes are primarily attributed to drought. Causes of mortality are often 

stochastic, multi-factorial, and play out over long time periods, making trend identification and 

attribution at ecosystem and landscape scales uncertain (McMahon et al., 2019). For individual scale 

mortality, an intra-specific growth-survival tradeoff is apparent for some species (e.g. Di Fillipo et al., 

2015), which would reduce lifespans if iCO2 increases wood BP. However an intra-specific growth-

survival tradeoff is not ubiquitous among species (e.g. Cailleret et al., 2017).

Greenhouse eCO2 experiments suggest that eCO2 does not reduce drought-related mortality (e.g. 

Duan et al., 2014; Bachofen et al., 2018). However, eCO2 commonly increased leaf area in these 

experiments, increasing transpiration that likely exacerbated mortality risk (Duan et al., 2018). What 

does this mean for eCO2 responses in ecosystems? Due to the juvenile growth stage of these 

plants, leaf area increases were much higher than expected in closed canopy systems (see Box 2), 

and increased root BP from eCO2 would exacerbate pot-volume constraints on root proliferation. 

Inference from these experiments is limited. At the stand scale there is very limited evidence that 

eCO2 might change self-thinning relationships allowing higher basal area for a given stem density 

(Kubiske et al., 2019). Evidence for changes in mortality caused by iCO2 is weak and mostly indirect 

with limited support for both increases and decreases in individual and stand-scale mortality rates. 

Taken together (CS11) the response of mortality to iCO2 and eCO2 is unknown, even the 
direction of change is unclear.A
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Organic matter decomposition

The few studies of soil or ecosystem respiration show small (βapp = 0.22; Bond-Lamberty & 

Thompson 2010) or non-significant increases (βapp = 0.58±1; Fernández-Martínez et al., 2017). 

These trends could possibly be related to increasing heterotrophic respiration and decomposition, 

but increasing temperature is inferred as the cause and not iCO2 (e.g. Bond-Lamberty et al., 2018). 

Due to the low number of studies there is low confidence that SOM decomposition has increased 
over the historical period, but it is unknown whether SOM decomposition rates have 
increased.   

Evidence from eCO2 experiments generally supports the theory that rising [CO2] increases SOM-

decomposition rates (e.g. van Greonigen et al., 2015) due to increases in microbial biomass, 

rhizosphere priming, mycorrhizal association, and increases in soil water content (see refs in Section 

III.4). Smaller changes in decomposition rates have been associated with lower microbial biomass 

and higher soil water (Bader & Körner, 2010; Iversen et al., 2012). Taken together, the evidence 

suggests medium confidence that eCO2 increases rates of SOM decomposition but with low 
confidence in the magnitude. Increasing SOM decomposition will also release nutrients that may 

be available for plant growth and BP. Plant nutrient acquisition through mycorrhizal and other root-

microbe interactions are likely mediators of this process (Terrer et al., 2018). Notably, the large step-

change in eCO2 experiments compared with the more gradual iCO2, could lead to a greater 

imbalance of available resources resulting in a carbon surplus (Box 3) that could fuel greater 

microbial activity. It is worth noting that increased SOM-decomposition rates do not necessarily imply 

lower Csoil litter inputs are also increasing (Liang et al., 2018).

Terrestrial ecosystem carbon

Multiple independent lines of evidence—global-scale carbon budgeting (Friedlingstein et al., 2019), 

atmospheric inversions (e.g. Peylin et al., 2016; Fernández-Martínez et al., 2019), seasonal [CO2] 

amplitude trends (Graven et al., 2013), and forest inventories (e.g. Pan et al., 2011; Hubau et al., 

2020)—imply a CO2 sink in terrestrial ecosystems (Fig. 3, Fig. S4). This evidence provides high 
confidence that terrestrial ecosystem carbon has increased over the historical period, with 
substantial changes in the ‘natural’ carbon sink almost balanced by a net carbon source from 
land-use change. Global carbon budgeting and global forest analysis suggest responses concurrent 

with iCO2 in the range, βapp = 0.18-1.0. The ‘natural’ carbon store response estimated for global 

intact forests (βapp = 0.66±0.4; Pan et al., 2011) is higher than estimated for the ‘natural’ land surface A
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(βapp =0.18-0.29; Friedlingstein et al., 2019). Trends observed in eddy-covariance NEP (site-scale 

‘natural’ sink) and inversion NBP (global-scale combined ‘natural’ and land-use sink) are extremely 

high (βapp = 4.3-19, mean 11). The extremely high βapp for global NBP (and to a lesser degree NEP) 

results from global NBP being near zero as the ‘natural’ sink is almost balanced by the net source 

from land-use change, thus small absolute changes can be relatively high (Box 3).    

CO2 effects on terrestrial carbon are convolved with the effects of concurrent anthropogenic changes 

in climate, nitrogen deposition, and land-use change, including agricultural intensification and fire 

management. Attribution analyses indicate a primary role for iCO2 (e.g., Schimel et al., 2015; 

Keenan et al., 2016; Bastos et al., 2019; Fernández-Martínez et al., 2019; Haverd et al., 2020). 

These analyses depend on the inclusion of accurate explanatory-variable datasets and accurate 

process representation in models, which may not be the case. Quantification of the effect of iCO2 on 

carbon storage in terrestrial ecosystems remains elusive. 

As with BP responses, studies of forest inventories show higher Cveg responses (βapp = 0.3-2, mean = 

0.85) than studies of eCO2 experiments (βapp = 0.22-0.39) (Fig. 3). However, the highest values 

come from two analyses: one that includes global forest regrowth (βapp = 1.9; Pan et al., 2011) and 

younger (c. 50-100 years old) temperate forests (βapp = 2±1; McMahon et al., 2011). Exclusion of 

these higher change studies results in a narrower range (βapp = 0.3-0.85, mean = 0.57). This 

exclusion narrows the difference between responses inferred from iCO2 and eCO2 studies, which is 

consistent with theory as relative stock changes are under-estimated more in short-term experiments 

than in inventory-type studies (Fig. S2).  Responses of vegetation carbon increment may give a more 

accurate estimate of responses in systems that are far from equilibrium when initially exposed to 

eCO2 (Fig. S2). Vegetation carbon increment responses estimated from FACE experiments (βapp = 

0.60±0.4; Walker et al., 2019) are consistent with the reduced range from inventory studies. 

However, the theoretical under-estimation of undisturbed forest-inventory responses (Fig. S2) yet 

similarity of these responses with those from disturbed forests subjected to eCO2 and not the lower 

values from undisturbed forests (e.g. Jiang et al., 2020), requires further consideration. Either eCO2 

experiments are under-estimating responses or other factors have affected the inventory evidence. 

Both of these evidence types are likely missing the full extent of mortality (e.g. Chambers et al., 

2013), and evidence from larger-scale 50 ha plots suggests a lower response for intact tropical 

forests (βapp = 0.30±0.2; Chave et al., 2008).  

Evidence for changes in Csoil is mixed and context dependent. On average there is no detectable A
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response across experiments (Hungate et al., 2009), though at some individual sites, Csoil did 

accumulate (e.g. Iversen et al., 2012; Evans et al., 2014). The only study (to our knowledge) of soil 

carbon changes concurrent with iCO2 suggests a relative response in global forests (βapp = 0.31; Pan 

et al., 2011), that would be substantial if extrapolated to mineral soils globally. As with vegetation 

carbon stocks, the long-term, relative responses of soil carbon stocks are likely underestimated by 

short-term eCO2 experiments (Fig. S2). Taken together, evidence suggests medium confidence 
that eCO2 increases ecosystem carbon stocks over short to medium timescales and iCO2 has 
contributed to the change over the historical period, but with low confidence in the 
magnitude. 

2 What we need to know

Confidence in the magnitude of CO2 effects is generally low. In particular, iCO2-attribution is a major 

challenge in testing the CO2-fertilisation hypothesis over the historical period. Attribution often relies 

on empirical regression which simply indicates correlation, anything with a trend over the historical 

period will correlate with iCO2. We advocate using log-log β as a stable (Notes S1; Fig. S1), 

relativised metric for comparison with theoretical expectations and other studies. 

Process-based models are also used to deconvolve causation from multiple global-change factors. 

Models often represent key mechanisms over-simplistically and yet are also equifinal, while model 

ensembles represent a non-random sample of non-independent models (Beven, 2006; Fatichi et al., 

2019; Sanderson & Fisher, 2020). Thus, models need always to be interpreted in the context of the 

mechanisms they represent, those they do not, how representations might bias results, and how well 

they reproduce observations (e.g. Medlyn et al., 2015). Mechanistic models (or modules) of BP, 

resource acquisition and allocation, how soil and plant water status affect gs, plant-microbe effects on 

soil decomposition, vegetation structure and demography (e.g. competition, mortality), and land-use 

need to be applied more extensively to the CO2-fertilisation hypothesis. Alternative hypotheses to 

explain observed phenomena should be evaluated within model ensembles, and calibrated to allow 

the hypotheses to compete on an equal footing (e.g. Zhang et al., 2015). Agile and extensible 

models (e.g. Clark et al., 2015; Walker et al., 2018) will be needed to rapidly incorporate this 

understanding, including uncertainty, into the internally-consistent and quantitative systems-level 

theory that models represent. 

It is crucial that future eCO2 experiments are designed and resourced to understand the mechanistic 

basis for responses (or lack thereof) and do not simply report significance or effect-sizes. Integration A
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with extensible, process-based models will help evaluate and explore the mechanistic basis for 

observed responses (Medlyn et al., 2015). During the lifetime of long-term experiments, new 

hypotheses will arise to explain unexpected or key observations that may help to provide context and 

mechanisms underlying the observed responses. These long-term experiments represent very large 

investments and for relatively small additional investment, related studies can test mechanistic 

hypotheses as they arise during an experiment’s lifetime. 

Suggestions for high-priority future studies:

Understanding the mechanistic basis for GPP increases observed over the historical period 
and how this relates to water use. GPP, iWUE, and water use are intimately tied. The mechanisms 

by which plants might adjust to iCO2 (photosynthetic acclimation/optimisation, more and deeper 

roots, gs responses to water status) are not fully understood and thus not well explored within 

models. A quantitative synthesis canopy or stand-scale photosynthetic responses in eCO2 

experiments would be informative.

Biomass production inferred from tree-rings and forest inventories reach very different conclusions. 

Where possible, studies that can integrate these two types of evidence, such as tree-ring sampling at 

inventory sites (e.g. Dye et al., 2016; Evans et al., 2017), acknowledging respective biases will be 

fruitful. The mechanisms underlying how increased GPP leads to increased BP and increased 

nutrient acquisition through plant-microbe associations are key areas for future study, especially over 

successional gradients. eCO2 studies in mid and late-succession ecosystems, and tropical, boreal, 

semi-arid, and savannah ecosystems will help to address the young, temperate ecosystem bias in 

eCO2 studies.

How iCO2 affects mortality is key for understanding Cveg and community responses to iCO2. As 

mortality is a relatively rare event in established vegetation, change detection and attribution of 

causation require large-scale, long-term monitoring, and ideally, experiments (Hartmann et al., 

2018). Understanding the mechanics of observed growth-mortality tradeoffs and whether iCO2 may 

be alleviating mortality in semi-arid regions are high-priority.

Studies of the Csoil decomposition rate over the historical period are practically non-existent, 

additional studies are required. As with BP, efforts to fully understand plant-microbe-soil (and likely 

invertebrate), carbon-nutrient interactions continue to be a high-priority. Furthermore, investigation of 

responses in deep soil layers are few or non-existent. Understanding how the opposing processes of 

increased litter production, root-microbe interactions, increased decomposition rates, and rates of A
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mineral-associated SOM formation balance to affect Csoil throughout the soil profile will be key to 

predictive understanding. This may be especially relevant in non-forest ecosystems, where the 

largest potential change in carbon storage is belowground. 

iCO2 affects ecosystem carbon primarily through effects on NEP, thus understanding of  Ceco 
responses to iCO2 will emerge from the above research priorities. Further, NBP is what the 

atmosphere ‘sees’, which includes additional non-respiratory carbon losses caused by fire 

(anthropogenic and wild), hydrological export, and export of consumer goods. iCO2 may interact with 

some non-NEP fluxes, e.g. greater grassland BP leading to higher fuel loads, greater BP in 

regrowing forests following land-use change. Land-use change NBP is often calculated without 

considering iCO2 and separately from ‘natural’ NBP caused by iCO2, climate change, nitrogen 

deposition, and other factors (e.g. Friedlingstein et al., 2019). Though the boundary between these 

fluxes is blurred (Pongratz et al., 2014). Integrated studies that consider all of these factors, 

especially land-use change (including iCO2-acceleration of regrowth following disturbance, e.g. Pugh 

et al., 2019), agriculture, and ‘natural’ fluxes will yield insight. 

V. Conclusions

To evaluate the CO2-fertilisation hypothesis, we synthesised evidence from wide-ranging disciplines 

within an integrated theoretical framework. We have medium or high confidence that GPP, iWUE, 

BP, and mortality have all increased over the historical period. However, we often have low or 

medium confidence in the magnitude, and low confidence in how much of the change is attributable 

to iCO2.

The complex nature of the problem demands integrated studies, and further integration is required to 

fully combine the broad evidence in a way that is scale, bias, and uncertainty aware (Box 3). 

Inference regarding trends and responses (or lack thereof) should always be grounded in the 

context-dependence and biases associated with a particular study. Further experiments and 

observations are needed to help reconcile differences among evidence streams. For example, tree-

ring sampling at flux sites or forest-inventory plots, proximal remote sensing at flux and experiment 

sites, and model-data integration to reconcile diverse data streams would all help to provide an 

integrated understanding of this complex problem. A holistic, community-based approach will enable 

the greatest advances and provide the most robust information to decision makers. 

The required size of climate-change mitigation efforts depends directly on how future terrestrial A
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carbon storage evolves. Evidence for the CO2-fertilisation hypothesis suggests a highly valuable 

ecosystem service that is buying us time in the fight against climate change, though the size of this 

subsidy remains unclear. Based on diminishing theoretical GPP responses, likely increasing nutrient 

limitations, increasing mortality, and other negative temperature-related effects (Peñuelas et al., 

2017) it is highly likely that increases in terrestrial carbon storage due to iCO2 will decline into the 

future. A decline in this subsidy will result in accelerated climate change on the current trajectory of 

anthropogenic CO2 emissions. 
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Figure Captions

Figure 1. Conceptual diagrams of the terrestrial carbon cycle and the action of elevated atmospheric 

[CO2] (eCO2). a) Simple pool and flux (3D shapes) diagram of the terrestrial carbon cycle showing 

key pools, fluxes, and processes relevant to the CO2-fertilisation hypothesis as described in Box 1. 

2D arrows represent direct (solid) or indirect (dashed) positive (triangular arrow heads), or the 

possibility of both positive and negative (circular) potential influences of eCO2. b) Rich conceptual 

diagram of a landscape-scale carbon cycle and the influence of eCO2 showing more processes (see 

Section II) and their inter-connected, multi-scale nature. Solid arrows (3D and 2D) represent carbon 

flows, dotted arrows represent influence. Abbreviations not in Table 1: Ci/c—internal or chloroplastic 

[CO2], Ac—carboxylation limited photosynthesis, Γ*—photorespiration, C:Nleaf—leaf carbon to 

nitrogen ratio, T—transpiration, LULCC—land use and land cover change, CWD—coarse woody 

debris. 

Figure 2. Modelled theoretical responses to atmospheric CO2 concentration ([CO2], ppm) of (a-c) 

photosynthesis, Anet (μmol m-2 s-1, black) and photorespiration (μmol m-2 s-1, dark grey, a only); (d-f) 

iWUE (μmol mol-1), (g-i) stomatal conductance (mol m-2 s-1), and (j-l) carbon storage (kg C m-2) under 

ambient (blue) and elevated (red) [CO2]. Leaf (a, d, g) and canopy (b, e, h) scale for C3 (solid line) 

and C4 (dashed, leaf-scale only) plants. Variation in b, e, h from a 1000 member ensemble (mean, 

sd, and 95 percentile shown)—a factorial combination of 100 top-of-canopy Vcmax values (mean = 60, 

sd = 10) and 10 values of the Jmax to Vcmax slope (mean = 1.63, sd = 0.2), the iWUE response does 

not vary in this ensemble. Distributions of βdir for historical (purple, 280 to 400 ppm) and future 

(yellow, 400 to 550 ppm) [CO2] changes (c, f, i) of diurnally-integrated, canopy-scale variables that 

includes the same leaf physiology variation as in b, e, h, plus three levels of temperature (10, 15, 

25 °C) and relative humidity (50, 70, 90 %) combined in factorial. Tri-modality in the GPP β 

distributions from the temperature variation. β distributions weighted by the variables’ absolute 

response to CO2. Carbon storage (j-l) calculated using a simple one-pool model with the mean βdir,fut 

GPP response applied to BP for [CO2] at 400 and 550 ppm when (j) initial carbon stores are in 

equilibrium or (k) 10 % of equilibrium. (l) βdir,hist response when initial carbon stores are assumed in 

equilibrium at 280 ppm and using the observed historical CO2 record. Instantaneous βdir for absolute 

carbon storage are shown (j-l, right y-axis, yellow or purple), as well as βdir,hist calculated using carbon A
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storage increment (green dashed), and βdir on 30-year change in carbon storage in elevated CO2 

scenario (blue points). Further modelling details in Supporting Information Notes S3. Grey vertical 

lines (a, b, d, e, g, h) are at pre-industrial, 2010s, and projected end-of-century [CO2] (280, 400, 550 

ppm). Grey vertical lines (c, f, i) are at βdir of 0 (solid) and 1 or -1 (dashed). Grey horizontal lines (j-l) 

are βdir when both ambient and elevated CO2 carbon pools are at steady state. 

Figure 3. β distributions based on data from Table 2 for GPP, WUE, BP, kveg, ksoil, Cveg, and Csoil. 

Data are organised by CO2 response category—iCO2 (blue), attribution to iCO2 (green), and eCO2 

(purple). See Supporting Information Figs. S2-S4 for further details.  
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Table 1. Acronyms and abbreviations.

Anet Net photosynthetic carbon assimilation

fAPAR Fraction absorbed photosynthetically active radiation

BAI Basal area increment

BP Biomass production, the sum of all tissue production over a given time, 

typically a year 

Cx Carbon in pool x (where x is either: veg – vegetation, soil, eco – ecosystem)

CO2 Carbon dioxide 

[CO2] Atmospheric CO2 concentration

eCO2 Elevated CO2 from experiments and CO2 springs

FACE Free air CO2 enrichment

GPP Gross primary production

gs Stomatal conductance

iCO2 Increasing CO2 from fossil fuel emissions and land-use change 

iWUE Intrinsic WUE (Anet/gs)

kx Turnover rate of carbon in pool x (see Cx)

LAI Leaf area index

NBP Net biome production, net land atmosphere exchange

NEP Net ecosystem production

OCS Carbonyl sulphide

UE Use efficiency

VPD Vapour pressure deficit

WUE Water use efficiency (transpiration/BP)
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Box 1. The CO2-fertilisation hypothesis

The stimulation of photosynthesis by CO2 has been called “CO2 fertilisation” (Ciais et al., 2014), a 

term that goes back to global carbon cycle modelling in the 1970’s (Bacastow & Keeling, 1973). 

However, “CO2 fertilisation” or  “CO2 fertilisation effect” have been used to refer to the [CO2] 

response of any number of variables across scales. This broad usage has been a source of 

confusion and more commonly, “fertilisation” is a value-laden, agricultural term that means the 

addition of nutrients to increase crop yield. Acknowledging the precedence of the term, its multiple 

uses, and that CO2 responses of some processes may be neutral or negative, we opt to refer to “CO2 

responses” of explicitly defined variables and scales. 

We reserve the term “CO2 fertilisation” solely to label the hypothesis that: plant responses to 
increasing atmospheric [CO2] lead to increasing terrestrial-ecosystem carbon storage 
causing negative feedback on atmospheric [CO2] growth. This definition of the CO2-fertilisation 

hypothesis is explicit about the feedback on atmospheric [CO2] growth, implying the potential of this 

process to slow climate change. The hypothesis is therefore defined at climate-change relevant 

scales, i.e. global in space and decadal to centennial in time.

For the CO2-fertilisation hypothesis to be true, Eq. B1 must be positive at the global scale and over a 

specified time period:

ΔNEP  =  ΔCeco  =  ΔCveg + ΔCsoil (Eq. B1)

where NEP is net ecosystem production, Cveg and Csoil are plant and soil (including litter and coarse 

woody debris) terrestrial carbon that sum to give total ecosystem carbon (Ceco), and Δ represents 

change due to increasing [CO2]. A change in carbon storage is the net result of inputs and outputs 

(Olson, 1963):

dC / dt  =  I - kC (Eq. B2)

where C is stored carbon, I is the input, and k is the turnover rate of the pool (the inverse of mean 

residence time).

Net primary production (NPP) represents the net input of carbon to Cveg and is calculated as gross 

primary production (GPP), which responds directly to iCO2, minus autotrophic respiration (Ra). In 

practice, NPP is often estimated from total biomass production (BP), the sum of leaf, wood, root, and 

reproductive tissue production over a given time period (Vicca et al., 2012). In addition to BP, NPP 

includes carbon used for the production of volatiles, root exudation, supply to symbionts, and A
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changes in non-structural carbohydrates (NSCs). However, these carbon fluxes are difficult to 

measure and often have very short residence times, somewhat akin to respiratory carbon. Therefore, 

to align with measurements and residence time we use BP to decompose changes in Cveg: 

dCveg / dt  =  BP - kvegCveg (Eq. B3)

where kveg is the turnover (litterfall and mortality) rate of vegetation biomass. For soils, the inputs to 

Csoil are vegetation litter production and mortality, as well as non-biomass NPP fluxes (S) that include 

exudation and carbon supply to symbionts:

dCsoil / dt  =  kvegCveg+ S - ksoilCsoil (Eq. B4)

where ksoil represents the turnover rate of soil carbon caused by microbial decomposition.
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Box 2. Evidence themes

Theme 1—Direct exposure to elevated CO2: Experiments in which plants are grown in CO2-

enriched air and observations of plants growing close to geological CO2 sources provide the only 

direct evidence of plant and soil responses to future [CO2]. The first eCO2 experiments were typically 

at the scales of hours or days and of leaves or small, individual plants. Ecosystem-scale open-top 

chambers (OTC) and larger free-air CO2 enrichment (FACE) experiments have since been 

implemented over decades in more natural settings. All of these experiments provide evidence for 

the direct CO2-effect on photosynthesis and stomatal conductance. These experiments also provide 

valuable data on biomass production, allocation to organs, and transpiration. The time scale of most 

experiments (<10 years), however, is generally much shorter than many ecosystem processes, and 

evidence for CO2-effects on mortality, plant community dynamics, or changes in soil carbon stocks is 

limited. 

Theme 2—Tree growth measurements: Tree rings and forest inventories provide long-term 

estimates of wood BP in forest ecosystems across the globe (e.g. Hember et al., 2019; Hubau et al., 

2020). Tree ring data are annually resolved estimates of individual stem growth over the past 

decades to millennia (e.g. Babst et al., 2014). These data provide insight into individual growth 

variability in relation to environmental changes including soil moisture, temperature and potentially 

also iCO2. Repeated inventories of forest ecosystems offer an assessment of forest-scale dynamics 

and the demographic processes of recruitment, growth, and mortality over the past decades and in 

some cases around century length (Pretzsch et al., 2014). Inventories tend to have a coarser 

temporal resolution (5-10 year resurveys) but represent forest-stand spatial scales, albeit that plot 

scale varies widely: 0.067 ha forest inventory analysis, c. 1-2 ha (e.g. Brienen et al., 2015; Hubau et 

al., 2020), 50 ha ForestGEO network (e.g. Chave et al., 2008). 

Theme 3—Ecosystem monitoring: Ecosystem eddy-covariance and global remote-sensing may 

detect effects of iCO2 on carbon, water, and energy fluxes over the recent decades. Tower-based 

sensors are used to calculate ecosystem-scale (c. 1 km) carbon, water, and energy fluxes from the 

covariance of gas concentrations and vertical wind velocity (Baldocchi, 2003). A global network of 

continental networks (http://fluxnet.fluxdata.org), synthesises flux-tower data from 916 sites, some in 

operation for over two decades, while the majority have run for a decade or less and are located in 

temperate ecosystems (Chu et al., 2017). Satellite and other aircraft-borne Earth observing systems A
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have been measuring the reflectance of electromagnetic radiation from Earth’s surface, used to infer 

changes in vegetation cover, leaf area, and biomass at the global scale (Fensholt et al., 2004; Smith 

et al., 2020). Reflected wavelengths from Landsat (first launched in 1972), MODIS, and other 

instruments can be used to measure the fraction of absorbed photosynthetically active radiation 

(fAPAR) and greenness indices, which are further used to infer LAI, GPP, and NPP with the help of 

simple models (Myneni et al., 1997; Field et al., 1998). Microwave wavelengths are used to measure 

vegetation optical depth (VOD, first available in the early 1980s) which can be used to infer 

vegetation water content and, by extension, vegetation biomass (Liu et al., 2015). 

Theme 4—Large-scale constraints: At regional-to-global scales, several long-term data-streams 

provide constraints on the global carbon budget and its change over time. These data streams 

include near-surface and vertical profiles of atmospheric CO2 concentration and δ13C, global water-

cycle measurements, and atmospheric composition from ice cores. Atmospheric CO2 measurements 

can be combined with other data and models to infer the global carbon budget and spatial details of 

land carbon uptake (Friedlingstein et al., 2019; Peylin et al., 2013). The impact of vegetation 

responses to iCO2 on the hydrological cycle measured by stream gauges can also act as further 

indirect evidence (Ukkola et al., 2016; Trancoso et al., 2017). Carbonyl sulphide (OCS) can be used 

to infer global carbon assimilation because it is taken up by plants through stomata and is 

transformed by carbonic anhydrase (Wohlfahrt et al., 2012; Whelan et al., 2018).
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Box 3. Consideration of methods and bias

eCO2 experiments. Confinement of roots in pots can limit below-ground resources. While eCO2 can 

accelerate leaf area gain in open-grown plants leading to compound interest that does not occur with 

closed canopies (Norby et al., 1999). These experiments represent early post-disturbance 

“reorganising”, and possibly open-canopy, ecosystems but are not representative of closed-canopy 

ecosystems. Oscillating [CO2] may lessen physiological responses (Allen et al., 2020). The step-

change in [CO2] results in a large shift in the ecosystem resource balance (Walker et al., 2015), while 

soil disturbance can increase nutrient availability (Körner 2006). Many experiments (and evidence 

themes more broadly) do not quantify total BP, especially root BP. Even the longest-running 

experiments are short-lived relative to the lifespan of trees. Landscape-scale atmospheric feedbacks 

(e.g. increased VPD that could mitigate reductions in transpiration) cannot be accounted for 

(Leuzinger et al., 2015). 

Many ‘measurements’ rely on models in their calculation, thus have the potential to omit or pre-

suppose a CO2 effect. For example, satellite GPP (e.g. Sun et al., 2018) and NPP (e.g. Kolby-Smith 

et al., 2016) are calculated from fAPAR using an LUE model  (Monteith, 1972) that often does not 

include the CO2 effect on photosynthesis (De Kauwe et al., 2016). Thus, changes in GPP result only 

from changes in LAI (fAPAR) or climate. Conversely, measurement-models that include a CO2 effect 

are thus not independent of iCO2, e.g. iWUE from δ13C, OCS, or isotopomers, and thus have the 

potential to pre-suppose a CO2-related trend. 

Carbon isotope discrimination during photosynthesis reduces the 13C:12C ratio (δ13C) in plant 

material and is used to calculate iWUE from δ13C (Farquhar et al., 1982; Farquhar & Cernusak, 

2012). The commonly used model neglects mesophyll and photorespiration discrimination (Farquhar 

et al., 1982; Farquhar & Cernusak, 2012), and accounting for these effects can increase iWUE 

trends by around 50 % (Keeling et al., 2017).

Tree-ring trends are subject to sampling and survivorship biases (Brienen et al., 2012; Peters et 

al., 2015) that can affect growth trends by up to 400 % (Hember et al., 2009; Nehrbass-Ahles et al., 

2014), leading some to question whether tree-rings should be used for trend detection at all (Brienen 

et al., 2012). However, tree-rings are the only data that give insight into tree BP since the industrial 

revolution. A
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Many studies use tree-ring width as a proxy for wood BP because it is a direct measurement. 

However, trees grow in three dimensions and change in the one-dimensional ring-width does not 

directly scale with wood volume growth and thus BP in different sized trees. Conversion to the two-

dimensional basal area increment (BAI) helps unify this size mismatch, but again does not account 

for non-linear change in wood BP with tree size (Anderson-Teixeira et al., 2015). Allometric scaling 

should be applied to ring-width and BAI to attempt a best possible estimate of wood BP (e.g. Dye et 

al., 2014). Static allometric relationships over time can introduce bias where environmental changes 

have altered resource allocation. For example, shifting allocation from wood to leaves in Russian 

forests reconciled apparently conflicting inventory data that suggested BP declines while remote 

sensing suggested increases (Lapenis et al. 2005). Furthermore, wood volume growth does not 

always scale with BP as wood density can also change (Pretzsch et al., 2018).

Forest inventory plots (c. 1 ha and less) can under-sample mortality, resulting in over-estimates 

of biomass accumulation (Chambers et al. 2013). Generally, statistical power for detecting and 

attributing change in mortality and SOM is often low (Hungate et al., 2009; Sulman et al., 2018; 

McMahon et al., 2019). Statistical power for detection is low due to measurement uncertainty, low 

signal-to-noise, heterogeneity, and potential pre-treatment differences. Low statistical power 

presents a real challenge for attribution when using commonly used binary mortality assessments or 

bulk SOM measurements (Sulman et al., 2018; McMahon et al., 2019). Furthermore, satellite data, 

flux-towers, and experiments all suffer from short time-periods, often with much background 

variability that can obscure or amplify trends. 

Quantification of global ‘natural’ NBP is confounded with quantification of land-use change-

related NBP which is uncertain (95 % CI is 92 % of the mean flux; Friedlingstein et al., 2019). Land-

use change-related NBP is calculated using bookkeeping models that account for complex legacy 

effects and many elements of land-use change, which adds to the uncertainty (Pongratz et al., 2014). 

Furthermore, potentially substantial interactions of land-use change-related NBP and iCO2 are not 

considered by these methods. Cveg and Csoil changes, loss of storage/sink capacity, and potential 

CO2 interactions with secondary succession all convolve land-use change and ‘natural’ NBP fluxes 

suggesting a false dichotomy in these flux calculations.  

Calculating and interpreting β, or any relative response, is challenging for carbon stocks in 

which pre-change values can be large, change is the product of two opposing fluxes cumulative over A
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multiple years, and concepts of steady-state and non-steady state apply. Ideally we would like to 

know β from pre-change steady-state to post-change steady-state. However, an ecosystem may not 

be in steady-state prior to change and post-change ecosystems enter a transient phase and can take 

a long time to reach steady-state. Calculated during the transient phase, β will be a function of initial 

stocks and the developmental stage explored (seedling, sapling, mature tree) and signals will 

accumulate over time. For ecosystems not in steady-state pre-change, β of the changes in the stock 

increment is not sensitive to initial stocks, but could be large where pre-change increments are small 

(i.e. when pre-change the system is close to steady-state). For steady-state ecosystems pre-change, 

acknowledgment that β is non-steady-state is needed and a β that explicitly includes temporal scale 

would be ideal.
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