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Intermittency model for urban development
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The evolution of a stochastic reaction-diffusion model whose dynamics leads to the development of a
strongly inhomogeneous, spatiotemporally intermittent density field is analytically and numerically studied.
The processes underlying the model can be identified with those that govern urban development. The results
for the reaction-diffusion model are thus compared with data obtained from real human demography. Statistical
properties of urban distributions—in particular, the universal power law observed in the population frequency
of cities—are successfully reproduced by the model.@S1063-651X~98!08107-0#
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I. INTRODUCTION: UNIVERSAL LAWS
IN DEMOGRAPHIC DISTRIBUTION

The emergence of coherent macroscopic behavior is a
tinctive feature in the dynamics of natural complex syste
@1#. The interaction between their constituting eleme
originates cooperative evolution that can strongly differ fro
the individual dynamics. In the vast realm of biological ph
nomena, one of such macroscopic manifestations of c
plexity is social behavior, for instance, in the form of dem
graphic evolution@2,3#.

The macroscopic dynamics of complex systems is of
characterized by the appearance of universal laws, wh
validity does not depend on the value of the parameters
drive the microscopic evolution—which put in evidence t
presence of general underlying mechanisms@4#. These uni-
versal laws are typically quantified in terms of characteris
exponents in scale-invariant distributions. A striking e
ample of such universal laws occurs in the field of hum
demography. Some 50 years ago, it was already realized
urban distributions follow certain characteristic patterns t
are repeatedly found in many countries, irrespectively
their social and economical conditions and history. The p
neering work of Zipf included the power-law distribution o
city sizes according to their ‘‘rank’’ as one of the instanc
of what is nowadays known as Zipf law@2#. Those first stud-
ies by Zipf with a few well-known countries have bee
widely extended over the whole human population@3#. Such
observations make it possible to conclude that a unive
property to be ascribed to urban settlements is~1! the frac-
tion f (n) of cities with populationn follows a power law
f (n)}n2r o, with r o'2. ~The subindexo stands here for
‘‘observed’’ quantities while, in the following, the results o
our model will be denoted without subindex.! Remarkably,
this property holds not only for cities, but also applies wh
rural population is included, at least within areas of ev
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geographical conditions. Figure 1, for instance, shows
frequency f (n) for the 2700 most populated cities of th
world @5# and for the 2400 most populated cities of th
United States of America@6#. The data for Switzerland, in
stead, stand for the largest 1300 municipalities@7#, and that
of the ten largest countries in south Europe corresponds
total population counting in a square grid of 10 km2 cells@5#.
In these two cases—wheref (n) represents, respectively, th
fraction of municipalities and grid cells with populatio
n—rural population is also taken into account. It is then a
parent that when population outside cities is also includ
f (n);n2zo with zo'2. The distributionf (n);n22 charac-
terizes thus human settlements both inside and outside c
and is extremely robust with respect to particular conditio
of a certain country or region. In fact, the data for the wo
are expected to mainly reflect the situation of develop
countries, the USA is an economically developed but re
tively young country, whereas Switzerland and Germany
old countries with very stable populations but strongly d

at
a,

tı

FIG. 1. Population frequency for the 2700 largest cities of
world @5# (r o52.0360.02), for the 2400 largest cities of the Unite
States of America@6# (r o52.1160.06), for the 1300 largest mu
nicipalities of Switzerland@7# (zo52.1660.11), and for the total
population of the ten largest south European countries@5# (zo

52.1760.18) divided in equal areas of 10 km2. For the sake of
clarity, the data sets have been mutually shifted in the vertical
rection. The straight lines have slope22.
295 © 1998 The American Physical Society
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ferent recent history. Moreover, as already noticed by Z
the exponentr o'2 does not depend on time. This sugge
that some process of population transport continuously
structures the relative sizes of cities, giving rise to a lo
growth in the population density that makes the power l
persistent.

More recent studies on human demography have sh
that the distribution of areas of satellite urban settleme
around some large cities such as Berlin or London follow
same scaling law as for city populations@8#. Thus ~2! the
fraction f (a) of cities with areaa follows a power law
f (a)}a2so, with so'2. Additional analysis has been fo
cused on geometric properties of urban settlements. Fo
stance, it has been pointed out that, within big cities,
amount of urbanized area decays exponentially from
compact core of maximum population density~often called
‘‘central business district’’!. More precisely@8,9# ~3! the
probability r(d) of finding an urbanized site at distanced
from the compact city core decays asr(d);exp(2lod). The
values oflo are found to vary within one order of magn
tude. Moreover, the surfaces occupied by cities are delim
by rough boundaries, whose geometrical properties are
remarkably uniform@10,11#: ~4! The fractal dimensionDo of
a city boundary takes values between 1.2 and 1.4.

All these observations on real human demography se
to point out the likely existence of some fundamental, rob
mechanisms underlying urban development. These me
nisms, in fact, have to be essentially independent of the
cific social, economical, or political situation. In any oth
case, the above quoted functions would depend on par
eters associated to such factors and thus lose their unive
ity. It has been proposed@12# that this ubiquitous appearanc
of power-law distributions in urban systems might be t
result of a self-organizing process that drives this system
critical state—thus becoming independent of any detail t
would describe specific current situations. Our approach
an explanation of the observed regularities is different.
we show in this paper, multiplicative stochastic proces
@13# combined with a random diffusionlike transport mech
nism are able to offer an explanation for the above descri
observations. This includes not only the quoted power-
distributions@properties~1! and~2!# but also the geometry o
single cities@properties~3! and ~4!#.

In the following, we analyze in detail a previously intro
duced model of city formation@14#. The basic feature in its
dynamics is the development of spatiotemporal intermitt
patterns@15#, where the relevant field accumulates in sha
spikes, that we associate with urban settlements. In
frame, urban development is part of a wide class of natu
processes where intermittency plays a leading role. We m
tion, for instance, fully developed turbulence, where vortic
and energy dissipation concentrate along vortex lines@16#;
magnetic fields in turbulent plasmas, that also beco
trapped by vortices@17#; autocatalytic chemical reaction
@18#; and large-scale matter distribution in the Universe@19#.
In Sec. II we describe the model and some possible varia
and give analytical results that explain a frequencyf (n)
;n22 in the resulting population@property~1!#. In Sec. III
we test the robustness of the model under changes in
f,
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parameters and show that it reproduces quite satisfactoril
the properties of urban settlements quoted above. Finally
Sec. IV we discuss our results and the interpretation of
model.

II. THE MODEL: TRANSPORT PROCESSES
IN URBAN DEVELOPMENT

In our model, demographic structures are conceived as
result of two competing transport processes, which mod
the distribution of population~or resources! in somewhat op-
posite ways. The first one represents the trend of hum
beings to concentrate in relatively small areas—
cities—to take advantage of the consequent concentratio
resources in their social, technical, and economical activit
In fact, these activities are essentially based on the in
change of information between individuals inside the co
munity, which is naturally enhanced if their mutual avera
distance shortens.Cities attract people, and their ‘‘attraction
power’’ grows with their size. In the model, therefore, th
process will be represented by multiplicative events that
each time step and with a certain probability, increase
population of certain regions by a given factor. This grow
is of course fed by population transport from other are
where the population becomes consequently depleted. T
the multiplicative events will occur in such a way that, a
though strong inhomogeneities develop, the total popula
is preserved in the average. As shown below—apart fr
this global, statistical conservation law—the multiplicativ
events are local in space, and can be compared with rea
processes in a reaction-diffusion model. This justifies
name of ‘‘reactions’’ that we apply to them in the following

The second transport process to be introduced in
model accounts for a tendency to avoid the extreme pop
tion densities that the sole trend to concentration descri
above would produce. It is expected that, within small len
scales—namely, inside urban centers—the inhabitants
themselves more comfortable if some local spread of
population is allowed. This spread can be simply represen
by a diffusion mechanism that distributes population b
tween nearest neighborhoods and establishes then a pa
local demographic homogenization. Although in our nume
cal simulations this second transport process is alw
implemented as local diffusion, in the analytical treatme
we consider also the case of a global redistribution of po
lation. This case can be completely dealt with by analyti
means, to show how this class of diffusive transport c
strongly affect the highly inhomogeneous population dis
bution determined by the multiplicative reaction events.

The model evolves on a two-dimensional lattice at d
crete time steps of unit length. The functionn(x,t) indicates
the population in sitex at timet. It is supposed that, initially,
n(x,0)51 for all x. Each time step is divided in two sub
steps, at which the reaction and diffusion mechanisms
successively applied. In the following, we specify the d
tailed form of these processes.

A. Reaction events

In the reaction substep,n(x,t) changes to

n~x,t8!5j~x,t !n~x,t !, ~1!
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PRE 58 297INTERMITTENCY MODEL FOR URBAN DEVELOPMENT
with t,t8,t11, wherej(x,t) is a dichotomic stochastic
process for eachx, defined as

j~x,t !5H ~12q!p21, with probability p

q~12p!21, with probability 12p.
~2!

The parameterq varies in principle within the interval@0,1#
but, due to the symmetry of the possible values ofj under
the change (p,q)→(12p,12q), it can be restricted to
@0,min(12p,1/2)#.

The multiplicative process~1! is a generalization of the
Zeldovich model for intermittency@20#, which corresponds
to p51/2 andq50. As advanced above, it preserves t
average population,

^n~x,t8!&5p
12q

p
^n~x,t !&1~12p!

q

12p
^n~x,t !&

5^n~x,t !&, ~3!

but it can be shown that, under the action of this sole p
cess, higher population moments,^n(x,t)k&5(xn(x,t)k

(k.1), diverge as time elapses@18,21#. This divergence is
in fact the mathematical characterization of intermitten
and is a direct consequence of the appearance of stron
homogeneities in the distributionn(x,t). Sharp spikes appea
where the events with probabilityp accumulate and the loca
population is at each step multiplied by (12q)p21.1. In
the remaining sites, whose number grows in time, the po
lation decreases. Fluctuations thus play a key role in es
lishing the population distribution.

Without the action of diffusion, the reaction even
~1!—as any purely multiplicative stochastic process—wo
give rise to a log-normal distribution for the population fr
quencyf (n). In fact, in Appendix A we show that the popu
lation frequency is in this case given by

f ~n!5
uAun21

Aptp~12p!
expF2

~Alnn1Bt2pt!2

tp~12p! G , ~4!

whereA andB are constants depending onp andq only. It
is well known that the log-normal distribution behaves
f (n);n21 over a wide range that, in multiplicative stocha
tic evolution, increases as time elapses. In Eq.~4! the power-
law approximation holdsn!exp@u(B2p)/Aut#, i.e., within a
range that grows exponentially with time. Note that the
maining factor is still time dependent.

We conclude that a purely multiplicative stochastic p
cess such as Eq.~1! is unable to produce the power-la
-
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exponent observed in real demographic distributions.
sides, in the intermediate region where an exponen
different from the observed one—is well defined,f (n)
;n21, the population frequency is never stationary and
pletes continuously to balance the growth in the extre
zones. As generated by this sole process, intermittency
qualitatively reproduce the strong heterogeneity of dem
graphic distributions but fails to account for their detail
statistical properties. The combination with a diffusio
mechanism, instead, will provide a successful explanation
those properties.

B. Diffusion processes

As discussed above, the second substep in the dyna
of our model corresponds to diffusion. In discrete-time ev
lution, diffusion can be performed by subtracting from ea
sitex a certain fractiona (0,a,1) of the local population
and homogeneously distributing that fraction on a prescri
neighborhood ofx. This can be expressed as

n~x,t11!5~12a!n~x,t8!1
a

k (
x8P$x%

n~x8,t8!, ~5!

where the sum runs over the neighborhood$x% of x andk is
the number of sites in$x%.

Although this diffusion mechanism can be readily impl
mented in numerical simulations, the analytical problem
which can be put as a reaction-diffusion equation with
stochastic reaction term—proves to be rather complicate
solve in a two-dimensional space. In fact, to our knowled
only some generic properties of its solution are known@18#.
Thus we consider first a simplified version of the diffusio
process, in which the neighborhood$x% of each site is ex-
tended to the whole system. As we show later, the effect
this form of ‘‘global’’ diffusion on the evolution given by
the reaction process are essentially the same as those of
diffusion.

1. Global diffusion

When the neighborhood$x% where population fromx
spreads by diffusion is extended to the whole system, Eq.~5!
becomes

n~x,t11!5~12a!n~x,t8!1an0 , ~6!

wheren0 is the ~constant! average population per site, tha
we had initially fixed asn051. The diffusion process be
comes then effectively local in space and the whole effec
reaction and diffusion can be written in a single step as
n~x,t11!5H ~12a!~12q!p21n~x,t !1a, with probability p

~12a!q~12p!21n~x,t !1a, with probability 12p.
~7!
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This stochastic process, which reduces to Eq.~1! for a50, is
not purely multiplicative. By virtue of its linearity, howeve
it can be exactly solved@21#. Due to the relatively strong
effect of global diffusion, intermittency is here inhibited fo
sufficiently large values ofa. For q→0, for instance, an
inhomogeneous, peaked distribution develops fora,12p
only. Under these conditions, the population frequen
f (n)—which is defined fornmin,n,nmax(t), with nmin5a
andnmax(t);@(12a)/p#t—reads

f ~n!5
12a2p

p2a ln@~12a!/p#

3S 11
12a2p

pa
nD 2 ln p/ ln[ p/~12a!] 21

, ~8!

as shown in Appendix B. For large populations, it behaves

f ~n!;n2z, ~9!

with z511 ln p/ln@p/(12a)#.
This result drives the attention to two noticeable fac

First, diffusion is able to modify the exponent in the powe
law dependence of the population frequency determined
the reaction process in a nontrivial manner. The new ex
nent z is not universal, in the sense that it depends on
values ofp and a. Note that fora→0 and arbitraryp, z
→2, which does not coincide with the exponent given
reactions (z51) but agrees with the observed value. Th
implies that the limit of a purely reacting system (a50) is
singular for this system, and that, for weak global diffusio
the model reproduces instead the exponent of real demo
phy. The second point to be remarked as a difference w
the purely reacting system is that, in the region where
power law in the population frequency is established by
competing effects of reaction and diffusion, a stationary d
tribution settles down. As we show in Sec. III, this is in fu
agreement with numerical results for the more realistic c
of local diffusion.

2. Local diffusion

From previous results for the reaction-diffusion Zeldovi
model@18#, it is expected that, in contrast with global diffu
sion, local diffusion in low-dimensional systems is unable
inhibit the formation of strong inhomogeneities in the pop
lation distribution. According to simulations—and as su
gested by our above discussion on global diffusion, wh
the resulting distribution does not depend on time—local d
fusion is necessary to define a stationary population
quency in a growing range of values ofn. Once this time-
independent distribution is established, the main effect
diffusion consists of a population redistribution from th
sites with higher values ofn to low-populated sites.

In the intermediate stationary region, the profile off (n)
can be fully ascribed to reactions. In the reaction substep~1!,
each value ofn changes ton85(12q)p21n with probabil-
ity p or to n85q(12p)21n with probability 12p. For an
infinitely large system, these two contributions determin
new population frequency given by
y
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f

a

f 8~n8!dn85p fS p

12q
n8DdS p

12q
n8D

1~12p! f S 12p

q
n8DdS 12p

q
n8D . ~10!

Now, since the population frequency is supposed to be
stationary state, we should havef 8[ f , which produces the
functional equation

f ~n!5
p2

12q
f S p

12q
nD1

~12p!2

q
f S 12p

q
nD . ~11!

For arbitrary values ofp andq, its only two exact solutions
with definite power-law dependence,f (n)}n2z, are f (n)
5An21 and f (n)5An22, with A a normalization constant
The exponent of the first one coincides with that of t
purely reacting system. We recall, however, that in that c
the population frequency was not stationary. The second
lution is in full agreement with real demography.

The stability of both solutions with respect to the fu
dynamics of the model can be studied by means of numer
techniques. As shown in the next section, our simulatio
have always converged to a population frequencyf (n)
;n2z with z'2, even from initially inhomogeneous distr
butions with large power-law regions wherez51. We can-
not completely discard the possibility that some special
tial distributions converge tof (n);n21, but it is clear that a
large class of initial conditions—including the homogeneo
distribution we are interested in—evolve towards
asymptotic population frequency whose power-law deca
in excellent agreement with real data.

III. NUMERICAL RESULTS: POPULATION FREQUENCY
AND CLUSTER ANALYSIS

In this section, we present the results of numerical sim
lations of the previous model. In our simulations, the pop
lation at each site of theN3N-square lattice is a real numbe
and local diffusion is defined as in Eq.~5!.

Due to the finite size of the lattice, the numerical simu
tions are strongly affected by the fluctuations that drive
model. These lead the finite system to eventual extinction
a characteristic time of the order ofN @22#. This effect is not
representative of the dynamics on an infinite domain con
ered in the preceding section. We have solved this probl
on one hand, by working on rather large lattices (N
'1000) with periodic boundary conditions and, on the oth
by adding a control process that avoids the spurious ann
lation of population@23#. On large lattices (N.500)—where
simulations are extremely time-consuming—the system
able to settle down in a transient~quasistationary! population
distribution of the type derived in the preceding sectio
f (n);n22. Eventually, however, the effect of fluctuations
felt by the finite system, the power-law distribution is d
stroyed, and the population is finally led to extinction. F
smaller systems with periodic boundary conditions this eff
of fluctuations can be avoided by adding extra population
already occupied sites when the total population falls be
its initial value, as explained in the following.

In our simulations the initial population isN2, with one
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unit per cell. At each time step, the total population is cal
lated. Suppose that at timet it has decreased down toN2

2D t . In this situation, we divide the total differenceD t into
Nt

o equal parts,Nt
o being the number of occupied sites at th

time step. The population in each of these sites is then
creased in an amountD t /Nt

o . As a result, at timet11 the
total population has again been fixed to the initial one. I
typical realization (N;200) this correction never exceed
1% of the total population per time step, and becomes
important asN increases. On the other hand, the populat
is not corrected when it becomes greater thanN2, thus pre-
serving the intermittent distribution over the lattice.

In @14# we have already presented numerical results
several parameter sets in which the parameter independ
of the exponentz'2 was shown. As a further verification o
this robustness we have run simulations in whichp, a, andq
are left to vary at random with time, with prescribed dist
butions in their relevant intervals of variation. Even in th
case, the population frequency has the same universal e
nent. Once the independence of the parameters has been
lytically and numerically proven, in the following we choos
at randompP@0.5,1# andaP@0,1# at each time step and fi
q50. This choice ofq simplifies the definition of cities as
clusters of connected nonempty sites.

A. Cluster area and total population

The diffusion process creates correlations among ne
boring cells, making it possible to look at clusters of co
nected occupied sites as well-defined long-lived entities.
may identify those clusters with cities. Using the von Ne
mann neighborhood~i.e., the four nearest neighbors in th
square lattice! to define connected sites, we have calcula
the distribution of cluster sizes focusing the attention on
number of sitesa that each of them contains—i.e., its area
and on the populationm in each cluster,m5(an(x,t),
where the sum runs over the connected area.

Our simulations show that the frequencies of botha and
m follow well-defined power laws, which again turn out
be independent ofp anda. As in the case of the populatio
frequency@14#, only the limits of the range where the pow
law holds depend on the parameters. For highly diffus
systems (a'1) an exponential cutoff at relatively sma
sizes appears. On the other hand, when diffusion is slo
bump in the tail of the distribution, corresponding to high
overloaded sites, is observed. Figure 2 shows the distribu
of a andm and their mutual relationship. Fitting of this da
gives f (a);a2s with s51.9360.03 andf (m);m2r with
r 51.9060.03. These exponents allow us to predict a re
tionship betweenm and a of the typem;ab, with b5(1
2s)/(12r )51.0360.03, in excellent agreement with simu
lations. Note that all these exponents are close to small i
ger numbers.

These results can be compared with real measures for
areas and populations. There are few measures of city a
due to obvious difficulty in defining a boundary for huma
settlements. A few of them, which were obtained after di
talizing data from@11#, are reported in@8#. Least squares
fitting of the three power-law distributions reported the
give values between 1.74 and 1.85, in reasonable agree
with our exponents. Distributions of city sizes according t
-
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their number of inhabitants are better defined due to the
istence of official censuses. These are in fact the data
sented in Fig. 1 for the largest cities in the world and in t
USA. Our result forr is again in very reasonable agreeme
with the exponent of those power laws. Finally, a few stud
have been devoted to the systematic comparison betw
area and population of various settlements. The so-ca
population-area law, which holds also for small towns
states thatb'1 @10#.

B. Density inside cities and fractal boundaries

The numerical analysis of the model is completed w
the study of the geometrical properties of the clusters. Pr
erties~3! and~4! ~see the Introduction! can be easily checked
out in our model. According to the field measures of dens
decay from the highest populated area of real cities, we
identify and locate at each time the most populated cellx* in
the lattice:

n~x* ,t !5max$n~x,t !%. ~12!

Then, we measure the probabilityr(d) of finding a non-
empty ~i.e., urbanized! site at distanced from x* , and aver-
age over time:

r~d!5
1

2pdK (
d5ux* 2xu

Q@n~x,t !#L
t

, ~13!

whereQ(n) is the Heaviside step function. This function
reasonably well fitted by an exponential,r(d)}exp(2ld),
and we obtain values ofl of order 1022 in inverse grid units
~see Fig. 3!. This exponential decay is in fact an expect
result, since the distribution of occupied sites should
driven by diffusion. We have also analyzed the decay of
population density profile with center inx* , which shows a
clear power law, pointing out the role of the reaction proce
in defining the population density distribution.

Finally, we have measured the fractal dimension of
boundary of the clusters by means of a standard b

FIG. 2. Distribution of city areasf (a) and city populationf (n)
for randomly varying parameters in the reaction-diffusion mod
The continuous line has slope22. The relation between area an
population~the population-area law@5,10#! is depicted in the inset.
The continuous line in the inset has slope 1.
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counting algorithm@24#. A representative case of a clust
and its boundary, together with the obtained values for
fractal dimension, is displayed in Fig. 4. As already stat
the very nature of the model allows strong fluctuations in
system, and thus in the groups of connected cells. Our m
sures indicate that the fractal dimension of the largest clu
in the numerical simulations—which usually contains fro
102 to 104 cells—varies between 1.15 and 1.35, depend
basically on the size of the cluster, and is in good agreem
with field measures@10#.

IV. DISCUSSION AND CONCLUSION

We have studied in detail—by analytical and numeri
means—a stochastic reaction-diffusion model whose dyn
ics is essentially driven by fluctuations and, as a con
quence, gives rise to strongly intermittent patterns both
space and in time. The processes that govern its evolutio
namely, diffusive transport and a kind of autocataly
reaction—can be identified with the basic mechanisms
derlying human urban development. We have thus compa
the statistics of the spatiotemporal structures generated

FIG. 3. Exponential decrease in the urbanization probab
from the compact city core. The function is averaged over m
independent realizations. The variabled represents the distance, i
lattice units, to the most populated cell in every snapshot. In
vertical axis the probability of finding an occupied cell at distancd
is represented.
e
,

e
a-
er

g
nt

l
-

e-
n
—

-
ed
by

the model with those observed in urban settlements and h
found very good agreement in the exponents of the resul
power-law population frequency of cities. Other quantitie
such as the distribution of city areas, the decay of popula
density, and the fractal dimension of city boundaries, ha
also been successfully compared. Our main quantitative
sults are summarized in Table I.

The exponent of the population frequency observed
real demography appears to be extremely uniform: it is in
pendent of specific social, economical, or political~present
or past! conditions. This suggest that a successful model
the processes that lead to this kind of universality has to
based on simple and rather general assumptions. We
analytically proven that our model generates the same ex
nent independently of the values of the parametersp, a, and
q that define its evolution. These parameters characteriz
fact particular conditions in the urbanization process. La
values ofp and a should apply to regions with fast urba
dynamics, such as in developing countries, whereas s
values of those parameters describe slowly varying dem
raphy. In real situations, of course, the processes that go
urban evolution are expected to be modulated in time bot

y
y

e

FIG. 4. Fractal dimension of the boundary of a typical lar
cluster. In the example displayed, the slope isD'1.3. A systematic
study of many different realizations of the model~for random pa-
rameters! returns values of the fractal dimension between 1.15 a
1.35, the higher the dimension the larger the cluster on the aver
d data
TABLE I. Comparison between values for different exponents and functions obtained from observe
and from the analytical and theoretical results of the reaction-diffusion model presented here.

Model Observed data

Global demography z522 zo522.060.1 @5#

City sizes~population! r 521.9060.03 r o522.0360.02 @5#

City sizes~area! s521.9360.03 so521.8060.05 @8#

Population-area law b51.0360.03 bo'1 @10,5#

Urbanized profile Exponential Exponential@8,9#

Dimension of the boundary 1.15<D<1.35 1.2<Do<1.4 @10#
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short scales—due to rapidly fluctuating factors—and in
long term—as the region under consideration develops
cially and economically. Numerical simulations of our mod
have shown that even whenp anda vary at random in time
the exponent in the population frequency is preserved.
other quantities analyzed numerically—in particular, the d
tribution of city areas—have also been shown to exh
well-defined power-law decays.

Note that the present model does not take into accoun
effects of birth-death events, which could be thought of a
severe limitation to the validity of our results. It can be a
gued, however, that—in real demography—global popu
tion growth becomes really important only when the popu
tion has settled down. Social stability is in fact a necess
condition for substantial growth. This has been the case,
instance, in European populations, where exponential gro
began only when the nucleation of modern cities had alre
initiated @3#. Once a power-law population distribution ha
been established, exponential growth can only shift the
tribution, but does not affect the relevant exponents.

There has recently been an increasing interest in pro
ing generic mechanisms able to explain the ubiquitous
pearance of universal power-law distributions in physic
biological, social phenomena@4,12#. These mechanism
range from self-organizing evolution to purely stochas
multiplicative processes. In this paper we have shown
connection with a specific problem in the area of global
ciology, that models driven by stochastic processes can
isfactorily explain such universal laws in real systems.

ACKNOWLEDGMENTS

The authors are grateful to the Fritz Haber Institut
their warm hospitality in Berlin. They also wish to thank R
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APPENDIX A

When restricted to local reactions, the multiplicative s
chastic process defined by Eqs.~1! and ~2! reads

n~ t11!5H ~12q!p21n~ t !, with probability p

q~12p!21n~ t !, with probability 12p.
~A1!

This linear stochastic evolution equation is readily solv
For the initial conditionn(0)51, the possible values ofn(t)
are

nk~ t !5S 12q

p D kS q

12pD t2k

,

with probability pk5C~ t,k!pk~12p! t2k, ~A2!

for k50, . . . ,t, whereC(t,k)5t!/k!( t2k)!.
e
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l

e
-
it
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rt
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The indexk acts here as a parameter labeling the val
of n(t). From Eq.~A2!, it can be expressed as a function
n and t as

k5A ln n1Bt, ~A3!

with A5$ ln@(12q)(12p)/qp#%21 and B5A ln@(12p)/q#. In
addition, for larget and intermediate values ofk, the prob-
ability pk can be approximated by a Gaussian function:

pk5
1

Aptp~12p!
expF2

~k2pt!2

tp~12p!G . ~A4!

Now, the probability distribution forn, f (n), can be obtained
from the relationf (n)5pku]k/]nu. Taking into account that
]k/]n5An21, we get

f ~n!5
uAun21

Aptp~12p!
expF2

~Aln n1Bt2pt!2

tp~12p! G , ~A5!

namely, a log-normal distribution forn with a parametric
dependence on time@cf. Eq. ~4!#. As time elapses, the qua
dratic exponential in this distribution becomes broader a
broader and, simultaneously, its maximum shifts at cons
speed. ForuA ln nu!u(B2p)tu, i.e., for n!exp@u(B2p)/Aut#,
the exponential is practically constant as a function ofn and
the power-law approximationf (n);n21 holds. The range
where this approximation is valid grows thus exponentia
with time.

APPENDIX B

For q→0, our reaction model with global diffusion, Eq
~7!, becomes

n~ t11!5H An~ t !1a, with probability p

a, with probability 12p,
~B1!

with A5(12a)/p.1. The solution to this stochastic linea
nonhomogeneous evolution equation gives, for the poss
values ofn(t),

nk~ t !5a(
l 50

k

Al5a
Ak1121

A21
,

with probability pk5~12p!pk, ~B2!

for k50, . . . ,t21 and

nmax5At1a
At21

A21
, with probability pt. ~B3!

Note thatnmax.nk for all k.
As in Appendix A,k plays here the role of a paramet

labeling the values ofn. In terms ofn it reads

k5
1

ln A
lnS A21

a
n11D21. ~B4!
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Now, the probability distribution in terms ofk is, for n
,nmax, pk5(12p)pk, and does not depend on time. Th
distribution forn, f (n)5pkudk/dnu, reads then

f ~n!5
~A21!~12p!

pa ln A S A21

a
n11D ln p/ ln A21

, ~B5!
rt

d

nd
/

which coincides with Eq.~8! whenA is replaced in terms of
p anda.

This distribution is time independent, although the ran
where it holds,nmin5a,n,nmax, grows exponentially as
time elapses. In fact,nmax;At @cf. Eq. ~B3!#. For large popu-
lations, n@a/(A21), we have f (n);n2z with z51
2 ln p/ln A.0.
tt.
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