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Layers of two-dimensional materials arranged at a twist angle with respect to each other lead to enlarged unit
cells with potentially strongly altered band structures, offering a new arena for novel and engineered many-body
ground states. For the exploration of these, renormalization group methods are an appropriate, flexible tool
that takes into account the mutual influence of competing tendencies. Here we show that, within reasonable,
nontrivial approximations, the functional renormalization group known from simpler two-dimensional systems
can be employed for the large-unit cell moiré superlattices with more than 10 000 bands, remedying the need to
employ ad hoc restrictions to effective low-energy theories of a few bands and/or effective continuum theories.
This provides a description on the atomic scale, allowing one to absorb available ab initio information on the
model parameters and therefore lending the analysis a more concrete quantitative character. For the case of
twisted bilayer graphene models, we explore the leading ordering tendencies, depending on the band filling and
the range of interactions. The results indicate a delicate balance between distinct magnetically ordered ground
states, as well as the occurrence of a charge modulation within the moiré unit cell for sufficiently nonlocal
repulsive interaction.
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I. INTRODUCTION

In recent years, the field of two-dimensional materials
has made major experimental and theoretical leaps, which
led to many fascinating discoveries and have broadened
our spectrum on available phases of matter in these highly
controllable structures. Examples of these findings include
superconducting [1,2] or magnetic [3] phases realized down
to the monolayer limit and, related to that, the discovery
of quantum anomalous Hall behavior in thin films [4–11],
with potentially far-reaching technological applications in the
realm of spintronics and quantum computing.

Recently, the twist angle between two sheets of material
stacked atop each other was added as a further interest-
ing research direction. In these twisted structures, it was
shown that, by the emerging huge real space moiré supercells
(tiny Brillouin zone), kinetic energy scales can be reduced
drastically, giving rise to prominent interaction effects. In
Refs. [12,13], it was experimentally demonstrated that, using
this route of control, two sheets of twisted bilayer graphene
can be tuned to exhibit insulating as well as superconduct-
ing behavior. This exciting finding has spurred an enormous
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wave of experimental [14–23] as well as theoretical [24–36]
research. Part of the excitement is founded in the fact that
these two-dimensional systems can be controlled with relative
ease using a backgate, strain, or the value of the twisting angle
as a parameter. This allows one to access correlation regimes
which might be otherwise difficult to access in a structure
with a chemically straightforward composition (in this case
graphene). From the theoretical side, a first approach is to
concentrate on the correlation physics if we restrict ourselves
to the low-energy bands near the Fermi surface. However, the
validity of such an approach is difficult to assess. Often, when
considering twisted van der Waals materials (like in the case
of twisted bilayer graphene), there are no band gaps separating
the lowest from higher energy bands and such a separation
is unclear. Furthermore, topological arguments might obstruct
the construction of such a simple low-energy theory [37]. In
addition, a recent theoretical study shows that the interplay
of correlations might be very subtle and fragile [38]. This
calls for a different vantage point where, in contrast, we do
not want to restrict ourselves to effective low-energy theories
neglecting most of the many backfolded bands arising from
the moiré supercell. When considering such a theory, we
immediately face the problem that at small twist angles many
thousand bands need to be kept. The sheer number of bands
makes theoretical descriptions very cumbersome, especially
when one tries to include interaction effects. Recent advances
in this direction include Refs. [39–41], which treat correlation
effects on the random-phase approximation (RPA) or mean-
field level.
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FIG. 1. Tentative phase diagram from the �-point IOBI fRG for
twisted bilayer graphene at angle 1.05◦ using a Hubbard interaction.
The squares mark nodal antiferromagnetic order, the circles ferro-
magnetic order. For nondiverging flows, a gray square is shown. The
color indicates the critical scale �C that roughly corresponds to the
critical temperature of the phase transition. The orange rectangle
shows the parameter region that simulations with longer ranged inter-
actions have been carried out for (cf. Fig. 7). At strong interactions,
the nodal antiferromagnetic phase is favored, whereas at smaller U ,
the system is susceptible to ferromagnetic ordering if its filling is
close to the Van Hove singularities of the flat bands.

Here we want to add to this by establishing that a more
sophisticated tool, the so-called functional renormalization
group (fRG), can be applied to a Hamiltonian keeping the
many bands in the moiré Brillouin zone, without reducing to
effective low-energy theories. The fRG is a versatile method
capable of describing a plethora of interacting electron sys-
tems [42–46]. Yet, solving the full fRG equations after a
truncation at the two-particle vertex (�(4)) is in general nu-
merically feasible only for systems with a few orbitals per unit
cell, since the vertex function itself scales with the number
of orbitals to the fourth power. In addition, the similarly rich
dependence on momenta—or the unit cell positions when
formulated in real space—remains a numerical challenge. For-
tunately, for the latter dependence, reasonable simplifications
can be formulated, with justifiable restrictions to short-ranged
fermion bilinears [43,47–50]. Furthermore, at least for a larger
set of questions, additional approximations simplifying the or-
bital dependence can be made [51,52]. Here we employ these
two approximation steps to the fRG equations to keep the
numerical effort low enough to treat systems with more than
10 000 orbital sites per unit cell. We show that the treatment of
twisted graphene bilayers close to the so-called magic angle
using these approximations, resolving all individual carbon
sites in the large moiré unit cell, yields similar results to
what we know from our previous study using the RPA of the
crossed particle-hole channel [41].

This paper extends such methodology to nonlocal inter-
actions and the coupling to other channels beyond the RPA,
and of course justifies the use of the RPA for the dominant
instability a posteriori. We summarize the main results of this
paper in the tentative phase diagram obtained with this method
for a Hubbard interaction in Fig. 1. We find two magnetic
orderings: First, antiferromagnetic order on the atomic scale
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FIG. 2. Low-energy window of the noninteracting band structure
of magic angle twisted bilayer graphene along the irreducible path in
the moiré Brilluoin zone. There are four spin degenerate flat bands
around charge neutrality at approximately −0.79 eV.

with a sign change of the order parameter around the AA
regions and, second, ferromagnetic order. The latter is only
found at small interaction strengths and for fillings close
to the Van Hove singularities of the material’s flat bands
at low critical scales. Nodal antiferromagnetism is present
for all fillings that show an instability at larger couplings.
With increasing nonlocal contributions to the interaction, the
instability gets dominated by the repulsion among electrons
outside the AA regions of the moiré unit cell, indicating an
interaction-induced charge redistribution.

The rest of this paper is structured as follows: We will
shortly introduce the tight-binding model we use to describe
magic angle twisted bilayer graphene in Sec. II. Thereafter,
we discuss the method and approximations to it in Sec. III.
Section IV shows the results of our simulations. Finally, we
finish with some concluding remarks in Sec. V.

II. MODEL

We set up the moiré unit cell by constructing the super-
lattice vectors from lattice vectors of the honeycomb lattice
of one single graphene sheet, l1 = (

√
3/2, 3/2, 0) and l2 =

(
√

3, 0, 0). The first superlattice vector can be written as L1 =
nl1 + ml2 with n and m integers defining the twist angle. The
second superlattice vector L2 is rotated by 60◦ with respect
to L1. One of the layers is a honeycomb lattice with Bravais
lattice vectors l1 and l2, the other one is shifted vertically
and rotated by the twist angle θ = arccos m2+n2+4mn

2(m2+n2+mn) around
the AA site. We implement corrugation effects by varying the
interlayer distance in the supercell as described in Ref. [33].
Choosing n = 31, m = 32 sets θ = 1.05◦ and leads to 11 908
sites in one supercell. The hopping parameters are taken from
Ref. [53]. Once we have set up the Hamiltonian for one
specific Bloch momentum k of magic angle twisted bilayer
graphene, we diagonalize the matrix and obtain the spectrum
εb(k) and the orbital makeup uob(k). The low-energy part of
the noninteracting band structure shows four (eight including
spin) flat bands around charge neutrality (cf. Fig. 2). From
the spectrum and orbital makeup, we can construct the free
(Matsubara) Green’s function as a matrix in orbital space:

G(0)
o1o2

(k) =
∑

b

uo1b(k)u∗
o2b(k)

ik0 − εb(k) + μ
. (1)
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As an electron-electron interaction, we employ the Ohno
ansatz [54,55] with a sharp cutoff that allows us to treat
increasingly longer ranged interactions. Its functional form in
real space reads

VO(r) = U rO√
r2

O + r2
�(rc − |r|) , (2)

where we introduced the Ohno radius rO and the cutoff radius
rc. For our simulations, we used rO = 3a (a is the graphene
lattice constant), rc ∈ {0.7a, 1.1a, 1.5a} (these correspond to
nearest, next-nearest, and second-next-nearest-neighbor inter-
actions in monolayer graphene) and the limit rc → 0, i.e.,
a Hubbard interaction. Note that there are more specific
descriptions for the nonlocal interaction, also including the
environmental screening [56].

For this qualitative fRG study, we concentrate on the
simple form Eq. (2) and mainly study the dependence on rc.

III. METHOD

We use the truncated unity approximation to the fRG equa-
tions which is described in more detail in Refs. [48,50], build-
ing essentially on earlier works, mainly Refs. [43,47]. The
main idea of this scheme is to write the interaction vertex as a
sum of the following three channels: direct particle-hole (D),
crossed particle-hole (C), and particle-particle (P) channel.
Each part can be understood as an interaction between fermion
bilinears of the corresponding types. The spatial structures
of these bilinears can then be expanded in basis functions
with specific symmetries in the moiré Brillouin zone. Even

though the basis functions obey specific symmetry relations,
they generally do not restrict the overall symmetry to specific
sectors. This expansion is truncated in its length. As a simple
but nontrivial approximation, we here consider only the in-cell
contribution, i.e., the two fields in the fermion bilinears in
pairing, charge, and spin channels are in the same unit cell.
Given the large extent of the moiré unit cell, this already
quite captures some spatial dependence and hence may be a
tolerable approximation. In addition, we then employ a �-
point approximation of the vertex function in the momentum
argument of the three channels. This means that we ignore
all momentum dependence of the interaction within the small
moiré Brillouin zone. One can convince oneself that this
provides a reasonable approximation as long as the interaction
decays significantly in real space through the moiré unit cell.
Due to the �-point approximation, we are sensitive with
respect to order parameters that vary spatially within the moiré
unit cell but that do not change when translated into other unit
cells. Again, due to the large unit cell, this does not render the
analysis trivial, but it excludes, e.g., density waves that enlarge
the moiré unit cell. These can be investigated by allowing
other wave vectors besides �, which we, however, postpone to
later work. In addition, we neglect self-energy contributions as
well as the frequency dependence of the vertex function and
truncate the fRG equations at the four-point vertex �(4). Since
we want to treat SU (2) symmetric systems, we only need to
consider the flow equations for the symmetrized vertex func-
tion V � where � is the flow parameter. The three channels
obey coupled differential equations in the flow parameter �

and carry orbital indices explicitly:

d

d�
P�

o1o2o3o4
=

∑
o5...o8

PP
[
V �

o1o2o5o6

]
L̇PP,�

o5...o8
PP

[
V �

o7o8o3o4

]
,

d

d�
C�

o1o2o3o4
=

∑
o5...o8

PC
[
V �

o1o8o5o4

]
L̇PH,�

o5...o8
PC

[
V �

o6o2o3o7

]
,

d

d�
D�

o1o2o3o4
=

∑
o5...o8

{ − 2PD
[
V �

o1o8o3o5

]
L̇PH,�

o5...o8
PD

[
V �

o2o6o4o7

] + PC
[
V �

o1o8o5o3

]
L̇PH,�

o5...o8
PD

[
V �

o2o6o4o7

]

+ PD
[
V �

o1o8o3o5

]
L̇PH,�

o5...o8
PC

[
V �

o2o6o7o4

]}
, (3)

with the particle-particle and particle-hole loops:

LPP,�
o5o6o7o8

= 1

βN

∑
k

G�
o5o7

(k)G�
o6o8

(−k) , LPH,�
o5o6o7o8

= 1

βN

∑
k

G�
o5o6

(k)G�
o7o8

(k) . (4)

The projection operators P reduce to unity without further
approximations since they affect the momentum dependencies
we disregarded. In the zero-temperature limit, the Matsubara
sums in Eq. (4) become integrals. As we only need the dif-
ferentiated loops d/d� LPP/PH,�, it is in some cases possible
to evaluate the integral analytically. For the sharp cutoff,
we employ in our simulations, we use the Green’s function
G�

o1o2
(k) = G(0)

o1o2
(k)

√
�(|k0| − �) and are able to trivially

carry out the frequency integrals in the derivative of LPP/PH,�

via the resulting delta function.
The approximation we make to be able to treat systems

with a large number of orbitals is to only allow orbital bilinear
interactions in each of the three interaction channels (IOBI
approximation) [51]. This approximation is certainly valid
as long as the interaction mainly consists of density-density

type components. On the bare level, this is given as long
as the Wannier orbitals used to construct the tight-binding
model have a negligible overlap. But even beyond this simple
situation, the approximation is capable of capturing the stan-
dard Kanamori representation of local interactions in terms of
intra- and interorbital repulsions and Hund’s rule parameters,
as described in Ref. [51]. The IOBI approximation lowers the
complexity of each channel of the vertex to only be number of
orbitals to the power of two instead of four. This simplification
reads

P�
o1o2o3o4

= δo1o2δo3o4 P�
o1o3

,

C�
o1o2o3o4

= δo1o4δo2o3C
�
o1o3

,

D�
o1o2o3o4

= δo1o3δo2o4 D�
o1o3

.

(5)
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The full vertex is composed by simply adding up the three
channels:

V �
o1o2o3o4

= P�
o1o2o3o4

+ C�
o1o2o3o4

+ D�
o1o2o3o4

. (6)

The initial interaction V ∞ is of density-density type and can
be written as a vertex function with components in the D
channel only. V � still is a fourth rank tensor in orbital space in
the IOBI approximation, even though each channel is reduced
to be a matrix in the orbital indices. The projections of the
full vertex V � to a channel are now simply given by the
restrictions of orbital bilinearity:

PP
[
V �

o1o2o3o4

] = δo1o2δo3o4V
�

o1o2o3o4
,

PC
[
V �

o1o2o3o4

] = δo1o4δo2o3V
�

o1o2o3o4
,

PD
[
V �

o1o2o3o4

] = δo1o3δo2o4V
�

o1o2o3o4
. (7)

Insertion of the channel projections into Eq. (3) yields the flow
equations in the static IOBI �-point approximation:

d

d�
P̂� = V̂ PP,� ˙̂LPP,� V̂ PP,� ,

d

d�
Ĉ� = V̂ PC ,� ˙̂LPH,� V̂ PC ,� ,

d

d�
D̂� = − 2 V̂ PD,� ˙̂LPH,� V̂ PD,� + V̂ PD,� ˙̂LPH,� V̂ PC ,�

+ V̂ PC ,� ˙̂LPH,� V̂ PD,� . (8)

The quantities are all matrices and connected by matrix prod-
ucts. The projected vertex function’s matrices read

V̂ PP,� = P̂� + diag(Ĉ�) + diag(D̂�) ,

V̂ PC ,� = diag(P̂�) + Ĉ� + diag(D̂�) ,

V̂ PD,� = diag(P̂�) + diag(Ĉ�) + D̂� . (9)

By the IOBI approximation, the loops are constrained to be
matrices as well and take the following form:

L̂PP,� =
∫

dk0

2π

1

N

∑
k

Ĝ�(k) ◦ Ĝ�(−k) ,

L̂PH,� =
∫

dk0

2π

1

N

∑
k

Ĝ�(k) ◦ Ĝ�(k) , (10)

where the operation Â ◦ B̂ is an elementwise matrix product of
matrices Â and B̂.

Starting from a value �ini = 10 eV for the frequency cut-
off, we integrate the flow to �0 = 0. The value of the fre-
quency step d� as a function of � is adaptively chosen in the
window given by two envelope functions as shown in Fig. 3.
Quite generally, the fRG flow leads to strong coupling, i.e., a
rapid growth of certain components of the flowing interaction.
We draw physical conclusions from this by calculating the
maximum eigenvalue of each interaction channel for each step
for the intraorbital bilinear matrices P̂�, Ĉ�, and D̂�. If one
of the eigenvalues surpasses a critical value (which we set to
103 eV), we stop the flow and do a full eigendecomposition
of the three channel matrices. The eigenvector corresponding
to the maximum eigenvalue indicates the orbital character of
the order parameter associated to the divergence. An example
of several fRG flows at fixed filling and interaction strength

FIG. 3. Sketch of envelope functions to choose d� as a function
of � for the integration of the fRG flow. The gray area is inaccessible,
d� has to be between the red and blue functions in the white area. In
our simulations, we restricted d� by two power-law boundaries with
exponent 1.1 to maximize numerical efficiency.

for different interaction cutoffs is shown in Fig. 4. Including
nearest-neighbor interaction leads to a divergence in the D
channel compared to the magnetic instability in the C channel
found for on-site and longer ranged interactions.

IV. RESULTS

The three main types of ordering found as runaway flows
in this paper are shown in terms of their leading eigenvectors
in Fig. 5: (a) ferromagnetic order throughout the unit cell with
some residual antiferromagnetism on the carbon-carbon-bond
scale in the AB regions, (b) nodal antiferromagnetic order
with a sign change of the antiferromagnetic order parameter
on the atomic scale around the AA regions, and (c) charge-
modulated states that form a honeycomb lattice of the AB and
BA regions. This last instability is characterized by a leading
eigenvector in the density channel. It should be analyzed in
its pure form for rc = 1.5a and U = 8 eV where the sign
change in the eigenvector occurring for smaller rc and U has
disappeared. Then the charge modulation (CM) arises from
the leading eigenvector that has the largest weight in the
AB regions. This represents a strong growth of the effective

FIG. 4. fRG flow of the maximal channel of the interactions
with different interaction cutoffs rc and on-site Hubbard interaction
(rc → 0). The lines’ colors represent whether the vertex function’s
maximum occurs in the C channel (red) or the D channel (blue).
The system is doped to −1 electron per moiré unit cell with an on-
site interaction strength U = 4 eV. For a cutoff at nearest-neighbor
interaction (rc = 0.7), a D channel instability is favored whereas for
the other interactions, it has a C channel instability at much lower
critical value �C .
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AA

(a)

(b)

(c)

AB DW BA AA

AA AB DW BA AA

AA AB DW BA AA

FIG. 5. The three different orderings found in this paper represented by the eigenvectors of the leading channel at the end of the fRG flow.
(a) Ferromagnetic ordering, C channel, Hubbard interaction (rc → 0), −1 electron per moiré unit cell, U = 4 eV, (b) nodal antiferromagnetic
ordering, C channel, Hubbard interaction (rc → 0), charge neutrality, U = 6 eV, (c) charge-modulation ordering eigenvector, D channel, Ohno
interaction with rc = 1.5a, −1 electron per moiré unit cell, U = 6 eV. The left column is the absolute value of the corresponding eigenvector for
the top layer (blue corresponds to zero, yellow to the maximum), the center column is the sign (blue: minus, yellow: plus) and the right column
is the value along the dashed red line through the rhomb-shaped unit cell. In the right panel of (c), the cyan line indicates another realization
of D channel charge-modulation ordering where no sign change in the eigenvector is present. It corresponds to the on-site interaction strength
U = 8 eV.

AA AB DW BA AA

AA

(a)

(b)

(c1)

AB DW BA AA

(c2)

FIG. 6. Charge-density wave (CDW) orderings found for a cutoff at nearest-neighbor interaction (rc = 0.7a). (a) U = 4 eV, (b) U = 8 eV,
and (c1), (c2) U = 6 eV. The leading eigenvector of the D channel is shown. As in Fig. 5, the left column is the absolute value of the
eigenvector for the top layer (blue corresponds to zero, yellow to the maximum), the center column the sign (blue: minus, yellow: plus),
and the right column the value along the dashed red line through the rhomb-shaped unit cell. (c1) shows the leading and (c2) the subleading
eigenvector for both layers. Note that the sign change of the staggering around the AA sites is in the lower layer for the leading eigenvector
and in the upper layer for the subleading eigenvector.
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FIG. 7. Dependence of the phase diagram of magic angle twisted
bilayer graphene on the range of the interaction rc. Squares mark
nodal antiferromagnetic order, circles ferromagnetic order, plus sym-
bols CM states without sign change and crosses CM states with sign
change. For rc = 0.7a, a CDW state (on the carbon-carbon-bond
scale) with slight amplitude modulation on the moiré scale is found.
These states are marked by triangles. Gray squares indicate that the
vertex did not diverge before reaching � = 0.

electronic repulsion in those regions, which should then push
the charges away from there into the AA regions.

A. Hubbard interaction (rc → 0)

For on-site interaction, we find instabilities of magnetic
type [cf. Figs. 5(a) and 5(b)] that agree with the types of
ordering we found in our previous RPA study for the magnetic
susceptibility due to a pure on-site interaction [41]. Addition-
ally, the values of �C are similar in their order of magnitude
to the critical temperatures found in RPA. The phase diagram
obtained from fRG using a Hubbard interaction (rc → 0) is
shown in Fig. 1.

Ferromagnetism is present for fillings close to the Van
Hove singularities of the flat bands and small interaction
strengths. Increasing U or doping away from the Van Hove
singularities leads to nodal antiferromagnetism.

B. Longer ranged interactions

For longer ranged interactions, we find that the system is
susceptible to a CM or charge-density wave (CDW) insta-
bility. For the fillings and interaction strengths indicated by
the orange square in Fig. 1, we carried out the simulations
with longer range interactions. The results are summarized in
a series of additional tentative phase diagrams in Fig. 7. We
observe that for the cases where magnetism is found (rc >

0.7a, U = 4 eV), the critical scale �C is almost independent
of whether the interaction is longer ranged or of Hubbard
type (rc → 0). CM ordering becomes relevant for larger U
(rc > 0.7). While the quantitative location of the AF-to-CM
transition has to be checked in more elaborate numerical
studies, our current finding indicates a high sensitivity of the
interacting system with respect to nonlocal interaction, as also

0 1.5arc

10−4

10−3

10−2

10−1

100

Λ
C

(e
V

)

(a)

U = 4 eV

U = 6 eV

U = 8 eV

0 1.5arc

(b)

0 1.5arc

(c)

FIG. 8. Dependence of �C on range of the interaction rc.
(a) shows the results for charge neutrality, (b) for doping of −1
electron per moiré unit cell, and (c) for −2 electrons per moiré unit
cell. The CM ordering at U > 4 eV and rc � a consistently shows
an increase of �C for all fillings. The differently shaded regions
indicate the regions where the interaction includes the first-, second-,
third-, and fourth-nearest neighbor. Beyond the black vertical line,
interlayer couplings are present in the initial interaction.

stated in Ref. [38]. Additionally, the critical scale takes much
larger values for both the CM and CDW instabilities (see
Fig. 8).

Including nearest-neighbor interactions (rc = 0.7a) leads
to CDW states as dominant instability. In the context of
inheriting the instabilities from AA- and AB-stacked graphene
bilayers, CDW states with opposite charge density modula-
tion on A and B carbon sublattices are expected at longer
ranged interactions [57,58]. Figure 6 shows the CDW states on
the carbon-carbon-bond scale with slight modulations on the
moiré scale. The case U = 6 eV shows two almost degenerate
orderings with (approximate) layer degeneracy.

As soon as next-nearest-neighbor interactions are included,
(rc > 0.7) the CDW states for U � 6 eV get replaced by
CM states that feature a variation of the effective density-
density interaction on the much longer moiré scale and no
staggering on the carbon-carbon-bond scale [cf. Fig. 5(c)].
This interaction is expected to drive a charge transfer within
the unit cell. As the interaction is stronger in the AB regions,
as visible from the absolute magnitude of the eigenvector in
Fig. 5(c), the charge density should get lowered there.

To support the validity of the fRG method used in this
study, we set up simulations of single-layer graphene in a
supercell of approximately 1000 sites and could reproduce
the results for varying nearest- and next-nearest-neighbor
interaction strengths found in fRG studies with high wave-
vector resolution [59] (not shown). This earlier study also
showed a variation of the CDW wave vector toward the �

point for increasingly nonlocal interactions, consistent with
the findings in the moiré systems here.

V. CONCLUSION

We use the fRG to describe interactions and their ordering
tendencies in large moiré unit cells. The results for twisted bi-
layer graphene at magic angles with pure on-site interactions
agree with our previous RPA study. Using the fRG allows us
to include long-range interactions in addition. Here, we find
charge modulated and CDW states besides magnetic orderings
and investigate the competition between the different ordering
tendencies.
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Until now, only s-wave correlations are allowed by our
approximations. Even in this approximation scheme, we are
able to show how different order parameters emerge, some of
which are inherited from nontwisted graphene bilayer systems
(antiferromagnetism on the atomic scale and CDW on the
atomic scale). Additionally, the longer ranged Ohno interac-
tion that is accessible in fRG leads to a competition between
direct- and crossed-particle-hole channels, i.e., charge and
magnetic fluctuations. As a strong competitor of the magnetic
order we find an intra-moiré-cell charge-modulated state for
which the Coulomb repulsion in the AB regions between
the AA spots flows to strong coupling. To the best of our
knowledge, this instability has not been discussed before and
deserves further studies. In particular, one should understand
whether this state can help explain the phenomenology of
twisted-bilayer graphene systems, e.g., by depleting the low-
energy density of states between the AA regions even fur-
ther and therefore localizing electrons in nearly isolated AA
islands. Furthermore, it might well be that, once the charge
redistribution has been accounted for, e.g., by self-energy
terms, the previous magnetic instabilities become relevant
again beyond the parameter range found in this work.

The main goal of this paper was to demonstrate that one
can set up fRG calculations within useful approximations even
for such systems with O(104) bands. We plan to extend the
method to allow for more quantitative comparisons and also to
treat other pairing bilinears in the P channel and momentum
dependencies in the other channels. This will allow us to
study, e.g., unconventional superconductivity and other bond
ordering phenomena on the moiré scale in the IOBI fRG for
systems like magic angle twisted bilayer graphene.
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