

Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2

Accepted version

"This is the peer reviewed version of the following article:

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R., et al. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5), 2413-2445. <u>doi:10.1111/NPH.16866</u>

which has been published in final form at doi:10.1111/NPH.16866.

This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited."

Published in: New Phytologist

DR ANTHONY P WALKER (Orcid ID : 0000-0003-0557-5594) DR MARTIN GERARD DE KAUWE (Orcid ID : 0000-0002-3399-9098) DR RICHARD J NORBY (Orcid ID : 0000-0002-0238-9828) DR SÖNKE ZAEHLE (Orcid ID : 0000-0001-5602-7956) DR KRISTINA ANDERSON-TEIXEIRA (Orcid ID : 0000-0001-8461-9713) DR DAVID ELLSWORTH (Orcid ID : 0000-0002-9699-2272) DR SIMONE FATICHI (Orcid ID : 0000-0003-1361-6659) DR LIANHONG GU (Orcid ID : 0000-0001-5756-8738) DR COLLEEN M IVERSEN (Orcid ID : 0000-0001-8293-3450) DR MINGKAI JIANG (Orcid ID : 0000-0002-9982-9518) DR TREVOR F. KEENAN (Orcid ID : 0000-0002-3347-0258) MR JÜRGEN KNAUER (Orcid ID : 0000-0002-4947-7067) DR WILLIAM SMITH (Orcid ID : 0000-0002-5785-6489) PROF. CHRISTIAN KOERNER (Orcid ID : 0000-0001-7768-7638) MS MANON ELISA BLEUNIENN SABOT (Orcid ID : 0000-0002-9440-4553) DR BENTON NEIL TAYLOR (Orcid ID : 0000-0002-9834-9192) DR CÉSAR TERRER (Orcid ID : 0000-0002-5479-3486) PROF. ANNA TRUGMAN (Orcid ID : 0000-0002-7903-9711)

Article type : Commissioned Material - Tansley Review

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/NPH.16866</u>

Tansley review

Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO₂

Anthony P. Walker^{1,*}, Martin G. De Kauwe^{2,3,4}, Ana Bastos⁵, Soumaya Belmecheri^{6,7}, Katerina Georgiou⁸, Ralph Keeling⁹, Sean M. McMahon¹⁰, Belinda E. Medlyn¹¹, David J. P. Moore¹², Richard J. Norby¹, Sönke Zaehle¹³, Kristina J. Anderson-Teixeira^{14,15}, Giovanna Battipaglia¹⁶, Roel J. W. Brienen¹⁷, Kristine G. Cabugao¹, Maxime Cailleret^{18,19}, Elliott Campbell²⁰, Josep Canadell²¹, Philippe Ciais²², Matthew E. Craig¹, David Ellsworth¹¹, Graham Farquhar²³, Simone Fatichi^{24,25}, Joshua B. Fisher²⁶, David Frank⁶, Heather Graven²⁷, Lianhong Gu¹, Vanessa Haverd²¹, Kelly Heilman⁶, Martin Heimann¹³, Bruce A. Hungate²⁸, Colleen M. Iversen¹, Fortunat Joos²⁹, Mingkai Jiang¹¹, Trevor F. Keenan^{30,31}, Jürgen Knauer²¹, Christian Körner³², Victor O. Leshyk²⁸, Sebastian Leuzinger³³, Yao Liu¹, Natasha MacBean³⁴, Yadvinder Malhi³⁵, Tim McVicar^{36,37}, Josep Penuelas^{38,39}, Julia Pongratz^{40,41}, A. Shafer Powell¹, Terhi Riutta³⁵, Manon E. B. Sabot^{2,3,4}, Juergen Schleucher⁴², Stephen Sitch⁴³, William K. Smith¹², Benjamin Sulman¹, Benton Taylor¹⁰, César Terrer⁴⁴, Margaret S. Torn³¹, Kathleen Treseder⁴⁵, Anna T. Trugman⁴⁶, Susan E. Trumbore¹³, Phillip J. van Mantgem⁴⁷, Steve L. Voelker⁴⁸, Mary E. Whelan⁴⁹, Pieter A. Zuidema⁵⁰

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

* Corresponding author: walkerap@ornl.gov, +1 865 576 9365

¹ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

- ² ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW 2052, Australia
- ³ Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
 ⁴ Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
- ⁵ Ludwig Maximilians University of Munich, Luisenstr. 37, 80333, Germany
- ⁶ University of Arizona, Laboratory of Tree Ring research, 1215 E Lowell St, Tucson, AZ 85721, USA
- ⁷ US National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA 22314, USA
- ⁸ Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- ⁹ Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92093, USA
- ¹⁰ Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
- ¹¹ Hawkesbury Institute for the Environment, Western Sydney University. Locked Bag 1797 Penrith NSW 2751 Australia
- ¹² School of Natural Resources and the Environment, 1064 East Lowell Street, Tucson, AZ 85721, USA
- ¹³ Biogeochemical Integration Department, Max Planck Institute for Biogeochemistry, Hans-Knöll-Str.10, 07745 Jena, Germany
- ¹⁴ Conservation Ecology Center, Smithsonian Conservation Biology Institute, MRC 5535, Front Royal, VA, 22630 USA
- ¹⁵ Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Balboa, Ancon, Panama, Republic of Panama
- ¹⁶ Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania "L. Vanvitelli", Italy
- ¹⁷ School of Geography, University of Leeds, Leeds, LS6 9JT, UK
- ¹⁸ INRAE, Aix-Marseille Université, UMR RECOVER, 3275 route de Cézanne, 13182 Aix-en-Provence Cedex 5, France
- ¹⁹ Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

- ²⁰ Department of Geography, University of California Santa Barbara, Santa Barbara, CA, 93106 USA
- ²¹ CSIRO Oceans and Atmosphere. GPO Box 1700, ACT 2601, Australia
- ²² Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ,
 Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ²³ Plant Sciences, Research School of Biology, The Australian National University, ACT 2601, Australia
- ²⁴ Department of Civil and Environmental Engineering, National University of Singapore; 1 Engineering Drive 2, 117576, Singapore
- ²⁵ Institute of Environmental Engineering, ETH Zurich, Stefano-Franscini Platz 5, 8093, Zurich, Switzerland
- ²⁶ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109, USA
- ²⁷ Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ,UK
- ²⁸ Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff AZ 86011, USA
- ²⁹ Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland
- ³⁰ Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley CA 94720, USA
- ³¹ Earth and Environmental Sciences Area, Lawrence Berkeley National Lab., Berkeley CA 94720, USA
- ³² Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
- ³³ Institute for Applied Ecology, Auckland University of Technology, Auckland, New Zealand
- ³⁴ Department of Geography, Indiana University, Bloomington, IN 47405, USA
- ³⁵ School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
- ³⁶ CSIRO Land and Water, Black Mountain, Canberra, Australia
- ³⁷ Australian Research Council Centre of Excellence for Climate Extremes, Canberra, Australia
- ³⁸ CSIC, Global Ecology CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

- ³⁹ CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
- ⁴⁰ Ludwig Maximilians University of Munich, Luisenstr. 37, 80333, Germany
- ⁴¹ Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
- ⁴² Department of Medical Biochemistry & Biophysics, Umeå University, 901 87 Umea, Sweden
- ⁴³ College of Life and Environmental Sciences, Laver Building, University of Exeter, Exeter, EX4
 4QF, UK
- ⁴⁴ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- ⁴⁵ Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
- ⁴⁶ Department of Geography, 1832 Ellison Hall, Santa Barbara, CA 93016
- ⁴⁷ U.S. Geological Survey, Western Ecological Research Center, Arcata, CA 95521, USA
- ⁴⁸ Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- ⁴⁹ Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA

⁵⁰ Forest Ecology and Forest Management group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands

Received: 17 March 2020 Accepted: 6 July 2020

Contents

Summary

- I. Introduction
- II. Theory a hierarchy of mechanism
- III. The evidence

IV. Synthesis V. Conclusions Acknowledgements Author contributions References 4 Acce

Summary

Atmospheric carbon dioxide concentration ([CO₂]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO₂] increase and thus climate change. However, ecosystem CO₂-responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO₂]-driven terrestrial carbon sink can appear contradictory. Here we synthesise theory and broad, multi-disciplinary evidence for the effects of increasing [CO₂] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industry. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2-responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.

Key words: global carbon-cycle, land-atmosphere feedback, carbon dioxide, terrestrial ecosystems, free-air CO_2 enrichment (FACE), CO_2 -fertilisation hypothesis, CO_2 -fertilization, beta factor

ORCID:

Kristina	J.	Anderson-Teixeira	0000-0001-8461-9713
Ana		Bastos	0000-0002-7368-7806
Giovanna		Battipaglia	0000-0003-1741-3509
Soumaya		Belmecheri	0000-0003-1258-2741
Roel	J.W.	Brienen	0000-0002-5397-5755
Maxime		Cailleret	0000-0001-6561-1943
Philippe		Ciais	0000-0001-8560-4943
C			

	Matthew	E.	Craig	0000-0002-8890-7920
Q	Martin	G.	De Kauwe	0000-0002-3399-9098
	David		Ellsworth	0000-0002-9699-2272
	Graham		Farquhar	0000-0002-7065-1971
	Simone		Fatichi	0000-0003-1361-6659
	Joshua	В.	Fisher	0000-0003-4734-9085
	Heather		Graven	0000-0003-3934-2502
	Vanessa		Haverd	0000-0003-4359-5895
	Kelly		Heilman	0000-0001-5932-1317
	Martin		Heimann	0000-0001-6296-5113
	Bruce	А	Hungate	0000-0002-7337-1887
	Colleen		lversen	0000-0001-8293-3450
	Fortunat		Joos	0000-0002-9483-6030
	Mingkai		Jiang	0000-0002-9982-9518
	Trevor	F.	Keenan	0000-0002-3347-0258
	Jürgen		Knauer	0000-0002-4947-7067
	William	К	Smith	0000-0002-5785-6489
	Christian		Körner	0000-0001-7768-7638
	Sebastian		Leuzinger	0000-0001-9306-5281
	Yao		Liu	0000-0003-2783-3291
	Natasha		MacBean	0000-0001-6797-4836
	Sean		McMahon	0000-0001-8302-6908
	Tim		McVicar	0000-0002-0877-8285
	Belinda		Medlyn	0000-0001-5728-9827
	David	J.P.	Moore	0000-0002-6462-3288
	Richard	J.	Norby	0000-0002-0238-9828

	Josep		Penuelas	0000-0002-7215-0150
Q	Julia		Pongratz	0000-0003-0372-3960
	Α.	Shafer	Powell	0000-0002-9622-0061
	Manon	E. B.	Sabot	0000-0002-9440-4553
	Juergen		Schleucher	0000-0002-4815-3466
	Stephen		Sitch	0000-0003-1821-8561
, i	Ben		Sulman	0000-0002-3265-6691
	Benton		Taylor	0000-0002-9834-9192
	César		Terrer	0000-0002-5479-3486
	S.	Margaret	Torn	0000-0002-8174-0099
	Kathleen		Treseder	0000-0003-2847-6935
	Anna	Т.	Trugman	0000-0002-7903-9711
	Sue	E.	Trumbore	0000-0003-3885-6202
	Phillip	J.	van Mantgem	0000-0002-3068-9422
	Steven	L.	Voelker	0000-0002-0110-3381
	Anthony	Ρ.	Walker	0000-0003-0557-5594
	Mary	E.	Whelan	0000-0002-2067-1835
	Sönke		Zaehle	0000-0001-5602-7956
	Pieter	Α.	Zuidema	0000-0001-8100-1168

This article is protected by copyright. All rights reserved

Acce

I. Introduction

Photosynthesis uses the energy in sunlight to bind CO_2 to a five-carbon sugar, transferring CO_2 from the atmosphere to plants (Calvin & Benson, 1948; Farquhar *et al.*, 1980). Sugars produced by photosynthesis provide the building blocks and the primary fuel for much of life on Earth. Plant tissues, many microbes, animals, and dead organic matter are all composed of carbon-rich compounds formed from these photosynthetic sugars. In many environments, an increase in atmospheric CO_2 concentration $[CO_2]$ increases photosynthesis. Thus an increase in $[CO_2]$ leads to greater plant sugar availability with the potential to increase the total amount of carbon stored in the live and dead organic matter in an ecosystem. These observations have led to the CO_2 -fertilisation hypothesis (Box 1): that plant responses to increasing atmospheric $[CO_2]$ drive increases in terrestrial-ecosystem carbon storage creating negative feedback on atmospheric $[CO_2]$ growth.

Since the industrial revolution human activities have increased $[CO_2]$ by 48 % (1760-2019, 277-411 ppm), an increase in atmospheric CO₂-carbon of 277 Pg C (Friedlingstein *et al.*, 2019). However, global-scale carbon accounting quantifies anthropogenic emissions to the atmosphere at 645 Pg C and suggests a substantial 'natural' terrestrial carbon sink (a net flux of carbon from the atmosphere to intact terrestrial ecosystems) which currently removes the equivalent of 33 ± 9 % of anthropogenic atmospheric CO₂ (2009-2018 (Friedlingstein *et al.*, 2019). Along with the ocean carbon sink, this terrestrial carbon sink is mitigating the rate of climate change. Process-based carbon-cycle models attribute increasing [CO₂] (iCO₂, Table 1) as the primary driver of the terrestrial carbon sink, albeit with substantial uncertainty (Huntzinger *et al.*, 2017; Arora *et al.*, 2019). However, iCO₂ is not the only global-change factor that can influence terrestrial carbon stocks. Anthropogenic land-use and land-cover change (hereafter land-use change) and recovery (Pugh et al. 2019), nitrogen cycle changes (Fowler *et al.*, 2013), and climate change all affect ecosystem carbon stocks (Keenan & Williams, 2018). A vast and overwhelming literature often disagrees on the size and duration of CO₂-driven increases in terrestrial carbon storage and predictive understanding of this process is a long-standing and unresolved scientific goal.

Predictive understanding of how terrestrial ecosystems respond to iCO2 requires knowledge of a range of processes, their interactions, and how these processes scale. For example, terrestrial ecosystem responses begin with photosynthesis inside the leaf, yet scale to have long-term global impacts. All the relevant processes must be understood across scales, and ultimately at the global scale because iCO2 and climate change are global-scale phenomena with decadal to centennial

dynamics.

Given that around 50 % of plant biomass is carbon acquired via photosynthesis, it is reasonable to assume that increased photosynthesis increases plant biomass production (BP) and experimentally elevated [CO₂] (eCO2) commonly increases BP (e.g. Baig *et al.*, 2015). However, in natural ecosystems iCO2 may not always increase BP, primarily because plant tissues require nutrients, and BP responses to iCO2 will interact with soil nutrient availability and other limiting factors (Strain & Bazzaz, 1983; Rastetter *et al.*, 1997). A related argument is that present day [CO₂] is likely to supply plants with unprecedented carbon availability that may be surplus to BP requirements (Körner, 2003a). This is because for at least one million years prior to the industrial revolution [CO₂] was much lower (170-300 ppm) (Bereiter *et al.*, 2015).

Ecosystem carbon stocks are the result of both inputs (BP for plants or litter production for soils) and outputs. Thus for the CO_2 -fertilisation hypothesis to hold true, the residence time of carbon in an ecosystem must not be reduced by an amount that would negate effects of increased BP on terrestrial carbon pools. However, it has been suggested that both vegetation and soil carbon residence times may be reduced by iCO2 (van Groenigen *et al.*, 2014; Körner, 2017).

Drawing from multiple disciplines, vast quantities of diverse data have been collected on the $[CO_2]$ responses of many processes. Often this evidence can appear conflicting. For example, many Free Air CO₂ Enrichment (FACE) experiments show BP gains (Walker *et al.*, 2019), while others show none (Bader *et al.*, 2013; Ellsworth *et al.*, 2017). Many tree-ring studies indicate historical increases in intrinsic water-use efficiency (iWUE) but no detectable change in BP (Peñuelas *et al.*, 2011; van der Sleen *et al.*, 2015), while the majority of forest-inventory analyses suggest biomass gains (Brienen *et al.*, 2015; Hubau *et al.*, 2020). Flux-tower data, global CO₂-flask networks, and remotesensing data are now of sufficient timescales (decades) to study CO₂ responses against background variability, but have led to different inferences (Kolby Smith *et al.*, 2016; Fernández-Martínez *et al.*, 2017).

This literature represents a wealth of information and inference that can appear fragmented, posing an opportunity for integration. Thus our overall goal is to provide a synthetic review of key lines of evidence related to the CO₂-fertilisation hypothesis, specifically:

- 1. overview of theory and potential mechanisms within the CO₂-fertilisation hypothesis;
- 2. quantitative evaluation of the evidence, identifying agreement and major conflicts;
- 3. resolution of apparent conflicts and, where not possible, identification of key knowledge gaps

to guide future studies.

We structure this multi-disciplinary review within the mechanistic theory of the five broad processes that are key to the CO_2 -fertilisation hypothesis (Box 1, Fig. 1a): gross primary production (GPP), plant biomass production (BP), vegetation mortality rate (k_{veg}), soil organic matter decomposition rate (k_{soil}), and terrestrial carbon storage (C_{eco}). Within each of these high-level processes, numerous inter-related mechanisms and sub-processes shape terrestrial ecosystem CO_2 responses (Fig. 1b, Section II).

Within these processes we integrate four primary evidence themes (Box 2). eCO2 studies in evidence theme 1 provide the only direct evidence for CO₂ responses but are restricted in space and time. Observation studies (evidence themes 2-4) span a broader range of evidence types covering larger spatial-scales and longer temporal-scales but provide only indirect evidence for the effect of iCO2 on terrestrial ecosystems.

To quantify and standardise CO_2 effects across variables and varying ranges of $[CO_2]$ we report data as a relativised β -factor:

 $\beta = \ln(y_e/y_a) / \ln(CO_{2,e}/CO_{2,a})$ (Eq. 1)

where y_a and y_e are the value of any response variable at lower $[CO_2]$ $(CO_{2,a})$ and higher $[CO_2]$ $(CO_{2,e})$. Other methods to calculate the β -factor have been proposed (e.g. Friedlingstein *et al.*, 1995) but we use Eq. 1 for ease of interpretation that results from scale-independence (Supporting Information Notes S1, Fig. S1). A β of 1 represents direct proportionality between a variable's CO₂ response and the change in CO₂. Where possible (i.e. when reported at source) we report uncertainties as 95 % confidence intervals.

As described above, attributing iCO2 as the cause of trends is confounded by covarying factors which also drive variability in the terrestrial carbon sink. We discuss these other global-change factors in the context of attribution, but do not cover them in depth. The difference between direct evidence from eCO2 experiments and indirect evidence from historical data (concurrent with a suite of global-change factors) motivates our use of two abbreviations: eCO2 and iCO2. As with eCO2 and iCO2, we distinguish direct CO₂ responses (β_{dir}) from indirect apparent CO₂ 'responses' (β_{app}).

1 Direct plant physiological responses to CO₂

Photosynthesis is limited by CO₂ or light (Farquhar *et al.*, 1980). When CO₂ is limiting, theory predicts that eCO2 increases leaf-scale net carbon assimilation (A_{net}) ($\beta_{dir,hist} = 0.86$, Table S1). The enzyme that fixes CO₂ (RuBisCO) also catalyses an oxygenation reaction, which results in CO₂ loss (photorespiration; Farquhar *et al.*, 1980). eCO2 also suppresses photorespiration (Fig. 2a). Given that photorespiration always occurs during C3 photosynthesis, the suppression of photorespiration by eCO2 increases A_{net} also when light is limiting, but with a lower response ($\beta_{dir,hist} = 0.31$). Canopy-scale A_{net} results from a mixture of CO₂ and light-limited photosynthesis, thus has an intermediate eCO2 response that depends on the fraction of light-saturated leaves in the canopy ($\beta_{dir,hist} = 0.60\pm0.3$, c. 280 to 400 ppm; Fig 2c). As [CO₂] increases, the fraction of light-saturated leaves in the canopy is expected to decrease and therefore historical eCO2 response of GPP is expected to be higher than the future response ($\beta_{dir,fut} = 0.46\pm0.2$, c. 400 to 550 ppm; Fig 2c).

C4 plants have evolved to concentrate carbon, thus saturating photosynthesis and suppressing photorespiration at low $[CO_2]$ (Ehleringer & Björkman, 1977). Therefore A_{net} in C4 plants is not directly influenced by $[CO_2]$ above c. 200 ppm (Fig. 2a), though water savings from reduced g_s may stimulate A_{net} indirectly (Leakey *et al.*, 2004).

Photosynthesis requires the acquisition of other resources and eCO2-stimulation of A_{net} increases A_{net} per unit resource consumption, i.e. increases resource use-efficiencies (UE) of: water (WUE), light (LUE), and leaf nitrogen (Cowan, 1982; Drake *et al.*, 1997). Increased use-efficiencies imply a shift in a plant's resource-use economy (Bloom *et al.*, 1985) which is commonly studied using optimisation theory.

Optimisation theory predicts that a change in the ratio of A_{net} to g_s (intrinsic WUE, iWUE) in proportion to the change in $[CO_2]$ (β_{dir} c. 1; Fig 2d) maximises the benefit of carbon gain while minimising the cost of water lost for C3 (Medlyn *et al.*, 2011) and C4 plants (Lin *et al.*, 2015). Canopy-scaling theory predicts that the increase in iWUE is preserved at the canopy scale (Fig 2e). Where the response of A_{net} to eCO2 is less than proportional ($\beta_{dir} < 1$) the increase in iWUE (i.e. A_{net}/g_s) implies a reduction in g_s (canopy-scale iWUE $\beta_{dir,hist} = 1.1\pm0.1$, $A_{net} \beta_{dir,hist} = 0.60\pm0.3$, thus g_s $\beta_{dir,hist} = -0.53.\pm0.2$; Fig. 2f,i). Due to the lower predicted A_{net} in the future, the predicted decrease in g_s is greater ($\beta_{dir,fut} = -0.62.\pm0.1$).

Optimisation theory also predicts reduction in photosynthetic carboxylation capacity (V_{cmax}), reducing nitrogen demand (Bowes, 1991; Drake *et al.*, 1997). A reduction in leaf nitrogen may also occur due to limited plant-available soil nitrogen (Section II.2) or physiological competition for the products of electron transport (Bloom *et al.*, 2012).

2 Plant biomass production

BP of leaf, wood, and root tissues is controlled by the interplay of source (resource acquisition), sink (metabolic tissue production) (Muller *et al.*, 2011; Fatichi *et al.*, 2019), and regulatory processes (phenology, hormones) (Schwartz, 2013; Bahuguna & Jagadish, 2015). Within this framework eCO2 can increase BP when BP is either carbon-source limited or when eCO2 can alleviate other limitations. Plant BP is carbon-source limited when in competition with respiration for available carbon and when light limits BP (Lloyd & Farquhar, 2008). Sustained periods of high growth may also reduce carbon stores (Würth *et al.*, 2005), potentially leading to carbon-source limitation. BP is also carbon-sink limited by stoichiometric nutrient requirements (Elser *et al.*, 2010). Thus increased BP requires either increased nutrient acquisition or increased stoichiometric carbon-to-nutrient ratios. Increased plant-available carbon may be able to "pay" for increased nutrient acquisition via a number of mechanisms (e.g. increased fine-root BP, mycorrhizal investment, exudation, atmospheric N fixation) (Luxmoore, 1981; Hungate *et al.*, 1999; Fleischer *et al.*, 2019).

Changing stoichiometry may result in feedbacks that compound nutrient limitations by reducing decomposition rates and nutrient availability (Comins & McMurtrie, 1993), known as progressive nitrogen limitation (Luo *et al.*, 2004).

In environments where BP is primarily sink-limited, e.g. tree-lines (temperature-limitation), arid and semi-arid (water-limitation), increased carbon availability may have little effect on BP (Kramer, 1981; Körner, 2003b). However, in water-limited environments, increased iWUE could increase BP (Mooney *et al.*, 1991; Wullschleger *et al.*, 2002). Leaf area index (LAI) may also be limited by water availability (Woodward, 1987; Yang *et al.*, 2018) and increased WUE may increase LAI and light absorption leading to indirect positive feedback on GPP and transpiration (Fatichi *et al.*, 2016; Trancoso *et al.*, 2017).

If BP is restricted by sink limitation, biomass production efficiency (BP per unit GPP) would decrease and the labile products of photosynthesis would accumulate. If BP is stimulated this may be as shortlived, primary tissues (leaves and fine-roots) or long-lived, secondary tissues (wood) (De Kauwe *et* *al.*, 2014). Division of carbon among these tissues determines residence time of carbon in plant biomass. Wood has greater residence time and thus greater potential to increase C_{veg} accumulation over multiple years. Greater production of short-lived tissues (i.e. leaves and fine-roots) may increase resource capture and will increase litter carbon inputs to the soil.

3 Plant mortality

Increases in mortality rates reduce vegetation residence times and have the potential to offset any biomass gains resulting from increased BP (Eq. B3) (Bugmann & Bigler, 2011; Körner, 2017). Hydraulic failure, and less-so, carbon starvation are thought to be interrelated mechanisms of plant death (McDowell *et al.*, 2008). By easing the carbon and hydraulic impacts of abiotic and biotic stressors such as drought, or pest and pathogen attack, eCO2 could potentially *decrease* mortality. Greater carbon resources could supply greater maintenance respiration, stored carbon reserves, or synthesis of defense compounds (McDowell *et al.*, 2008). More efficient water use (Section II.1) could delay the onset or the intensity of drought, which could reduce the risk of xylem-conductivity losses.

Indirect influences on mortality may emerge from the acceleration of individual size-growth. Increased growth could reduce small-size related mortality by speeding individuals out of the hazards of early life (e.g., browsing) and increasing their ability to acquire resources (Metcalfe *et al.*, 2014; Hülsmann *et al.*, 2018). Conversely, increased growth could increase large-size mortality risk, with tall trees being more susceptible to hydraulic stress, windthrow, lightning, and certain pests or pathogens (Bugmann & Bigler, 2011; Bennett *et al.*, 2015; Körner, 2017; Trugman *et al.*, 2018).

At the stand-scale, increased growth may accelerate post-disturbance successional dynamics (McDowell *et al.*, 2020). Intensified competition for light, water, and nutrients could lead to early reorganisation and transition (self-thinning) phases of development (Bormann & Likens, 1979), but also an earlier switch from transition to steady-state phases (Miller *et al.*, 2016). Acceleration of stand-development by eCO2 may or may not change self-thinning relationships (tree-size to stem-density) of a forest stand, with no change leading to no change in biomass. However, acceleration of stand-development could increase biomass at the landscape scale by closing forest gaps more quickly. Differential mortality effects on different plant species could alter competitive dynamics, community composition, and associated stand properties, e.g. among fast-growing, ruderal/pioneer species and more conservative, slow-growing species (Ruiz-Benito *et al.* 2017).

4 Organic matter decomposition

Residence times of litter and soil organic matter (SOM) vary from minutes to millenia and can respond rapidly to environmental perturbation (Trumbore, 2009; Schmidt *et al.*, 2011; Dwivedi *et al.*, 2019). Increases in SOM decomposition rates reduces SOM residence times and has the potential to offset any eCO2-related increases in litter inputs. Accelerated decomposition of litter and particulate SOM (i.e. priming) can result from microbial responses to increased labile-carbon availability (Kuzyakov *et al.*, 2000; Blagodatskaya *et al.*, 2014), including at depth (Fontaine *et al.*, 2007). Organic acids produced by roots can destabilise mineral-associated SOM (Keiluweit *et al.*, 2015). eCO2 effects on environmental conditions could also affect SOM decomposition. CO₂-related increases in soil water (Section II.1) would likely stimulate decomposition in water-limited ecosystems (Castanha *et al.*, 2018), but could reduce oxygen availability (slowing decomposition) in energy-limited ecosystems.

Microbial activity has also been linked to the formation of mineral-associated SOM (Cotrufo *et al.*, 2013; Liang *et al.*, 2017), and potentially soil aggregates (Ge *et al.*, 2018), which might slow decomposition by restricting microbial access to SOM (Kögel-Knabner *et al.*, 2008). Changing stoichiometry might slow decomposition (Section II.2). Roots can distribute carbon deeper in the soil where decomposition is slower and capacity for mineral stabilization is higher (Jackson *et al.*, 2017; Hicks Pries *et al.*, 2018).

Greater decomposition rates might also increase soil nutrient availability, potentially reducing plant nutrient limitation (Treseder, 2004; Dijkstra, 2008) or increasing microbial immobilisation. Over longer timescales, nutrient immobilisation can reduce nutrient losses, leading to accumulation of ecosystem nutrient stocks which may enhance mineralisation and progressively release plants from nutrient limitation (Rastetter *et al.*, 1997; Walker *et al.*, 2015).

5 Terrestrial ecosystem carbon responses to CO₂

The response of terrestrial carbon storage to eCO2 (ΔC_{eco}) is the net result of the above discussed processes. Potential increases in BP and litter production are balanced by potential increases in loss rates (Eqs. B3 and B4). Increased BP of short-lived primary tissues such as leaves and fine-roots could lead to greater biomass of these transient C_{veg} pools and to increased litter inputs to the soil. If wood BP is stimulated by eCO2, over medium timescales (annual to several decades) ecosystem biomass could increase due to the longer residence time of wood. However, wood BP is tied to tree

size-growth rates and the effects of tree size on mortality rates may be either positive or negative (Section II.3). Greater wood BP or greater wood mortality rates would result in greater coarse woody debris, which may immobilise nutrients (e.g. Zimmerman *et al.*, 1995).

Increased plant inputs to litter and soil (e.g., wood, leaf and root litter, root exudates, and mycorrhizal subsidies) could increase C_{soil} . However, the complex processes that drive the formation and decomposition of SOM make the response of C_{soil} to eCO2 difficult to predict (Schmidt *et al.*, 2011; Dwivedi *et al.*, 2019; Section II.4). Increased soil mineralisation rates could lead to greater C_{eco} if nutrients are redistributed from soils to plants, which have higher carbon:nutrient ratios and hence can store more carbon per unit nutrient (Rastetter *et al.*, 1992; Zaehle *et al.*, 2014).

A one-pool ecosystem carbon model (Box 1) with simplifying assumptions (BP β_{dir} = GPP β_{dir} ; residence time β_{dir} = 0) provides baseline expected β_{dir} for carbon storage (Fig. 2j-I). The model indicates that when starting carbon storage is non-zero, β_{dir} depends on the time of measurement (Fig. 2j,k). Based on the observed [CO₂] trend (Le Quéré *et al.*, 2018), the model indicates that β_{dir} calculations over a 30 year period (typical of forest-inventory analysis) are generally a little smaller ($\beta_{dir,hist}$ c. 0.5) than steady-state ($\beta_{dir,hist}$ = 0.6; Fig 2. I). Departures from these expected β 's derived from GPP responses alone provide a guide to the magnitude of positive and negative feedbacks in eCO2 studies and can help to guide iCO2 attribution in historical studies.

III. The evidence

1 Physiology

Carbon assimilation and GPP

Evidence across FACE experiments (11 sites, 45 species) showed that eCO2 increased leaf-level, light-saturated photosynthesis ($\beta_{dir} = 0.73\pm0.2$, see Supporting Information Notes S3 for methods), and supports differences between C₃ ($\beta_{dir} = 0.79\pm0.2$) and C₄ species ($\beta_{dir} = 0.27\pm0.2$) (Ainsworth & Long, 2005; all reported β 's are in Table 2). Evidence suggests that maximum photosynthetic capacity acclimated (reduced) to eCO2, primarily maximum carboxylation capacity ($\beta_{dir} = -0.38\pm0.1$) (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007). Nevertheless, in many forest eCO2 experiments photosynthetic stimulation (>5 years) was only minimally affected by acclimation (Crous *et al.*, 2008; Bader *et al.*, 2010; Ellsworth *et al.*, 2017).

Indirect evidence also suggests increased photosynthesis with iCO2. Deuterium isotopomers of

glucose in plant archives indicate that the leaf-level photorespiration:assimilation ratio decreased since pre-industry ($\beta_{app} = -0.99$) (Ehlers *et al.*, 2015), which translates to an increase in photosynthesis ($\beta_{app} = 1.0$) (Ehlers *et al.*, 2015). GPP estimates from eddy-covariance (23 sites, c. 20 years) suggest a recent increase ($\beta_{app} = 1.6 \pm 0.9$), implicating a substantial iCO2 contribution ($\beta_{dir,hist} = 1.2 \pm 0.6$) (Fernández-Martínez *et al.*, 2017). Eddy-covariance data used to calibrate a model suggests a lower iCO2 response ($\beta_{dir,hist} = 0.5 \pm 0.2$) (Ueyama *et al.*, 2020).

Ice-core measurements of atmospheric carbonyl sulfide (OCS) combined with mass-balance analysis suggests that global GPP has increased since pre-industry ($\beta_{app} = 0.95\pm0.2$) (Campbell *et al.*, 2017). As do ice-core measurements of atmospheric O₂ isotopes combined with models ($\beta_{app} = 1.3\pm2.3$) (Ciais *et al.*, 2012). Satellite-based evapotranspiration combined with an ecosystem WUE model estimated increased GPP during recent decades ($\beta_{app} = 1.1\pm0.5$) (Cheng *et al.*, 2017). 14 methods to estimate GPP from satellite-based fAPAR resulted in wide-ranging iCO2 sensitivities (β_{dir} range = -0.39±0.34 to 1.6±1, mean = 0.52±0.3; 2000-2014) (Sun *et al.*, 2019).

Water use efficiency, stomatal conductance, and transpiration

Experimental evidence also supports increased iWUE in response to eCO2 ($\beta_{dir} = 1.2\pm0.4$; 4 sites, 7 species) (Ainsworth & Long, 2005). At two FACE experiments (Duke University and Oak Ridge National Laboratory, ORNL), tree-ring δ^{13} C implies increased iWUE ($\beta_{dir} = 1.4$ and 1.3, respectively) (Battipaglia *et al.*, 2013). Tree-ring δ^{13} C samples from across the globe suggest increased iWUE in many biomes since pre-industry in: northern boreal gymnosperms ($\beta_{app} = 1.2\pm2$ to 1.5 ± 1.6) (Saurer *et al.*, 2004), tropical forests ($\beta_{app} = 1.0$) (van der Sleen *et al.*, 2015), and a wide range of forest biomes ($\beta_{app} = 1.19$; Keller *et al.*, 2017). Attribution to iCO2 also suggests increases in iWUE in European *Pinus* and *Quercus* ($\beta_{dir} = 1.0\pm0.6$ and 0.67 ± 0.9 ; 9-14 sites) (Frank *et al.*, 2015). Additional environmental factors have contributed to observed iWUE trends, e.g. drying trends have increased iWUE (Saurer *et al.*, 2014).

 δ^{13} C in atmospheric CO₂ combined with mass-balance modelling suggests a global increase in iWUE since pre-industry (β_{app} = 0.94±0.2) (Keeling *et al.*, 2017).

Evidence from Duke and ORNL FACE experiments supports increases in ecosystem-scale plant WUE (annual BP/T; $\beta_{dir,hist}$ = 0.76 and 1.1, respectively) (De Kauwe *et al.*, 2013). Inferred from eddy-covariance, 'inherent' WUE (VPD.GPP/ET) increased in temperate and boreal forests with notably higher magnitude (β_{app} = 4.72; 21 sites) (Keenan *et al.*, 2013). A follow up study reduced this estimate (β_{app} = 2.5) (Mastrotheodoros *et al.*, 2017). An eddy-covariance calibrated, canopy-scale

model suggested iCO2 reduced g_s ($\beta_{dir,hist} = -0.28 \pm 0.09$) and increased iWUE ($\beta_{dir,hist} = 0.73 \pm 0.2$) (Ueyama *et al.*, 2020). Satellite-based models (2000-2013) of GPP and ET suggest smaller or decreased WUE (GPP/ET) ($\beta_{app} = -0.49$ and 0.28) (Tang *et al.*, 2014; Xue *et al.*, 2015).

Experimental evidence has thoroughly demonstrated reduced leaf-scale g_s in response to eCO2 ($\beta_{dir,fut} = -0.22\pm0.15$) (Medlyn *et al.*, 2001). Averaged across FACE experiments (12 sites, 40 species), eCO₂ reduced g_s ($\beta_{dir,fut} = -0.60\pm0.2$) but with substantial variability across functional groups (Ainsworth & Long, 2005) and disturbance history (Donohue *et al.*, 2017). Notably for *Eucalyptus saligna* in whole-tree chambers, canopy-scale iWUE was very tightly constrained ($\beta_{dir,fut} = 0.98\pm0.2$), and variability in the A_{net} response controlled the g_s response (Barton *et al.*, 2012).

Across four FACE experiments (Duke, EucFACE, ORNL, Swiss Canopy Crane), transpiration responses were only reduced by eCO2 at ORNL ($\beta_{dir,fut} = -0.54$), an ecosystem that is rarely water limited (Leuzinger & Körner 2010) (De Kauwe *et al.*, 2013; Gimeno *et al.*, 2018). Airborne remote sensing suggested decreased evapo-transpiration with long-term volcanically-derived eCO2 in California (Cawse-Nicholson *et al.*, 2018). Stream-gauge networks indicate global increases in runoff (Gedney et al. 2006), in agreement with reduced g_s over the northern hemisphere extratropics (Knauer *et al.*, 2017). However, decreases in runoff have also been observed (Ukkola *et al.*, 2016; Trancoso *et al.*, 2017) and modest run-off increases across the tropics have been driven by precipitation increases (Yang et al., 2016).

2 Biomass production

eCO2 increased BP in four temperate-forest, stand-scale (25-30 m diameter) FACE experiments in the early years ($\beta_{dir,fut} = 0.56\pm0.2$) (Norby *et al.*, 2005) and over a full decade ($\beta_{dir,fut} = 0.49\pm0.3$) (Walker *et al.*, 2019). These forest ecosystems were in the early phases of secondary succession (initiated 1-13 years following a major disturbance). In three later-succession forests (c. 100 years old), BP did not respond to eCO2 (note fine-root BP was often not measured): deciduous broadleaved trees ($\beta_{dir,fut} = -0.097\pm1.0$ to 0.55 ± 1.7) (8 years; Bader *et al.*, 2013), *Picea abies* ($\beta_{dir,fut} = -0.30\pm0.7$, 5 years eCO2; Klein *et al.*, 2016), and a low productivity *Eucalyptus* woodland ($\beta_{dir,fut} = -0.26\pm0.6$, 4 years eCO2; Ellsworth *et al.*, 2017; Jiang *et al.*, 2020).

eCO2 consistently decreased specific leaf area ($\beta_{dir,fut} = -0.16\pm0.07$) (Ainsworth & Long, 2005), which requires increased leaf BP at a given LAI (De Kauwe *et al.*, 2014). Synthesis of experiments (19 sites) suggests that eCO2 increased grassland leaf and stem BP ($\beta_{dir,fut} = 0.17\pm0.07$) (Hovenden *et* *al.*, 2019), related to summer water savings and spring water availability (Morgan *et al.*, 2004; Hovenden *et al.*, 2019). Meta-analysis found eCO2 increased fine-root BP across experiments ($\beta_{dir,fut} = 0.56$) ($\beta_{dir,fut} = 0.56$), in forests ($\beta_{dir,fut} = 0.92$), and to a lesser degree in grasslands ($\beta_{dir,fut} = 0.18$) (Nowak *et al.*, 2004).

Tree-ring analysis at CO_2 -springs in Italy (two sites) suggests that eCO2 increased *Quercus ilex* tree ring-width (a proxy for wood BP) initially ($\beta_{app} = 0.49-0.81$), and the increase diminished as trees aged (Hättenschwiler *et al.*, 1997). Basal-area increment (BAI) analysis showed the eCO2 response stabilised at around 10 years ($\beta_{app} = 0.27$) (Norby *et al.*, 1999).

A large number of tree-ring studies have found little evidence for increases in wood BP. No detectable trends in BAI were found across tropical forests (3 sites, 12 species) (van der Sleen *et al.*, 2015), and both increasing and decreasing trends were found across North American boreal forests (598 sites, 19 species) (Girardin *et al.*, 2016). Syntheses across biomes found no significant increase in tree ring-width since 1950 ($\beta_{app} = 0.23 \pm 0.8$; 40 sites) (Peñuelas *et al.*, 2011) and variable responses of BAI ($\beta_{app} = 0.45 \pm 0.7$; 37 sites, 22 species) (Silva & Anand, 2013). Conversely, *Pinus* and *Quercus* tree-rings from Missouri showed a positive response to iCO2 that diminished with tree age ($\beta_{app} = 3.3$, at age one; $\beta_{app} = 1.1$, at age 50) (Voelker *et al.*, 2006).

Evidence from multi-plot inventory data consistently show increasing wood biomass (Section III.5), but few of these studies quantify wood BP. A single census interval of eastern-US Forest Inventory Analysis plots (20,000) suggested very little change in wood BP (Caspersen, 2000), but with high uncertainty (Joos *et al.*, 2002). Two large tropical-forest plots showed no change in aboveground wood BP (Clark et al., 2010; Rutishauser et al., 2019). In contrast, tropical forest-plot networks (321 and 244) suggest that aboveground wood BP increased in Amazonia ($\beta_{app} = 1.2\pm0.6$) (Brienen *et al.*, 2015) and Africa ($\beta_{app} = 0.69\pm0.63$) with a regression-attributed iCO2 response ($\beta_{app} = 0.54\pm1$) (Hubau *et al.*, 2020). Analysis of worldwide forest plots (695) suggested that wood BP increased ($\beta_{app} = 0.94\pm1.1$) in recent decades (Yu *et al.*, 2019).

BP-nutrient interactions and progressive nitrogen limitation

At Duke FACE, nitrogen availability influenced the magnitude of BP responses (McCarthy et al., 2010) and experiments in later-succession systems with no BP response were limited by nitrogen (Flakaliden; Sigurdsson *et al.*, 2013) and phosphorus (EucFACE; Ellsworth *et al.*, 2017). Limiting factors were not examined for a number of the other later-succession experiments (Bader *et al.*, 2013; Klein *et al.*, 2016).

eCO2 experiments in early-succession ecosystems suggest that BP gains were supported by increased nitrogen acquisition rather than changes in stoichiometry (Finzi *et al.*, 2007; Zaehle *et al.*, 2014). Nitrogen acquisition was increased through increased fine-root BP (see above), changing root traits (Iversen, 2010; Nie *et al.*, 2013; Beidler *et al.*, 2015), and below-ground carbon flux to mycorrhizal symbionts and rhizosphere microbial associations (Section III.4; (Drake *et al.*, 2011; Phillips *et al.*, 2011; Terrer *et al.*, 2018). Meta-analysis suggests that eCO2 increased nitrogen fixation in more intensively manipulated experiments but not in more natural settings (total 441 studies, rates were scaled to plant or ground-area units; B.A. Hungate, unpublished).

Experimental evidence for progressive nitrogen limitation is limited to a single forest (ORNL; Norby *et al.*, 2010) and a single grassland (Biocon; Reich *et al.*, 2006). Paleo-climatic evidence suggests that despite increasing carbon storage the nitrogen cycle became more open between the last glacial maximum and the industrial revolution (Fischer *et al.*, 2019; Jeltsch-Thömmes *et al.*, 2019).

Leaf area, water, and land cover interactions

In some low LAI ecosystems, eCO2 increased LAI, but did not in higher LAI (c. 5) ecosystems (Norby & Zak, 2011; Bader *et al.*, 2013). However, low LAI (c. 1) at EucFACE did not respond to eCO2 (Duursma *et al.*, 2016). The LAI response to eCO2 in low LAI systems has been interpreted as CO₂ accelerating open canopies towards closure (Körner, 2006). However, evidence from two FACE sites (Duke and Rhinelander) suggests that LAI can be higher at canopy closure (Walker *et al.*, 2019). Higher above-ground biomass in some grasslands (Hovenden *et al.*, 2019) indicates potential LAI increases, though increases in leaf mass per unit area would reduce the LAI response relative to the biomass response. High grassland biomass responses have been linked to low soil matric potential (Morgan *et al.*, 2004), though more complex interactions with precipitation seasonality have also been indicated (Hovenden *et al.*, 2019).

Satellite data show "greening" trends over much of the planet, inferred as increasing LAI (Zhu *et al.*, 2016; Mao *et al.*, 2016) and with model-based attribution primarily to iCO2 (Zhu *et al.*, 2016). Consistent with theory, satellite greeness data suggests increased foliage cover in warm and semiarid regions, likely an iCO2 effect via increased WUE (Donohue *et al.*, 2013). Tree-rings have indicated decreasing sensitivity to rainfall or drought in the Eastern US, possibly indicating WUEmediated iCO2 response (Wyckoff & Bowers, 2010; Helcoski *et al.*, 2019). However, less severe droughts, noted in the Eastern US, likely appear as reduced growth sensitivity (Maxwell *et al.*, 2016). At the Florida scrub oak experiment, eCO2 alleviated drought-related declines in NEP (Li *et al.*,

2007) but the opposite was observed at the Nevada desert FACE (Jasoni et al., 2005).

3 Plant mortality

Greenhouse experiments with potted plants have found little benefit of eCO2 on survival during drought or high temperature (e.g. Duan *et al.*, 2014; Bachofen *et al.*, 2018). However, remote sensing evidence shows increased vegetation cover in drylands (Donohue *et al.*, 2013; Section III.2) which possibly suggests a reduction in mortality in those regions.

We are unaware of direct or indirect evidence for CO_2 -related increases in individual-scale mortality, but growth-mortality relationships provide insight. Evidence supports both an inter-specific growthsurvival tradeoff (Wright *et al.*, 2010; Bugmann & Bigler, 2011) and an intra-specific tradeoff (Bigler & Veblen, 2009; Di Filippo *et al.*, 2012, 2015; Büntgen *et al.*, 2019). However, there are common exceptions with some high-growth-rate species with long lifespans (Rüger *et al.*, 2020), and other species that show no, or even negative, growth-mortality relationships (Ireland *et al.*, 2014; Cailleret *et al.*, 2017).

Experimental evidence for stand-scale mortality responses to eCO2 is rare. In the young, regenerating stand at Rhinelander FACE, over 11 years of eCO2 lowered rates of self-thinning (i.e. higher stand basal area for any given stem density) (Kubiske *et al.*, 2019).

At broader scales, most inventory networks have shown increases in stand-scale mortality rates. Increases in biomass mortality have been observed in Amazon forests ($\beta_{app} = 2.4$) (Brienen *et al.*, 2015) and across continents ($\beta_{app} = 1.6-3.9$) (Yu *et al.*, 2019). Tree stem mortality rates have increased, across species, elevation, and tree size, in the western US ($\beta_{app} = 6.2\pm3$; van Mantgem *et al.*, 2009) and in Canada ($\beta_{app} = 6.1$) (Peng *et al.*, 2011). However, none of these studies conclusively attribute trends to iCO2 and other global change (e.g. temperature) and biotic (e.g. pest and pathogens) agents have often been attributed drivers of mortality trends (Peng *et al.*, 2011; Luo & Chen, 2015). Finally, several networks observed decreases or non-significant changes, e.g. in stem mortality rates in Germany (Pretzsch *et al.*, 2014) and biomass mortality in tropical Africa ($\beta_{app} = -0.88\pm2$), although multiple-regression estimated that CO₂ increased mortality ($\beta_{dir,hist} = 1.8\pm4$) (Hubau *et al.*, 2020).

4 Organic matter decomposition

Evidence for changes in SOM-decomposition rates comes primarily from experiments. Many eCO2

experiments have demonstrated increased plant litter production and allocation of carbon belowground (e.g. Drake *et al.*, 2011; Iversen *et al.*, 2012). Meta-analysis (53 experiments, primarily FACE and OTC) showed that eCO2 increased litter production ($\beta_{dir,fut} = 0.4\pm0.1$) and SOMdecomposition rates ($\beta_{dir,fut} = 0.34\pm0.2$) (van Groenigen *et al.*, 2014), yet priming effects are difficult to detect in field studies (van Groenigen *et al.*, 2014; Georgiou *et al.*, 2015).

Results from ecosystem-scale experiments indicate some heterogeneity and nuance in these responses. For example, in a scrub oak ecosystem, 6 years of eCO2 increased SOM decay despite unchanged microbial biomass (Carney *et al.*, 2007), and at ORNL FACE a decade of eCO2 resulted in a small but non-significant increase in surface-soil SOM decomposition along with a reduction in microbial nitrogen (Iversen *et al.*, 2012). In a later-succession forest, eCO2 increased microbial biomass ($\beta_{dir,fut} = 0.40\pm0.4$) but with no change in soil respiration ($\beta_{dir,fut} = -0.18\pm0.7$) (Bader & Körner, 2010). At EucFACE +30 ppm eCO2 increased soil respiration ($\beta_{dir,fut} = 1.3$), but a further increase of 120 ppm produced no additional effect after 3 months ($\beta_{dir,fut} = 0.3$) or 3 years ($\beta_{dir,fut} = 0.21$) (Drake *et al.*, 2016, 2018). This 3-year response was non-significant but accounted for about half of the additional carbon acquired under eCO2 (Jiang *et al.*, 2020).

Data on long-term changes in SOM decomposition in response to iCO2 remains limited. Synthesis of 23 flux-towers with increased GPP (Section III.1) suggested a non-significant increase in ecosystem respiration (R_e) ($\beta_{app} = 0.58 \pm 1$) (Fernández-Martínez *et al.*, 2017). Synthesis and statistical upscaling of chamber measurements suggested that global soil respiration has increased ($\beta_{app} = 0.22$) (Bond-Lamberty & Thomson, 2010). Statistical predictors of this trend include temperature anomaly and year (possibly an iCO2 effect). Notably, heterotrophic respiration would be expected to increase if C_{soil} increased, even with no change in decomposition rates.

Accelerated SOM decomposition may release nutrients and feed back onto the activity of plant processes. For example, at Duke FACE increased root exudation ($\beta_{dir,fut} = 1.1\pm0.6$) was coupled with a non-significant but substantial increase in microbial biomass ($\beta_{dir,fut} = 1.1\pm1.3$) and production of nitrogen-acquiring extracellular enzymes (Phillips *et al.*, 2011). Exoenzyme activity was increased at Duke and Rhinelander FACE (Larson *et al.*, 2002; Finzi *et al.*, 2006), although no change in nitrogen mineralisation was observed in lab incubations (Zak *et al.*, 2003), perhaps suggesting that stimulation of microbial activity required plant inputs. Conversely, leaf δ^{15} N suggests that eCO2 may have increased nitrogen mineralisation but not ring-width in mature trees in a European forest (Bader *et al.*, 2013). eCO2 increased nitrogen and phosphorus mineralisation for a limited period at

EucFACE (Hasegawa *et al.*, 2016) and enzyme activity in an alpine forest (Souza *et al.*, 2017). Conversely, meta-analysis suggests eCO2 increased fine root C:N ratios ($\beta_{dir,fut} = 0.13$) (Nie *et al.*, 2013), which are associated with lower decomposability.

Contrasting mycorrhizal associations have been linked to biomass responses under low soil nitrogen conditions (Phillips *et al.*, 2013; Terrer *et al.*, 2016). Ectomycorrhizal (ECM) fungi are assumed capable of stimulating SOM decomposition, while arbuscular mycorrhizal (AM) fungi are not, resulting in increased nitrogen in aboveground BP in ECM trees but not in AM plants, primarily grasses (Terrer *et al.*, 2018). Conversely, AM association with *Avena fatua* in a lab and field setting increased SOM-decomposition rates under eCO2 ($\beta_{dir,fut} = 1.4$) (Cheng *et al.*, 2012).

5 Terrestrial ecosystem carbon

Direct evidence from site-scale studies

In the four longest-running FACE experiments eCO2 over a decade increased C_{veg} increment ($\beta_{dir,fut}$ = 0.60±0.4) in these early-succession temperate forests (Walker *et al.*, 2019). eCO2 of geological origin increased tree basal area in 30 year old trees ($\beta_{dir,fut}$ = 0.23-0.39) (Hättenschwiler *et al.*, 1997). Conversely, in the later-succession forest at EucFACE, four years of eCO2 did not increase C_{veg} increment (Jiang *et al.*, 2020), likely because of phosphorus limitation (Ellsworth *et al.*, 2017). Other experiments in later-succession forests did not quantify C_{veg}. Meta-analysis and extrapolation (138 experiments) predicted a global increase in C_{veg} ($\beta_{dir,fut}$ = 0.22±0.1) related to soil C:N ratio in AM-associated ecosystems and soil phosphorus in ECM-associated ecosystems (Terrer *et al.*, 2019). Biomass responses were generally higher in ECM systems than in AM systems (Terrer *et al.*, 2016), while another meta-analysis showed analogous biomass responses in trees compared with grasses (Song *et al.*, 2019).

Synthesis of meta-analyses found that eCO2 increased C_{soil} across all (>200) experiments analysed ($\beta_{dir,fut} = 0.039\pm0.03$) but not in field experiments lasting ≥2 years without nitrogen addition (25) ($\beta_{dir,fut}$ = 0.0054±0.03) (Hungate *et al.*, 2009). However, C_{soil} responses to eCO2 at individual sites are mixed. For example, a decade of eCO2 increased C_{soil} at ORNL FACE ($\beta_{dir,fut} = 0.51\pm0.6$, 0-90 cm) (Iversen *et al.*, 2012) and in a desert ecosystem ($\beta_{dir,fut} = 0.59\pm0.62$) (Evans *et al.*, 2014), but not in a scrub oak ecosystem ($\beta_{dir,fut} = -0.15\pm0.5$) (Hungate *et al.*, 2013). In the desert ecosystem, inorganic carbonate pools may have contributed to increases in C_{soil} through nocturnal CO₂ uptake (Hamerlynk *et al.* 2013) though net effects are likely small (Soper *et al.*, 2016).

Given limited data, litter addition experiments can also provide insight. Synthesis of priming responses to litter addition (26 studies) suggested that 32 % of litter inputs accumulate as C_{soil} (Liang *et al.*, 2018). 10-30 years of doubled aboveground-litter inputs in temperate forests increased C_{soil} at two sites (29±13 % and 33±28 %) but had no effect at three sites (Lajtha *et al.*, 2018), nor in one tropical forest (Sayer *et al.*, 2019). Based on these responses and assuming doubled CO₂ doubles litter production (which is unlikely), $\beta_{dir,hist}$ would range from 0 to 0.41±0.3.

Measurement of NEP requires whole-ecosystem enclosure, thus data are few. In a US salt-marsh higher rates of NEP were sustained over 19 years in both C3 and C4 communities (Drake 2014). A data-assimilation approach provided a comprehensive carbon budget at EucFACE showing no change in C_{eco} (Jiang *et al.*, 2020).

Indirect evidence from global and regional studies

Spatially-explicit atmospheric [CO₂] measurements, fossil-fuel emissions, and other data are integrated using atmospheric transport models to infer terrestrial net biome production (NBP). These "inversions" suggest a global NBP of 2.3±0.9 (MACC-II), 2.3±1.5 (Jena-CarboScope) (1995-2014; Fernández-Martínez *et al.*, 2019), and 1.9±0.5 PgC y⁻¹ (2010-2014) (Li *et al.*, 2018) and all estimated positive trends in global NBP (β_{app} = 19±7, 11±4, 9.8±5). These estimates of NBP include both 'natural' NBP and land-use change-related (instantaneous and legacy) NBP.

Global land-use change-related NBP was estimated from bookkeeping models at -1.4 ± 1.4 PgC y⁻¹ (2000-2009; Friedlingstein *et al.*, 2019), and are predominantly in the tropics (-1.4 ± 0.3 PgC y⁻¹) with fluxes outside the tropics balancing to a net flux of near zero (Houghton & Nassikas, 2017). Regional analysis of NBP show a strong sink in Northern Hemisphere extra-tropics 2.3 ± 0.6 PgC y⁻¹ (1992-1996), 2.2 ± 0.5 PgC y⁻¹ (2001-2004) but a substantial source in the tropics -1.1 ± 1.5 (1992-1996) and -0.9 ± 0.9 PgC y⁻¹ (2001-2004) (Gurney *et al.*, 2004; Peylin *et al.*, 2013). Combined with land-use change-related NBP, these inversion results suggest small 'natural' NBP in the tropics (c. 0.3-0.5). However, analysis of the vertical atmospheric [CO₂] gradient suggested close-to-neutral tropical NBP (Stephens *et al.*, 2007), implying 'natural' NBP of similar magnitude and opposite sign to land-use change-related NBP, attributed primarily to iCO2 (Schimel *et al.*, 2015).

Flask, aircraft, and satellite-based measurements show trends in the seasonal-cycle amplitude of $[CO_2]$ since c. 1960 (Keeling *et al.*, 1996; Graven *et al.*, 2013; Yin *et al.*, 2018), implying seasonal intensification of northern NBP (β_{app} = 2.2±0.6) (Graven *et al.*, 2013). iCO2 has been implicated as a major driver of these trends (Forkel *et al.*, 2016; Bastos *et al.*, 2019), though increasing crop

production (Gray *et al.*, 2014; Zeng *et al.*, 2014) and warming-induced increasing vegetation cover (Keenan & Riley, 2018) are also likely candidates.

Carbon budgeting estimated global 'natural' NBP at $3.6\pm1.0 \text{ PgC y}^{-1}$ (2009-2018) and 141 PgC since 1959 from the budget residual, and $3.2\pm1.2 \text{ PgC y}^{-1}$ and 130 PgC from process-based models (Friedlingstein *et al.*, 2019). Based on the residual estimate of 'natural' NBP and the lower and upper bounds of either global vegetation or global ecosystem carbon stocks results in $\beta_{app} = 0.93-1.4$ (assuming all the sink is in vegetation) or $\beta_{app} = 0.18-0.29$ for ecosystem carbon (global vegetation and non-permafrost soils).

Synthesis and extrapolation of global inventory data suggested increased C_{eco} ($\beta_{app} = 1.0\pm0.6$), C_{veg} ($\beta_{app} = 1.9$), C_{soil} ($\beta_{app} = 0.31$), litter carbon ($\beta_{app} = 0.92$), and dead wood carbon ($\beta_{app} = 0.64$) (Pan et al., 2011). Little additional data on C_{soil} changes over the historical period are available. Evidence from multi-plot forest-inventory data consistently shows net gains in wood C_{veg} in recent decades in tropical Africa ($\beta_{app} = 0.77$) (Hubau *et al.*, 2020), the Amazon ($\beta_{app} = 0.69$) (Brienen *et al.*, 2015), Borneo ($\beta_{app} = 0.48\pm0.3$) (Qie *et al.*, 2017), and in large 50 ha plots across the tropics ($\beta_{app} = 0.30\pm0.24$) (Chave *et al.*, 2008). Wood C_{veg} also increased in plots across the Eastern US ($\beta_{app} = 2.9\pm1.5$) (McMahon *et al.*, 2010) and globally ($\beta_{app} = 0.82\pm0.5$) (Yu *et al.*, 2019). Long-term geological CO₂ release was associated with reduced lidar-estimated aboveground C_{veg} (Cawse-Nicholson *et al.*, 2018).

Flux-towers measure NEP directly, yet have been running for a relatively short time. Synthesis of 23 flux-towers indicate increased NEP ($\beta_{app} = 4.3\pm 2$), with high CO₂ sensitivity ($\beta_{dir,hist} = 4.6\pm 2$) (Fernández-Martínez *et al.*, 2017).

IV. Synthesis

1 Evidence for the CO₂-fertilisation hypothesis

In this section we integrate and interpret the evidence for change in the components of the carbon cycle during the historical record concurrent with increasing $[CO_2]$ (iCO2; c. 280-400 ppm), in response to elevated $[CO_2]$ (eCO2; c. 390-500 ppm), and the probability and magnitude of iCO2 as a driving factor in the historical change. In doing so we acknowledge that we are mixing evidence across scales, measurements, methods of analysis, and in some cases different variables that may not be perfectly comparable. However, this is required for a broad synthesis and a formal meta-

analysis is not our intention. We assign confidence as either "high" (all estimates agree), "medium" (estimate means disagree, substantial overlap in confidence intervals), or "low" (estimate means disagree, little overlap in confidence intervals).

Physiology

A number of independent lines of indirect evidence—ice-core OCS (Campbell *et al.*, 2017) and O¹⁸ (Ciais *et al.*, 2012), glucose isotopomers (Ehlers *et al.*, 2015), satellite ET (Cheng *et al.*, 2017), and flux-partitioned eddy-covariance (Fernández-Martínez*et al.*, 2017)—provide **high confidence that terrestrial GPP has increased concurrently with iCO2**. Estimates of the GPP increase disagree by a factor of 1.7 ($\beta_{app} = 0.95$ -1.6, mean = 1.2; Table 2), but overlap in confidence intervals (Fig. 3, Fig. S2) indicates that these estimates are consistent and suggests **medium confidence in the magnitude of the increase in GPP concurrent with iCO2**. Above the canopy-scale GPP can be measured only indirectly, and most of these estimates are a function of the [CO₂] trend (Box 3; isotopomers, satellite, OCS) which introduces a circularity. However, we place less confidence in estimates (usually satellite-based) that omit a CO₂ effect from the theory used in their GPP estimate of GPP that does not require [CO₂] in its calculation and provides the highest β_{app} of 1.6±0.9 (Fernández-Martínez *et al.*, 2017). A smaller proportion of this change was attributed to iCO2 ($\beta_{dir,hist} = 1.2\pm0.6$).

Synthesis of direct evidence from experiments provides **high confidence that ecosystem-scale eCO2 increases diurnal photosynthesis in leaves** ($\beta_{dir,fut} = 0.68\pm0.2$). This increase is very similar to the theoretical value for a light-saturated leaf ($\beta_{dir,fut} = 0.70\pm0.2$, Table S1). The theoretical value for the canopy-scale photosynthesis response to iCO2 (280-410 ppm, $\beta_{dir,fut} = 0.60\pm0.3$, Table S1) is about half the observed mean increase in GPP concurrent with iCO2 ($\beta_{dir,hist} = 1.2$). For iCO2 to be the sole driver of the observed responses would require all leaves to be operating at the lightsaturated rate of increase *and* would require additional positive feedbacks of equivalent magnitude.

The majority of global models tend to follow the theoretical response to iCO2 (Keenan *et al.*, 2016). A carbon cycle model was able to replicate the OCS increase in GPP ($\beta_{app} = 0.95\pm0.2$) and change in northern seasonal [CO₂] amplitude by hypothesising leaf optimisation and predicting a substantial increase in LAI (note the phosphorus cycle was disabled) (Haverd *et al.*, 2020). However, it is not clear that leaves optimise as hypothesised (Smith and Keenan, 2020), and models consistently represent allocation and LAI simplistically. For example, LAI trends are inferred in high-LAI tropical

rainforests (Zhu *et al.*, 2016). In these regions models are likely predicting an increase in maximum LAI, which conflicts with experimental evidence and resource investment theory. An alternative hypothesis is that iCO2 accelerates the recovery of forest-gaps such that landscape-scale LAI is greater—a hypothesis not represented by any of the models used for attribution. Outside of tropical forests, changes in LAI are related to both iCO2 (Donohue *et al.*, 2013) and temperature-stimulated increases in growing season length (Keenan and Riley, 2018). An additional consideration is that models tend to under-estimate GPP relative to solar-induced fluorescence (a GPP proxy) in agricultural regions (Guanter *et al.*, 2014; Walker *et al.*, 2017), agriculture being another major factor of global change. Taken together, we place **high confidence that the historical GPP increase was primarily driven by iCO2 and also that iCO2 was not the sole driving factor**. However, it is unclear which factors might be driving the additional change in GPP.

A number of independent lines of indirect evidence—tree-ring $\delta^{13}C$ (e.g. Saurer *et al.*, 2004; Peñuelas et al., 2011; Frank et al., 2015), flux-partitioned eddy-covariance (Keenan et al., 2013; Mastrotheodorus *et al.*, 2017), and atmospheric δ^{13} C (Keeling *et al.*, 2017)—provide **high** confidence that iWUE (across leaf to global scales) and WUE (across leaf to ecosystem scales) have increased over the historical period (β_{app} = 0.85-3.9, mean = 1.5). There remain large differences (factor of 5) between these estimates of the increase, primarily due to the eddycovariance estimates (β_{app} = 2.4±2.0 and 3.9±2.5). The causes for these differences are not fully understood, though scale (Medlyn et al., 2017), plasticity (Mastrotheodorus et al., 2017), high variability and short time scales (indicated by the high uncertainty), and GPP trends that are higher than expected from iCO2 alone (see above) all play a role. Eddy covariance estimates skew the mean and the modal change is around $\beta_{app} = 1$ (Fig. 3), similar to the mean for iCO2-attribution studies ($\beta_{dir,hist}$ = 0.80) and the theoretical value for iWUE ($\beta_{dir,hist}$ = 1.1). As with GPP, other than eddy-covariance these indirect methods use [CO₂] in their calculation (Box 3). Satellite estimates of WUE suffer from very short time-periods (13 years) with low signal-to-noise ratio, leaving little confidence in these trend estimates. Direct evidence from multiple experiments support iWUE and WUE increases ($\beta_{dir,fut}$ = 0.65-1.6, mean=1.1) in agreement with predictions from theory (Figure 2). Taken together this evidence provides high confidence that iCO2 has increased iWUE, medium confidence that the magnitude is in accordance with theory, and low confidence in the magnitude of the historical change in WUE.

How do these changes in iWUE translate to changes in water use? Theory predicts that iWUE (A_{net}/g_s) responses are very tightly constrained (β_{dir} c. 1), so if the change in A_{net} is below 1, g_s will

decrease (Barton *et al.*, 2012). The observed changes in GPP (β_{app} c. 1) suggest that widespread and broad-scale reductions in g_s may not have occurred. Reductions in stomatal conductance may occur at points in time or space but as spatial and temporal scale increases, iCO2-induced decreases in stomatal conductance likely translate into smaller decreases in transpiration (Field et al. 1995; Körner *et al.*, 2007).

Increased vegetation cover in semi-arid regions (Donohue *et al.*, 2013; Ukkola et al. 2016), increased rooting depth (Y. Yang *et al.*, unpublished; Iversen 2010), soil-water feedback on g_s, competition, and atmospheric coupling (Jarvis & McNaughton, 1986; Buckley *et al.*, 2017; Sperry *et al.*, 2019; Sabot *et al.*, 2020) are all mechanisms that may lead to no change in *water use* at larger scales. This is especially likely to be the case in water-limited regions where long-term transpiration is primarily precipitation driven (Fatichi *et al.* 2016) i.e. plants use the water that is available.

Biomass production

Ecosystem-scale forest-inventory networks suggest increases in wood BP concurrent with iCO2 (mean β_{app} c. 1; Brienen et al., 2015; Yu et al., 2019, Hubau et al., 2020). Conversely, evidence from tree-rings is mixed (e.g. Peñuelas et al., 2011; Silva & Anand et al., 2013). Both of these methods are subject to potential sampling biases (Box 3). However, the tree-ring biases are potentially larger and can be either positive (Nehbas-Ahles et al., 2014) or negative (Brienen *et al.*, 2016). The inventory evidence provides **medium confidence in an increase in wood BP over the historical period, with low confidence in the magnitude (\beta_{app} c. 1). However, this is an area of disagreement among several in our authorship group.**

Many studies show increased BP in response to eCO2 (e.g. Baig *et al.*, 2015), but these studies are often short-lived and under artificial conditions. Evidence from long-term, large-scale FACE experiments (<10 experiments) is mixed, with both increases (e.g. Norby et al., 2005) and no change in BP observed (e.g. Jiang et al., 2020; Bader et al., 2013) ($\beta_{dir,fut} = -0.3-0.56$, mean = 0.19). Many studies show a BP response to eCO2 that is higher at sites with higher nutrient availability (e.g. Terrer *et al.*, 2018), that is greater when nutrients were added (e.g. Sigurdsson *et al.*, 2013; Reich et al., 2006), or no response when nutrients are low (e.g. Sigurdsson *et al.*, 2013; Ellsworth *et al.*, 2017). However, strong evidence for the widely held *progressive* nitrogen limitation hypothesis is restricted to two experiments (Biocon, ORNL) (Reich *et al.*, 2006; Norby *et al.*, 2010). At both of these experiments nutrient dynamics also caused declining BP in the ambient treatments, indicating that eCO2 responses can be tied, via nutrient availability, to underlying ecosystem dynamics.

BP responses were observed in earlier-succession more-disturbed ecosystems, which also tend to have higher nutrient availability (Körner 2006). The experiments with no response were often situated in later-succession forests, some of which were also severely limited by nutrients. The forest inventories in which BP increases concurrently with iCO2 were observed in later-succession, primarily tropical, forests that are assumed to be strongly nutrient limited. These inventory responses are high (β_{app} c. 1) compared with the results from experiments even in earlier-succession forests ($\beta_{dir,fut} = 0.49\pm0.3$). However, the evidence is insufficient to robustly evaluate how eCO2 affects late-successional and tropical forests. Taken together, this evidence suggests high confidence that eCO2 can stimulate BP ($\beta_{dir,fut}$ c. 0.5), that the response is diminished by nutrient limitations, and that the observed inventory response is likely due to iCO2 and additional factors.

Vegetation mortality

A number of independent plot networks provide high confidence that tree mortality has increased over the historical period but low confidence in the magnitude ($\beta_{app} = -1.2-7.4$, mean = 2.8; Fig. 3, Fig. S3). The greatest changes are primarily attributed to drought. Causes of mortality are often stochastic, multi-factorial, and play out over long time periods, making trend identification and attribution at ecosystem and landscape scales uncertain (McMahon *et al.*, 2019). For individual scale mortality, an intra-specific growth-survival tradeoff is apparent for some species (e.g. Di Fillipo *et al.*, 2015), which would reduce lifespans if iCO2 increases wood BP. However an intra-specific growth-survival tradeoff is not ubiquitous among species (e.g. Cailleret *et al.*, 2017).

Greenhouse eCO2 experiments suggest that eCO2 does not reduce drought-related mortality (e.g. Duan *et al.*, 2014; Bachofen *et al.*, 2018). However, eCO2 commonly increased leaf area in these experiments, increasing transpiration that likely exacerbated mortality risk (Duan *et al.*, 2018). What does this mean for eCO2 responses in ecosystems? Due to the juvenile growth stage of these plants, leaf area increases were much higher than expected in closed canopy systems (see Box 2), and increased root BP from eCO2 would exacerbate pot-volume constraints on root proliferation. Inference from these experiments is limited. At the stand scale there is very limited evidence that eCO2 might change self-thinning relationships allowing higher basal area for a given stem density (Kubiske *et al.*, 2019). Evidence for changes in mortality caused by iCO2 is weak and mostly indirect with limited support for both increases and decreases in individual and stand-scale mortality rates. Taken together (CS11) the response of mortality to iCO2 and eCO2 is unknown, even the direction of change is unclear.

Organic matter decomposition

The few studies of soil or ecosystem respiration show small ($\beta_{app} = 0.22$; Bond-Lamberty & Thompson 2010) or non-significant increases ($\beta_{app} = 0.58\pm1$; Fernández-Martínez et al., 2017). These trends could possibly be related to increasing heterotrophic respiration and decomposition, but increasing temperature is inferred as the cause and not iCO2 (e.g. Bond-Lamberty *et al.*, 2018). Due to the low number of studies there is **low confidence that SOM decomposition has increased over the historical period, but it is unknown whether SOM decomposition** *rates* **have increased.**

Evidence from eCO2 experiments generally supports the theory that rising $[CO_2]$ increases SOMdecomposition rates (e.g. van Greonigen *et al.*, 2015) due to increases in microbial biomass, rhizosphere priming, mycorrhizal association, and increases in soil water content (see refs in Section III.4). Smaller changes in decomposition rates have been associated with lower microbial biomass and higher soil water (Bader & Körner, 2010; Iversen et al., 2012). Taken together, the evidence suggests **medium confidence that eCO2 increases rates of SOM decomposition but with low confidence in the magnitude**. Increasing SOM decomposition will also release nutrients that may be available for plant growth and BP. Plant nutrient acquisition through mycorrhizal and other rootmicrobe interactions are likely mediators of this process (Terrer *et al.*, 2018). Notably, the large stepchange in eCO2 experiments compared with the more gradual iCO2, could lead to a greater imbalance of available resources resulting in a carbon surplus (Box 3) that could fuel greater microbial activity. It is worth noting that increased SOM-decomposition rates do not necessarily imply lower C_{soil} litter inputs are also increasing (Liang *et al.*, 2018).

Terrestrial ecosystem carbon

Multiple independent lines of evidence—global-scale carbon budgeting (Friedlingstein *et al.*, 2019), atmospheric inversions (e.g. Peylin *et al.*, 2016; Fernández-Martínez *et al.*, 2019), seasonal [CO₂] amplitude trends (Graven *et al.*, 2013), and forest inventories (e.g. Pan *et al.*, 2011; Hubau *et al.*, 2020)—imply a CO₂ sink in terrestrial ecosystems (Fig. 3, Fig. S4). This evidence provides **high confidence that terrestrial ecosystem carbon has increased over the historical period, with substantial changes in the 'natural' carbon sink almost balanced by a net carbon source from land-use change**. Global carbon budgeting and global forest analysis suggest responses concurrent with iCO2 in the range, $\beta_{app} = 0.18$ -1.0. The 'natural' carbon store response estimated for global intact forests ($\beta_{app} = 0.66 \pm 0.4$; Pan *et al.*, 2011) is higher than estimated for the 'natural' land surface

 $(\beta_{app} = 0.18-0.29;$ Friedlingstein *et al.*, 2019). Trends observed in eddy-covariance NEP (site-scale 'natural' sink) and inversion NBP (global-scale combined 'natural' and land-use sink) are extremely high ($\beta_{app} = 4.3-19$, mean 11). The extremely high β_{app} for global NBP (and to a lesser degree NEP) results from global NBP being near zero as the 'natural' sink is almost balanced by the net source from land-use change, thus small absolute changes can be relatively high (Box 3).

CO2 effects on terrestrial carbon are convolved with the effects of concurrent anthropogenic changes in climate, nitrogen deposition, and land-use change, including agricultural intensification and fire management. Attribution analyses indicate a primary role for iCO2 (e.g., Schimel *et al.*, 2015; Keenan *et al.*, 2016; Bastos *et al.*, 2019; Fernández-Martínez *et al.*, 2019; Haverd *et al.*, 2020). These analyses depend on the inclusion of accurate explanatory-variable datasets and accurate process representation in models, which may not be the case. Quantification of the effect of iCO2 on carbon storage in terrestrial ecosystems remains elusive.

As with BP responses, studies of forest inventories show higher C_{veq} responses (β_{app} = 0.3-2, mean = 0.85) than studies of eCO2 experiments (β_{app} = 0.22-0.39) (Fig. 3). However, the highest values come from two analyses: one that includes global forest regrowth (β_{app} = 1.9; Pan et al., 2011) and younger (c. 50-100 years old) temperate forests ($\beta_{app} = 2\pm 1$; McMahon et al., 2011). Exclusion of these higher change studies results in a narrower range ($\beta_{app} = 0.3-0.85$, mean = 0.57). This exclusion narrows the difference between responses inferred from iCO2 and eCO2 studies, which is consistent with theory as relative stock changes are under-estimated more in short-term experiments than in inventory-type studies (Fig. S2). Responses of vegetation carbon increment may give a more accurate estimate of responses in systems that are far from equilibrium when initially exposed to eCO2 (Fig. S2). Vegetation carbon increment responses estimated from FACE experiments (β_{app} = 0.60±0.4; Walker et al., 2019) are consistent with the reduced range from inventory studies. However, the theoretical under-estimation of undisturbed forest-inventory responses (Fig. S2) yet similarity of these responses with those from disturbed forests subjected to eCO2 and not the lower values from undisturbed forests (e.g. Jiang et al., 2020), requires further consideration. Either eCO2 experiments are under-estimating responses or other factors have affected the inventory evidence. Both of these evidence types are likely missing the full extent of mortality (e.g. Chambers et al., 2013), and evidence from larger-scale 50 ha plots suggests a lower response for intact tropical forests ($\beta_{app} = 0.30 \pm 0.2$; Chave *et al.*, 2008).

Evidence for changes in C_{soil} is mixed and context dependent. On average there is no detectable

response across experiments (Hungate *et al.*, 2009), though at some individual sites, C_{soil} did accumulate (e.g. Iversen *et al.*, 2012; Evans *et al.*, 2014). The only study (to our knowledge) of soil carbon changes concurrent with iCO2 suggests a relative response in global forests ($\beta_{app} = 0.31$; Pan *et al.*, 2011), that would be substantial if extrapolated to mineral soils globally. As with vegetation carbon stocks, the long-term, relative responses of soil carbon stocks are likely underestimated by short-term eCO2 experiments (Fig. S2). Taken together, evidence suggests **medium confidence that eCO2 increases ecosystem carbon stocks over short to medium timescales and iCO2 has contributed to the change over the historical period, but with low confidence in the magnitude**.

2 What we need to know

Confidence in the magnitude of CO_2 effects is generally low. In particular, iCO2-attribution is a major challenge in testing the CO_2 -fertilisation hypothesis over the historical period. Attribution often relies on empirical regression which simply indicates correlation, anything with a trend over the historical period will correlate with iCO2. We advocate using log-log β as a stable (Notes S1; Fig. S1), relativised metric for comparison with theoretical expectations and other studies.

Process-based models are also used to deconvolve causation from multiple global-change factors. Models often represent key mechanisms over-simplistically and yet are also equifinal, while model ensembles represent a non-random sample of non-independent models (Beven, 2006; Fatichi *et al.*, 2019; Sanderson & Fisher, 2020). Thus, models need always to be interpreted in the context of the mechanisms they represent, those they do not, how representations might bias results, and how well they reproduce observations (e.g. Medlyn *et al.*, 2015). Mechanistic models (or modules) of BP, resource acquisition and allocation, how soil and plant water status affect g_s , plant-microbe effects on soil decomposition, vegetation structure and demography (e.g. competition, mortality), and land-use need to be applied more extensively to the CO_2 -fertilisation hypothesis. Alternative hypotheses to explain observed phenomena should be evaluated within model ensembles, and calibrated to allow the hypotheses to compete on an equal footing (e.g. Zhang *et al.*, 2015). Agile and extensible models (e.g. Clark *et al.*, 2015; Walker *et al.*, 2018) will be needed to rapidly incorporate this understanding, including uncertainty, into the internally-consistent and quantitative systems-level theory that models represent.

It is crucial that future eCO2 experiments are designed and resourced to understand the mechanistic basis for responses (or lack thereof) and do not simply report significance or effect-sizes. Integration

with extensible, process-based models will help evaluate and explore the mechanistic basis for observed responses (Medlyn et al., 2015). During the lifetime of long-term experiments, new hypotheses will arise to explain unexpected or key observations that may help to provide context and mechanisms underlying the observed responses. These long-term experiments represent very large investments and for relatively small additional investment, related studies can test mechanistic hypotheses as they arise during an experiment's lifetime.

Suggestions for high-priority future studies:

Understanding the mechanistic basis for GPP increases observed over the historical period and how this relates to water use. GPP, iWUE, and water use are intimately tied. The mechanisms by which plants might adjust to iCO2 (photosynthetic acclimation/optimisation, more and deeper roots, g_s responses to water status) are not fully understood and thus not well explored within models. A quantitative synthesis canopy or stand-scale photosynthetic responses in eCO2 experiments would be informative.

Biomass production inferred from tree-rings and forest inventories reach very different conclusions. Where possible, studies that can integrate these two types of evidence, such as tree-ring sampling at inventory sites (e.g. Dye *et al.*, 2016; Evans *et al.*, 2017), acknowledging respective biases will be fruitful. The mechanisms underlying how increased GPP leads to increased BP and increased nutrient acquisition through plant-microbe associations are key areas for future study, especially over successional gradients. eCO2 studies in mid and late-succession ecosystems, and tropical, boreal, semi-arid, and savannah ecosystems will help to address the young, temperate ecosystem bias in eCO2 studies.

How iCO2 affects mortality is key for understanding C_{veg} and community responses to iCO2. As mortality is a relatively rare event in established vegetation, change detection and attribution of causation require large-scale, long-term monitoring, and ideally, experiments (Hartmann *et al.*, 2018). Understanding the mechanics of observed growth-mortality tradeoffs and whether iCO2 may be alleviating mortality in semi-arid regions are high-priority.

Studies of the C_{soil} **decomposition rate** over the historical period are practically non-existent, additional studies are required. As with BP, efforts to fully understand plant-microbe-soil (and likely invertebrate), carbon-nutrient interactions continue to be a high-priority. Furthermore, investigation of responses in deep soil layers are few or non-existent. Understanding how the opposing processes of increased litter production, root-microbe interactions, increased decomposition rates, and rates of

mineral-associated SOM formation balance to affect C_{soil} throughout the soil profile will be key to predictive understanding. This may be especially relevant in non-forest ecosystems, where the largest potential change in carbon storage is belowground.

iCO2 affects ecosystem carbon primarily through effects on NEP, thus understanding of C_{eco} responses to iCO2 will emerge from the above research priorities. Further, NBP is what the atmosphere 'sees', which includes additional non-respiratory carbon losses caused by fire (anthropogenic and wild), hydrological export, and export of consumer goods. iCO2 may interact with some non-NEP fluxes, e.g. greater grassland BP leading to higher fuel loads, greater BP in regrowing forests following land-use change. Land-use change NBP is often calculated without considering iCO2 and separately from 'natural' NBP caused by iCO2, climate change, nitrogen deposition, and other factors (e.g. Friedlingstein *et al.*, 2019). Though the boundary between these fluxes is blurred (Pongratz *et al.*, 2014). Integrated studies that consider all of these factors, especially land-use change (including iCO2-acceleration of regrowth following disturbance, e.g. Pugh *et al.*, 2019), agriculture, and 'natural' fluxes will yield insight.

V. Conclusions

To evaluate the CO₂-fertilisation hypothesis, we synthesised evidence from wide-ranging disciplines within an integrated theoretical framework. We have medium or high confidence that GPP, iWUE, BP, and mortality have all increased over the historical period. However, we often have low or medium confidence in the magnitude, and low confidence in how much of the change is attributable to iCO2.

The complex nature of the problem demands integrated studies, and further integration is required to fully combine the broad evidence in a way that is scale, bias, and uncertainty aware (Box 3). Inference regarding trends and responses (or lack thereof) should always be grounded in the context-dependence and biases associated with a particular study. Further experiments and observations are needed to help reconcile differences among evidence streams. For example, tree-ring sampling at flux sites or forest-inventory plots, proximal remote sensing at flux and experiment sites, and model-data integration to reconcile diverse data streams would all help to provide an integrated understanding of this complex problem. A holistic, community-based approach will enable the greatest advances and provide the most robust information to decision makers.

The required size of climate-change mitigation efforts depends directly on how future terrestrial
carbon storage evolves. Evidence for the CO_2 -fertilisation hypothesis suggests a highly valuable ecosystem service that is buying us time in the fight against climate change, though the size of this subsidy remains unclear. Based on diminishing theoretical GPP responses, likely increasing nutrient limitations, increasing mortality, and other negative temperature-related effects (Peñuelas *et al.*, 2017) it is highly likely that increases in terrestrial carbon storage due to iCO2 will decline into the future. A decline in this subsidy will result in accelerated climate change on the current trajectory of anthropogenic CO_2 emissions.

ACCE

Data availability statement

Data and analysis scripts used in this publication can be found at ESS-DIVE https://data.essdive.lbl.gov/view/doi:10.15485/1644687

Acknowledgements

This paper was outlined and informed by the "Integrating CO₂-fertilisation evidence streams and theory (ICOFEST)" meeting held at Biosphere II in September 2018. The meeting was supported by the U.S. Department of Energy Office of Science, Biological and Environmental Research through the Free Air CO₂ Enrichment Model Data Synthesis (FACE-MDS) project. ORNL is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. MGDK acknowledges support from Australian Research Council (ARC) Discovery Grant (DP190101823). DJPM and WKS acknowledge support by NASA Terrestrial Ecosystems Grant 80NSSC19M0103. SZ received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 647204). KJAT acknowledges support from Smithsonian's Forest Global Earth Observatory (ForestGEO). JBF contributed to this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration with support from the NASA IDS program. VH acknowledges support from the Earth Systems and Climate Change Hub funded by the Australian. FJ acknowledges support by the Swiss NSF (#200020_172476). TFK was supported by the NASA Terrestrial Ecology Program IDS Award NNH17AE86I. PC and JP were supported by the European Research Council Synergy grant ERC-2013-SyG-2013-610028 IMBALANCE-P. J. Pongratz was supported by the German Research Foundation's Emmy Noether Program. MEBS acknowledges support from the Australian Research Council Centre of Excellence for Climate Extremes (CE170100023). CT was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344 with the U.S. Department of Energy. MST was supported by the U.S. Department of Energy, Office of Science under contract number DE-AC02-05CH11231. ATT acknowledges funding from the USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme Grant No. 2018-67012-31496. SLV was supported by the US National Science Foundation Paleo Perspectives on Climate Change Program. PvM was supported by the U.S. Geological Survey Ecosystems Mission

Area. Government sponsorship acknowledged. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author contributions

 \bigcirc

Acce

APW conceived and wrote the paper, with major contributions from MGDK, AB, KG, SM. APW, ASP, and BT collated the data. The ICOFEST meeting was organised by APW, SB, KGC, MGDK, RK, BM, DJPM, RJN, and SZ. All authors attended or contributed to the meeting and commented and provided feedback on the manuscript.

Tables, Figures, and Boxes

- Table 1. Acronyms and abbreviations
- Table 2. CO₂ responses across studies.
- Figure 1. Conceptual diagrams of the terrestrial carbon cycle and the action of CO₂
- Figure 2. Modelled leaf-scale physiological responses to CO₂
- Figure 3. Comparison of β values
- Box 1. The CO₂-fertilisation hypothesis
- Box 2. The evidence themes

Acceb

Box 3. Consideration of methods and bias

Figure Captions

Figure 1. Conceptual diagrams of the terrestrial carbon cycle and the action of elevated atmospheric $[CO_2]$ (eCO2). a) Simple pool and flux (3D shapes) diagram of the terrestrial carbon cycle showing key pools, fluxes, and processes relevant to the CO2-fertilisation hypothesis as described in Box 1. 2D arrows represent direct (solid) or indirect (dashed) positive (triangular arrow heads), or the possibility of both positive and negative (circular) potential influences of eCO2. b) Rich conceptual diagram of a landscape-scale carbon cycle and the influence of eCO2 showing more processes (see Section II) and their inter-connected, multi-scale nature. Solid arrows (3D and 2D) represent carbon flows, dotted arrows represent influence. Abbreviations not in Table 1: $C_{i/c}$ —internal or chloroplastic [CO₂], A_c—carboxylation limited photosynthesis, Γ —photorespiration, C:N_{leaf}—leaf carbon to nitrogen ratio, T—transpiration, LULCC—land use and land cover change, CWD—coarse woody debris.

Figure 2. Modelled theoretical responses to atmospheric CO₂ concentration ([CO₂], ppm) of (a-c) photosynthesis, A_{net} (µmol m⁻² s⁻¹, black) and photorespiration (µmol m⁻² s⁻¹, dark grey, a only); (d-f) iWUE (µmol mol⁻¹), (g-i) stomatal conductance (mol m⁻² s⁻¹), and (j-l) carbon storage (kg C m⁻²) under ambient (blue) and elevated (red) [CO₂]. Leaf (a, d, g) and canopy (b, e, h) scale for C3 (solid line) and C4 (dashed, leaf-scale only) plants. Variation in b, e, h from a 1000 member ensemble (mean, sd, and 95 percentile shown)—a factorial combination of 100 top-of-canopy V_{cmax} values (mean = 60, sd = 10) and 10 values of the J_{max} to V_{cmax} slope (mean = 1.63, sd = 0.2), the iWUE response does not vary in this ensemble. Distributions of β_{dir} for historical (purple, 280 to 400 ppm) and future (yellow, 400 to 550 ppm) [CO₂] changes (c, f, i) of diurnally-integrated, canopy-scale variables that includes the same leaf physiology variation as in b, e, h, plus three levels of temperature (10, 15, 25 °C) and relative humidity (50, 70, 90 %) combined in factorial. Tri-modality in the GPP β distributions from the temperature variation. β distributions weighted by the variables' absolute response to CO₂. Carbon storage (j-l) calculated using a simple one-pool model with the mean $\beta_{dir,fut}$ GPP response applied to BP for [CO₂] at 400 and 550 ppm when (j) initial carbon stores are in equilibrium or (k) 10 % of equilibrium. (I) $\beta_{dir,hist}$ response when initial carbon stores are assumed in equilibrium at 280 ppm and using the observed historical CO₂ record. Instantaneous β_{dir} for absolute carbon storage are shown (j-l, right y-axis, yellow or purple), as well as $\beta_{dir,hist}$ calculated using carbon

storage increment (green dashed), and β_{dir} on 30-year change in carbon storage in elevated CO₂ scenario (blue points). Further modelling details in Supporting Information Notes S3. Grey vertical lines (a, b, d, e, g, h) are at pre-industrial, 2010s, and projected end-of-century [CO₂] (280, 400, 550 ppm). Grey vertical lines (c, f, i) are at β_{dir} of 0 (solid) and 1 or -1 (dashed). Grey horizontal lines (j-l) are β_{dir} when both ambient and elevated CO₂ carbon pools are at steady state.

Figure 3. β distributions based on data from Table 2 for GPP, WUE, BP, k_{veg}, k_{soil}, C_{veg}, and C_{soil}. Data are organised by CO₂ response category—iCO2 (blue), attribution to iCO2 (green), and eCO2 (purple). See Supporting Information Figs. S2-S4 for further details.

ACCE

Table 1. Acronyms and abbreviations.

A _{net}	Net photosynthetic carbon assimilation
fAPAR	Fraction absorbed photosynthetically active radiation
BAI	Basal area increment
BP	Biomass production, the sum of all tissue production over a given time,
	typically a year
C _x	Carbon in pool x (where x is either: veg – vegetation, soil, eco – ecosystem
CO ₂	Carbon dioxide
[CO ₂]	Atmospheric CO ₂ concentration
eCO2	Elevated CO ₂ from experiments and CO ₂ springs
FACE	Free air CO ₂ enrichment
GPP	Gross primary production
9 _s	Stomatal conductance
iCO2	Increasing CO_2 from fossil fuel emissions and land-use change
iWUE	Intrinsic WUE (A _{net} /g _s)
k _x	Turnover rate of carbon in pool x (see C _x)
LAI	Leaf area index
NBP	Net biome production, net land atmosphere exchange
NEP	Net ecosystem production
ocs	Carbonyl sulphide
UE	Use efficiency
VPD	Vapour pressure deficit
WUE	Water use efficiency (transpiration/BP)

Box 1. The CO₂-fertilisation hypothesis

The stimulation of photosynthesis by CO_2 has been called " CO_2 fertilisation" (Ciais *et al.*, 2014), a term that goes back to global carbon cycle modelling in the 1970's (Bacastow & Keeling, 1973). However, " CO_2 fertilisation" or " CO_2 fertilisation effect" have been used to refer to the [CO_2] response of any number of variables across scales. This broad usage has been a source of confusion and more commonly, "fertilisation" is a value-laden, agricultural term that means the addition of nutrients to increase crop yield. Acknowledging the precedence of the term, its multiple uses, and that CO_2 responses of some processes may be neutral or negative, we opt to refer to " CO_2 responses" of explicitly defined variables and scales.

We reserve the term " CO_2 fertilisation" solely to label the hypothesis that: **plant responses to increasing atmospheric [CO₂] lead to increasing terrestrial-ecosystem carbon storage causing negative feedback on atmospheric [CO₂] growth**. This definition of the CO₂-fertilisation hypothesis is explicit about the feedback on atmospheric [CO₂] growth, implying the potential of this process to slow climate change. The hypothesis is therefore defined at climate-change relevant scales, i.e. global in space and decadal to centennial in time.

For the CO₂-fertilisation hypothesis to be true, Eq. B1 must be positive at the global scale and over a specified time period:

$$\Delta NEP = \Delta C_{eco} = \Delta C_{veg} + \Delta C_{soil} \qquad (Eq. B1)$$

where NEP is net ecosystem production, C_{veg} and C_{soil} are plant and soil (including litter and coarse woody debris) terrestrial carbon that sum to give total ecosystem carbon (C_{eco}), and Δ represents change due to increasing [CO₂]. A change in carbon storage is the net result of inputs and outputs (Olson, 1963):

dC / dt = I - kC (Eq. B2)

where C is stored carbon, I is the input, and k is the turnover rate of the pool (the inverse of mean residence time).

Net primary production (NPP) represents the net input of carbon to C_{veg} and is calculated as gross primary production (GPP), which responds directly to iCO2, minus autotrophic respiration (R_a). In practice, NPP is often estimated from total biomass production (BP), the sum of leaf, wood, root, and reproductive tissue production over a given time period (Vicca *et al.*, 2012). In addition to BP, NPP includes carbon used for the production of volatiles, root exudation, supply to symbionts, and

changes in non-structural carbohydrates (NSCs). However, these carbon fluxes are difficult to measure and often have very short residence times, somewhat akin to respiratory carbon. Therefore, to align with measurements and residence time we use BP to decompose changes in C_{veg} :

$$dC_{veg} / dt = BP - k_{veg}C_{veg}$$
(Eq. B3)

where k_{veg} is the turnover (litterfall and mortality) rate of vegetation biomass. For soils, the inputs to C_{soil} are vegetation litter production and mortality, as well as non-biomass NPP fluxes (S) that include exudation and carbon supply to symbionts:

$$dC_{soil} / dt = k_{veg}C_{veg} + S - k_{soil}C_{soil}$$
(Eq. B4)

where k_{soil} represents the turnover rate of soil carbon caused by microbial decomposition.

ACCE

Box 2. Evidence themes

Theme 1—Direct exposure to elevated CO₂: Experiments in which plants are grown in CO₂enriched air and observations of plants growing close to geological CO₂ sources provide the only direct evidence of plant and soil responses to future [CO₂]. The first eCO2 experiments were typically at the scales of hours or days and of leaves or small, individual plants. Ecosystem-scale open-top chambers (OTC) and larger free-air CO₂ enrichment (FACE) experiments have since been implemented over decades in more natural settings. All of these experiments provide evidence for the direct CO₂-effect on photosynthesis and stomatal conductance. These experiments also provide valuable data on biomass production, allocation to organs, and transpiration. The time scale of most experiments (<10 years), however, is generally much shorter than many ecosystem processes, and evidence for CO₂-effects on mortality, plant community dynamics, or changes in soil carbon stocks is limited.

Theme 2—Tree growth measurements: Tree rings and forest inventories provide long-term estimates of wood BP in forest ecosystems across the globe (e.g. Hember *et al.*, 2019; Hubau *et al.*, 2020). Tree ring data are annually resolved estimates of individual stem growth over the past decades to millennia (e.g. Babst *et al.*, 2014). These data provide insight into individual growth variability in relation to environmental changes including soil moisture, temperature and potentially also iCO2. Repeated inventories of forest ecosystems offer an assessment of forest-scale dynamics and the demographic processes of recruitment, growth, and mortality over the past decades and in some cases around century length (Pretzsch *et al.*, 2014). Inventories tend to have a coarser temporal resolution (5-10 year resurveys) but represent forest-stand spatial scales, albeit that plot scale varies widely: 0.067 ha forest inventory analysis, c. 1-2 ha (e.g. Brienen *et al.*, 2015; Hubau *et al.*, 2020), 50 ha ForestGEO network (e.g. Chave *et al.*, 2008).

Theme 3—Ecosystem monitoring: Ecosystem eddy-covariance and global remote-sensing may detect effects of iCO2 on carbon, water, and energy fluxes over the recent decades. Tower-based sensors are used to calculate ecosystem-scale (c. 1 km) carbon, water, and energy fluxes from the covariance of gas concentrations and vertical wind velocity (Baldocchi, 2003). A global network of continental networks (http://fluxnet.fluxdata.org), synthesises flux-tower data from 916 sites, some in operation for over two decades, while the majority have run for a decade or less and are located in temperate ecosystems (Chu *et al.*, 2017). Satellite and other aircraft-borne Earth observing systems

have been measuring the reflectance of electromagnetic radiation from Earth's surface, used to infer changes in vegetation cover, leaf area, and biomass at the global scale (Fensholt *et al.*, 2004; Smith *et al.*, 2020). Reflected wavelengths from Landsat (first launched in 1972), MODIS, and other instruments can be used to measure the fraction of absorbed photosynthetically active radiation (fAPAR) and greenness indices, which are further used to infer LAI, GPP, and NPP with the help of simple models (Myneni *et al.*, 1997; Field *et al.*, 1998). Microwave wavelengths are used to measure vegetation optical depth (VOD, first available in the early 1980s) which can be used to infer vegetation water content and, by extension, vegetation biomass (Liu *et al.*, 2015).

Theme 4—Large-scale constraints: At regional-to-global scales, several long-term data-streams provide constraints on the global carbon budget and its change over time. These data streams include near-surface and vertical profiles of atmospheric CO_2 concentration and $\overline{o}13C$, global water-cycle measurements, and atmospheric composition from ice cores. Atmospheric CO_2 measurements can be combined with other data and models to infer the global carbon budget and spatial details of land carbon uptake (Friedlingstein *et al.*, 2019; Peylin *et al.*, 2013). The impact of vegetation responses to iCO2 on the hydrological cycle measured by stream gauges can also act as further indirect evidence (Ukkola *et al.*, 2016; Trancoso *et al.*, 2017). Carbonyl sulphide (OCS) can be used to infer global carbon assimilation because it is taken up by plants through stomata and is transformed by carbonic anhydrase (Wohlfahrt *et al.*, 2012; Whelan *et al.*, 2018).

Box 3. Consideration of methods and bias

eCO2 experiments. Confinement of roots in pots can limit below-ground resources. While eCO2 can accelerate leaf area gain in open-grown plants leading to compound interest that does not occur with closed canopies (Norby *et al.*, 1999). These experiments represent early post-disturbance "reorganising", and possibly open-canopy, ecosystems but are not representative of closed-canopy ecosystems. Oscillating [CO₂] may lessen physiological responses (Allen *et al.*, 2020). The step-change in [CO₂] results in a large shift in the ecosystem resource balance (Walker *et al.*, 2015), while soil disturbance can increase nutrient availability (Körner 2006). Many experiments (and evidence themes more broadly) do not quantify total BP, especially root BP. Even the longest-running experiments are short-lived relative to the lifespan of trees. Landscape-scale atmospheric feedbacks (e.g. increased VPD that could mitigate reductions in transpiration) cannot be accounted for (Leuzinger *et al.*, 2015).

Many 'measurements' rely on models in their calculation, thus have the potential to omit or presuppose a CO₂ effect. For example, satellite GPP (e.g. Sun *et al.*, 2018) and NPP (e.g. Kolby-Smith *et al.*, 2016) are calculated from fAPAR using an LUE model (Monteith, 1972) that often does not include the CO₂ effect on photosynthesis (De Kauwe *et al.*, 2016). Thus, changes in GPP result only from changes in LAI (fAPAR) or climate. Conversely, measurement-models that include a CO₂ effect are thus not independent of iCO2, e.g. iWUE from δ 13C, OCS, or isotopomers, and thus have the potential to pre-suppose a CO₂-related trend.

Carbon isotope discrimination during photosynthesis reduces the ¹³C:¹²C ratio (δ^{13} C) in plant material and is used to calculate iWUE from δ^{13} C (Farquhar *et al.*, 1982; Farquhar & Cernusak, 2012). The commonly used model neglects mesophyll and photorespiration discrimination (Farquhar *et al.*, 1982; Farquhar & Cernusak, 2012), and accounting for these effects can increase iWUE trends by around 50 % (Keeling *et al.*, 2017).

Tree-ring trends are subject to sampling and survivorship biases (Brienen *et al.*, 2012; Peters *et al.*, 2015) that can affect growth trends by up to 400 % (Hember *et al.*, 2009; Nehrbass-Ahles *et al.*, 2014), leading some to question whether tree-rings should be used for trend detection at all (Brienen *et al.*, 2012). However, tree-rings are the only data that give insight into tree BP since the industrial revolution.

Many studies use tree-ring width as a proxy for wood BP because it is a direct measurement. However, trees grow in three dimensions and change in the one-dimensional ring-width does not directly scale with wood volume growth and thus BP in different sized trees. Conversion to the twodimensional basal area increment (BAI) helps unify this size mismatch, but again does not account for non-linear change in wood BP with tree size (Anderson-Teixeira *et al.*, 2015). Allometric scaling should be applied to ring-width and BAI to attempt a best possible estimate of wood BP (e.g. Dye *et al.*, 2014). Static allometric relationships over time can introduce bias where environmental changes have altered resource allocation. For example, shifting allocation from wood to leaves in Russian forests reconciled apparently conflicting inventory data that suggested BP declines while remote sensing suggested increases (Lapenis et al. 2005). Furthermore, wood volume growth does not always scale with BP as wood density can also change (Pretzsch *et al.*, 2018).

Forest inventory plots (c. 1 ha and less) can under-sample mortality, resulting in over-estimates of biomass accumulation (Chambers *et al.* 2013). Generally, statistical power for detecting and attributing change in mortality and SOM is often low (Hungate *et al.*, 2009; Sulman *et al.*, 2018; McMahon *et al.*, 2019). Statistical power for detection is low due to measurement uncertainty, low signal-to-noise, heterogeneity, and potential pre-treatment differences. Low statistical power presents a real challenge for attribution when using commonly used binary mortality assessments or bulk SOM measurements (Sulman *et al.*, 2018; McMahon *et al.*, 2019). Furthermore, satellite data, flux-towers, and experiments all suffer from short time-periods, often with much background variability that can obscure or amplify trends.

Quantification of global 'natural' NBP is confounded with quantification of land-use changerelated NBP which is uncertain (95 % CI is 92 % of the mean flux; Friedlingstein *et al.*, 2019). Landuse change-related NBP is calculated using bookkeeping models that account for complex legacy effects and many elements of land-use change, which adds to the uncertainty (Pongratz *et al.*, 2014). Furthermore, potentially substantial interactions of land-use change-related NBP and iCO2 are not considered by these methods. C_{veg} and C_{soil} changes, loss of storage/sink capacity, and potential CO_2 interactions with secondary succession all convolve land-use change and 'natural' NBP fluxes suggesting a false dichotomy in these flux calculations.

Calculating and interpreting β , or any relative response, is challenging for carbon stocks in which pre-change values can be large, change is the product of two opposing fluxes cumulative over

multiple years, and concepts of steady-state and non-steady state apply. Ideally we would like to know β from pre-change steady-state to post-change steady-state. However, an ecosystem may not be in steady-state prior to change and post-change ecosystems enter a transient phase and can take a long time to reach steady-state. Calculated during the transient phase, β will be a function of initial stocks and the developmental stage explored (seedling, sapling, mature tree) and signals will accumulate over time. For ecosystems not in steady-state pre-change, β of the changes in the stock increment is not sensitive to initial stocks, but could be large where pre-change increments are small (i.e. when pre-change the system is close to steady-state). For steady-state ecosystems pre-change, acknowledgment that β is non-steady-state is needed and a β that explicitly includes temporal scale would be ideal.

References

Ainsworth EA, Long SP. **2005**. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. *New Phytologist* **165**: 351–371.

Ainsworth EA, Rogers A. **2007**. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. *Plant Cell and Environment* **30**: 258–270.

Allen LH, Kimball BA, Bunce JA, Yoshimoto M, Harazono Y, Baker JT, Boote KJ, White JW. **2020**. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield. *Agricultural and Forest Meteorology* **284**: 107899.

Anderson-Teixeira KJ, McGarvey JC, Muller-Landau HC, Park JY, Gonzalez-Akre EB, Herrmann V, Bennett AC, So CV, Bourg NA, Thompson JR, *et al.* 2015. Size-related scaling of tree form and function in a mixed-age forest (E Sayer, Ed.). *Functional Ecology* 29: 1587-1602.

Anderson-Teixeira KJ, Wang MMH, McGarvey JC, LeBauer DS. 2016. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). *Global Change Biology* 22: 1690–1709.

Arora VK, Katavouta A, Williams RG, Jones CD, Brovkin V, Friedlingstein P, Schwinger J, Bopp L, Boucher O, Cadule P, et al. 2019. Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to CMIP5 models. *Biogeosciences Discussions*: 1–124.

Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJP, *et al.* 2014. A tree-ring perspective on the terrestrial carbon cycle. *Oecologia* 176: 307–322.

Bacastow R, Keeling CK. **1973**. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A. D. 1700 to 2070 as deduced from a geochemical model. *Brookhaven Symposia in Biology* **30**: 86–135.

Bachofen C, Moser B, Hoch G, Ghazoul J, Wohlgemuth T. 2018. No carbon "bet hedging" in pine

seedlings under prolonged summer drought and elevated CO2. *Journal of Ecology* **106**: 31–46.

Bader MK-F, Körner C. **2010**. No overall stimulation of soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment. *Global Change Biology* **16**: 2830–2843.

Bader MK-F, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C. 2013. Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. *Journal of Ecology* **101**: 1509–1519.

Bader MK-F, Siegwolf R, Körner C. **2010**. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO2 enrichment. *Planta* **232**: 1115–1125.

Bahuguna RN, Jagadish KSV. **2015**. Temperature regulation of plant phenological development. *Environmental and Experimental Botany* **111**: 83–90.

Baig S, Medlyn BE, Mercado LM, Zaehle S. **2015**. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. *Global Change Biology* **21**: 4303–4319.

Baldocchi DD. **2003**. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. *Global Change Biology* **9**: 479–492.

Barton CVM, Duursma RA, Medlyn BE, Ellsworth DS, Eamus D, Tissue DT, Adams MA, Conroy J, Crous KY, Liberloo M, *et al.* 2012. Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. *Global Change Biology* 18: 585–595.

Bastos A, Ciais P, Chevallier F, Rödenbeck C, Ballantyne AP, Maignan F, Yin Y, Fernández-Martínez M, Friedlingstein P, Peñuelas J, et al. 2019. Contrasting effects of CO₂ fertilization, landuse change and warming on seasonal amplitude of Northern Hemisphere CO₂ exchange. *Atmospheric Chemistry and Physics* **19**: 12361–12375.

Battipaglia G, Saurer M, Cherubini P, Calfapietra C, McCarthy HR, Norby RJ, Francesca Cotrufo M. 2013. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from

carbon and oxygen isotope analyses in tree rings across three forest FACE sites. *New Phytologist* **197**: 544–554.

Beidler KV, Taylor BN, Strand AE, Cooper ER, Schönholz M, Pritchard SG. **2015**. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. *New Phytologist* **205**: 1153–1163.

Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. 2015. Larger trees suffer most during drought in forests worldwide. *Nature Plants* 1: 15139.

Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J. 2015. Revision of the EPICA Dome C CO ₂ record from 800 to 600 kyr before present: Analytical bias in the EDC CO2 record. *Geophysical Research Letters* **42**: 542–549.

Beven K. 2006. A manifesto for the equifinality thesis. Journal of Hydrology 320: 18–36.

Bigler C, Veblen TT. **2009**. Increased early growth rates decrease longevities of conifers in subalpine forests. *Oikos* **118**: 1130–1138.

Blagodatskaya E, Blagodatsky S, Anderson T-H, Kuzyakov Y. 2014. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil. *PLOS ONE* 9: e93282.

Bloom AJ, Asensio JSR, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA. 2012. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. *Ecology* **93**: 355–367.

Bloom AJ, Chapin III FS, Mooney HA. **1985**. Resource Limitation in Plants-An Economic Analogy. *Annual Review of Ecology and Systematics* **16**: 363–392.

Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. 2018. Globally rising soil heterotrophic respiration over recent decades. *Nature* **560**: 80–83.

Bond-Lamberty B, Thomson A. **2010**. Temperature-associated increases in the global soil respiration record. *Nature* **464**: 579–582.

Bormann FH, Likens GE. **1979**. Catastrophic disturbance and the steady state in northern hardwood forests: A new look at the role of disturbance in the development of forest ecosystems suggests important implications for land-use policies. *American Scientist* **67**: 660–669.

Bowes G. **1991**. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. *Plant, Cell & Environment* **14**: 795–806.

Brienen RJW, Gloor M, Ziv G. **2016**. Tree demography dominates long-term growth trends inferred from tree rings. *Global Change Biology* **23**: 474–484.

Brienen RJW, Gloor E, Zuidema PA. **2012**. Detecting evidence for CO ₂ fertilization from tree ring studies: The potential role of sampling biases: CO₂ fertilization from tree rings. *Global Biogeochemical Cycles* **26**: GB1025.

Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, *et al.* 2015. Long-term decline of the Amazon carbon sink. *Nature* 519: 344–348.

Buckley TN, Sack L, Farquhar GD. 2017. Optimal plant water economy. *Plant, Cell & Environment* 40: 881–896.

Bugmann H, Bigler C. **2011**. Will the CO2 fertilization effect in forests be offset by reduced tree longevity? *Oecologia* **165**: 533–544.

Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C. 2019. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. *Nature Communications* **10**: 2171.

Cailleret M, Jansen S, Robert EMR, Desoto L, Aakala T, Antos JA, Beikircher B, Bigler C, Bugmann H, Caccianiga M, *et al.* 2017. A synthesis of radial growth patterns preceding tree mortality. *Global Change Biology* 23: 1675–1690.

Calvin M, Benson AA. 1948. THE PATH OF CARBON IN PHOTOSYNTHESIS. Science 107: 476–480.

Campbell JE, Berry JA, Seibt U, Smith SJ, Montzka SA, Launois T, Belviso S, Bopp L, Laine M. 2017. Large historical growth in global terrestrial gross primary production. *Nature* 544: 84–87.

Carney KM, Hungate BA, Drake BG, Megonigal JP. **2007**. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. *Proceedings of the National Academy of Sciences* **104**: 4990–4995.

Caspersen JP. **2000**. Contributions of Land-Use History to Carbon Accumulation in U.S. Forests. *Science* **290**: 1148–1151.

Castanha C, Zhu B, Hicks Pries CE, Georgiou K, Torn MS. 2018. The effects of heating,
rhizosphere, and depth on root litter decomposition are mediated by soil moisture. *Biogeochemistry* 137: 267–279.

Cawse-Nicholson K, Fisher JB, Famiglietti CA, Braverman A, Schwandner FM, Lewicki JL, Townsend PA, Schimel DS, Pavlick R, Bormann KJ, *et al.* 2018. Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California. *Biogeosciences* 15: 7403–7418.

Chambers JQ, Negron-Juarez RI, Marra DM, Di Vittorio A, Tews J, Roberts D, Ribeiro GHPM, Trumbore SE, Higuchi N. 2013. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. *Proceedings of the National Academy of Sciences* **110**: 3949–3954.

Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, Co LL, Dattaraja HS, Davies SJ, Esufali S, et al. 2008. Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities (GM Mace, Ed.). *PLoS Biology* **6**: e45.

Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S. 2012. Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2. *Science* 337: 1084–1087.

Cheng L, Zhang L, Wang Y-P, Canadell JG, Chiew FHS, Beringer J, Li L, Miralles DG, Piao S, Zhang Y. 2017. Recent increases in terrestrial carbon uptake at little cost to the water cycle. *Nature*

Communications 8: 110.

Chu H, Baldocchi DD, John R, Wolf S, Reichstein M. **2017**. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. *Journal of Geophysical Research: Biogeosciences* **122**: 289–307.

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, et al. 2014. Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 465–570.

Ciais P, Tagliabue A, Cuntz M, Bopp L, Scholze M, Hoffmann G, Lourantou A, Harrison SP, Prentice IC, Kelley DI, et al. 2012. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. *Nature Geoscience* **5**: 74–79.

Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, Freer JE, Gutmann ED, Wood AW, Brekke LD, et al. 2015. A unified approach for process-based hydrologic modeling: 1. Modeling concept. *Water Resources Research* **51**: 2498–2514.

Collatz GJ, Ribas-Carbo M, Berry JA. **1992**. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants. *Australian Journal of Plant Physiology* **19**: 519–538.

Comins HN, McMurtrie RE. **1993**. Long-Term Response of Nutrient-Limited Forests to CO2 Enrichment; Equilibrium Behavior of Plant-Soil Models. *Ecological Applications* **3**: 666–681.

Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. **2013**. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? *Global Change Biology* **19**: 988–995.

Cowan IR. **1982**. Regulation of Water Use in Relation to Carbon Gain in Higher Plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H, eds. Encyclopedia of Plant Physiology. Physiological Plant Ecology II: Water Relations and Carbon Assimilation. Berlin, Heidelberg: Springer, 589–613.

Crous KY, Walters MB, Ellsworth DS. **2008**. Elevated CO2 concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE. *Tree Physiology* **28**: 607–614.

De Kauwe MG, Keenan TF, Medlyn BE, Prentice IC, Terrer C. **2016**. Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. *Nature Climate Change* **6**: 892–893.

De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC, et al. 2013. Forest water use and water use efficiency at elevated CO₂: a modeldata intercomparison at two contrasting temperate forest FACE sites. *Global Change Biology* **19**: 1759–1779.

De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang YP, Luo Y, Jain AK, El-Masri B, Hickler T, et al. 2014. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO 2 enrichment sites. *New Phytologist* **203**: 883–899.

Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T. **2018**. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. *New Phytologist* **217**: 571–585.

Di Filippo A, Biondi F, Maugeri M, Schirone B, Piovesan G. **2012**. Bioclimate and growth history affect beech lifespan in the Italian Alps and Apennines. *Global Change Biology* **18**: 960–972.

Di Filippo A, Pederson N, Baliva M, Brunetti M, Dinella A, Kitamura K, Knapp HD, Schirone B, Piovesan G. 2015. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. *Frontiers in Ecology and Evolution* **3**: 46.

Dijkstra FA. **2008**. Long-term enhancement of N availability and plant growth under elevated CO. *Funct. Ecol.* **22**: 975–982.

Donohue RJ, Roderick ML, McVicar TR, Farquhar GD. 2013. Impact of CO2 fertilization on

maximum foliage cover across the globe's warm, arid environments. *Geophysical Research Letters* **40**: 3031–3035.

Donohue RJ, Roderick ML, McVicar TR, Yang Y. **2017**. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation. *Journal of Geophysical Research: Biogeosciences* **122**: 168–184.

Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, *et al.* 2011. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO(2). *Ecology Letters* 14: 349–357.

Drake BG, Gonzàlez-Meler MA, Long SP. **1997**. MORE EFFICIENT PLANTS: A Consequence of Rising Atmospheric CO2? *Annual Review of Plant Physiology and Plant Molecular Biology* **48**: 609–639.

Drake JE, Macdonald CA, Tjoelker MG, Crous KY, Gimeno TE, Singh BK, Reich PB, Anderson IC, Ellsworth DS. **2016**. Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO2 concentration. *Global Change Biology* **22**: 380–390.

Drake JE, Macdonald CA, Tjoelker MG, Reich PB, Singh BK, Anderson IC, Ellsworth DS. 2018. Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment. *Biogeochemistry* **139**: 85–101.

Duan H, Chaszar B, Lewis JD, Smith RA, Huxman TE, Tissue DT, Way D. **2018**. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. *Tree Physiology* **38**: 1138–1151.

Duan H, Duursma RA, Huang G, Smith RA, Choat B, O'grady AP, Tissue DT. **2014**. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. *Plant, Cell & Environment* **37**: 1598–1613.

Duursma RA, Gimeno TE, Boer MM, Crous KY, Tjoelker MG, Ellsworth DS. **2016**. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. *Global Change Biology* **22**: 1666–1676.

Dwivedi D, Tang J, Bouskill N, Georgiou K, Chacon SS, Riley WJ. **2019**. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. *Reviews in Mineralogy and Geochemistry* **85**: 329–348.

Dye A, Plotkin AB, Bishop D, Pederson N, Poulter B, Hessl A. **2016**. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. *Ecosphere* **7**: e01454.

Ehleringer J, Björkman O. **1977**. Quantum Yields for CO2 Uptake in C3 and C4 Plants: Dependence on Temperature, CO2, and O2 Concentration. *Plant Physiology* **59**: 86–90.

Ehlers I, Augusti A, Betson TR, Nilsson MB, Marshall JD, Schleucher J. 2015. Detecting longterm metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C3 plants over the 20th century. *Proceedings of the National Academy of Sciences* **112**: 15585–15590.

Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, Macdonald CA, Medlyn BE, Powell JR, *et al.* 2017. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. *Nature Climate Change* **7**: 279–282.

Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. **2010**. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change: Tansley review. *New Phytologist* **186**: 593–608.

Evans MEK, Falk DA, Arizpe A, Swetnam TL, Babst F, Holsinger KE. **2017**. Fusing tree-ring and forest inventory data to infer influences on tree growth. *Ecosphere* **8**: e01889.

Evans RD, Koyama A, Sonderegger DL, Charlet TN, Newingham BA, Fenstermaker LF, Harlow B, Jin VL, Ogle K, Smith SD, et al. 2014. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO₂. *Nature Climate Change* **4**: 394–397.

Farquhar GD, von Caemmerer S, Berry JA. **1980**. A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. *Planta* **149**: 78–90.

Farquhar GD, Cernusak LA. **2012**. Ternary effects on the gas exchange of isotopologues of carbon dioxide. *Plant, Cell & Environment* **35**: 1221–1231.

Farquhar GD, O'Leary MH, Berry JA. **1982**. On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. *Functional Plant Biology* **9**: 121–137.

Farquhar GD, Sharkey TD. **1982**. Stomatal Conductance and Photosynthesis. *Annual Review of Plant Physiology* **33**: 317–345.

Fatichi S, Leuzinger S, Paschalis A, Langley JA, Donnellan Barraclough A, Hovenden MJ. **2016**. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO ₂. *Proceedings of the National Academy of Sciences*: 201605036.

Fatichi S, Pappas C, Zscheischler J, Leuzinger S. **2019**. Modelling carbon sources and sinks in terrestrial vegetation. *New Phytologist* **221**: 652–668.

Feng W, Plante AF, Six J. 2013. Improving estimates of maximal organic carbon stabilization by fine soil particles. *Biogeochemistry* **112**: 81–93.

Fensholt R, Sandholt I, Rasmussen MS. **2004**. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. *Remote Sensing of Environment* **91**: 490–507.

Fernández-Martínez M, Sardans J, Chevallier F, Ciais P, Obersteiner M, Vicca S, Canadell JG, Bastos A, Friedlingstein P, Sitch S, *et al.* 2019. Global trends in carbon sinks and their relationships with CO2 and temperature. *Nature Climate Change* **9**: 73–79.

Fernández-Martínez M, Vicca S, Janssens IA, Ciais P, Obersteiner M, Bartrons M, Sardans J, Verger A, Canadell JG, Chevallier F, et al. 2017. Atmospheric deposition, CO 2, and change in the land carbon sink. *Scientific Reports* **7**: 1–13.

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. **1998**. Primary production of the biosphere: Integrating terrestrial and oceanic components. *Science* **281**: 237–240.

Field CB, Jackson RB, Mooney HA. **1995**. Stomatal responses to increased CO2: implications from the plant to the global scale. *Plant, Cell & Environment* **18**: 1214–1225.

Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim H-S, Matamala R, McCarthy HR, Oren R, *et al.* 2006. Progressive Nitrogen Limitation of Ecosystem Processes Under Elevated Co2 in a Warm-Temperate Forest. *Ecology* 87: 15–25.

Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, *et al.* 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. *Proceedings of the National Academy of Sciences* **104**: 14014–14019.

Fischer H, Schmitt J, Bock M, Seth B, Joos F, Spahni R, Lienert S, Battaglia G, Stocker BD, Schilt A, et al. 2019. N2O changes from the Last Glacial Maximum to the preindustrial – Part 1: Quantitative reconstruction of terrestrial and marine emissions using N2O stable isotopes in ice cores. *Biogeosciences* **16**: 3997–4021.

Fleischer K, Rammig A, Kauwe MGD, Walker AP, Domingues TF, Fuchslueger L, Garcia S, Goll DS, Grandis A, Jiang M, et al. 2019. Amazon forest response to CO 2 fertilization dependent on plant phosphorus acquisition. *Nature Geoscience* **12**: 736–741.

Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. *Nature* **450**: 277–280.

Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M. 2016. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. *Science* **351**: 696–699.

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, et al. 2013. The global nitrogen cycle in the twenty-first century. *Philosophical Transactions of the Royal Society B: Biological Sciences* **368**: 20130164.

Frank DC, Poulter B, Saurer M, Esper J, Huntingford C, Helle G, Treydte K, Zimmermann NE, Schleser GH, Ahlström A, et al. 2015. Water-use efficiency and transpiration across European forests during the Anthropocene. *Nature Climate Change* **5**: 579–583.

Friedlingstein P, Fung I, Holland E, John J, Brasseur G, Erickson D, Schimel D. **1995**. On the contribution of CO2 fertilization to the missing biospheric sink. *Global Biogeochemical Cycles* **9**: 541–556.

Friedlingstein P, Jones MW, O'Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, et al. 2019. Global Carbon Budget 2019. *Earth System Science Data* 11: 1783–1838.

Ge Z, Fang S, Chen HYH, Zhu R, Peng S, Ruan H. **2018**. Soil Aggregation and Organic Carbon Dynamics in Poplar Plantations. *Forests* **9**: 508.

Georgiou K, Koven CD, Riley WJ, Torn MS. **2015**. Toward improved model structures for analyzing priming: potential pitfalls of using bulk turnover time. *Global Change Biology* **21**: 4298–4302.

Gimeno TE, McVicar TR, O'Grady AP, Tissue DT, Ellsworth DS. **2018**. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. *Global Change Biology* **24**: 3010–3024.

Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, Jong R de, Frank DC, Esper J, Büntgen U, et al. 2016. No growth stimulation of Canada's boreal forest under half-century of combined warming and CO2 fertilization. *Proceedings of the National Academy of Sciences* 113: E8406–E8414.

Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, et al. 2013. Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960. *Science* 341: 1085–1089.

Gray JM, Frolking S, Kort EA, Ray DK, Kucharik CJ, Ramankutty N, Friedl MA. 2014. Direct

human influence on atmospheric CO 2 seasonality from increased cropland productivity. *Nature* **515**: 398–401.

van Groenigen KJ van, Qi X, Osenberg CW, Luo Y, Hungate BA. 2014. Faster Decomposition Under Increased Atmospheric CO2 Limits Soil Carbon Storage. *Science* 344: 508–509.

Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, et al. 2004. Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. *Global Biogeochemical Cycles* **18**: GB1010.

Hamerlynck EP, Scott RL, Sánchez-Cañete EP, Barron-Gafford GA. **2013**. Nocturnal soil CO2 uptake and its relationship to subsurface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland. *Journal of Geophysical Research: Biogeosciences* **118**: 1593–1603.

Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, et al. 2018. Research frontiers for improving our understanding of droughtinduced tree and forest mortality. *New Phytologist* 218: 15–28.

Hasegawa S, Macdonald CA, Power SA. 2016. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland. *Global Change Biology* 22: 1628–1643.

Hättenschwiler S, Miglietta Franco, Raschi Antonio, Körner Christian. **1997**. Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? *Global Change Biology* **3**: 463–471.

Haverd V, Smith B, Canadell JG, Cuntz M, Mikaloff-Fletcher S, Farquhar G, Woodgate W, Briggs PR, Trudinger CM. 2020. Higher than expected CO2 fertilization inferred from leaf to global observations. *Global Change Biology* **26**: 2390–2402.

Helcoski R, Tepley AJ, Pederson N, McGarvey JC, Meakem V, Herrmann V, Thompson JR, Anderson-Teixeira KJ. 2019. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. *New Phytologist* 223: 1204–1216. **Hember RA, Kurz WA, Girardin MP**. **2019**. Tree Ring Reconstructions of Stemwood Biomass Indicate Increases in the Growth Rate of Black Spruce Trees Across Boreal Forests of Canada. *Journal of Geophysical Research: Biogeosciences* **124**: 2460–2480.

Hicks Pries CE, Sulman BN, West C, O'Neill C, Poppleton E, Porras RC, Castanha C, Zhu B, Wiedemeier DB, Torn MS. 2018. Root litter decomposition slows with soil depth. *Soil Biology and Biochemistry* **125**: 103–114.

Houghton RA, Nassikas AA. 2017. Global and Regional Fluxes of Carbon from Land Use and Land-Cover Change 1850-2015. *Global Biogeochemical Cycles*: 2016GB005546.

Hovenden MJ, Leuzinger S, Newton PCD, Fletcher A, Fatichi S, Lüscher A, Reich PB, Andresen LC, Beier C, Blumenthal DM, *et al.* 2019. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO 2. *Nature Plants* **5**: 167.

Hubau W, Lewis SL, Phillips OL, Affum-Baffoe K, Beeckman H, Cuní-Sanchez A, Daniels AK, Ewango CEN, Fauset S, Mukinzi JM, *et al.* 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. *Nature* **579**: 80–87.

Hülsmann L, Bugmann H, Cailleret M, Brang P. **2018**. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. *Ecological Applications* **28**: 522–540.

Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG. **1999**. Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. *Global Change Biology* **5**: 781–789.

Hungate BA, Dijkstra P, Wu Z, Duval BD, Day FP, Johnson DW, Megonigal JP, Brown ALP, Garland JL. 2013. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. *New Phytologist* 200: 753–766.

Hungate BA, van Groenigen K-J, Six J, Jastrow JD, Luo Y, de Graaff M-A, van Kessel C, Osenberg CW. 2009. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. *Global Change Biology* **15**: 2020–2034. Huntzinger DN, Michalak AM, Schwalm C, Ciais P, King AW, Fang Y, Schaefer K, Wei Y, Cook RB, Fisher JB, *et al.* 2017. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. *Scientific Reports* **7**: 4765.

Ireland KB, Moore MM, Fulé PZ, Zegler TJ, Keane RE. **2014**. Slow lifelong growth predisposes Populus tremuloides trees to mortality. *Oecologia* **175**: 847–859.

Iversen CM. **2010**. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. *New Phytologist* **186**: 346–357.

Iversen CM, Keller JK, Garten CT, Norby RJ. **2012**. Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. *Global Change Biology* **18**: 1684–1697.

Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. 2017. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. *Annual Review of Ecology, Evolution, and Systematics* **48**: 419–445.

Jarvis PG, McNaughton KG. **1986**. Stomatal Control of Transpiration: Scaling Up from Leaf to Region. In: MacFadyen A, Ford ED, eds. Advances in Ecological Research, volume 15. London: Academic Press, Elsevier, 1–49.

Jasoni RL, Smith SD, Arnone JA. **2005**. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. *Global Change Biology* **11**: 749–756.

Jeltsch-Thömmes A, Battaglia G, Cartapanis O, Jaccard SL, Joos F. 2019. Low terrestrial carbon storage at the Last Glacial Maximum: constraints from multi-proxy data. *Climate of the Past* 15: 849–879.

Jiang M, Medlyn BE, Drake JE, Duursma RA, Anderson IC, Barton CVM, Boer MM, Carrillo Y, Castañeda-Gómez L, Collins L, *et al.* 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. *Nature* 580: 227–231.

Joos F, Prentice IC, House JI. **2002**. Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data. *Global Change Biology* **8**: 299–303.

Keeling CD, Chin JFS, Whorf TP. **1996**. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. *Nature* **382**: 146–149.

Keeling RF, Graven HD, Welp LR, Resplandy L, Bi J, Piper SC, Sun Y, Bollenbacher A, Meijer HAJ. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. *Proceedings of the National Academy of Sciences* **114**: 10361–10366.

Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. *Nature* **499**: 324–327.

Keenan TF, Prentice IC, Canadell JG, Williams CA, Wang H, Raupach M, Collatz GJ. **2016**. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. *Nature Communications* **7**: 13428.

Keenan TF, Riley WJ. **2018**. Greening of the land surface in the world's cold regions consistent with recent warming. *Nature Climate Change* **8**: 825–828.

Keenan TF, Williams CA. **2018**. The Terrestrial Carbon Sink. *Annual Review of Environment and Resources* **43**: 219–243.

Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M. 2015. Mineral protection of soil carbon counteracted by root exudates. *Nature Climate Change* **5**: 588–595.

Keller KM, Lienert S, Bozbiyik A, Stocker TF, Churakova (Sidorova) OV, Frank DC, Klesse S, Koven CD, Leuenberger M, Riley WJ, *et al.* 2017. 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. *Biogeosciences* **14**: 2641–2673.

Klein T, Bader MK-F, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW, Körner C. 2016.

Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. *Journal of Ecology* **104**: 1720–1733.

Knauer J, Zaehle S, Reichstein M, Medlyn BE, Forkel M, Hagemann S, Werner C. 2017. The response of ecosystem water-use efficiency to rising atmospheric CO2 concentrations: sensitivity and large-scale biogeochemical implications. *New Phytologist* **213**: 1654–1666.

Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P. 2008. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. *Journal of Plant Nutrition and Soil Science* **171**: 61–82.

Kolby Smith W, Reed SC, Cleveland CC, Ballantyne AP, Anderegg WRL, Wieder WR, Liu YY, Running SW. 2016. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. *Nature Climate Change* **6**: 306–310.

Körner C. **2003a**. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. *Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences* **361**: 2023–2041.

Körner C. 2003b. Carbon limitation in trees. Journal of Ecology 91: 4–17.

Körner C. **2006**. Plant CO2 responses: an issue of definition, time and resource supply. *New Phytologist* **172**: 393–411.

Körner C. 2017. A matter of tree longevity. Science 355: 130–131.

Körner C, Morgan J, Norby R. **2007**. CO2 Fertilization: When, Where, How Much? In: Canadell JG, Pataki DE, Pitelka LF, eds. Global Change — The IGBP Series. Terrestrial Ecosystems in a Changing World. Berlin, Heidelberg: Springer, 9–21.

Kramer PJ. **1981**. Carbon Dioxide Concentration, Photosynthesis, and Dry Matter Production. *BioScience* **31**: 29–33.

Kubiske ME, Woodall CW, Kern CC. 2019. Increasing Atmospheric CO2 Concentration Stand

Development in Trembling Aspen Forests: Are Outdated Density Management Guidelines in Need of Revision for All Species? *Journal of Forestry* **117**: 38–45.

Kuzyakov Y, Friedel JK, Stahr K. **2000**. Review of mechanisms and quantification of priming effects. *Soil Biology and Biochemistry* **32**: 1485–1498.

Lajtha K, Bowden RD, Crow S, Fekete I, Kotroczó Z, Plante A, Simpson MJ, Nadelhoffer KJ.
2018. The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization.
Science of The Total Environment 640–641: 1112–1120.

Larson JL, Zak DR, Sinsabaugh RL. 2002. Extracellular Enzyme Activity Beneath Temperate
 Trees Growing Under Elevated Carbon Dioxide and Ozone. *Soil Science Society of America Journal* 66: 1848–1856.

Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP. **2004**. Will photosynthesis of maize (*Zea mays*) in the US Corn Belt increase in future [CO₂] rich atmospheres? An analysis of diurnal courses of CO₂ uptake under free-air concentration enrichment (FACE). *Global Change Biology* **10**: 951–962.

Leonardi S, Gentilesca T, Guerrieri R, Ripullone F, Magnani F, Mencuccini M, Noije TV, Borghetti M. 2012. Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. *Global Change Biology* **18**: 2925–2944.

Leuzinger S, Fatichi S, Cusens J, Körner C, Niklaus PA. **2015**. The 'island effect' in terrestrial global change experiments: a problem with no solution? *AoB PLANTS* **7**: plv092.

Leuzinger S, Körner C. **2010**. Rainfall distribution is the main driver of runoff under future CO2concentration in a temperate deciduous forest. *Global Change Biology* **16**: 246–254.

Li W, Ciais P, Wang Y, Yin Y, Peng S, Zhu Z, Bastos A, Yue C, Ballantyne AP, Broquet G, et al.
2018. Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained
From Multiple Observations. *Geophysical Research Letters* 45: 1058–1068.

Li JH, Johnson DP, Dijkstra P, Hungate BA, Hinkle CR, Drake BG. **2007**. Elevated CO2 mitigates the adverse effects of drought on daytime net ecosystem CO2 exchange and photosynthesis in a Florida scrub-oak ecosystem. *Photosynthetica* **45**: 51–58.

Liang C, Schimel JP, Jastrow JD. 2017. The importance of anabolism in microbial control over soil carbon storage. *Nature Microbiology* **2**: 1–6.

Liang J, Zhou Z, Huo C, Shi Z, Cole JR, Huang L, Konstantinidis KT, Li X, Liu B, Luo Z, *et al.* 2018. More replenishment than priming loss of soil organic carbon with additional carbon input. *Nature Communications* **9**: 1–9.

Lin Y-S, Medlyn BE, Duursma RA, Prentice IC, Wang H, Baig S, Eamus D, de Dios VR, Mitchell P, Ellsworth DS, et al. 2015. Optimal stomatal behaviour around the world. *Nature Climate Change* 5: 459–464.

Liu YY, van Dijk AIJM, de Jeu RAM, Canadell JG, McCabe MF, Evans JP, Wang G. 2015. Recent reversal in loss of global terrestrial biomass. *Nature Climate Change* **5**: 470–474.

Lloyd J, Farquhar GD. **2008**. Effects of rising temperatures and [CO₂] on the physiology of tropical forest trees. *Philosophical Transactions of the Royal Society B: Biological Sciences* **363**: 1811–1817.

Luo Y, Chen HYH. **2015**. Climate change-associated tree mortality increases without decreasing water availability. *Ecology Letters* **18**: 1207-1215.

Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. *Bioscience* **54**: 731–739.

Luxmoore R. 1981. CO 2 and phytomass. Bioscience 31: 626–626.

van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, *et al.* 2009. Widespread Increase of Tree Mortality Rates in the Western United States. *Science* 323: 521–524.

Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. *New Phytologist*: 79–91.

Mao J, Ribes A, Yan B, Shi X, Thornton PE, Séférian R, Ciais P, Myneni RB, Douville H, Piao S, *et al.* 2016. Human-induced greening of the northern extratropical land surface. *Nature Climate Change* 6: 959–963.

Mastrotheodoros T, Pappas C, Molnar P, Burlando P, Keenan TF, Gentine P, Gough CM, Fatichi S. 2017. Linking plant functional trait plasticity and the large increase in forest water use efficiency. *Journal of Geophysical Research: Biogeosciences* **122**: 2393–2408.

Maxwell JT, Harley GL, Robeson SM. **2016**. On the declining relationship between tree growth and climate in the Midwest United States: the fading drought signal. *Climatic Change* **138**: 127–142.

McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, *et al.* 2020. Pervasive shifts in forest dynamics in a changing world. *Science* **368**: eaaz9463.

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, *et al.* 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? *New Phytologist* **178**: 719–739.

McMahon SM, Arellano G, Davies SJ. **2019**. The importance and challenges of detecting changes in forest mortality rates. *Ecosphere* **10**: e02615.

McMahon SM, Parker GG, Miller DR. **2010**. Evidence for a recent increase in forest growth. *Proceedings of the National Academy of Sciences* **107**: 3611–3615.

Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, Angelis PD, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, *et al.* 2001. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. *New Phytologist* **149**: 247–264.

Medlyn BE, De Kauwe MG, Lin Y-S, Knauer J, Duursma RA, Williams CA, Arneth A, Clement R,

Isaac P, Limousin J-M, et al. 2017. How do leaf and ecosystem measures of water-use efficiency compare? *New Phytologist* **216**: 758–770.

Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology* **17**: 2134–2144.

Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, et al. 2015. Using ecosystem experiments to improve vegetation models. *Nature Climate Change* **5**: 528–534.

Metcalfe DB, Asner GP, Martin RE, Espejo JES, Huasco WH, Amézquita FFF, Carranza-Jimenez L, Cabrera DFG, Baca LD, Sinca F, et al. 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. *Ecology Letters* **17**: 324– 332.

Miller AD, Dietze MC, DeLucia EH, Anderson-Teixeira KJ. **2016**. Alteration of forest succession and carbon cycling under elevated CO2. *Global Change Biology* **22**: 351–363.

Monteith JL. **1972**. Solar Radiation and Productivity in Tropical Ecosystems. *Journal of Applied Ecology* **9**: 747–766.

Mooney HA, Drake BG, Luxmoore RJ, Oechel WC, Pitelka LF. **1991**. Predicting Ecosystem Responses to Elevated CO2 Concentrations. *BioScience* **41**: 96–104.

Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, *et al.* 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. *Oecologia* **140**: 11–25.

Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. **2011**. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. *Journal of Experimental Botany* **62**: 1715–1729.

Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR. 1997. Increased plant growth in the

northern high latitudes from 1981 to 1991. Nature **386**: 698–702.

Nehrbass-Ahles C, Babst F, Klesse S, Nötzli M, Bouriaud O, Neukom R, Dobbertin M, Frank D.
2014. The influence of sampling design on tree-ring-based quantification of forest growth. *Global Change Biology* 20: 2867–2885.

Nie M, Lu M, Bell J, Raut S, Pendall E. **2013**. Altered root traits due to elevated CO2: a metaanalysis. *Global Ecology and Biogeography* **22**: 1095–1105.

Norby RJ, De Kauwe MG, Domingues TF, Duursma RA, Ellsworth DS, Goll DS, Lapola DM, Luus KA, MacKenzie AR, Medlyn BE, *et al.* 2016. Model–data synthesis for the next generation of forest free-air CO₂ enrichment (FACE) experiments. *New Phytologist* 209: 17–28.

Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. *Proceedings of the National Academy of Sciences of the United States* of America 102: 18052–18056.

Norby RJ, Kauwe MGD, Walker AP, Werner C, Zaehle S, Zak DR. **2017**. Comment on "Mycorrhizal association as a primary control of the CO₂ fertilization effect". *Science* **355**: 358–358.

Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. **2010**. CO2 enhancement of forest productivity constrained by limited nitrogen availability. *Proceedings of the National Academy of Sciences* **107**: 19368–19373.

Norby RJ, Wullschleger S, Gunderson C. A., Johnson D. W., Ceulemans R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. *Plant, Cell & Environment* **22**: 683–714.

Norby RJ, Zak DR. **2011**. Ecological Lessons from Free-Air CO2 Enrichment (FACE) Experiments. In: Futuyma DJ, Shaffer HB, Simberloff D, eds. Annual Review of Ecology, Evolution, and Systematics, Vol 42. Palo Alto: Annual Reviews, 181–203.

Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric
CO2– do photosynthetic and productivity data from FACE experiments support early predictions? *New Phytologist* **162**: 253–280.

Olson JS. **1963**. Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. *Ecology* **44**: 322–331.

Peng C, Ma Z, Lei X, Zhu Q, Chen H, Wang W, Liu S, Li W, Fang X, Zhou X. 2011. A droughtinduced pervasive increase in tree mortality across Canada's boreal forests. *Nature Climate Change* 1: 467–471.

Peñuelas J, Canadell JG, Ogaya R. **2011**. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. *Global Ecology and Biogeography* **20**: 597-608.

Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, Obersteiner M, Piao S, Vautard R, Sardans J. 2017. Shifting from a fertilization-dominated to a warmingdominated period. *Nature Ecology & Evolution* 1: 1438–1445.

Peters RL, Groenendijk P, Vlam M, Zuidema PA. 2015. Detecting long-term growth trends using tree rings: a critical evaluation of methods. *Global Change Biology* **21**: 2040–2054.

Peylin P, Bacour C, MacBean N, Leonard S, Rayner P, Kuppel S, Koffi E, Kane A, Maignan F, Chevallier F, et al. 2016. A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. *Geoscientific Model Development* **9**: 3321–3346.

Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR, Maki T, Niwa Y, Patra PK, Peters W, Rayner PJ, *et al.* 2013. Global atmospheric carbon budget: results from an ensemble of atmospheric CO ₂ inversions. *Biogeosciences* **10**: 6699–6720.

Phillips RP, Brzostek E, Midgley MG. **2013**. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. *New Phytologist* **199**: 41–51.

Phillips RP, Finzi AC, Bernhardt ES. 2011. Enhanced root exudation induces microbial feedbacks

to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters 14: 187–194.

Pongratz J, Reick CH, Houghton R, House J. **2014**. Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. *Earth System Dynamics* **5**: 177–195.

Pretzsch H, Biber P, Schütze G, Kemmerer J, Uhl E. 2018. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. *Forest Ecology and Management* **429**: 589–616.

Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T. **2014**. Forest stand growth dynamics in Central Europe have accelerated since 1870. *Nature Communications* **5**: 4967.

Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pickavance GC, Sunderland T, Ashton P, Hubau W, Salim KA, Aiba S-I, et al. 2017. Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. *Nature Communications* **8**: 1966.

Rastetter EB, Agren GI, Shaver GR. **1997**. Responses of N-limited ecosystems to increased CO2: A balanced-nutrition, coupled-element-cycles model. *Ecological Applications* **7**: 444–460.

Rastetter E, Mckane R, Shaver G, Melillo J. **1992**. Changes in C-Storage by Terrestrial Ecosystems - How C-N Interactions Restrict Responses to Co2 and Temperature. *Water Air and Soil Pollution* **64**: 327–344.

Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J.
2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. *Nature* 440: 922–925.

Ruiz-Benito P, Ratcliffe S, Zavala MA, Martínez-Vilalta J, Vilà-Cabrera A, Lloret F, Madrigal-González J, Wirth C, Greenwood S, Kändler G, *et al.* 2017. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. *Global Change Biology* 23: 4162–4176.

Sabot MEB, Kauwe MGD, Pitman AJ, Medlyn BE, Verhoef A, Ukkola AM, Abramowitz G. 2020. Plant profit maximization improves predictions of European forest responses to drought. *New*

Phytologist 226: 1638–1655.

Sanderson BM, Fisher RA. 2020. A fiery wake-up call for climate science. *Nature Climate Change* **10**: 175–177.

Saurer M, Siegwolf RTW, Schweingruber FH. 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. *Global Change Biology* **10**: 2109–2120.

Saurer M, Spahni R, Frank DC, Joos F, Leuenberger M, Loader NJ, McCarroll D, Gagen M, Poulter B, Siegwolf RTW, et al. 2014. Spatial variability and temporal trends in water-use efficiency of European forests. *Global Change Biology* 20: 3700–3712.

Sayer EJ, Lopez-Sangil L, Crawford JA, Bréchet LM, Birkett AJ, Baxendale C, Castro B, Rodtassana C, Garnett MH, Weiss L, *et al.* 2019. Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs. *Scientific Reports* **9**: 1–9.

Schimel D, Schneider FD. 2019. Flux towers in the sky: global ecology from space. *New Phytologist* 224: 570–584.

Schimel D, Stephens BB, Fisher JB. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. *Proceedings of the National Academy of Sciences* **112**: 436–441.

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, *et al.* 2011. Persistence of soil organic matter as an ecosystem property. *Nature* **478**: 49–56.

Schwartz MD. 2013. Phenology: an integrative environmental science. Dordrecht: Springer.

Sigurdsson BD, Medhurst JL, Wallin G, Eggertsson O, Linder S. **2013**. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. *Tree Physiology* **33**: 1192–1205.

Silva LCR, Anand M. 2013. Probing for the influence of atmospheric CO2 and climate change on

forest ecosystems across biomes. Global Ecology and Biogeography 22: 83–92.

van der Sleen P, Groenendijk P, Vlam M, Anten NPR, Boom A, Bongers F, Pons TL, Terburg G, Zuidema PA. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. *Nature Geoscience* **8**: 24–28.

Smith WK, Fox AM, MacBean N, Moore DJP, Parazoo NC. 2020. Constraining estimates of terrestrial carbon uptake: new opportunities using long-term satellite observations and data assimilation. *New Phytologist* 225: 105–112.

Smith NG, Keenan TF. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least-cost optimality theory. *Global Change Biology* doi: 10.1111/gcb.15212.

Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, et al. 2019. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. *Nature Ecology & Evolution* **3**: 1309–1320.

Soper FM, McCalley CK, Sparks K, Sparks JP. **2017**. Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source: Abiotic Soil CO 2 Emissions. *Geophysical Research Letters* **44**: 245–251.

Souza RC, Solly EF, Dawes MA, Graf F, Hagedorn F, Egli S, Clement CR, Nagy L, Rixen C, Peter M. 2017. Responses of soil extracellular enzyme activities to experimental warming and CO2 enrichment at the alpine treeline. *Plant and Soil* **416**: 527–537.

Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang Y, Tai X. **2019**. The impact of rising CO2 and acclimation on the response of US forests to global warming. *Proceedings of the National Academy of Sciences* **116**: 25734–25744.

Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, *et al.* 2007. Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2. *Science* **316**: 1732–1735.

Strain BR, Bazzaz FA. **1983**. Terrestrial plant communities. In: Lemon ER, ed. CO₂ and plants: the response of plants to rising levels of atmospheric carbon dioxide. Boulder, CO, USA: Westview

Press.

Sulman BN, Moore JAM, Abramoff R, Averill C, Kivlin S, Georgiou K, Sridhar B, Hartman MD, Wang G, Wieder WR, *et al.* 2018. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. *Biogeochemistry* **141**: 109–123.

Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M, Guanter L, Drewry DT, Verma M, Porcar-Castell A, Griffis TJ, *et al.* 2017. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. *Science* **358**: eaam5747.

Sun Z, Wang X, Zhang X, Tani H, Guo E, Yin S, Zhang T. 2019. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. *Science of The Total Environment* 668: 696–713.

Tang X, Li H, Desai AR, Nagy Z, Luo J, Kolb TE, Olioso A, Xu X, Yao L, Kutsch W, et al. 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? *Scientific Reports* **4**: 1–11.

Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, Fisher JB, Reich PB, Stocker BD, Hungate BA, et al. 2019. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. *Nature Climate Change* **9**: 684–689.

Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC. **2016**. Mycorrhizal association as a primary control of the CO2 fertilization effect. *Science* **353**: 72–74.

Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC. 2018. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. *New Phytologist* 217: 507–522.

Trancoso R, Larsen JR, McVicar TR, Phinn SR, McAlpine CA. **2017**. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. *Geophysical Research Letters* **44**: 2310–2318.

Treseder KK. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and

atmospheric CO2 in field studies. New Phytologist 164: 347–355.

Trugman AT, Medvigy D, Anderegg WRL, Pacala SW. **2018**. Differential declines in Alaskan boreal forest vitality related to climate and competition. *Global Change Biology* **24**: 1097–1107.

Trumbore S. **2009**. Radiocarbon and Soil Carbon Dynamics. *Annual Review of Earth and Planetary Sciences* **37**: 47–66.

Ueyama M, Ichii K, Kobayashi H, Kumagai T, Beringer J, Merbold L, Euskirchen ES, Hirano T, Marchesini LB, Baldocchi D, et al. 2020. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. *Environmental Research Letters* doi: 10.1088/1748-9326/ab79e5

Ukkola AM, Prentice IC, Keenan TF, Dijk AIJM van, Viney NR, Myneni RB, Bi J. 2016. Reduced streamflow in water-stressed climates consistent with CO 2 effects on vegetation. *Nature Climate Change* **6**: 75–78.

Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS, Ciais P, Heinemeyer A, Högberg P, Kutsch WL, Law BE, et al. 2012. Fertile forests produce biomass more efficiently. *Ecology Letters* 15: 520–526.

Voelker SL, Muzika R-M, Guyette RP, Stambaugh MC. **2006**. Historical Co2 Growth Enhancement Declines with Age in Quercus and Pinus. *Ecological Monographs* **76**: 549–564.

Walker AP, Kauwe MGD, Medlyn BE, Zaehle S, Iversen CM, Asao S, Guenet B, Harper A, Hickler T, Hungate BA, *et al.* 2019. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO₂ enrichment. *Nature Communications* **10**: 454.

Walker AP, Ye M, Lu D, Kauwe MGD, Gu L, Medlyn BE, Rogers A, Serbin SP. 2018. The multiassumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources. *Geoscientific Model Development* 11: 3159–3185.

Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM,

Wang Y-P, Wårlind D, et al. 2015. Predicting long-term carbon sequestration in response to CO₂ enrichment: How and why do current ecosystem models differ? *Global Biogeochemical Cycles*: 2014GB004995.

Whelan ME, Lennartz ST, Gimeno TE, Wehr R, Wohlfahrt G, Wang Y, Kooijmans LMJ, Hilton TW, Belviso S, Peylin P, et al. 2018. Reviews and syntheses: Carbonyl sulfide as a multi-scale tracer for carbon and water cycles. *Biogeosciences* **15**: 3625–3657.

Wohlfahrt G, Brilli F, Hörtnagl L, Xu X, Bingemer H, Hansel A, Loreto F. **2012**. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations†. *Plant, Cell & Environment* **35**: 657–667.

Woodward FI. 1987. Climate and Plant Distribution. Cambridge, UK: Cambridge University Press.

Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, et al. 2010. Functional traits and the growth–mortality trade-off in tropical trees. *Ecology* **91**: 3664–3674.

Wullschleger SD, Tschaplinski TJ, Norby RJ. **2002**. Plant water relations at elevated CO2– implications for water-limited environments. *Plant, Cell & Environment* **25**: 319–331.

Würth MKR, Peláez-Riedl S, Wright SJ, Körner C. 2005. Non-structural carbohydrate pools in a tropical forest. *Oecologia* **143**: 11–24.

Wyckoff PH, Bowers R. **2010**. Response of the prairie–forest border to climate change: impacts of increasing drought may be mitigated by increasing CO2. *Journal of Ecology* **98**: 197–208.

Xue B-L, Guo Q, Otto A, Xiao J, Tao S, Li L. 2015. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013. *Ecosphere* 6: art174.

Yang J, Medlyn BE, Kauwe MGD, Duursma RA. 2018. Applying the Concept of Ecohydrological Equilibrium to Predict Steady State Leaf Area Index. *Journal of Advances in Modeling Earth Systems* 10: 1740–1758.

Yin Y, Ciais P, Chevallier F, Li W, Bastos A, Piao S, Wang T, Liu H. **2018**. Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades. *Geophysical Research Letters* **45**: 4371–4380.

Yu K, Smith WK, Trugman AT, Condit R, Hubbell SP, Sardans J, Peng C, Zhu K, Peñuelas J, Cailleret M, et al. 2019. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. *Proceedings of the National Academy of Sciences* **116**: 24662–24667.

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang Y-P, El-Masri B, Thornton P, *et al.* 2014. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO₂ Enrichment studies. *New Phytologist* 202: 803–822.

Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH. **2003**. Soil Nitrogen Cycling Under Elevated Co2: A Synthesis of Forest Face Experiments. *Ecological Applications* **13**: 1508–1514.

Zeng N, Zhao F, Collatz GJ, Kalnay E, Salawitch RJ, West TO, Guanter L. **2014**. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. *Nature* **515**: 394–397.

Zhu Z, Piao S, Myneni RB, Huang M, Zeng Z, Canadell JG, Ciais P, Sitch S, Friedlingstein P, Arneth A, et al. 2016. Greening of the Earth and its drivers. *Nature Climate Change* 6: 791–795.

Zimmerman JK, Pulliam WM, Lodge DJ, Quiñones-Orfila V, Fetcher N, Guzmán-Grajales S, Parrotta JA, Asbury CE, Walker LR, Waide RB. 1995. Nitrogen Immobilization by Decomposing Woody Debris and the Recovery of Tropical Wet Forest from Hurricane Damage. *Oikos* **72**: 314–322.

Supporting Information

Notes S1. Standardising CO2 responses with a β factor.

Notes S2. Calculation of β from different data types.

Notes S3. Modelling leaf and canopy physiology.

Table S1. Theoretical β 's for photosynthesis.

Figure S1. Comparison of alternatives methods to calculate β .

Figure S2. Evidence β 's for GPP, WUE, and BP.

Figure S3. Evidence β 's for k_{veg} , k_{soil} , NEP, and $C_{veg,increment}$.

Figure S4. Evidence β 's for C_{veg} , C_{soil} , and C_{eco} .

Acce

