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Free subgroups of 3-manifold groups
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Abstract. We show that any closed hyperbolic 3-manifold M has a co-final tower of covers
M; — M of degrees n; such that any subgroup of m(M;) generated by k; elements
is free, where k; > nlc and C = C(M) > 0. Together with this result we prove that
logk; > Cisys;(M;), where sys; (M;) denotes the systole of M;, thus providing a large
set of new examples for a conjecture of Gromov. In the second theorem C; > 0 is an
absolute constant. We also consider a generalization of these results to non-compact finite
volume hyperbolic 3-manifolds.
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1. Introduction

Let ' < PSL,(C) be a cocompact Kleinian group and M = H3/T be the
associated quotient space. It is a closed orientable hyperbolic 3-orbifold, it is a
manifold if T is torsion-free. We will call a group I" k-free if any subgroup of "
generated by k elements is free. We denote the maximal k for which I is k-free by
Nz, (I') and we call it the free rank of I'. For example, if Sg is a closed Riemann
surface of genus g, then its fundamental group satisfies Ny, (71(Sg)) = 2¢g—1. In
this note we prove that for any Kleinian group as above there exists an exhaustive
filtration of normal subgroups I'; of I such that Nz, (I;) > [I" : I‘i]C, where
C = C(I') > 0is a constant. In geometric terms the result can be stated as
follows.

Theorem 1. Let M be a closed hyperbolic 3-orbifold. Then there exists a co-final
tower of regular finite-sheeted covers M; — M such that

Nrr (1 (M7)) = vol(M;)€,

where C = C(M) is a positive constant which depends only on M .
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The proof of the theorem is based on the previous results of Baumslag, Shalen
and Wagreich [4, 18], Belolipetsky [5], and Calegari and Emerton [6]. Let
us emphaisize that although some of the results use arithmetic techniques, our
theorem applies to all closed hyperbolic 3-orbifolds. A result of similar flavor but
for another property of 3-manifold groups was obtained by Long, Lubotzky, and
Reid in [15]. Indeed, in some parts our construction comes close to their argument.

Together with Theorem 1 we obtain the following theorem of independent
interest:

Theorem 2. Any closed hyperbolic 3-orbifold admits a sequence of regular
manifold covers M; — M such that

Npr (r1(M;)) > (1 + &)1 M0,

where ¢ > 0 is an absolute constant and sys, (M;) is the length of a shortest closed
geodesic in M;.

This type of bound was stated by Gromov [8, Section 5.3.A] for hyperbolic
groups in general, but later turned into a conjecture (see [9, Section 2.4]). We refer
to the introduction of [5] for a related discussion and some other references. In [9],
Gromov particularly mentioned that the conjecture is open even for hyperbolic 3-
manifold groups. The first set of examples of hyperbolic 3-manifolds for which
the conjecture is true was presented in [S]. These examples were all arithmetic.
Our theorem significantly enlarges this set.

We review the construction of covers M; — M and prove a lower bound
for their systoles in Section 2. Theorems 1 and 2 are proved in Section 3. In
Section 4 we consider a generalization of the results to non-compact finite volume
3-manifolds. Their groups always contain a copy of Z x Z, so have Ny, = 1,
however, we can modify the definition of the free rank so that it becomes non-
trivial for the non-compact manifolds: we define N}r (I") to be the maximal k for
which the group I' is k-semifree, where I' is called k-semifree if any subgroup
generated by k elements is a free product of free abelian groups. With this
definition at hand we can extend Gromov’s conjecture to the groups of finite
volume non-compact manifolds. In Section 4 we prove:

Theorem 3. Any finite volume hyperbolic 3-orbifold admits a sequence of regular
manifold covers M; — M such that

Ny (1 (My)) = (1 4 &)Wt M),
where € > 0 is an absolute constant.

To conclude the introduction we would like to point out one important detail.
While in Theorems 2 and 3 we have an absolute constant ¢ > 0, the constant in
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Theorem 1 depends on the base manifold. In [5] it was shown that in arithmetic
case C(M) is also bounded below by a universal positive constant. Existence of
a bound of this type in general remains an open problem.

Question 1. Do there exist an absolute constant Cy > 0 such that for any M in
Theorem 1 we have C(M) > Cy.

2. Preliminaries

Let ' < PSL,(C) be a lattice, i.e. a finite covolume discrete subgroup. By
Mostow—Prasad rigidity, I' admits a discrete faithful representation into SL,(C)
with the entries in some (minimal) number field E. Since I is finitely generated,
there is a finite set of primes S in E suchthat I' < SL,(Og,s), where O s denotes
the ring of S-integers in E.

Following Calegari and Emerton [6], we can consider an exhaustive filtration
of normal subgroups I'; of I' which gives rise to a co-final tower of hyperbolic
3-manifolds covering I3/ T". The subgroups I'; are defined as follows. From the
description of I' given above it follows that it is residually finite and for all but
finitely many primes p € O there is an injective map ¢,: ' — SL2(6 E,p) (Where
0 E,p denotes the p-adic completion of the ring of integers of E). Let p be arational
prime such that for any prime p in O g which divides p, the correspondent map ¢,
is injective (this holds for almost all primes p). We can write pOg = p{' - pu".

For any j = 1,...,m, the ring (?)E,pj contains Z, as a subring and is a
Zp-module of dimension d; = e; f;, where f; is the degree of the extension
of residual fields [Og /p; : Z/pZ). If we fix j and a basis b{,.. ., b"’ij € @E,pj

as Zp-module, we have a natural ring homomorphism ;: 0) Ep; —> Ma;xa;, (Zp)

given by ¥ (x) = (x,4) if xbl = Zf’;l xysbi.

Let y: ]_[;-';1 SLz(@ Ep;) —> GLN(Zp) be given diagonally by the blocks
lﬁl, ce Wm, where N = 22]' dj. Let ¢ = lﬁ o HT:I ¢ijSL2(OE,S) —
GLn(Zp). The Zariski closure of the image of ¢ is a group G < GLy (Z,) of
dimension d > 6 (cf. [6, Example 5.7]). It is a p-adic analytic group which
admits a normal exhaustive filtration

G; = G Nker(GLy(Zy) — GLN(Z,/p'Zp)).

This filtration gives rise to a filtration of I" via the normal subgroups I'; =
¢~ 1(G;). The filtration (I7;) is exhaustive because ¢ is injective.

Associated to each of the subgroups I'; of T is a finite-sheeted cover M; of
M = H3/T, and by the construction the sequence (M;) is a co-final tower of
covers of M. By Minkowski’s lemma, almost all groups G; are torsion-free, hence
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associated M; are smooth hyperbolic 3-manifolds. Therefore, when it is needed
we can assume that M is a manifold itself.

We will require a lower bound for the systole of M;. Such a bound is essentially
provided by Proposition 10 of [10], which can be seen as a generalization of a
result of Margulis [16] (see also [15]). The main difference is that we do not
restrict to arithmetic manifolds. The main technical difference is that while in [op.
cit.] the authors consider matrices with real entries we do it for p-adic numbers,
which requires replacing norm of a matrix by the height of a matrix. This technical
part is more intricate, however, as it is shown below, it does not affect the main
argument.

Lemma 2.1. Suppose M is a compact manifold. Then there is a constant c; =
c1(M) > 0 such that sys,;(M;) > ¢y logn;, where n; = [I" : T}].

Proof. Since M is compact, we can apply the Milnor—Schwarz lemma. Therefore,
if we fix a point o € H?, then T has a finite symmetric set of generators X such
that the map (T, X) — H?3 given by y > y(0) is a (Cy, C») quasi-isometry. This
means that for any pair y;, y» € I we have

1
Cidx (y1,v2) — C2 <= d(y1(0), y2(0)) < C_ldX(Vl’ y2) + Ca,

where d(-, -) denotes the distance function in H3, dx (y1, y2) = |y; !y2|x and |y|x
is the minimal length of a word in X which represents y. For any i > 1, we define

sys(I';, X) = min{dx (1, y) | y € Ti\{1}}.
Claim 1. Let 87 > 0 be the diameter of M. For any i > 1, we have
sys;(M;) = Cysys(I'y, X) — C2 — 28p.

To prove the claim, consider the Dirichlet fundamental domain D (o) of " in H3
centered in o. It is easy to see that any point x € D (o) satisfies d(x, 0) < 6pr. Now
leta; C M; beaclosed geodesicrealizing the systole of M;. As M; — M is alocal
isometry, the image of o; in M has the same length (counted with multiplicity).
Denote the image by «; again. We can suppose that x; € D(o) is a lift of «; (0).
Thus, there exists a unique nontrivial y; € I'; such that sys; (M;) = d(x;, yi (x;)).
Note that d(x;,0) = d(yi(x;i), vi(0)) < éum, therefore, by the triangle inequality
we have

sys;(M;) > d(o, yi(0)) —28m
> Cidx (1, yi) — C2 — 28m
> Cysys(T;, X) — Cr — 20y
Now our problem is reduced to proving that sys(I';, X) grows logarithmically

as a function of [I" : T';]. In order to do so we use arithmetic of the field £ in an
essential way.
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Let S(E) be the set of all places of E, S be the set of archimedean places,
and S, be the set of places corresponding to the prime ideals pi, ..., p,, which
appear in the definition of M;. For any x € E, we define the height of x by
H(x) = [[,es(z) max{l, |x|y}. Recall that for any x, y € E and an archimedean
place v, we have |x + y|, < 4max{|x|y, |y|v}, and for any non-archimedean place
u, we have |x + y|, < max{|x|y,|y|s}. Therefore, the height function satisfies
H(x +y) < 4" H(x)H(y).

We can generalize the definition of height for matrices with entries in E. Thus,
for any M = (m;;) € SLo(E), we define H(M) = ]_[ves(E) max{l, [m;j|,}. We
note that H(M) > max{H (m;;)}.

Claim 2. Forany M, N € SL,(E), we have H(MN) < 4*Sc H(M)H(N).

Indeed, any entry x of M N can be written as x = au + bt with a, b entries of
M and u, t entries of N. Therefore, for any v € Seo,

max{l, x|y} < 4max{l, |aly, [b]y} max{L, |uly. [¢]}
< 4max{1, |m,~j|v}max{1, |I’lij|v}.

For non-archimedean places we have the same inequality without the factor 4.
Now if MN = (x;;), then these inequalities show that

H(MN) = [ [ max{1. |xi;|v} < 45 H(M)H(N).
veS(E)

Next we want to estimate from below the height of y for any nontrivial y € Tj.

Claim 3. There exists a constant C3 > 0 such that for any y € I';\{1} we have
H(y) > C3p™, where n = [E : Q].

Indeed, let y = yr, - ¥r,) € i be a nontrivial element with y,, € X
and w(y) = dx (1, y). We now recall the definition of the group I;. If we write
y =(9%),thenforany / = 1,...,m we have

vi(a) ¥ (b)) (Id[ 0 ) i
= mod 7).
(‘ﬁl(C) Vi (d) 0 I (P'Zp)
By the definition of y; we have that (a — 1)b’, bb]l-,cb;, d— l)b]l. c piaE,p[ for
any 1 < j <d;. Taking C* = minl,j{|bjl.|p,} > 0, we obtain
C*max{la — 1|, bly,, |clp;» |d — 1]p,} < Norm(p;)~*¢,

forany / = 1,...,m. This is because | p|,, = Norm(p;)™* by definition, where
for an ideal I C Of the norm of I is equal to Norm(/) = #(Og/1).
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Recall that the Product Formula says that for any nonzero x € E we have
[T, Ix]v = 1. Since y is nontrivial, at least one of the numbers {a —1,b,¢,d — 1}
is not zero. Therefore, if we apply the Product Formula for any nonzero element
in this set, we obtain

max{H(a — 1), H(b), H(c). H(d — 1)} = [ C*Norm(p;)’® = (C*)" p"’.
=1

Moreover, by the estimate of the height of a sum we have
max{H(a — 1), H(b), H(c), H(d — 1)} < 4"~ max{H(a), H(b), H(c). H(d)},
therefore,

(C *)mpni

H(y) = max{H(a), H(b), H(c), H(d)} = ~—z——

— C3pni.

This proves Claim 3.

We can now finish the proof of the lemma. If we take
Cy = 4" max{H(M) | M € X},
we have

C3pni < H(]/) < (4#Soo)dx(1,y)—l(maX{H(M) | M e X})dx(l,y) < CfX(l,V)_

This estimate holds for any nontrivial y € T;, hence C3 p™ < C:ys(ri X for anyi.

On the other hand, there exists a constant Cs > 0 such that [I" : T;] < Csp? 4im(©),
These inequalities together imply that

n log(C3CAm6 )
ri X))y ——1 r:1; T

sys(l: X) = GGy Tog(cay 08 - TiD + == 00

Since [T" : T;] — oo and sys, (M;) is bounded below by a positive constant, we

conclude that there exists a constant ¢; = ¢1(0,8p, p, Y1, ..., ¥m) = c1(M) >0

such that sys; (M;) > c¢; log([" : T}]) for any i > 1. O

Note that the constant ¢; depends on M (cf. Question 1). If M is arithmetic,
then by [13] we can take c¢; = % — € for a small € > 0 assuming n; is sufficiently
large. In general case the argument of [13] does not apply, while the proof of

Lemma 2.1 does not provide a sufficient level of control over the constants.
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3. Proofs of Theorems 1 and 2

Following [5], we define the systolic genus of a manifold M by
sysg(M) = min{g | the fundamental group 71 (M) contains 1 (Sg)},

where Sg denotes a closed Riemann surface of genus g > 0.
Let M be a closed hyperbolic 3-manifold with sufficiently large systole
sys;(M). By [5, Theorem 2.1], we have

logsysg(M) > c3 - sys; (M), ()

where ¢, > 0 is an absolute constant (for any § > 0, assuming sys,(M) is
sufficiently large, we can take ¢, = % —96).

The second ingredient of the proof is a theorem of Calegary and Emerton [6],
which implies that for the sequences of covers defined in Section 2 we have

dimH; (M;, Fp) > A- pl@=Di 4 o(pld=2)) 2)

for some rational constant A # 0. Recall that we have dimensiond = dim(G) > 6
and the degree of the covers M; — M grows like p?¢. Hence we can rewrite (2)
in the form

dimH, (M;, F,) > c3vol(M;)*/°, (3)

where ¢3 > 0 is a constant depending on M and we assume that vol(M;) is
sufficiently large.

We note that in contrast with the previous related work, the theorem of [6]
applies to non-arithmetic manifolds as well as to the arithmetic ones.

Now recall a result of Baumslag—Shalen [4, Appendix]. They show that
if sysg(M) > k and dimH;(M,Q) > k + 1, then ny{(M) is k-free. In a
subsequent paper [18], Shalen and Wagreich proved that the same conclusion
holds if sysg(M) > k and dimH; (M, F,) > k + 2 [loc. cit., Proposition 1.8].

We now bring all the ingredients together. Given a closed hyperbolic 3-orb-
ifold M, for the sequence (M;) of its manifold covers defined in Section 2 we
have

sysg(M;) = e 1M (by (1)
> vol(M;)¢ (by Lemma 2.1);

and
dimHy (M;, Fp) > c3 - vol(M;)*/¢  (by (3)).
Hence by the theorem from [18] cited above we obtain

Ny (1 (M5)) = vol(M;)€,
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where C = C(M) > 0 and we assume that vol(M;) is sufficiently large. This
proves Theorem 1.

For the second theorem recall that the systole of a hyperbolic 3-manifold is
bounded above by the logarithm of its volume. Indeed, a manifold M with a
systole sys, (M) contains a ball of radius r = sys;(M)/2. The volume of a ball
in H3 is given by vol(B(r)) = n(sinh(2r) — 2r), hence we get

vol(M) > (sinh(sys,(M)) — sys, (M)) ~ %eSYSI(M);
VOl(M) > Y1) - g sys; (M) — oo.

By Lemma 2.1, the systole of the covers M; — M grows asi — oo. Therefore, we
can bound both sysg(M;) and dim H; (M;, ) below by an exponential function
of sys,;(M;) with an absolute constant in exponent. Theorem 2 now follows
immediately from the theorem of [18]. O

Remark 3.1. It follows from the proof that for any § > 0, assuming sys; (M;) is

large enough, we can take ¢ in Theorem 2 equal to e3>~ — 1. The same bound
applies for the constant in Theorem 3, which we prove in the next section.

4. Generalization to finite volume hyperbolic 3-manifolds

Let ' < PSL,(C) be a finite covolume Kleinian group. The quotient M = H3/T"
is a finite volume orientable hyperbolic 3-orbifold, which can be either closed
or non-compact with a finite number of cusps. The group I' is a relatively
hyperbolic group with respect to the cusp subgroups. In this section we discuss a
generalization of Gromov’s conjecture and our results to this class of groups.

We call I a k-semifree group if any subgroup of I' generated by k elements is
a free product of free abelian groups. The maximal k£ for which T is k-semifree is
denoted by N}r (I"). With this definition, we can generalize Gromov’s conjecture
to relatively hyperbolic groups. Although the injectivity radius of manifolds with
cusps vanish, their systole is still bounded away from zero. Therefore, a natural
generalization of Gromov’s conjecture would be that N}r (I") is bounded below
by an exponential function of the systole of the associated quotient space M.
Theorem 3, which we prove in this section, can be considered as an evidence
for this conjecture.

We need to modify the definition of the systolic genus of a manifold M in the
following way:

sysg(M) = min{g > 1 | the fundamental group 71 (M) contains 71 (Sg)},

where S, denotes a closed Riemann surface of genus g. We excluded the genus
g = 1 in order to adapt the definition to the non-compact finite volume 3-mani-
folds which otherwise would all have sysg = 1.
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Let M be a finite volume hyperbolic 3-manifold with sufficiently large systole
sys;(M). By [5, Theorem 2.1], if M is closed, we have

logsysg(M) > c3 - sys; (M), “4)

where ¢, > 0 is an absolute constant. We now discuss a generalization of this
result to non-compact finite volume 3-manifolds. The first step in the proof of
the theorem in [5] is an application of the theorem of Schoen—Yau and Sacks—
Uhlenbeck, which allows to homotop a m;-injective map of a surface of genus
g > linto M to a minimal immersion. This result was recently generalized to the
finite volume hyperbolic 3-manifolds in the work of Collin—-Hauswirth—-Mazet—
Rosenberg [7] and Huang—Wang [11] (see in particular [11, Theorem 1.1]). So let
S¢ be a closed immersed least area minimal surface in M. In order to establish (4)
for M we can suppose that S, is embedded. Indeed, since m1(M) is LERF [2,
Corollary 9.4] there exists a finite covering M of M such that S¢ is embedded
and 7;-injective in M. Moreover, g > sysg(M) and sysl(M) > sys;(M). If
S¢ has no accidental parabolic curves, then the systole of S, with respect to the
induced metric satisfies sys; (Sg) > sys; (M) and the rest of the proofiin [5] applies
without any changes.
In the presence of accidental parabolics, we can apply the following lemma.

Lemma 4.1 (Compression Lemma). Let M be a non-compact hyperbolic 3-
manifold of finite volume. Suppose that there exists a mi-injective embedded
closed surface Sg C M, for some genus g > 2, such that Sg has an accidental
parabolic simple curve o. Then there exist disjoint tori Ty, ..., T, C M, one for
each cusp C(T;) of M, such that the compact 3-manifold M' = M \ U?_,C(T;)
has a properly incompressible and boundary-incompressible surface Sg: , with
g >%andl <p=<2

Proof. Suppose that « is associated to a parabolic isometry corresponding to a
cusp € = Ty x [0,00) of M, where Ty is a maximal torus. Since S, is compact
we can consider a torus T = Ty x {to} C € for some ¢y > 0 sufficiently large such
that Sg C M \ Ty x [to, 00). We denote by B C T the corresponding simple curve
homotopic to «.

We first show that there exists an embedding f: S, — M homotopic to the
embedding ¢: S — M such that f is transversal to some torus 77 C € and
f(Sg)NTyx[0,00) C €isan annulus with boundary curves f(c), f(a1), where
oo, a1 are the boundary curves of a collar neighborhood of « in S, .

As an application of the Jaco—Shalen Annulus Theorem [12, Theorem VIIL.13],
there exists an embedding Hy:S! x [0,1] — M with H(6,0) = «(f) and
H(6,1) = B(0) (see [17, Lemma 2.1]). We can suppose that Hj is transversal
to Sg and T and is such that if we denote by A the image Ho(S! x [0, 1]), then
ANSg=aand ANM\T x[0,00) = B.
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Let D be a collar neighborhood of « in S, contained in a tubular neighborhood
w:E Cc M — Asuchthat D N A = «. Since n: E — A is trivial, we can deform
D into E preserving the boundary and moving « along A. We get a new annulus
D' C M withdD' =aqgUa;and D' NT = B.

Let ¢ be the diffeomorphism between D and D’ given by the deformation. We
can suppose that ¥ is the identity in a small neighborhood of the boundary. We
now define the map f:S; — M by f(x) = xif x ¢ D and f(y) = ¥(y) if
y € D. It is a smooth embedding homotopic to the inclusion.

By transversality, for some 0 < #; < #o we have a torus 77 = Ty x {¢1} and a
subannulus D C D such that f is transversal to 77 and

F(SNM\T1x[0,00) = f(Sg\int(D)) and f(3(Se\int(D))) = £(3D) C T.

This shows that embedding f has the desired properties.

Now, for the torus 77 constructed above, there exist disjoint tori 73, ..., T,
in the cusps of M such that the corresponding cusps C(7;) N €(T7) = @ for all
Jj =2,....nand f(Sg \int(@)) C M’ = M \ U'_,C(T;), and we have that
S(Sg \ int(D)) c M'isa proper submanifold of M’.

Note that f(Sg \ int(@)) is connected with two boundary curves if « does not
separate and has two components with a boundary curve if « separates it. In the
latter case we consider the component with the maximal genus. Hence in both
cases we have a surface S, , with ¢’ > £ and 1 < p < 2 and a proper embedding
f S g',p M.

Recall that a properly embedded surface F' in a compact 3-manifold N with
boundary is called boundary-compressible if either F is a disk and F is parallel to
adiskin 0N, or F is not a disk and there exists adisk D C N suchthat DNF = ¢
isanarcin 0D, DNIN = ¢’isanarcin dD, withcNc¢’ = dc = d¢’ and cUc’ = 0D,
and either ¢ does not separate F' or ¢ separates F into two components and the
closure of neither is a disk. Otherwise, F is boundary-incompressible (see [12,

Chapter I1I]).
Since S C M is my-injective, it follows from the definition and our construc-
tion that S,/ , C M’ is incompressible and boundary-incompressible. O

We now apply to Sg/,, a result of Adams and Reid [1, Theorem 5.2]. Since
sys; (M) = sys,(M’), it immediately implies inequality (4).

The theorem of Calegary—Emerton applies to non-cocompact groups as well
as to the cocompact ones.

We finally recall a result of Anderson—Canary—Culler—Shalen [3]. They show
that if sysg(M) > k and dimH; (M, F,) > k + 2 for some prime p, then (M)
is k-semifree [loc. cit., Corollary 7.4]. This theorem generalizes the previous
results in [4, 18] to non-compact hyperbolic 3-manifolds. Its proof also makes an
essential use of topology of 3-manifolds.

Similar to Section 3, we bring together all the ingredients considered above.
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Given a finite volume hyperbolic 3-orbifold M, for the sequence (M;) of its
manifold covers defined in Section 2 we have

sysg(M;) > e> 1M (by (4)),
and
dimH, (M;,F,) > c3 - vol(M;)*/®  (by Calegary—Emerton).

The fact that a manifold M with systole sys; (M) contains a ball of radius
r = sys;(M)/2 is not necessarily true for non-compact finite volume hyperbolic
3-manifolds but it is still possible to bound the volume by an exponential function
of the systole. By Lakeland—Leininger [14, Theorem 1.3], we have

vol(M) > e¢¥1M) - a5 sys, (M) — 00

(with ¢ = % — ¢ for any § > 0, assuming sys, (M) is sufficiently large).

Although we do not have a generalization of Lemma 2.1, we do know that
sys;(M;) — oo with i because the sequence of covers M; — M is co-final.
Therefore, we can bound both sysg(M;) and dim H; (M;, ) below by an expo-
nential function of sys, (M;) with an absolute constant in exponent and Theorem 3
now follows from the theorem of [3]. O
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