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Surgery on links of linking number zero

and the Heegaard Floer d-invariant

Eugene Gorsky, Beibei Liu, and Allison H. Moore

Abstract. We study Heegaard Floer homology and various related invariants (such as
the h-function) for two-component L-space links with linking number zero. For such
links, we explicitly describe the relationship between the h-function, the Sato–Levine
invariant and the Casson invariant. We give a formula for the Heegaard Floer d -invariants
of integral surgeries on two-component L-space links of linking number zero in terms
of the h-function, generalizing a formula of Ni and Wu. As a consequence, for such
links with unknotted components, we characterize L-space surgery slopes in terms of the
�C-invariants of the knots obtained from blowing down the components.

We give a proof of a skein inequality for the d -invariants of C1 surgeries along linking
number zero links that differ by a crossing change. We also describe bounds on the smooth
four-genus of links in terms of the h-function, expanding on previous work of the second
author, and use these bounds to calculate the four-genus in several examples of links.
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1. Introduction

Given a closed, oriented three-manifold Y equipped with a Spinc structure, the
Heegaard Floer homology of Y is an extensive package of three-manifold invari-
ants defined by Ozsváth and Szabó [45]. One particularly useful piece of this
package is the d -invariant, or correction term. For a rational homology sphere Y
with Spinc structure t, the d -invariant d.Y; t/ takes the form of a rational number
defined to be the maximal degree of any non-torsion class in the module HF�.Y; t/.
For more general manifolds, the d -invariant is similarly defined (see Section 2.2).
The d -invariants are known to agree with the analogous invariants in monopole
Floer homology (see Remark 2.4). The terminology ‘correction term’ reflects
that the Euler characteristic of the reduced version of Heegaard Floer homology
is equivalent to the Casson invariant, once it is corrected by the d -invariant [43].
The d -invariants have many important applications, for example, to concordance
[38, 51], Dehn surgery [41, 8] and the Heegaard Floer theoretic proofs of Donald-
son’s theorem and the Thom conjecture [43], to name a few.

From the viewpoint of Heegaard Floer homology, L-spaces are the simplest
three manifolds. A rational homology sphere is an L-space if the order of its
first singular homology agrees with the free rank of its Heegaard Floer homology.
A recent conjecture of Boyer, Gordon and Watson [3, 14, 15, 55] describes
L-spaces in terms of the fundamental group, and it has been confirmed for many
families of 3-manifolds. A link is an L-space link if all sufficiently large surgeries
on all of its components are L-spaces.

Given a knot or link in a 3-manifold, one can define its Heegaard Floer
homology as well. The subcomplexes of the link Floer complex are closely related
to the Heegaard Floer complexes of various Dehn surgeries along the link. In the
case of knots in the three-sphere, this relationship is well understood by now and,
in particular, the following questions have clear and very explicit answers:

� the formulation of a “mapping cone” complex representing the Heegaard
Floer complex of an arbitrary rational surgery [49];

� an explicit formula for the d -invariants of rational surgeries [41];

� a classification of surgery slopes giving L-spaces [49, Proposition 9.6].

In this article, we expand the existing Heegaard Floer “infrastructure” for knots
in the three-sphere to the case of links. The work of Manolescu and Ozsváth in [39]
generalizes the “mapping cone” formula to arbitrary links. For two-component
L-space links, their description was made more explicit by Y. Liu [36] and can
be used for computer computations. Both [39] and [36] start from an infinitely
generated complex and then use a delicate truncation procedure to reduce it to a
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finitely generated, but rather complicated complex. On the one hand, it is possible
to use the work of [39, 36] to compute the d -invariant for a single surgery on
a link or to determine if it yields an L-space. On the other hand, to the best of
authors’ knowledge, it is extremely hard to write a general formula for d -invariants
of integral surgeries along links, although such formulas exist for knots in S3 [41]
and knots in L.3; 1/ [31].

In general, the characterization of integral or rational L-space surgery slopes
for multi-component links is not well-understood. The first author and Némethi
have shown that the set of L-space surgery slopes is bounded from below for most
two-component algebraic links and determined this set for integral surgery along
torus links [13, 12]. Recently, Sarah Rasmussen [56] has shown that certain torus
links, satellites by algebraic links, and iterated satellites by torus links have fractal-
like regions of rational L-space surgery slopes.

Nevertheless, in this article we show that the situation simplifies dramatically if
the linking number between the link components vanishes. We show that both the
surgery formula of [39] and the truncation procedure lead to explicit complexes
similar to the knot case. We illustrate the truncated complexes by pictures that are
easy to analyze. They are closely related to the lattice homology introduced by
Némethi [40, 11], and best described in terms of theH -functionHL.s/, which is a
link invariant defined over some lattice H.L/ (see Definition 2.11, see also [11]).
Note that for a knot K, our H -function HK.s/ agrees with the invariant V C

s of
Ni and Wu [41] (see also Rasmussen’s local h-invariant [53]). For 2-component
links L with vanishing linking number, we define:

hL.s/ D HL.s/ �HO.s/

where s 2 Z2 and HO.s/ is the H -function of the 2-component unlink.
Let S3p .L/ denote the p D .p1; : : : ; pn/ framed integral surgery along an

oriented n-component link L in the three-sphere with vanishing pairwise linking
number where pi ¤ 0 for any i . We will identify the set of Spinc-structures on
S3p .L/with Zp1

�� � ��Zpn
. The following result generalizes [41, Proposition 1.6]

and [42, Theorem 6.1].

Theorem 1.1. The d -invariants of integral surgeries on a two-component L-space

link with linking number zero can be computed as follows:

(a) if p1; p2 < 0, then

d.S3p .L/; .i1; i2// D d.L.p1; 1/; i1/C d.L.p2; 1/; i2/I

(b) if p1; p2 > 0, then

d.S3p .L/; .i1; i2// D d.L.p1; 1/; i1/Cd.L.p2; 1/; i2/�2max¹h.s˙˙.i1; i2//º;
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where s˙˙.i1; i2/ D .s
.1/
˙ ; s

.2/
˙ / are four lattice points in Spinc-structure

.i1; i2/ which are closest to the origin in each quadrant (see Section 4.2);

(c) if p1 > 0 and p2 < 0, then

d.S3p .L/; .i1; i2// D d.S3p1
.L1/; i1/C d.L.p2; 1/; i2/:

Remark 1.2. If L is a link with vanishing linking number then all d -invariants of
all surgeries are concordance invariants.

When p1 D p2 D 1 then S3p .L/ is a homology sphere, and so i1; i2 D 0.
Moreover d.L.p1; 1/; i1/ D d.L.p2; 1/; i2/ D 0 and s˙˙.0; 0/ D .0; 0/, hence

d.S31;1.L// D �2h.0; 0/:

This is analogous to the more familiar equality for knots, d.S31 .K// D �2V C
0 .K/,

where V0.K/ is the non-negative integer-valued invariant of [41], originally intro-
duced by Rasmussen as the h-invariant h0.K/ [53].

As another special case, we consider nontrivial linking number zero L-space
links L D L1 [ L2 with unknotted components. Let L0

i .i D 1; 2/ denote the
knot obtained by blowing down the other unknotted component, i.e. performing a
negative Rolfsen twist as in Figure 11. Then the h-function and �C-invariant [18,
Definition 2.1] of L0

i can be obtained from the h-function of L.

Proposition 1.3. Let L D L1 [ L2 be a nontrivial linking number zero L-space

link with unknotted components, and letL0
1 andL0

2 be the knots obtained fromL by

applying a negative Rolfsen twist toL2 andL1 respectively. Then �C.L0
i / D biC1

for i D 1; 2.

Here, b1 and b2 are nonnegative numbers defined by

b1 D max¹s1W h.s1; 0/ > 0º and b2 D max¹s2W h.0; s2/ > 0º:

This allows us to determine, in terms of the �C invariants ofL0
1 andL0

2, how large
is ‘large enough’ in order to guarantee that the surgery manifold is an L-space.

Theorem 1.4. Assume that L D L1 [ L2 is a nontrivial L-space link with

unknotted components and linking number zero. Then S3p1;p2
.L/ is an L-space

if and only if p1 > 2�
C.L0

1/ � 2 and p2 > 2�
C.L0

2/ � 2.

Remark 1.5. This gives a characterization of the unlink since it is the only
2-component L-space link with unknotted components, vanishing linking number
and arbitrarily positive and negative L-space surgeries. For a general discussion
about L-space surgeries on 2-component L-space links, we refer the reader to [34].
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The following corollary suggests that twisting along a homologically trivial
unknotted component will almost always destroy the property of being an L-space
link, in the sense that it puts strong constraints on the image knot L0

2. It is worth
comparing Corollary 1.6 with [1, Corollary 1.6], which characterizes infinite twist
families of tight fibered knots. Because L-space knots are necessarily tight fibered,
Baker and Motegi’s result shows that at most finitely many L-space knots can be
produced by twisting along a homologically trivial unknot.

Corollary 1.6. Assume that L D L1 [ L2 is a nontrivial L-space link with

unknotted components and linking number zero. ThenL0
2 is an L-space knot if and

only if .1; p2/ surgery on L is an L-space for sufficiently large p2. By Theorem 1.4
this is equivalent to b1 D 0 and �C.L0

1/ D 1.

In Section 6 we investigate the relationship of the h-function for two-compo-
nent links with the Sato–Levine invariantˇ.L/ and the Casson invariant �.S3p .L//,
and make explicit how to express these as linear combinations of the h-function
of sublinks of L.

Proposition 1.7. Let L D L1[L2 be an L-space link of linking number zero. Let

h0.s/ D h.s/ � h1.s1/ � h2.s2/

where h; h1, and h2 denote the h-functions of L; L1, and L2.

(1) The Sato–Levine invariant of L equals ˇ.L/ D �
P

s2Z2 h0.s/:

(2) Let p1; p2D˙1. The Casson invariant of .p1; p2/-surgery along L equals

�.S3p1;p2
.L// D p1p2

X

s2Z2

h0.s/C p1
X

s12Z

h1.s1/C p2
X

s22Z

h2.s2/:

Peters established a “skein inequality” reminiscent of that for knot signature
[51, Theorem 1.4]. We extend this to links as follows.

Theorem 1.8. Let L D L1 [ � � � [Ln be a link with all pairwise linking numbers

zero. Given a diagram of L with a distinguished crossing c on component Li , let

DC and D� denote the result of switching c to positive and negative crossings,

respectively. Then

d.S31;:::;1.D�// � 2 � d.S31;:::;1.DC// � d.S31;:::;1.D�//:

We will also generalize Peters’ and Rasmussen’s four-ball genus bounds to
links with vanishing pairwise linking numbers. Recall that the n components of
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a link L D L1 [ � � � [ Ln bound pairwise disjoint surfaces in B4 if and only
the pairwise linking numbers are all zero. In this case, we may define the smooth
4-ball genus ofL as the minimum sum of genera

Pn
iD1 gi , over all disjoint smooth

embeddings of the surfaces †i bounding link components Li , for i D 1; : : : n.

The following proposition is closely related to work of the second author
in [32]; this is explained in Section 8.

Proposition 1.9. LetL � S3 denote an n-component link with pairwise vanishing

linking numbers. Assume that pi > 0 for all 1 � i � n. Then

d.S3�p1;:::;�pn
.L/; t/ �

nX

iD1

d.L.�pi ; 1/; ti/C 2fgi
.ti / (1.1)

and

� d.S3p1;:::;pn
.L/; t/ �

nX

iD1

d.L.�pi ; 1/; ti/C 2fgi
.ti /: (1.2)

Here the Spinc-structure t is labelled by integers .t1; : : : ; tn/ where �pi=2 � ti �

pi=2, and fgi
WZ ! Z is defined as follows:

fgi
.ti/ D

8
<
:

�
gi � jti j

2

�
jti j � gi ;

0 jti j > gi :

(1.3)

The d -invariant of .˙1;˙1/-surgery on the 2-bridge link L D b.8k; 4k C 1/

was computed by Y. Liu in [35]. Together with this calculation, we are able to
apply the genus bound (1.2) to recover the fact that such a link L has smooth four-
genus one. We also demonstrate that this bound is sharp for Bing doubles of knots
with positive � invariant. For more details, see Section 8.2.

Because Theorem 1.1 allows us to compute the d -invariants ofS3˙p.L/ for two-
component L-space links, when we combine Theorem 1.1 with Proposition 1.9 we
have the following improved bound.

Theorem 1.10. Let L D L1 [ L2 denote a two-component L-space link with

vanishing linking number. Then for all p1; p2>0 and a Spinc-structure tD .t1; t2/

on S3p1;p2
, we have

h.s1; s2/ � fg1
.t1/C fg2

.t2/ (1.4)

where �pi=2 � ti � pi=2 and .s1; s2/ is a lattice point in the Spinc-structure t.
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Organization of the paper. Section 2 covers necessary background material. In
Subsection 2.2, we introduce standard 3-manifolds along with the definition and
properties of the d -invariants for such manifolds. In Subsection 2.3, we define the
h-function of an oriented link L � S3 and review how to compute the h-function
of an L-space link from its Alexander polynomial. Sections 3 and 4 are devoted to
the generalized Ni-Wu d -invariant formula and its associated link surgery and cell
complexes. In Subsection 3.1 we briefly review the surgery complex for knots, and
in Subsection 3.2 we set up the Manolescu–Ozsváth link surgery formula for links,
and describe an associated cell complex and the truncation procedure. In Section 4
we prove Theorem 1.1 and the subsequent statements involving �C. In Section 5,
we classify L-space surgeries on L-space links with unknotted components and
prove Theorem 1.4. In Section 6, we represent the Sato–Levine invariant and
Casson invariant of S3˙1;˙1.L/ as linear combinations of the h-function for two-
component L-space links with vanishing linking number. In Section 7, we prove
that the d -invariants of surgery 3-manifolds satisfy a skein inequality. In Section 8,
we describe several bounds on the smooth four-genus of a link from the d -invariant
and use this to establish the four-ball genera of several two-component links.

Conventions. In this article, we take singular homology coefficients in Z and
Heegaard Floer homology coefficients in the field F D Z=2Z unless otherwise
stated. We consider nonzero surgeries S3p1;:::;pn

.L/ on links L D L1 [ � � � [ Ln

in S3, i.e. pi ¤ 0 for any 1 � i � n. Our convention on Dehn surgery is that
p surgery on the unknot produces the lens space L.p; 1/. We will primarily use
the ‘minus’ version of Heegaard Floer homology and adopt the convention that d -
invariants are calculated from HF�.Y; t/ and that d�.S3/ D 0. Section 2 contains
further details on our degree conventions.

2. Background

2.1. Spinc-structures and d-invariants. In this paper, all the links are assumed
to be oriented. We use L to denote a link in S3, and L1; : : : ; Ln to denote the link
components. Then L1 and L2 denote different links in S3, and L1 and L2 denote
different components in the same link. Let jLj denote the number of components
of L. We denote vectors in the n-dimensional lattice Zn by bold letters. For two
vectors u D .u1; u2; : : : ; un/ and v D .v1; : : : ; vn/ inZn, we write u � v if ui � vi

for each 1 � i � n, and u � v if u � v and u ¤ v. Let ei be the vector in Zn

where the i-th entry is 1 and other entries are 0. For any subset B � ¹1; : : : ; nº,
let eB D

P
i2B ei .
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Recall that in general, there is a non-canonical correspondence Spinc.Y / Š

H 2.Y /. For surgeries on links in S3 we will require the following definition to
parameterize Spinc-structures.

Definition 2.1. For an oriented link L D L1 [ � � � [ Ln � S3, define H.L/ to be
the affine lattice over Zn:

H.L/ D
Ln
iD1Hi .L/; Hi .L/ D Z C

lk.Li ;L n Li /

2

where lk.Li ;L n Li / denotes the linking number of Li and L n Li .

SupposeL has vanishing pairwise linking numbers. ThenH.L/ D Zn; we will
assume this throughout the paper. Let S3p1;:::;pn

.L/ or S3p .L/ denote the surgery
3-manifold with integral surgery coefficients p D .p1; : : : ; pn/. The quotient
Zn=ƒZn can be naturally identified with the space of Spinc structures on the
surgery manifold S3p1;:::;pn

.L/, whereƒ is the surgery matrix with diagonal entries
pi and other entries 0. So Spinc.S3p1;:::;pn

.L// Š Zn=ƒZn Š Zp1
˚ � � � ˚ Zpn

Š

H 2.S3p .L//. We therefore label Spinc-structures t on S3p1;:::;pn
.L/ as .t1; : : : ; tn/

such that �jpi j=2 � ti � jpi j=2.
For a rational homology sphere Y with a Spinc-structure t, the Heegaard Floer

homology HFC.Y; t/ is an absolutely graded FŒU�1�-module, and its free part is
isomorphic to FŒU�1�. Likewise HF�.Y; t/ is an absolutely graded FŒU �-module.
Given an oriented link L in S3, one can also define the link Floer complex. An
n-component linkL inducesn filtrations on the Heegaard Floer complex CF�.S3/,
and this filtration is indexed by the affine lattice H.L/. The link Floer homology
HFL�.L; s/ is the homology of the associated graded complex with respect to this
filtration, and is a module over FŒU �. We refer the reader to [43, 39] for general
background on Heegaard Floer and link Floer homology, and to [2] for a concise
review relevant to our purposes.

Remark 2.2. Following [39], we will sometimes need to work with the completed
surgery complexes, which are defined as modules over FŒŒU ��. For a rational
homology sphere Y , the complex CF�.Y / and its completion over FŒŒU �� carry
the same information.

The d -invariant d.Y; t) is defined to be the maximal degree of a non-torsion
class x 2 HF�.Y; t/. In this article we adopt the convention that d.S3/ D 0. This
is consistent with the conventions of [39, 2] but differs (by a shift of two) from
that of [43].

We require the following statements on the d -invariant.
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Proposition 2.3. [43, Section 9] Let .W; s/W .Y1; t1/ ! .Y2; t2/ be a Spinc cobor-

dism.

(1) If W is negative definite, then d.Y2; t2/ � d.Y1; t1/ � .c1.s/
2 C b2.W //=4.

(2) If W is a rational homology cobordism, then d.Y1; t1/ D d.Y2; t2/.

Remark 2.4. An equivalence of monopole Floer and Heegaard Floer homology
has been established by work of Kutluhan-Lee-Taubes [23, 24, 25, 26, 27] and
Colin, Ghiggini, and Honda [4, 5, 6] and Taubes [60]. A further equivalence
between monopole Floer and the S1-equivariant homology of the Seiberg–Witten
Floer spectrum is proved in [30]. Following further work in [52, 21, 7], the
absolute Q-gradings of these theories agree. For rational homology spheres,

d.Y; t/ D �2h.Y; t/ D 2ı.Y; t/;

where h.Y; t/ is the Frøyshov invariant in monopole Floer homology [22, 9]
and ı.Y; t/ is the analogous invariant of the Floer spectrum Seiberg–Witten the-
ory [37].

2.2. Standard 3-manifolds. In this subsection, we will introduce d -invariants
for standard 3-manifolds, and in particular, for circle bundles over oriented closed
genus g surfaces.

LetH be a finitely generated, free abelian group andƒ�.H/ denote the exterior
algebra of H . As in [43, Section 9], we say that HF1.Y / is standard if for each
torsion Spinc structure t,

HF1.Y; t/ Š ƒ�H 1.Y IZ/˝Z FŒU; U�1�

as ƒ�H1.Y IZ/=Tors ˝ FŒU �-modules. The group ƒ�H 1.Y IZ/ is graded by
requiring

gr.ƒb1.Y /H 1.Y IZ// D b1.Y /=2

and the fact that the action of H1.Y IZ/=Tors by contraction drops gradings by 1.
For example, #nS2 � S1 has standard HF1 [45].

For any ƒ�.H/-module M , we denote the kernel of the action of ƒ�.H/ on
M as

KM WD ¹x 2 M j v � x D 0 for all v 2 H º:

Let I denote the (two-sided) ideal in ƒ�.H/ generated by H . Define

QM WD M=.I �M/:
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For a standard 3-manifold Y , we have the following induced maps:

K.�/WKHF1.Y; t/ �! KHFC.Y; t/

and

Q.�/WQHF1.Y; t/ �! QHFC.Y; t/:

Define the bottom and top correction terms of .Y; t/ to be the minimal grading
of any nonzero element in the image of K.�/ and Q.�/, denoted by dbot and dtop,
respectively [28]. Levine and Ruberman established the following properties of
dtop and dbot.

Proposition 2.5 ([28, Proposition 4.2]). Let Y be a closed oriented standard

3-manifold, and let t be a torsion Spinc structure on Y . Then

dtop.Y; t/ D �dbot.�Y; t/:

Proposition 2.6 ([28, Proposition 4.3]). Let Y;Z be closed oriented standard

3-manifolds, and let t; t0 be torsion Spinc structures on Y;Z respectively. Then

dbot.Y #Z; t#t0/ D dbot.Y; t/C dbot.Z; t
0/

and

dtop.Y #Z; t#t0/ D dtop.Y; t/C dtop.Z; t
0/:

LetBn denote a circle bundle over a closed oriented genus g surface with Euler
characteristic n ¤ 0. It can be obtained from n-framed surgery in #2gS2 � S1

along the “Borromean knot.” The torsion Spinc structures on Bn can be labelled
by �jnj=2 � i � jnj=2 [50, 54], though the labelling is not a bijection. A surgery
exact triangle argument for the Borromean knot shows that

HF1.Bn; i / Š HF1.#2gS2 � S1; t/;

where t is the unique torsion Spinc structure on #2g.S2 � S1/. Hence, Bn is also
standard for n ¤ 0 [50, 54].

The d -invariants for circle bundles Bn have been computed in [50].

Theorem 2.7 ([50, Theorem 4.2.3]). LetB�p denote a circle bundle over a closed

oriented genus g surface†g with Euler number �p. If p > 0, then for any choice

of �p=2 � i � p=2

dbot.Bp; i / D �dtop.B�p; i / D �.p; i/� g:
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and

dbot.B�p; i / D

8
ˆ̂<
ˆ̂:

��.p; i/� g if ji j > g;

��.p; i/� ji j if ji j � g and g C i is even,

��.p; i/� ji j C 1 if ji j < g and g C i is odd,

where

�.p; i/ D d.L.p; 1/; i/ D � max
¹s2Zjs�i.mod p/º

1

4

�
1�

.p C 2s/2

p

�
:

Remark 2.8. For the rest of the paper, we use �.p; i/ to denote the d -invariant of
the Spinc lens space .L.p; 1/; i/ where �p=2 � i � p=2 and p > 0. For p < 0,
�.p; i/ D ��.�p; i/. In this paper, we use the convention that p-surgery on the
unknot yields the lens space L.p; 1/.

Remark 2.9. Observe that we can rewrite the formula in Theorem 2.7 using the
function f defined by (1.3):

dbot.B�p; i / D ��.p; i/C 2fg.i/ � g: (2.1)

Ozsváth and Szabó established the behaviour of the d -invariants of standard
3-manifolds under negative semi-definite Spinc-cobordisms.

Proposition 2.10 ([43, Theorem 9.15]). Let Y be a three-manifold with standard

HF1, equipped with a torsion Spinc structure t. Then for each negative semi-

definite four-manifold W which bounds Y so that the restriction map H 1.W / !

H 1.Y / is trivial, we have the inequality:

c1.s/
2 C b�

2 .W / � 4dbot.Y; t/C 2b1.Y / (2.2)

for all Spinc structures s over W whose restriction to Y is t.

2.3. The h-function and L-space links. We review the h-function for oriented
links L � S3, as defined by the first author and Némethi [11].

A link L D L1 [ � � � [ Ln in S3 defines a filtration on the Floer complex
CF�.S3/, and the filtration is indexed by the n-dimensional lattice H.L/ (see
Definition 2.1). Given s D .s1; : : : ; sn/ 2 H.L/, the generalized Heegaard Floer

complex A
�.L; s/ � CF�.S3/ is the FŒŒU ��-module defined to be a subcomplex

of CF�.S3/ corresponding to the filtration indexed by s [39] (here we implicitly
completed CF�.S3/ over FŒŒU ��, see Remark 2.2).
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By the large surgery theorem [39, Theorem 12.1], the homology of A�.L; s/

is isomorphic to the Heegaard Floer homology of a large surgery on the link L

equipped with some Spinc-structure as an FŒŒU ��-module. Thus the homology of
A

�.L; s/ is non-canonically isomorphic to a direct sum of one copy of FŒŒU �� and
some U -torsion submodule, and so the following definition is well-defined.

Definition 2.11 ([2, Definition 3.9]). For an oriented link L � S3, we define the
H -functionHL.s/ by saying that �2HL.s/ is the maximal homological degree of
the free part of H�.A

�.L; s// where s 2 H.

Remark 2.12. We sometimes write HL.s/ as H.s/ for simplicity if there is no
confusion in the context.

More specifically, the large surgery theorem of Manolescu–Ozsváth [39, The-
orem 12.1] implies that �2HL.s/ is the d -invariant of large surgery on L, after
some degree shift that depends on the surgery coefficient and s (see [39, Sec-
tion 10], [2, Theorem 4.10]). Note that the H -function is a topological invariant
of links in the three-sphere since it is defined in terms of the link invariant CFL1.

Many practitioners of Heegaard Floer homology are more accustomed to
working with the integer-valued knot invariants V C

s and HC
s of Ni and Wu [41].

For knots, HK.s/ D V C
s . For example, the H -function of the left-handed trefoil

is H.s/ D 0 for s � 0, H.s/ D �s for s < 0.
We now list several properties of the H -function.

Lemma 2.13 (Controlled growth [2, Proposition 3.10]). For an oriented link

L � S3, the H -function HL.s/ takes nonnegative values, and HL.s � ei / D

HL.s/ or HL.s � ei/ D HL.s/C 1 where s 2 H.

Lemma 2.14 (Symmetry [36, Lemma 5.5]). For an oriented n-component link

L�S3, theH -function satisfiesH.�s/DH.s/C
Pn
iD1 si where s D .s1; : : : ; sn/.

Note that in [36] the symmetry property is stated for L-space links, but the
statement holds more generally. This is because the H -function is determined
by the d -invariant of large surgery along the link and because d -invariants are
preserved under Spinc-conjugation. See for example [17, Lemma 2.5].

Lemma 2.15 (Stabilization [2, Proposition 3.12]). For an oriented link L D

L1 [ � � � [ Ln � S3 with vanishing pairwise linking number,

HL.s1; : : : ; si�1; N; siC1; : : : ; sn/ D HLnLi
.s1; : : : ; si�1; siC1; : : : ; sn/

where N is sufficiently large.
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For an n-component link L with vanishing pairwise linking numbers, H.L/ D

Zn. The h-function hL.s/ is defined as

hL.s/ D HL.s/ �HO.s/;

where h; D 0, O denotes the unlink with n components, and s 2 Zn. Recall
that for split links L, the H -function H.L; s/ D HL1

.s1/C � � � CHLn
.sn/ where

HLi
.si / is the H -function of the link component Li , [2, Proposition 3.11]. Then

HO.s/ D H.s1/ C � � � C H.sn/ where H.si / denotes the H -function of the
unknot. More precisely, HO.s/ D

Pn
iD1.jsi j � si /=2 by [48, Section 2.6]. Hence

HL.s/ D hL.s/ for all s � 0. By Lemma 2.14 we get

h.�s/ D h.s/: (2.3)

Lemma 2.16. The function h is non-decreasing towards the origin. That is,

h.s � ei/ � h.s/ if si > 0 and h.s � ei / � h.s/ if si � 0.

Proof. If si > 0 then HO.si / D HO.si � 1/ D 0, so

h.s/� h.s � ei/ D H.s/�H.s � ei / � 0:

If si � 0 then HO.si / D �si and HO.si � 1/ D 1� si , so

h.s/ � h.s � ei / D H.s/ �H.s � ei /C 1 � 0: �

Corollary 2.17. For all s one has h.s/ � 0.

Proof. We prove it by induction on the number n of components of L. If n D 0,
it is clear. Assume that we proved the statement for n � 1. Observe that by
Lemma 2.15 for si � 0 we have h.s/ D hLnLi

.s/ � 0. For si � 0 by (2.3)
we have

h.s/ D h.�s/ D hLnLi
.�s/ � 0:

Now by Lemma 2.16 we have h.s/ � 0 for all s. �

In [46], Ozsváth and Szabó introduced the concept of L-spaces.

Definition 2.18. A 3-manifold Y is an L-space if it is a rational homology sphere
and its Heegaard Floer homology has minimal possible rank: for any Spinc-struc-
ture s, cHF.Y; s/ D F or, equivalently, HF�.Y; s/ is a free FŒU �-module of rank 1.

Definition 2.19. [11, 36] An oriented n-component link L � S3 is an L-space
link if there exists 0 � p 2 Zn such that the surgery manifold S3q .L/ is an L-space
for any q � p.
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We list some useful properties of L-space links:

Theorem 2.20 ([36]). (a) Every sublink of an L-space link is an L-space link.

(b) A link is an L-space link if and only if for all s one has H�.A
�.L; s// D

FŒŒU ��.

(c) Assume that for some p the surgery S3p.L/ is an L-space. In addition,

assume that for all sublinks L
0 � L the surgeries S3p.L

0/ are L-spaces too, and

the framing matrix ƒ is positive definite. Then for all q � p the surgery manifold

S3q .L/ is an L-space, and so L is an L-space link.

Remark 2.21. If all pairwise linking numbers between the components of L

vanish, then ƒ is positive definite if and only if all pi > 0. Therefore for (c)
one needs to assume that there exist positive pi such that S3p.L

0/ is an L-space for
any sublink L

0.

For L-space links, the H -function can be computed from the multi-variable
Alexander polynomial. Indeed, by (b) and the inclusion-exclusion formula, one
can write

�.HFL�.L; s// D
X

B�¹1;:::;nº

.�1/jBj�1HL.s � eB/; (2.4)

as in [2, (3.14)]. The Euler characteristic �.HFL�.L; s// was computed in [47],

z�.t1; : : : ; tn/ D
X

s2H.L/

�.HFL�.L; s//t
s1
1 � � � t snn (2.5)

where s D .s1; : : : ; sn/, and

z�L.t1; : : : ; tn/ WD

´
.t1 � � � tn/

1=2�L.t1; : : : ; tn/ if n > 1;

�L.t /=.1� t�1/ if n D 1:
(2.6)

Remark 2.22. Here we expand the rational function as power series in t�1,
assuming that the exponents are bounded in positive direction. The Alexander
polynomials are normalized so that they are symmetric about the origin. This still
leaves out the sign ambiguity which can be resolved for L-space links by requiring
that H.s/ � 0 for all s.

One can regard (2.4) as a system of linear equations for H.s/ and solve
it explicitly using the values of the H -function for sublinks as the boundary
conditions. We refer to [2, 11] for general formulas, and consider only links with
one and two components here.
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For n D 1 the equation (2.4) has the form

�.HFL�.L; s// D H.s � 1/ �H.s/;

so

H.s/ D
X

s0>s

�.HFL�.L; s0//;
X

s

t sH.s/ D t�1�L.t /=.1� t�1/2:

For n D 2 the equation (2.4) has the form

�.HFL�.L; s// D �H.s1� 1; s2� 1/CH.s1� 1; s2/CH.s1; s2� 1/�H.s1; s2/:

(2.7)

Lemma 2.23. Suppose that L1 and L2 are unknots and lk.L1; L2/ D 0, then

X

s1;s2

t
s1
1 t

s2
2 h.s1; s2/ D �

t�11 t�12

.1� t�11 /.1� t�12 /
z�.t1; t2/: (2.8)

Proof. By Lemma 2.15 for sufficiently large N we have H.s1; N / D H1.s1/ and
H.N; s2/ D H2.s2/ . By (2.7) we get

H.s1; s2/ �H1.s1/ �H2.s2/ D H.s1; s2/ �H.s1; N / �H.N; s2/

D �
X

s0�sC1

�.HFL�.L; s0//:

Since L1 and L2 are unknots, we get h.s1; s2/ D H.s1; s2/�H1.s1/�H2.s2/ and
X

s1;s2

t
s1
1 t

s2
2 h.s1; s2/ D �

X

s1;s2

X

s0�sC1

t
s1
1 t

s2
2 �.HFL�.L; s0//

D �
t�11 t�12

.1� t�11 /.1� t�12 /

X

s0

t
s0

1

1 t
s0

2

2 �.HFL�.L; s0//

D �
t�11 t�12

.1� t�11 /.1� t�12 /
z�.t1; t2/: �

Example 2.24. The (symmetric) Alexander polynomial of the Whitehead link
equals

�.t1; t2/ D �.t
1=2
1 � t

�1=2
1 /.t

1=2
2 � t

�1=2
2 /;

so
z�.t1; t2/ D .t1t2/

1=2�.t1; t2/ D �.t1 � 1/.t2 � 1/:



338 E. Gorsky, B. Liu, and A. H. Moore

The H -function has the following values:

2 1 0 0 0

2 1 0 0 0

2 1 1 0 0

3 2 1 1 1

4 3 2 2 2

s1

s2

One can check that (2.7) is satisfied for all .s1; s2/. Also,

h.s1; s2/ D

´
1 if .s1; s2/ D .0; 0/;

0 otherwise;

which agrees with (2.8).

Lemma 2.25. If for an L-space link L one has h.0; 0/ D 0 then L is the unlink.

Proof. If h.0; 0/ D 0 then by Lemma 2.16 we have h.s1; s2/ D 0 for all s1; s2.
The rest of the proof follows from the proof of [32, Theorem 1.3]. �

For example, the H-function, and consequently bHFL and the Thurston norm
of the link complement of an L-space link of two-components may be calculated
from the Alexander polynomial, albeit with a nontrivial spectral sequence argu-
ment, as in [33].

3. Surgery formula and truncations

3.1. Surgery for knots. In this subsection we review the “mapping cone” com-
plex for knots [48], and its finite rank truncation. We will present it in an algebraic
and graphical form ready for generalization to links. Let K be a knot in S3 and
let p 2 Z.

For each s 2 Z we consider complexes A
0
s WD A

�.K; s/, and A
1
s D A

�.;/.
The surgery complex is defined as

C D
Y

s

Cs; Cs D A
0
s C A

1
s :
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The differential on C is induced by an internal differential ˆ; in A
0
s ;A

1
s , and two

types of chain maps,

ˆC
s WA0s �! A

1
s and ˆ�

s WA0s �! A
1
sCp :

Then

Ds D

�
ˆ; 0

ˆC
s Cˆ�

s ˆ;

�
:

The complex .C; D/ is usually represented with a zig-zag diagram in which we
omit the internal differential ˆ;,

� � �

h !!

A
0
�b

v �� h $$■
■

■

■

■

A
0
�bCp

v �� h ##●
●

●

●

●

●

� � �

h ��❅
❅

❅

❅

❅

A
0
s

v �� h ""❊
❊

❊

❊

❊

A
0
sCp

v �� h ""❊
❊

❊

❊

❊

❊

❊

� � �

h   ❅
❅

❅

❅

❅

❅

A
0
b

v �� h ��

� � �

� � � A
1
�b

A
1
�bCp

� � � A
1
s A

1
sCp : : : A

1
b

� � �

(3.1)

Here the vertical maps are given by ˆC
s and the sloped maps by ˆ�

s . We instead
present the complex C graphically as follows: for each s we represent Cs as a circle
at a point s containing two dots representing A

0
s and A

1
s . The internal differential

andˆC
s act within each circle, whileˆ�

s jumps between different circles. To avoid
cluttering we do not draw the differentials in this picture. See Figure 1.

One can choose a sufficiently large positive integer b such that for s > b

the map ˆC
s is a quasi-isomorphism, and for s < �b the map ˆ�

s is a quasi-
isomorphism. The first condition means that we can erase all circles (and all dots
inside them) to the right of bwithout changing the homotopy type ofC. The second
condition is more subtle and depends on the sign of the surgery coefficient p.

A
0

1

A
1

1

A
0
0

A
1
0

A
0
1

A
1
1

Figure 1. The surgery complex C for a knot.

If p > 0, we can useˆ�
s to contract A0s with A

1
sCp for s < �b. By applying all

these contractions at once, we erase all A0s for s < �b and all A1sCp for s < p� b.
As a result, graphically we will have a width p interval Œ�b; p � b/ where each
circle contains only A

0
s , and a long interval Œp � b; b� where each circle contains

both subcomplexes. See Figure 2.
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A
0

b
A

0
bC1

A
0
p b

A
1
p b

A
0
b

A
1
b

b p b b

Figure 2. The complex C after contraction when p > 0.

If p < 0, a similar argument shows that we will have a width p interval
Œp � b;�b/ where each circle contains only A

1
s , and a long interval Œ�b; b� where

each circle contains both subcomplexes. Note that in both cases in each Spinc

structure there is exactly one half-empty circle and a lot of full circles. Denote the
truncated complex by Cb. See Figure 3.

A
1
p b

A
1
p bC1

A
0

b

A
1

b

A
0
b
A

1
b

b p b b

Figure 3. The complex C after contraction when p < 0.

Next, we would like to match A
0
s and A

1
s in Cb with the cells in a quotient

or sub-complex CW.p; i; b/ of a finite 1-dimensional CW complex. Each A
0
s

corresponds to a 1-cell, and A
1
s to a 0-cell, and the boundary maps correspond

to ˆ˙
s . The complexes corresponding to the previous two pictures are comprised

of disjoint unions of jpj intervals. Depending on the sign of p, each connected
component is identified with one of the interval on the line subdivided by integer
points pictured in Figure 4.

More specifically, for p > 0 and each Spinc-structure i (identified with a
remainder modulo jpj), the complex CW.p; i; b/ has one more 1-cell than 0-cell
and can be identified with an open subdivided interval. We think of this as the
closed subdivided intervalRwith its two boundary cells @R erased. The homology
of CW.p; i; b/ over F is H�.R; @R/ Š F, generated by the the sum of all 1-cells.

For p < 0 we have instead one more 0-cell than 1-cell. The complex
CW.p; i; b/ is now a closed interval R with no boundary cells erased. The ho-
mology of CW.p; i; b/ is H�.R; ;/ Š F, generated by the class of a 0-cell.
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p > 0

p < 0

Figure 4. The complex CW.p; i; b/.

So far, all of this is really just a rephrasing of the mapping cone formula of [48].
However, we will see that such pictures are easier to handle for more components,
and the topology of the complexes CW.p; i; b/ plays an important role. We will
use this observation later in Section 4.

3.2. Truncation for 2-component L-space links . We review the Manolescu–
Ozsváth link surgery complex [39] for oriented 2-component links L D L1 [ L2

with vanishing linking number. Let H
L D .†;˛;ˇ;w; z/ be an admissible,

generic, multi-pointed Heegaard diagram for L. Note that H.L/ Š Z2.
For any sublink M � L, set N D L �M . We define a map

 M WZjLj �! ZjN j

to be the projection to the components corresponding to Li � N . For sublinks
M � L, we use HL�M to denote the Heegaard diagram of L � M obtained
from H

L by forgetting the z basepoints on the sublinkM . The diagram H
L�M is

associated with the generalized Floer complex A
�.HL�M ;  M .s//:

In general, the surgery complex is complicated. For 2-component links with
vanishing linking numbers, we describe the chain complex and its differential in
detail. For the surgery matrix, we write

ƒ D

�
p1 0

0 p2

�
:

For a linkL D L1[L2, a two digit binary superscript is used to keep track of which
link components are forgotten. Let A00s D A

�.HL; s/, A01s D A
�.HL�L2 ; s1/,

A
10
s D A

�.HL�L1; s2/ and A
11
s D A

�.HL�L1�L2 ;¿/ where s D .s1; s2/ 2 Z2.
Let

Cs D
M

"1;"22¹0;1º

A
"1"2

s :

The surgery complex is defined as

C.HL; ƒ/ D
Y

s2Z2

Cs:
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The differential in the complex is defined as follows. Consider sublinks ¿;˙L1,
˙L2 and ˙L1˙L2 where ˙ denotes whether or not the orientation of the sublink
is the same as the one induced from L. Based on [39], we have the following maps,
where ˆ¿

s is the internal differential on any chain complex A
"1"2

s .

ˆL1

s WA00s �! A
10
s ; ˆ�L1

s WA00s �! A
10
sCƒ1

;

ˆL2

s WA00s �! A
01
s ; ˆ�L2

s WA00s �! A
01
sCƒ2

;

ˆL1

s1
WA01s �! A

11
s ; ˆ�L1

s1
WA01s �! A

11
sCƒ1

;

ˆL2

s2
WA10s �! A

11
s ; ˆ�L2

s2
WA10s �! A

11
sCƒ2

;

(3.2)

where ƒi is the i-th column of ƒ. In addition, there are “higher” differentials

ˆL1CL2

s WA00s �! A
11
s ; ˆL1�L2

s WA00s �! A
11
sCƒ2

;

ˆ�L1CL2

s WA00s �! A
11
sCƒ1

; ˆ�L1�L2

s WA00s �! A
11
sCƒ1Cƒ2

:
(3.3)

Let
Ds D ˆ¿

s Cˆ˙L1

s Cˆ˙L2

s Cˆ˙L1

s1
Cˆ˙L2

s2
Cˆ˙L1˙L2

s ;

and let D D
Q

s2Z2 Ds. Then .C.HL; ƒ/;D/ is the Manolescu–Ozsváth surgery
complex.

The surgery complex naturally splits as a direct sum corresponding to the
Spinc-structures. The Spinc-structures on S3ƒ.L/ are identified with

H.L/=H.L; ƒ/ Š Zp1
� Zp2

;

where H.L; ƒ/ is the subspace spanned by ƒ. For t 2 H.L/=H.L; ƒ/, choose
s D .s1; s2/ corresponding with t and let

C.ƒ; t/ D
M

i;j2Z

CsCiƒ1Cjƒ2
:

Then by [39],
HF�.S3ƒ.L/; t/ Š H�.C.ƒ; t/;D/

up to some grading shift.
Now we review the truncation of the surgery complex .C.HL; ƒ/;D/ [39],

which mimics the truncation of the mapping cone for knots.

Lemma 3.1 ([39, Lemma 10.1]). There exists a constant b > 0 such that for any

i D 1; 2, and for any sublink M � L not containing the component Li , the chain

map

ˆ
˙Li

 M .s/
WA�.HL�M ;  M .s// �! A

�.HL�M�Li ;  M[Li .s//

induces an isomorphism on homology provided that either
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� s 2 Z2 is such that si > b, and Li is given the orientation induced from L;

or

� s 2 Z2 is such that si < �b, and Li is given the orientation opposite to the

one induced from L.

A10
s A00

s

A11
s A01

s

ˆ
L1
s1

ˆ
L1
s

s1 b s1 bCp1 1 s1Db

s2 b

s2 bCp2 1

s2Db

R1

R2

R3

R4

Q

Figure 5. Truncated complex for p1; p2 > 0.

Without loss of generality, we will assume that

b > max.jp1j; jp2j/:

We consider five regions on the plane:

Q D ¹js1j � b; js2j � bº;

R1 D ¹s1 > b; s2 � bº;

R2 D ¹s1 � �b; s2 > bº;

R3 D ¹s1 < �b; s2 � �bº;

R4 D ¹s1 � b; s2 < �bº:

Remark 3.2. One can also use different constants b1; b2 to truncate the complex
in vertical and in horizontal directions. As a result, the rectangle Q would be
bounded by the lines s1 D ˙b1; s2 D ˙b2. All results below hold unchanged in
this more general case.

Depending on the signs of p1 and p2, the surgery complex may truncated as
follows (see also the detailed case analysis of [39, Section 10]).
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Case 1: p1 > 0; p2 > 0. In this case, let CR1[R2
be the subcomplex of

C.HL; ƒ/ consisting of those terms A"1"2

s supported in R1[R2. The subcomplex
CR1[R2

is acyclic [39]. In the quotient complex C=CR1[R2
, define a subcomplex

CR3[R4
consisting of those terms A"1"2

s with the property that s � "1ƒ1 � "2ƒ2 2

R3 [ R4. Let CQ be the quotient of C=CR1[R2
by CR3[R4

. Then CQ is quasi-
isomorphic to the original complex C.HL; ƒ/, and CQ consists of dots inside the
box indicated as in Figure 5.

A10
s

A00
s

A11
s

A01
s ˆ

L1
s1

ˆ
L2
s2

ˆ
L1
s

ˆ
L2
s

s1 bCp1 s1 b s1Db

s2 bCp1

s2 b

s2Db

R1

R2

R3

R4

Q

Figure 6. Truncated complex for p1; p2 < 0

Case 2: p1 < 0; p2 < 0. This is similar to Case 1, except that CR1[R2
and

CR3[R4
are now quotient complexes, andCQ is a subcomplex as shown in Figure 6.

Note that CQ contains all the solid dots pictured, including those outside of boxQ.

Case 3: p1 > 0; p2 < 0. First define two acyclic subcomplexes: one is
CR1

, which consists of terms A
"1"2

s such that s 2 R1. The other is CR3
, and

consists of terms A
"1"2

s such that either s � "1ƒ1 2 R3 or .s 2 R4; "2 D 1 and
s�"1ƒ1�ƒ2 2 R3/. After quotienting by these acyclic subcomplexes, define two
further acyclic quotient complexes CR2

consisting of A"1"2

s with s 2 R2, and CR4

consisting of A"1"2

s such that s � "2ƒ2 2 R4. Let CQ be the resulting subcomplex
which is shown as in Figure 7. The case where p1 < 0; p2 > 0 is similar.

The truncated complexCQ with the differential obtained by restrictingD to CQ

is homotopy equivalent to .C.HL; ƒ/;D/. Then the homology of the truncated
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Figure 7. Truncated complex for p1 > 0; p2 < 0.

complex is isomorphic to HF�.S3p1;p2
.L// up to some grading shift which is

independent of the link, but only depends on the homological data [39].

For L-space links, Y. Liu introduced the perturbed surgery formula to compute
the homology of the truncated complex. For the rest of the subsection, we let
L D L1 [L2 denote a 2-component L-space link with vanishing linking number.
By Theorem 2.20, each sublink is also an L-space link. Then

H�.A
�.HL�M ;  M .s/// Š FŒŒU ��

for all s 2 H.L/ and all sublinks M � L [35, 36]. Moreover, since A
�.HL�M ;

 M .s// is defined as a bounded complex of free finitely generated FŒŒU ��-mod-
ules, and its homology is also free, A�.HL�M ;  M .s// is homotopy equivalent
to FŒŒU ��.

Therefore the surgery complex is homotopy equivalent to the perturbed surgery

complex where each A
�.HL�M ;  M .s// is replaced by FŒŒU �� with the zero dif-

ferential. The maps ˆ
�!
Li

 M .s/
are replaced as follows:

ẑ ˙Li

s D UH.˙s1;˙s2/�HNi .˙sNi /WFŒŒU �� �! FŒŒU ��;

ẑ ˙Li

si
D UHi .˙si /WFŒŒU �� �! FŒŒU ��:
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Here Ni 2 ¹1; 2º n ¹iº and Hi.si / denotes the H -function for Li , i D 1; 2. Finally,
the “higher” differentials ˆ˙L1˙L2

s are replaced by some differentials ẑ ˙L1˙L2

s

which must vanish by parity reasons [36, Lemma 5.6].
We will denote the resulting perturbed truncated complex by .fCQ; D/. Its

homology is isomorphic to the Heegaard Floer homology of S3p .L/ [39, 36].
Because we are using truncated complexes from here on, it suffices to consider
polynomials over FŒU �.

Remark 3.3. Similar complexes and their truncations can be defined for any link
with an arbitrary number of components and vanishing pairwise linking numbers.
However, for general links with two components the higher differentials could be
nontrivial. For L-space links with three or more components one can define the
perturbed complex as above, but the higher differentials might survive in it as well.
See also [29] for a discussion of associated spectral sequences.

3.3. Gradings. In the above discussion we ignored the gradings on all the com-
plexes involved in the surgery formula. The homological grading on the surgery
complex consists of three separate parts:

(a) the Maslov grading on A
�.HL�M ;  M .s// as a subcomplex of A�.S3/;

(b) the shift depending on s but not on M (see Remark 3.6);

(c) the cube degree which we define as 2 for A00s , 1 forA01s andA
10
s and 0 for A11s .

We will call the internal degree the sum of the first two parts and denote it by
deg. The homological degree is then the sum of the internal degree and the cube
degree. The components of the differential in the surgery complex change these
degrees differently: ˆ;

s decreases the internal degree by 1 and preserves the cube
degree,ˆ˙Li

s preserve the internal degree and decrease the cube degree by 1, and
ˆ

˙L1˙L2

s increase the internal degree by 1 and decrease the cube degree by 2. The
action ofU decreases the internal degree by 2 and preserves the cube degree. Note
that after perturbation of the surgery complex, the only non-vanishing differentials
are the ˆ˙Li

s , which preserve the internal degree.

Remark 3.4. Note that our cube degrees (shifts applied to cells) differ from the
shifts in the Ozsváth-Szabó mapping cone formula. In is important to note that
the calculations we do with our surgery complex are not absolutely graded, but
depend on an overall shift calculated from a two-component unlink.

For L-space links, we can replace A
�.HL�M ;  M .s// by a copy of FŒU �,

the internal degree in it is completely determined by the internal degree of the
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generator. For M � ¹1; 2º let zM .s/ denote the generator in the homology
of A

�.HL�M ;  M .s//. By the above, in the perturbed surgery complex the
differential preserves the internal degree and decreases the cube degree by 1.

Proposition 3.5. The internal degrees of zM .s/ can be expressed via the internal

degrees of z1;2.s/ as following:

degz1.s/ D degz1;2.s/ � 2H2.s2/; degz2.s/ D degz1;2.s/ � 2H1.s1/; (3.4)

degz;.s/ D degz1;2.s/ � 2H.s1; s2/: (3.5)

Also, the internal degrees of z1;2.s/ satisfy the following recursive relations:

degz1;2.s1 C p1; s2/ D degz1;2.s1; s2/C 2s1; (3.6)

degz1;2.s1; s2 C p2/ D degz1;2.s1; s2/C 2s2: (3.7)

Remark 3.6. The shift mentioned in the beginning of this subsection is nothing
but degz1;2.s/.

Proof. The differential has the following form:

D.z;.s// D UH.s/�H1.s1/z2.s1; s2/C UH.s/�H2.s2/z1.s1; s2/

CUH.�s/�H1.�s1/z2.s1; s2 C p2/

CUH.�s/�H2.�s1/z1.s1 C p1; s2/;

D.z2.s1; s2// D UH1.s1/z1;2.s1; s2/C UH1.�s1/z1;2.s1 C p1; s2/;

D.z1.s1; s2// D UH2.s2/z1;2.s1; s2/C UH2.�s2/z1;2.s1; s2 C p2/;

D.z1;2.s1; s2// D 0:

The differential preserves the internal degree, therefore degz1.s/ D degz1;2.s/ �

2H2.s2/ and degz;.s/ D degz1.s/ � 2.H.s/ � H2.s2//. By Lemma 2.14,
H1.�s1/ D H1.s1/C s1, H2.�s2/ D H2.s2/C s2. Therefore

�2H1.s1/C degz1;2.s1; s2/ D �2H1.�s1/C degz1;2.s1 C p1; s2/

D �2H1.s1/ � 2s1 C degz1;2.s1 C p1; s2/;

which implies (3.6) and (3.7). �

3.4. Associated CW complex. Observe from the definition of the iterated cone,
we may assign each summand of CQ with the cells of a quotient or sub-complex
CW.p; i ; b/ of a finite rectangular CW complex R, in a similar manner as was
done for knots. In particular, each A

00
s corresponds to a 2-cell, each of A01s and
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A
10
s to a 1-cell, and A

11
s to a 0-cell, with boundary maps specified by (3.2). For

example, the following diagram shows the 2-cell corresponding with A
00
s when

p1; p2 > 0.

A
11
sCƒ2

A
01
sCƒ2

ˆL1oo ˆ�L1 // A11
sCƒ1Cƒ2

A
10
s

ˆL2

��

ˆ�L2

OO

A
00
s

ˆL2

��

ˆ�L2

OO

ˆL1oo ˆ�L1 // A10sCƒ1

ˆL2

��

ˆ�L2

OO

A
11
s A

01
s

ˆL1oo ˆ�L1 // A11
sCƒ1

(3.8)

In all of the cases of the truncation, the resulting complex CW.p; i ; b/ will be
a rectangle on a square lattice, possibly with some parts of the boundary erased.
The squares, edges and vertices are all cells in this complex.

We can consider the corresponding chain complex C over F generated by
these cells and the usual differential @. The homology of this complex is naturally
isomorphic to the homology ofR relative to the union of erased cells. Specifically,
we will consider three situations.

(a) If none of the cells are erased, then R is contractible, so H0.C; @/ Š F is
generated by the class of a 0-cell, and all other homologies vanish. This
corresponds to the case when both surgery coefficients are negative as in
Figure 8.

(b) If all 1- and 0-cells on the boundary ofR are erased, then .R; @R/ ' .S2; pt/.
Therefore H2.C; @/ Š F is generated by the sum of all 2-cells, and all
other homologies vanish. This corresponds to the case when both surgery
coefficients are positive.

(c) If all 1- and 0-cells on a pair of opposite sides ofR are erased, thenR relative
to erased cells is homotopy eqivalent to .S1; pt/. Therefore H1.C; @/ Š F is
generated by the class of any path connecting opposite erased boundaries, and
all other homologies vanish. This corresponds to the case when the surgery
coefficients have different signs as in Figure 9.

4. The d-invariant of surgery

4.1. d-invariant from cells. Given the CW complex CW.p; i ; b/ in Section 3.4,
we can reconstruct the (perturbed, truncated) surgery complex .fCQ; D/ as follows.
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h]

p1 > 0; p2 > 0 p1 < 0; p2 < 0

ˆL1 ˆ L1 ˆL1ˆ L1

ˆL2ˆ L2

A
00
. b;b/

A
00
. b;b/ˆL2 ˆ L2

Figure 8. Cases (a) and (b).

Each cell � of CW.p; i ; b/ corresponds to a copy of FŒU � generated by some
element z.�/. It has some internal degree which we will denote by deg.�/. Every
component of the boundary map in CW.p; i ; b/ corresponds to a component of
D. By [36], D is nonzero and hence given by multiplication by a certain power
of U . By Proposition 3.5 the internal degrees deg.�/ have the same parity and
deg.�i/ � deg.�/ if �i shows up in the differential of �. We get the following
equation:

D.z.�// D
X

U
1

2
.deg.�i /�deg.�//z.�i /; if @� D

X
�i : (4.1)

As above, the complex .fCQ; D/ is bigraded: the cube grading of z.�/U k equals
the dimension of �, while the internal degree of z.�/U k equals deg.�/ � 2k.
The differential D preserves the internal degree and decreases the cube grading
by 1. The actual homological grading on the surgery complex is the sum of two
degrees.

The homology of .fCQ; D/ could be rather complicated, and is similar to the so-
called lattice homology considered by Némethi [40]. Nevertheless, the homology
of .fCQ; D/ modulo U -torsion can be described explicitly. Let .C; @/ denote the
chain complex computing the cellular homology of CW.p; i ; b/. Consider the
map

"W fCQ ! C; ".z.�/U k/ D �:
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p1p2 < 0

A
00
. b;b/

ˆL1

ˆL2

ˆ L1

ˆ L2

Figure 9. Case (c).

Clearly, " is a chain map, that is, @" D "D. Given a cell �, we call z.�/U k

its graded lift of internal degree deg.�/ � 2k. The following proposition is
straightforward.

Proposition 4.1. Let c be a chain in C . It admits a graded lift of internal degree

N (that is, a homogeneous chain ˛ in fCQ such that ".˛/ D c) if and only if N

is less than or equal to the minimal internal degree of cells in c. If a graded lift

exists, it is unique. Any two graded lifts of different internal degrees are related

by a factor U k for some k.

Lemma 4.2. Let z be a homogeneous chain in fCQ. Then z is a cycle if and only

if ".z/ is a cycle. Also, U kz is a boundary for large enough k if and only if ".z/ is

a boundary.

Proof. If z is a cycle then ".z/ is a cycle since " is a chain map. Conversely, if
".z/ is a cycle, then ".D.z// D 0, and henceD.z/ D 0.

If U kz D D˛ then by applying " we get ".z/ D @".˛/. Conversely, assume
that ".z/ D @ˇ. Pick a graded lift ˛ of internal degree N such that ".˛/ D ˇ.
Then ".D˛/ D ".z/, so D˛ is a graded lift of z. By Proposition 4.1 we have
D˛ D U

1
2
.deg.z/�N/z. �
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Corollary 4.3. The free part of the homology H�.fCQ; D/=Tors is generated by

the graded lifts of representatives of homology classes in H�.C; @/. Two classes

are equivalent if and only if they have the same internal degree and lift the same

homology class.

It follows that in all cases (a)-(c) in Section 3.4 the free part H�.fCQ; D/=Tors
is isomorphic to FŒU �. Let d denote the internal degree of the generator of this
copy of FŒU � (this is essentially the d -invariant of the surgery). We are ready to
compute d :

Theorem 4.4. The d -invariant of the complex .fCQ; D/ can be computed in terms

of CW.p; i ; b/ as following:

(a) if no cells of the rectangle R are erased, this is the maximal value of deg.�/
for 0-cells �;

(b) if all boundary cells are erased, this is the minimal value of deg.�/ for

2-cells �;

(c) if two sides are erased, this is maxc min�2c deg.�/, where c is a simple

lattice path connecting the erased sides.

Proof. In (a), H�.C; @/ is generated by the class of a point (that is, a 0-cell). All
points are equivalent in fCQ modulo torsion, and any lift of a 0-cell � has the
form U kz.�/ and has internal degree less than or equal to deg.�/. Therefore the
maximal internal degree of a graded lift of a point equals max deg.�/.

In (b), H�.C; @/ is generated by the sum of all 2-cells. The graded lift of this
chain exists in internal degrees min deg.�/ and less.

In (c), similarly, for a given 1-chain c representing the nontrivial homology
class, a graded lift is possible in internal degrees min�2c deg.�/ and less. There-
fore to find the internal degree of the generator of FŒU � we need to take the maxi-
mum over all c. It remains to notice that any such c contains a simple lattice path
c0 connecting the erased sides, and min�2c0 deg.�/ � min�2c deg.�/. �

4.2. Proof of Theorem 1.1. Let us describe the gradings on the surgery complex
in more detail.

Let us fix a Spinc-structure i D .i1; i2/ on S3p .L/. The four quadrants on the
plane are denoted .˙;˙/. In each quadrant, we can find a unique point s˙˙.i / in
Spinc-structure i that is the closest to the origin, as in Figure 10. If i1 D 0 or i2 D 0

then some of s˙˙ coincide, and in particular, if i1 D i2 D 0 then s˙˙.i / D .0; 0/
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for all signs. We also define integers s.1/˙ and s.2/˙ to be the coordinates of the
points, i.e.

s˙˙ D .s
.1/
˙ ; s

.2/
˙ /:

Lemma 4.5. If p1 > 0; p2 > 0, then

degz;.s˙˙.i // D degz1;2.sCC.i1; i2// � 2h.s˙˙.i1; i2//:

Proof. Assume that sCC.i1; i2/ D .s1; s2/. By Equation 3.5,

degz;.sCC.i // D degz1;2.sCC.i // � 2H.sCC.i //:

Suppose s1 ¤ 0; s2 ¤ 0. By Proposition 3.5,

degz;.s�C.i // D degz1;2.s�C.i // � 2H.s�C.i //

D degz1;2.sCC.i // � 2.s1 � p1/ � 2H.s�C.i //:

Similarly,

degz;.sC�.i // D degz1;2.sCC.i // � 2.s2 � p2/ � 2H.sC�.i //;

degz;.s��.i // D degz1;2.sCC.i // � 2.s1 � p1/ � 2.s2 � p2/ � 2H.s��.i //:

For the unlink O with two components, we have

HO.sCC.i // D 0; HO.s�C.i // D p1 � s1; HO.sC�.i // D p2 � s2

and
HO.s��.i // D p1 � s1 C p2 � s2:

Therefore,

degz;.s˙˙.i // D degz1;2.sCC.i // � 2H.s˙˙.i //C 2HO.s˙˙.i //

D degz1;2.sCC.i // � 2h.s˙˙.i //:

If s1 D 0 and s2 ¤ 0, then

s˙C.i / D .0; s2/; s˙�.i / D .0; s2 � p2/:

It is easy to check that the equation in Lemma 4.5 still holds. Similarly, it also
holds in the case s2 D 0. �

Lemma 4.6. If p1 > 0, then

degz2.s
.1/
˙ ; t / D degz1;2.s

.1/
C ; t / � 2h1.s

.1/
˙ /:
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Figure 10. For each Spinc-structure i , there is a unique point s˙˙.i / in each quadrant that
is the closest to the origin.

Proof. The proof is similar to the proof of Lemma 4.5. Assume that s1 D s
.1/
C ¤ 0.

Then s.1/� D s1 � p1 and

degz2.s1; t / D degz1;2.s1; t /� 2H1.s1/ D degz1;2.s1; t /� 2h1.s1/;

degz2.s1 � p1; t / D degz1;2.s1; t /� 2H1.s1 � p1/ � 2.s1 � p1/

D degz1;2.s1; t /� 2h1.s1 � p1/: �

Proof of Theorem 1.1. (a) Assume p1; p2 < 0. Then by Theorem 4.4(a), in which
case no cells are erased, we get

d.S3p .L/; .i1; i2// D max
skDikCakpk

degz1;2.s1; s2/:

The internal degree of z1;2.s1; s2/ does not depend on the link, but depends on
the framing matrix ƒ. Since the .p1; p2/-surgery on the unlink decomposes as
L.p1; 1/#L.p2; 1/ and has the same framing matrix, then

d.S3p .L/; .i1; i2// D �.p1; i1/C �.p2; i2/:

(b) Assume p1; p2 > 0. Then by Theorem 4.4(b), in which case all boundary
cells are erased, we get

d.S3p .L/; .i1; i2// D min
skDikCakpk

degz;.s1; s2/C 2:

Note that we add 2 here because the homological degree of a generator is a sum
of deg and its cube degree. Let us prove that degz;.s1; s2/ decreases towards the
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origin. Indeed, by combining (3.5) and (3.6), we get

degz;.s1 C p1; s2/ D degz;.s1; s2/C 2s1 C 2H.s1; s2/ � 2H.s1 C p1; s2/:

By Lemma 2.13

0 � H.s1; s2/ �H.s1 C p1; s2/ � p1:

Therefore for s1 � 0we have degz;.s1Cp1; s2/ � degz;.s1; s2/ and for s1 � �p1

we have degz;.s1 C p1; s2/ � degz;.s1; s2/.
Therefore the minimal value is achieved at one of s˙˙.i /. By Lemma 4.5,

degz;.s˙˙.i // D degz1;2.sCC.i // � 2h.s˙˙.i //:

Then

d.S3p .L/; .i1; i2// D degz1;2.sCC.i // � 2maxh.s˙˙.i //C 2;

where, as above, degz1;2.sCC.i // does not depend on the link. For the unlink
h D 0, hence

degz1;2.sCC.i //C 2 D d.S3p .O/; .i1; i2// D �.p1; i1/C �.p2; i2/:

(c) Assume that p1 > 0; p2 < 0. Then by Theorem 4.4(c), we get

d.S3p .L/; .i1; i2// D max
c

min
�2c

deg.�/C 1

where c is a simple lattice path connecting the erased sides. Let c.t/ be the
horizontal path connecting erased boundaries at height t . Let us compute the
minimum min�2c.t/ deg.�/. By Proposition 3.5 we get

degz2.s1 C p1; t / D degz2.s1; t /C 2H1.s1/ � 2H1.s1 C p1/C 2s1:

and similarly to case (b) we conclude that the minimum is achieved at one of
.s
.1/
˙ ; t /. Also, by Lemma 4.6 we get

min
�2c.t/

deg.�/ D degz1;2.s
.1/
C ; t /� 2maxh1.s

.1/
˙ /: (4.2)

By Proposition 3.5, we have

degz2.s1; s2 C p2/ D degz2.s1; s2/C 2s2:

Since p2 < 0, this means that for fixed s1 the internal degree of z2.s1; t / increases
towards the origin and achieves its maximum at t0 D s

.2/
C C p2.
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For an arbitrary simple path c0 connecting the erased boundaries, it must
contain a horizontal segment corresponding to z2.s

.1/
˙ ; t /. Then

min
�2c0

deg.�/ � degz2.s
.1/
˙ ; t / � degz2.s

.1/
˙ ; t0/ D min

�2c.t0/
deg.�/:

Therefore,

max
c

min
�2c

deg.�/ D min
�2c.t0/

deg.�/ D degz1;2.s
.1/
C ; s

.2/
C C p2/ � 2maxh1.s

.1/
˙ /:

The second equality follows the same argument as the one for (4.2). Again, the
first term does not depend on the link and hence equals the d -invariant of the lens
space:

degz1;2.s
.1/
C ; s

.2/
C C p2/C 1 D d.S3p .O/; i1; i2/ D �.p1; i1/C �.p2; i2/:

Finally, it follows from [41, Proposition 1.6] that

d.S3p1
.L1/; i1/ D �.p1; i1/ � 2maxh1.s

.1/
˙ /;

so
d.S3p .L/; .i1; i2// D d.S3p1

.L1/; i1/C �.p2; i2/: �

4.3. Example: d-invariants and twisting. We can use this result to prove a
curious property of the H -function for L-space links of linking number zero.
Suppose that L1 is an unknot. Then after performing a Rolfsen twist, a .C1; p2/-
surgery on L is homeomorphic to p2-surgery on some knot L0

2 obtained from
L2 by a negative full twist [10, Section 5]. See Figure 11. Note that while
Theorem 2.20 implies that L2 is an L-space knot (since L is an L-space link),
L0
2 does not need to be an L-space knot, see Corollary 1.6.

Theorem 4.7. Let L D L1 [ L2 be an L-space link of linking number zero, and

L1 is an unknot. The H -function for L0
2 equals H.0; s2/.

Proof. By definition, the H -function is equal (up to a shift) to the d -invariant of
S3p2

.L0
2/ or, equivalently, of S31;p2

.L/ for p2 � 0. Since p1 D 1, a Spinc-structure
on the surgery is given by a lattice point .0; i2/ where �p2=2 � i2 � p2=2. The
d -invariant is determined by the values of theH -function of L at the points .0; i2/.
By Theorem 1.1 we get

d.S3p2
.L0
2/; i2/ D d.S31;p2

.L/; .0; i2// D 0C �.p2; i2/ � 2h.0; i2/:

Indeed, �.1; 0/ D 0 since 1-surgery of S3 along the unknot is S3. Then h.0; i2/ D

hL0
2
.i2/. Hence, the H -function for L0

2 equals H.0; s2/. �
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L1

L2

p1=q1

p1=.q1 C np1/

n

p2 p2 C n.`k.L1; L2//
2

Figure 11. A Rolfsen twist. Here we take p1=q1 D ˙1 and n D �1.

Remark 4.8. Similarly, we can consider .�1; p2/-surgery on L. Let L00
2 be the

knot obtained from L2 by a positive full twist. By Theorem 1.1,

d.S3�1;p2
.L/; i2/ D d.S3p2

.L00
2/; i2/ D d.S3p2

.L2/; i2/:

Hence, HL2
.s/ D HL00

2
.s/.

Example 4.9. If L is the positively-clasped Whitehead link then L0
2 is the right-

handed trefoil, and L00
2 is the figure eight knot. See Figure 12. The values of

the H -function for the Whitehead link on the axis agree with the values of the
H -function of the trefoil (see also Example 2.24). The values of the H -function
for the unknot agree with the values of the H -function for the figure eight knot.

Assume from now on that L is nontrivial so that H.0; 0/ > 0. If L1 is an
unknot, then by the stabilization property (Lemma 2.15) for s2 � 0 we have
H.0; s2/ D H1.0/ D 0. We define

b2 D max¹s2WH.0; s2/ > 0º:

Clearly, b2 � 0. SinceH.s/ D h.s/ for s � 0, note that we could have also defined
b2 as max¹s2W h.0; s2/ > 0º.

Corollary 4.10. In the above notations one has �C.L0
2/ D b2 C 1.

Proof. By Theorem 4.7H.0; s2/ agrees with theH -function ofL0
2, and following

the definition of the invariant �C in [18],

�C.L0
2/ D max¹s2WHL0

2
.s2/ > 0º C1 D max¹s2WH.0; s2/ > 0º C1 D b2C1: �

In particular this means that L0
2 has nonzero H -function and positive �C-in-

variant. Note that Proposition 1.3 is the special case of Corollary 4.10 when we
assume that both L1 and L2 are unknotted.
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4.4. Example: ˙1 surgery. Let L D L1 [ L2 denote an L-space link with
vanishing linking number. If p1 D p2 D �1, then by Theorem 4.4, no cells
in the truncated square are erased, and the d -invariant of the surgery complex
d.S3�1;�1.L// equals the d -invariant of the lens space L.�1; 1/ # L.�1; 1/ which
is zero.

If p1 D p2 D 1, there is a unique Spinc-structure .0; 0/ on d.S31;1.L//. Then
s˙˙.0; 0/ D .0; 0/. By Theorem 1.1,

d.S31;1.L// D �2h.0; 0/:

L1

C1

L2

C1 C1

Figure 12. After C1 surgery along component L1 of the positively-clasped Whitehead link
we obtain the right-handed trefoil in S3.

5. Classification of L-space surgeries

For L-space links with unknotted components, we give a complete description of
(integral) L-space surgery coefficients. We define nonnegative integers b1; b2 as
in Corollary 4.10:

b1 D max¹s1W h.s1; 0/ > 0º; b2 D max¹s2W h.0; s2/ > 0º:

Theorem 5.1. Assume that L is a nontrivial L-space link with unknotted com-

ponents and linking number zero. Then S3p1;p2
.L/ is an L-space if and only if

p1 > 2b1 and p2 > 2b2.

Proof. By Lemma 2.16 we have h.s1; s2/ D 0 outside the rectangle Œ�b1; b1� �

Œ�b2; b2�. Also, h.�b1; 0/ D h.b1; 0/ > 0, so by Lemma 2.16, h.s1; 0/ > 0 for
�b1 � s1 � b1.

Assuming that p1 > 2b1 and p2 > 2b2, then we can truncate the surgery
complex to obtain a rectangle where in each Spinc structure i , there is exactly
one lattice point A00s ; see Figure 5. Hence, HF�.S3p .L/; i / Š H�.A

00
s / Š FŒU �.

Therefore S3p .L/ is an L-space.
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Conversely, assume that S3p .L/ is an L-space. Let us first prove that p1; p2 > 0.
Indeed, since H.0; 0/ > 0 the boundary of z;.0; 0/ is divisible by U , so let
˛ D U�1D.z;.0; 0//. Then U˛ is a boundary, which implies that ˛ is U -torsion
in homology. Hence ˛ is 0 in homology since S3p .L/ is an L-space. Therefore
˛ D D.ˇ/ for some ˇ, and ˇ must be supported on all 2-cells outside .0; 0/.
This is possible only if all cells on the boundary are erased, which occurs when
p1; p2 > 0.

Now, assume that p2 > 0 and 0 < p1 � 2b1. Then h.�b1; 0/ > 0 and
h.p1 � b1; 0/ > 0. Similarly, the boundary of z;.�b1; 0/ is divisible by U , so let

˛0 D U�1D.z;.�b1; 0// and ˛0 D D.ˇ0/:

Then degˇ0 D deg˛0 D degz;.�b1; 0/ C 2 and ˇ0 is supported on all 2-cells
outside .�b1; 0/. In particular, it is supported at .p1 � b1; 0/ hence

degz;.p1 � b1; 0/ � degˇ0 D degz;.�b1; 0/C 2:

By swapping the roles of .�b1; 0/ and .p1 � b1; 0/, we obtain

degz;.�b1; 0/ � degz;.p1 � b1; 0/C 2;

which is a contradiction. Therefore p1 > 2b1 and likewise p2 > 2b2. �

Remark 5.2. After combining Theorem 5.1 with Corollary 4.10, we obtain the
statement of Theorem 1.4 stated in the introduction.

Example 5.3. For the Whitehead link we have b1 D b2 D 0, so S3p1;p2
.L/ is

an L-space if and only if p1; p2 > 0. See also [35] for a detailed discussion of
Heegaard Floer homology for surgeries on the Whitehead link.

Example 5.4. It is known [36] that for k > 0 the two-bridge link b.4k2 C 4k;

�2k � 1/ is an L-space link with linking number zero. The corresponding h-
function was computed in [36, 2] (see also [32, Example 4.1]), and it is easy to
see that b1 D b2 D k � 1. Therefore a .p1; p2/-surgery on b.4k2 C 4k;�2k � 1/

is an L-space if and only if p1; p2 > 2k � 2.

For more general L-space links with linking number zero, we know that
H.0; 0/ � H1.0/ and H.0; 0/ � H2.0/. If both of these inequalities are strict,
then similarly to the proof of Theorem 5.1 one can prove that for L-space surg-
eries we must have p1; p2 > 0. In general, we have the following weaker results.

Proposition 5.5. Suppose that L is a nontrivial L-space link with linking number

zero. If S3p1;p2
.L/ is an L-space then either p1 > 0 or p2 > 0.
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Proof. If both L1 and L2 are unknots then the statement follows from Theo-
rem 5.1. Otherwise assume thatL1 is a nontrivial L-space knot, and soH1.0/ > 0.
Assume that both p1 and p2 are negative and S3p1;p2

.L/ is an L-space.
Let us choose s2 such that z2.0; s2/ has maximal possible grading. We have

D.z2.0; s2// D UH1.0/.z1;2.0; s2/C z1;2.p1; s2//:

Since p1; p2 < 0, then by Theorem 4.4 z1;2.0; s2/ and z1;2.p1; s2/ are nonzero
(and even non-torsion) in homology. They have the same degree, so their sum
must vanish. This means that there exists a 1-chain  with endpoints at .0; s2/ and
.p1; s2/ such that its graded lift is bounded by z1;2.0; s2/C z1;2.p1; s2/.

Such  must contain a segment connecting .0; s0
2/ and .p1; s0

2/ for some s0
2, so

its graded lift contains U kz1.0; s0
2/ for some k � 0. Then

degz1.0; s
0
2/ � degU kz1.0; s

0
2/ D deg.z1;2.0; s2/C z1;2.p1; s2//

> degz1;2.0; s2/ � 2H1.0/ D degz1.0; s2/:

Contradiction, since z1.0; s2/ had maximal possible grading. �

Proposition 5.6. Suppose that L is an L-space link with linking number zero. If

S3p1;p2
.L/ is an L-space then either S3p1

.L1/ or S3p2
.L2/ is an L-space.

Proof. If L1 or L2 are unknots, the statement is clear. Suppose that both L1
and L2 are nontrivial with genera g1 and g2. Then we need to prove that either
p1 � 2g1 � 1 or p2 � 2g2 � 1. Assume that, on the contrary, p1 � 2g1 � 2 and
p2 � 2g2 � 2.

Consider the generator z1;2.s1; s2/. It appears in the boundary of z1.s1; s2/
with coefficient UH2.s2/, in the boundary of z2.s1; s2/ with coefficient UH1.s1/, in
the boundary of z1.s1; s2 � p2/ with coefficient UH2.p2�s2/ and in the boundary
of z2.s1 � p1; s2/ with coefficient UH1.p1�s1/. For s1 D g1 � 1; s2 D g2 � 1, by
the assumptions we have p1 � s1 � g1 � 1 and p2 � s2 � g2 � 1. Recall that for
an L-space knot,

g.K/ D �C.K/ D max¹sWHK.s/ > 0º C 1:

Thus, since L1 and L2 are L-space knots, all four exponents H1.s1/, H2.s2/,
H1.p1 � s1/, H2.p2 � s2/ are strictly positive. Therefore the cycle z1;2.s1; s2/
does not appear in the boundary of any chain and hence is nontrivial in homology.
On the other hand, by Lemma 5.5 either p1 or p2 is positive, so by Theorem 4.4
z1;2.s1; s2/ is a torsion class. Therefore z1;2.s1; s2/ is a nontrivial torsion class,
and S3p1;p2

.L/ is not an L-space. Contradiction. �
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Remark 5.7. The examples considered in [13, 56] show that for many L-space
links it is possible to have L-space surgeries with p1 > 0 and p2 < 0. For
2-component L-space links with linking number zero, this is not possible (see
[34]). For general 2-component L-space links, there are similar results to the ones
in Propositions 5.5 and 5.6 [34].

6. Relationship with the Sato–Levine and Casson invariants

6.1. Sato–Levine invariant. Let L D L1 [ L2 denote a 2-component link with
linking number zero. Then for i D 1; 2, component Li bounds a Seifert surface
†i in B4 such that †i \ Lj D ¿ for i ¤ j . Let L12 D †1 \†2 denote the link
with framing induced from †1 (or †2). The self-intersection number of L12 is
called the Sato–Levine invariant ˇ.L/, due to Sato [57] and independently Levine
(unpublished).

The Conway polynomial of L of n components is

rL.z/ D zn�1.a0 C a2z
2 C a4z

4 C � � � /; ai 2 Z:

We will write ai .L/ D ai when we want to emphasize the link. For a link L of
two components, we normalize the Conway polynomial so that

rL.t
1=2 � t�1=2/ D �.t1=2 � t�1=2/�L.t; t /;

where �L.t1; t2/ denotes the multi-variable Alexander polynomial of L. The first
coefficient a0 is � lk.L1; L2/ by [19]. When a0 D 0, write zrL.z/ D rL.z/=z

3.
Then zrL.0/ D a2 D �ˇ.L/ by [58].

Since lk.L1; L2/ D 0, the Torres conditions [61],

�L.t1; 1/ D
1 � t

lk.L1;L2/
1

1 � t1
�L1

.t1/; �L.1; t2/ D
1� t

lk.L1;L2/
2

1� t2
�L1

.t2/;

imply that �L.t1; 1/ D 0 and �L.1; t2/ D 0. Hence, we can write

�L.t1; t2/ D t
�1=2
1 t

�1=2
2 .t1 � 1/.t2 � 1/z�0

L
.t1; t2/;

where �L is normalized as in equation (2.6).

Lemma 6.1. Let L D L1 [ L2 be a link with linking number zero. Then

ˇ.L/ D z�0
L
.1; 1/:
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Proof. After setting t1 D t2 D t to obtain the single variable Alexander polyno-
mial, we have

�L.t; t / D .t1=2 � t�1=2/2 z�0
L
.t; t / D �z2 zrL.z/

where the last equality is with the change of variable z D t1=2 � t�1=2. Setting
t D 1 we obtain z�0

L
.1; 1/ D �zrL.0/ D ˇ.L/. �

Lemma 6.2. Let L D L1[L2 be an L-space link with linking number zero. Then

ˇ D �
P
s1;s2

h0.s1; s2/ where h0.s1; s2/ D h.s1; s2/ � h1.s1/ � h2.s2/.

Note that by stabilization (Lemma 2.16) and Lemma 2.15, h0.s1; s2/ has finite
support, so the above sum makes sense.

Proof. Since
z�0
L
.t1; t2/ D

X
qs1;s2 t

s1
1 t

s2
2 ;

and
z�L.t1; t2/ D .t1 � 1/.t2 � 1/z�0

L
.t1; t2/ D

X
as1;s2 t

s1
1 t

s2
2 ;

the coefficients are related by

as1;s2 D qs1;s2 � qsi �1;s2 � qs1;s2�1 C qs1�1;s2�1:

Recall that the inclusion-exclusion formula (2.4) gives the coefficients of the
Alexander polynomial in terms of the h-function of L as

as1;s2 D �.HFL�.L; .s1; s2///

D �H.s1; s2/CH.s1 � 1; s2/CH.s1; s2 � 1/ �H.s1 � 1; s2 � 1/:

Observe that h0.s1; s2/, as defined above, can also be written

h0.s1; s2/ D H.s1; s2/ �H1.s1/ �H2.s2/

where H1 and H2 denote the H -function of L1 and L2, respectively. Then

as1;s2 D �h0.s1; s2/C h0.s1 � 1; s2/C h0.s1; s2 � 1/ � h0.s1 � 1; s2 � 1/

D qs1;s2 � qs1�1;s2 � qs1;s2�1 C qs1�1;s2�1:

Note that when L1 and L2 are both unknots, h0.s1; s2/ D h.s1; s2/.
Observe that qs1;s2 D 0 as s1 ! ˙1 and s2 ! ˙1, and h0.s1; s2/ D 0 as

s1 ! ˙1 and s2 ! ˙1. Therefore,

qs1;s2 D �h0.s1; s2/:

Hence,
ˇ.L/ D z�0

L
.1; 1/ D

X
qs1;s2 D �

X
h0.s1; s2/: (6.1)

�
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Remark 6.3. Similarly, for a knot we have that a2 D
P
s h.s/, where a2 is the

second coefficient of the Conway polynomial.

Corollary 6.4. If L D L1 [L2 is an L-space link with vanishing linking number

and Li are unknots for all i D 1; 2, then ˇ.L/ � 0 and ˇ.L/ D 0 if and only if L

is an unlink.

Proof. Since Li are unknots, we have h0.i; j / D h.i; j / for all i; j . By Corol-
lary 2.17, ˇ.L/ D �

P
i;j h.i; j / � 0. If ˇ.L/ D 0 then h.i; j / D 0 for all

.i; j / 2 Z2. Since L is an L-space link, L is an unlink [32]. �

A link L is called a boundary link if its components L1 and L2 bound disjoint
Seifert surfaces in S3.

Corollary 6.5. If L D L1 [L2 is an L-space link with vanishing linking number

and Li are unknots for all i D 1; 2, then L is concordant to a boundary link if and

only if L is an unlink.

Proof. Clearly the unlink is a boundary link, so instead assume that L is concor-
dant to a boundary link. For boundary links ˇ vanishes by definition. Since ˇ is a
concordance invariant [57], we get ˇ.L/ D 0. By Corollary 6.4 we have that L is
an unlink. �

6.2. Casson invariant. Here we assume that L D L1[L2 � � �[Ln is an oriented
link in an integer homology sphere Y with all pairwise linking numbers equal zero,
and with framing 1=qi on component Li , for qi 2 Z. Hoste [20] proved that the
Casson invariant � of the integer homology sphere Y1=q1;:::;1=qn

.L/ satisfies a state
sum formula,

�.Y1=q1;:::;1=qn
.L// D �.Y /C

X

L
0�L

� Y

i2L0

qi

�
a2.L

0I Y /; (6.2)

where the sum is taken over all sublinks L
0 of L. For example, given a two-

component link L D L1 [ L2 in S3 with framings pi D C1, formula (6.2)
simplifies to

�.S3p1;p2
.L// D �ˇ.L/C a2.L1/C a2.L2/: (6.3)

By Ozsváth and Szabó [43, Theorem 1.3], the Casson invariant agrees with the
renormalized Euler characteristic of HFC.Y /,

�.Y / D �.HFC
red.Y // �

1

2
d.Y /;
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where we omit the notation for the unique Spinc-structure. In terms of the
renormalized Euler characteristic for HF�.Y /, we have

�.Y / D ��.HF�
red.Y // �

1

2
d.Y /:

where the change in sign is due to the long exact sequence HF�
i .Y / ! HF1

i .Y / !

HFC
i .Y / ! HF�

i�1.Y /. As in [43, Lemma 5.2], the renormalized Euler character-
istic can also be calculated using the finite complex

�.Y / D ��.HF�.Ygr>�2N�1//CN C 1; (6.4)

which has been truncated below some grading �2N � 1 for N >> 0. This can be
observed by writing

�.HF�.Ygr>�2N�1// D �.FŒU �=U kC1/C �.HF�
red.Y //; (6.5)

where k D 1
2
d.Y / C N , and noting that d.Y / is even because Y is an integer

homology sphere.

Remark 6.6. In [43] Ozsváth and Szabó use the renormalized Euler character-
istic for HFC instead of HF�. From the long exact sequence one sees that these
two Euler characteristics add up to the renormalized Euler characteristic of HF1

(truncated both at sufficiently large positive and negative degrees), which van-
ishes. This explains the sign change between (6.4) and [43, Lemma 5.2].

6.3. The Casson invariant from the h-function for knots. We will review
how to obtain Casson invariant from the H -function for Y D S3˙1.K/ using the
mapping cone.

Lemma 6.7. Consider ˙1 surgery along a knot K in S3. Then

�.S3˙1.K// D
X

s

˙h.s/�
X

s

�.A0s /tor;

where .A0s /tor denotes the torsion summand of A0s and its Euler characteristic is

taken with respect to internal degree. In particular, when K is an L-space knot,

�.S3˙1.K// D
P
s ˙h.s/.

Proof. Apply observation (6.4) to the truncated cone complex .Cb; D/, as defined
in Section 3.1. This complex has now been truncated in two directions: it is
truncated so that �b � s � b, for s 2 Z Š Spinc.Y;K/, and is truncated in
every summand so that gr.x/ � �2N � 1, N >> 0 for all chains x 2 Cb. Recall
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from Section 3.3 that the homological degree on the surgery complex is a sum of
the internal degree and the cube degree. In particular, each of the summands A0s
(in cube degree 1) and A

1
s (in cube degree 0) has an internal degree deg that is

itself a sum of the Maslov grading and a shift by degz1.s/ which does not depend
on the knot. By Proposition 3.5, degz0.s/ D degz1.s/ � 2H.s/. Combining with
equation (6.5) we calculate the Euler characteristic with respect to internal degree
as

�.A0s />�2N�1 D N C 1C
1

2
degz1.s/ �H.s/C �.A0s /tor;

�.A1s />�2N�1 D N C 1C
1

2
degz1.s/:

Let p D C1, then

�.HF�.Ygr>�2N�1// D
X

�b�s�b

.�H.s/C �.A0s /tor/CN C 1C
1

2
degz1.�b/:

where the last two terms come from A
0
�b

.
By (6.4) we obtain

�.S3C1.K// D
X

�b�s�b

.H.s/ � �.A0s /tor/ �
1

2
degz1.�b/:

By taking K to be the unknot O we similarly obtain

�.S3C1.O// D
X

�b�s�b

HO.s/ �
1

2
degz1.�b/

where HO.si / denotes the H -function for the unknot. Noting that S3C1.O/ D S3

and that �.S3/ vanishes, we have

�.S3C1.K// D
X

�b�s�b

.H.s/ �HO.s/ � �.A0s /tor/ D
X

s

.h.s/ � �.A0s /tor/:

The case of .�1/-surgery is similar, except that in the mapping cone there is
one extraA1 summand andA0 andA1 switch parity, so that we obtain the equation

�.S3�1.K// D
X

�b�s�b

.�H.s/CHO.s/C �.A0s /tor/ D
X

s

.�h.s/C �.A0s /tor/:

Finally, notice that whenK is an L-space knot, �.A0s /tor vanishes. We can see that
this agrees with the state sum property (6.2) of the Casson invariant,

�.S31=q.K// � �.S3/ D qa2.K/ D ˙
X

s

h.s/;

in the special case q D ˙1. �



Surgery on links of linking number zero 365

6.4. The Casson invariant from the h-function for links. For a 2-component
link L D L1 [ L2 with vanishing linking number, we can now describe the
Casson invariant of .˙1;˙1/-surgery in terms of the H -function, and recover
equation (6.3).

Proposition 6.8. Consider .p1; p2/ surgery along an L-space link L D L1 [ L2

of linking number zero when p1; p2 D ˙1. Then

�.S3p1;p2
.L// D p1p2

X

s2H.L/

h0.s/C p1
X

s12Z

h1.s1/C p2
X

s22Z

h2.s2/:

In particular,

�.S3p1;p2
/ D �p1p2ˇ.L/C p1a2.L1/C p2a2.L2/:

Proof. Assume thatp1; p2 > 0. Consider the truncated complex .CQ.HL; ƒ/;D/.
For each complete circle contained in the square Q, we calculate the local Euler
characteristic as follows.

Lemma 6.9. For a 2-component L-space link L D L1[L2 with vanishing linking

number, and s 2 Z2, the Euler characteristic of the chain complex

Ds D

A
10
s

ˆ
L2
s

��

A
00
s

ˆ
L1
s

oo

ˆ
L2
s

��
A
11
s A

01
s

ˆ
L1
soo

equals

�h0.s/ D �H.s/CH1.s1/CH2.s2/:

Proof. We can explicitly calculate the Euler characteristic of Dgr>�2N�1, where
all chains have been truncated below some grading �2N � 1 for N >> 0. By
applying (6.5) and Proposition 3.5 we have the following Euler characteristics
with respect to internal degree:

�.A00s />�2N�1 D N C 1�H.s/C
1

2
degz1;2.s/;

�.A01s />�2N�1 D N C 1�H1.s1/C
1

2
degz1;2.s/;

�.A10s />�2N�1 D N C 1�H2.s2/C
1

2
degz1;2.s/;

�.A11s />�2N�1 D N C 1C
1

2
degz1;2.s/:
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By noting the cube grading of 0; 1, or 2, we have that A00s ;A
11
s are supported in

the even parity, and A
10
s ;A

01
s are supported in the odd parity. Finally, notice that

�.Ds/ agrees with the Euler characteristic of the truncated square, which equals

�H.s/CH1.s1/CH2.s2/: 4

Similarly, the Euler characteristics of the chain complexes

A
01
s

ˆ
L1
s

�! A
11
s and A

10
s

ˆ
L2
s

�! A
11
s

are equal to H1.s1/ and H2.s2/, respectively.
Consider Y D S3p1;p2

.L/. If p1 D p2 D 1, then we can choose an appropriate
truncation b > 0 such that h0.s/ D 0 for all s … Q and h0.˙b;˙b/ D 0. The
truncated surgery complex CQ contains all circles in the square Q except the
crosses as shown in Figure 5. The chain complex consisting of the crosses inside
one circle has Euler characteristic H2.s2/ or H1.s1/ depending on whether the
circle lies on the vertical boundary or the horizontal boundary of Q. Thus the
Euler characteristic is

�.CQ/>�2N�1 D �
X

s2Q

h0.s/ �
X

�b�s1�b

H1.s1/ �
X

�b�s2�b

H2.s2/C �.A11.�b;�b//>�2N�1;

(6.6)
where the last term handles the circles at the corners of the truncated complex.
As in the knot case, we apply the relation (6.4) between the Casson invariant and
renormalized Euler characteristic (which causes a sign change). We then subtract
from (6.6) the corresponding formula for the unlink to obtain

�.Y / � �.S31;1.O// D
X

s2Z2

h0.s/C
X

s12Z

h1.s1/C
X

s22Z

h2.s2/:

From (6.1) we get

a2.L/ D �ˇ.L/ D
X

s2Z2

.H.s/�H1.s1/ �H2.s2//:

By Remark 6.3,
a2.Li / D

X

si 2Z

.Hi .si / �HO.si //

for i D 1; 2 where HO.si / denotes the H -function for the unknot. Thus

�.Y / D �ˇ.L/C a2.L1/C a2.L2/:

This recovers (6.3) for p1 D p2 D 1. The argument is similar in the case where
p1 D p2 D �1 or p1p2 D �1, modulo possible parity shifts. When p1p2 > 0,
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the homology of the cone is supported in cube degree two or zero, and when
p1p2 D �1, the homology is supported in cube degree one (corresponding with
the three cases of Theorem 4.4). Also, for negative surgery coefficients the erased
part of the boundary ofQ would appear with the opposite coefficient. In general,
for p1; p2 D ˙1 we recover

�.Y / D �p1p2ˇ.L/C p1a2.L1/C p2a2.L2/: �

Corollary 6.10. Let L D L1 [ L2 be an L-space link with vanishing linking

number and unknotted components, and let L0
2 be the knot obtained fromL2 after

blowing down the C1-framed knotL1. Then for the torsion partA0s corresponding

to the knot L0
2, we have

X

s2Z

�.A0s /tor D �
X

¹.s1;s2/2Z
2js1¤0º

hL.s1; s2/:

Proof. By Proposition 6.8 and Lemma 6.7,

�.S31;1.L// D
X

s2Z2

hL.s/ D �.S31 .L
0
2// D

X

s2Z

hL0
2
.s/ �

X

s2Z

�.A0s /tor

D
X

s22Z

h.0; s2/ �
X

s2Z

�.A0s /tor:

Hence, X

s2Z

�.A0s /tor D �
X

¹.s1;s2/2Z
2js1¤0º

hL.s1; s2/: �

Remark 6.11. If there exists a lattice point .s1; s2/ where s1 ¤ 0 such that
hL.s1; s2/ > 0, then

P
s2Z �.A

0
s /tor < 0 by Corollary 2.17. Hence L0

2 is not
an L-space knot. This also follows from Corollary 1.6.

Example 6.12. Let †.2; 3; 5/ denote the Poincaré homology sphere, oriented as
the boundary of the four-manifold obtained by plumbing the negative-definite E8
graph, i.e. the plumbing along theE8Dynkin diagram with vertex weights all �2.
In the equality

�.Y / D �.HFC
red.Y // �

1

2
d.Y /;

we must assume that the Casson invariant �.Y / is normalized so that we have
�.†.2; 3; 5// D �1 (see [43, Theorem 1.3]). Therefore d.†.2; 3; 5// D C2.
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The Poincaré homology sphere †.2; 3; 5/ admits an alternate description as
.�1/-surgery along the left-handed trefoil knot T .2;�3/. By reversing orienta-
tion, �†.2; 3; 5/ is .C1/-surgery along T .2; 3/, with d.†.2; 3; 5// D �2. Now
we may observe that

�.S3C1.T .2; 3///D C1 D h.T .2; 3/; 0/:

Example 6.13. Consider .C1;C1/-surgery along the positively-clasped White-
head link L. Surgery along one component yields a right-handed trefoil in S3, and
then .C1/-surgery along the remaining component again produces �†.2; 3; 5/.
We observe that

�.S3C1;C1.L// D C1 D �ˇ.L/Ca2.L1/Ca2.L2/ D �.�1/C0C0 D h.L; .0; 0//:

Similarly, consider .�1;�1/-surgery along the Whitehead link. Surgery along the
first component now yields a figure eight knot in S3, and .�1/-surgery along the
figure eight knot produces the (oppositely oriented) Brieskorn sphere �†.2; 3; 7/,
for which �.S3�1;�1.L// D C1. These two cases correspond with homology
supported in cube gradings two and zero, respectively, for which there is no parity
change in the Euler characteristic calculation.

Alternatively, consider .C1;�1/ or .�1;C1/-surgery along the Whitehead
link. This is the (positively oriented) Brieskorn sphere †.2; 3; 7/. It has ho-
mology supported in cube grading one, which induces the sign change yielding
�.S3C1;�1.L// D �1.

7. Crossing changes

We now extend the skein inequality of Peters [51, Theorem 1.4] to the case of
links with pairwise linking number zero. We continue to omit the unique Spinc-
structure on an integer homology sphere from the notation.

Lemma 7.1. LetK � Y be a genus one knot in an integral homology three-sphere.

Then we have the following inequalities:

d.Y / � 2 � d.Y1.K// � d.Y /:

Proof. The part d.Y1.K// � d.Y / follows from [43, Corollary 9.14]. Now we
prove the inequality that d.Y / � 2 � d.Y1.K//. Since K is a genus one knot,
C1-surgery is a large surgery, i.e. HF�.Y1.K// Š H�.A

�
0 .K// [44]. This is a

direct sum of one copy of FŒU � and some U -torsion. Define HK.s/ by saying
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that �2HK.s/ is the maximal homological degree of the free part of H�.A
�
s .K//

for s 2 Z, which is the same as Definition 2.11. Then d.S31 .K// D �2HK.0/.
Note that HK.0/ � HK.1/ C 1 (the monotonicity of Hk holds in an arbitrarily
homology sphere and the proof is similar to the one in Proposition 2.13), and
�2HK.1/ D d.Y /. So d.Y1.K// � d.Y / � 2. �

Theorem 7.2. Let L D L1 [ � � � [ Ln be a link of pairwise linking number zero.

Given a diagram ofLwith a distinguished crossing c on componentLi , letDC and

D� denote the result of switching c to positive and negative crossings, respectively.

Then

d.S31;:::;1.D�// � 2 � d.S31;:::;1.DC// � d.S31;:::;1.D�//:

Proof. Consider the distinguished crossing c along component Li . Let LnC1

denote the boundary of a crossing disk, i.e. a small disk at c that intersects Li
geometrically twice and algebraically zero times, as in Figure 13. The crossing
change taking D� to DC is accomplished by performing .C1/-framed surgery
along LnC1 � S31;:::;1.D�/. Let Y D S31;:::;1.D�/. It is an integral homology
sphere, and S31;:::;1.DC/ D Y1.LnC1/. We claim that the Seifert genus of LnC1 in
Y is at most 1. One can easily create a genus one surface bounded by LnC1 in Y ,
simply by adding a tube in S3 n L along the Li to the crossing disk bounded by
LnC1 at crossing c. Then the inequalities follows from Lemma 7.1. �

�1

Figure 13. A crossing change taking DC to D�.

8. Genus bounds

8.1. Inequalities. Now we may generalize Peters’ and Rasmussen’s 4-ball genus
bounds to links with vanishing linking numbers [51, 54].

Recall that the n components of the link L D L1 [ � � � [Ln bound n mutually
disjoint, smoothly embedded surfaces in the 4-ball if and only if each pairwise
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linking number is zero. In this case, we define the 4-genus of L as

g4.L/ D min
° nX

iD1

gi

ˇ̌
ˇ gi D g.†i /; †1 t � � � t†n ,�! B4; @†i D Li

±
;

where the component Li bounds a surface †i with smooth 4-genus gi .
Let Bpi

denote a circle bundle over a closed oriented genus gi surface with
Euler characteristic pi . We have that H 2.Bpi

/ Š Z2gi ˚ Zpi
(see for example

[32, Proposition 3.1] for a homology calculation). In [32], the second author
constructed a Spinc-cobordism from .#niD1Bpi

; t0/ to .S3p1;:::;pn
.L/; t/. Following

our conventions for the parameterization of Spinc-structures (Section 2.1), the
labelling of the torsion Spinc-structures ti on Bpi

is such that �jpi j=2 � ti �

jpi j=2, corresponding to the torsion part of H 2.Bpi
/.

We are ready to prove Proposition 1.9. We restate it here for the reader’s
convenience.

Proposition 8.1. LetL � S3 denote an n-component link with pairwise vanishing

linking numbers. Assume that pi > 0 for all 1 � i � n. Then

d.S3�p1;:::;�pn
.L/; t/ �

nX

iD1

d.L.�pi ; 1/; ti/C 2fgi
.ti / (8.1)

and

�d.S3p1;:::;pn
.L/; t/ �

nX

iD1

d.L.�pi ; 1/; ti/C 2fgi
.ti /: (8.2)

Proof. By [32, Proposition 3.10] we get the inequality

d.S3�p1;:::;�pn
.L/; t/ �

nX

iD1

dbot.B�pi
; ti/C g1 C � � � C gn: (8.3)

By (2.1) we can rewrite the right hand side as

nX

iD1

dbot.B�pi
; ti/C g1 C � � � C gn D

nX

iD1

.��.pi ; ti/C 2fgi
.ti //:

This proves the first inequality (8.1). If L� is the mirror of L, then

d.S3p.L/; t/ D �d.S3�p.L
�/; t/:

Since mirroring preserves the 4-genera of knots, the right hand side of (8.3) does
not change if we replace d.S3p.L/; t/ by �d.S3�p.L

�/; t/. This proves the second
inequality (8.2). �
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Proposition 1.9 gives lower bounds on the 4-genera of L in terms of the 3-
manifolds S3˙p.L/ where p � 0. Theorem 1.1 allows us to compute the d -
invariants of S3˙p.L/ for two-component L-space links. Combining these two
observations, we obtain the following bounds for the 4-genera of two-component
L-space links with vanishing linking number.

Theorem 8.2. Let L D L1 [ L2 denote a two-component L-space link with

vanishing linking number. Then for all p1 > 0 and p2 > 0

h.s1; s2/ � fg1
.t1/C fg2

.t2/;

where .s1; s2/ 2 Z2 corresponds to the Spinc-structure t D .t1; t2/ on S3p1;p2
.L/.

Proof. By Theorem 1.1 we have

�d.S3p1;p2
.L/; t/ D �

2X

iD1

�.pi ; ti/C 2max¹h.s˙˙.t1; t2//:

Combining this with (8.2) and dividing by 2, we get

max¹h.s˙˙.t1; t2//º � fg1
.t1/C fg2

.t2/:

By Lemma 2.16, h.s1; s2/ � max¹h.s˙˙.t1; t2//º. Hence

h.s1; s2/ � fg1
.t1/C fg2

.t2/: �

8.2. Examples. There exist some links L for which the d -invariants of the
.˙1; : : : ;˙1/-surgery manifolds are known. In this section we provide some ex-
amples where existing d -invariants calculations can now be applied to determine
the 4-genera for several families of links.

Example 8.3. The two bridge link Lk D b.4k2C4k;�2k�1/ is a two-component
L-space link with vanishing linking number for any positive integer k, see [36].
Theorem 1.1 implies

d.S3�1;�1.L// D 0

and
d.S31;1.L// D �2h.0; 0/ D �2dk=2e;

where the h-function of L can be obtained from the calculation in [36, Proposi-
tion 6.12]. When p1; p2 are sufficiently large positive integers, we obtain that
g4.L/ � k. We may construct two disjoint surfaces bounded by L such that
g4.L/ D k. For details, see [32, Example 4.1].
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Consider the special case of Inequality (1.1) when p1 D � � � D pn D 1. There
is a unique Spinc structure t0 on S3˙1;:::;˙1.L/, and we have

� d.S31;:::;1.L/; t0/=2 �

nX

iD1

dgi=2e: (8.4)

On the one hand, this inequality can be used to restrict the d -invariants of
.˙1/-surgery along a genus one link L with vanishing pairwise linking numbers.
This will be the case in Corollary 8.4. On the other hand, we may bound the
4-genus of a link L if we know d.S31;:::;1.L//. This will be the case in Example 8.7.

Corollary 8.4. Let L denote a genus one link with vanishing pairwise linking

numbers. Then d.S31;:::;1.L/; t0/ D 0 or �2, and d.S3�1;:::;�1.L/; t0/ D 0 or 2.

Proof. By inequality (8.4),

d.S31;:::;1.L/; t0/ � �2:

By observing the negative definite cobordism from S31;:::;1.L/ to S3, we have
d.S31;:::;1.L/; t0/ � 0. Note also that d.S31;:::;1.L/; t0/ is even because S31;:::;1.L/ is
an integer homology sphere. Then d.S31;:::;1.L/; t0/ D 0 or �2.

Let L� denote the mirror link of L. Then

d.S3�1;:::;�1.L/; t0/ D �d.S31;:::;1.L
�/; t0/

equals 0 or 2 since L
� is also a genus one link. �

Let DC.K; n/ denote the n-twisted positively clasped Whitehead double of
K. If K is an unknot, then DC.K; n/ is also an unknot. Otherwise, DC.K; n/ is
a genus one knot. Corollary 8.4 tells us that d.S31 .DC.K; n/// D 0 or �2 and
d.S3�1.DC.K; n/// D 0 or 2. Indeed, using Hedden’s calculation of �.K/ for
Whitehead doubles [16], Tange calcuated HFC.S3˙1.DC.K; n/// for any knot K,
yielding:

Proposition 8.5. [59] Let K be a knot in S3. Then

d.S31 .DC.K; n//; t0/ D

´
0 if n � 2�.K/;

�2 if n < 2�.K/;

and

d.S3�1.DC.K; n//; t0/ D 0:
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This calculation restates Hedden’s criterion on the sliceness of DC.K; n/ in
terms of the d -invariant: if n < 2�.K/, then DC.K; n/ is not slice.

Example 8.6. Let B.K/ be an untwisted Bing double of K. We label the compo-
nent involving K as L2 and the other unknotted component as L1. Then

d.S31;1.B.K/; t0/ D d.S31 .DC.K; 0//; t0/:

Since B.K/ is related to DC.K; 0/ by a band move, when B.K/ is slice, this
implies DC.K; 0/ is slice. In particular, whenever �.K/ > 0, then B.K/ is
not slice. A genera-minimizing pair of surfaces may be constructed as follows.
Since both components L1 and L2 are unknots, they bound disks which intersect
transversely at two points in B4. Add a tube to cancel this pair of intersection
points and increase the total genus by one. This illustrates that the bound given by
Inequality 1.1 is sharp, since

2 D �d.S31;1.B.K/; t0/ D �d.S31 .DC.K; 0//; t0/ � 2dg1=2e C 2dg2=2e

implies that g1 C g2 � 1.

Example 8.7. Let W denote the Whitehead link and L denote the 2-bridge link
b.8k; 4k C 1/ where k 2 N. By the work of Y. Liu [35, Theorem 6.10],

HF�.S3˙1;˙1.L// Š HF�.S3˙1;˙1.W //˚ Fk�1:

Then the d -invariant d.S3
.˙1;˙1/

.L// is the same as the one for the Whitehead link.
Hence by [35, Proposition 6.9],

d.S31;1.L/; t0/ D d.S31;1.W /; t0/ D �2:

By Inequality 8.4, we have

dg1=2e C dg2=2e � 1:

Observe that both the link components of L are unknots. Again we add a tube
to eliminate the intersection, obtaining pairwise disjoint surfaces with total genus
one. Hence g4.L/ D 1, and the bound obtained by Inequality 1.1 is sharp.
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