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Organic materials and devices for 
brain-inspired computing: From 
artificial implementation to biophysical 
realism
Yoeri van de Burgt and Paschalis Gkoupidenis

Many of the current artificial intelligence (AI) applications that are rapidly becoming 
indispensable in our society rely on software-based artificial neural networks or deep 
learning algorithms that are powerful, but energy-inefficient. The brain in comparison is 
highly efficient at similar classification and pattern finding tasks. Neuromorphic engineering 
attempts to take advantage of the efficiency of the brain by mimicking several crucial 
concepts to efficiently emulate AI tasks. Organic electronic materials have been particularly 
successful in mimicking both the basic functionality of the brain, including important spiking 
phenomena, but also in low-power operation of hardware-implemented artificial neural 
networks as well as interfacing with physiological environments due to their biocompatible 
nature. This article provides an overview of the basic functional operation of the brain and 
its artificial counterparts, with a particular focus on organic materials and devices. We 
highlight efforts to mimic brain functions such as spatiotemporal processing, homeostasis, 
and functional connectivity and emphasize current challenges for efficient neuromorphic 
computing applications. Finally, we present our view of future directions in this exciting and 
rapidly growing field of organic neuromorphic devices.

Introduction
Data-driven information is everywhere today and springs 
from vast sources, ranging from the internet to bodily func-
tions. Yet developing meaningful ways of information extrac-
tion, processing, and representation remains a necessity. Such 
information management would not only be meaningful, but 
it also needs to conform to the societal needs for sustainabil-
ity. Any technological attempt at energy-efficient management 
of information can be traced back to the never-ending quest 
to understand and imitate the inner workings of the brain 
that gives rise to intelligence. Harnessing brain efficiency at 
the technological level can be condensed to the term “brain-
inspired computing.”

An intelligent agent is a system that perceives and inter-
acts with the environment in order to achieve its goals in an 
autonomous and rational manner. This interaction is dynamic, 
therefore intelligent agents are adaptive and with learn-
ing capabilities that improve their performance over time. 

Interaction is also bidirectional, which means that a fully 
functional system consists of sensors to acquire data from the 
environment, processing units to perceive the environment, 
and actuators that act upon that environment. Nevertheless, 
the borderline between these elements is blurred, as properties 
of one element can fuse to another. Indeed, this also applies to 
living organisms wherein sensing, processing, and actuation 
are not centralized into a single entity, but rather are distrib-
uted all over the body.1 Intelligent agents can take the form of 
software or hardware.

A popular approach for software-based agents, is the 
representation of information processing aspects found in 
biological systems with artificial neural networks (ANNs), 
a field commonly known as machine learning or artificial 
intelligence. This approach is based on executing algorithms 
that loosely represent the function of the nervous system, on 
traditional computer architectures. Today, ANNs have spread 
across a variety of domains, including object/pattern and 
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spoken language recognition, data mining in research fields 
such as chemistry and medicine, robotics, autonomous driv-
ing, as well as strategy planning for decision-/policymaking.2,3 
Although ANNs are successful in these shorter-term applica-
tions, still face major challenges in approaching the level of 
biological intelligence and energy efficiency.4–6 This insuffi-
ciency stems mainly from the fact that ANNs are an abstract 
representation of the nervous system.4–6

On the other hand, functions of neural processing can be 
directly emulated with actual electronic devices and circuits 
in hardware agents. This hardware-based paradigm of brain-
inspired processing is also known as neuromorphic comput-
ing.7,8 Prominent examples of neuromorphic computing with 
contemporary silicon technology include IBM’s TrueNorth 
and Intel’s Loihi chip.9,10 Due to energy efficiency and scaling 
when compared to silicon technology, of particular interest is 
also the direct mapping of ANNs on dedicated circuits made 
of emerging, non-CMOS technologies such as memristors.11–13 
Key computational tasks related to ANNs are executed more 
elegantly with these emerging technologies. Although promis-
ing, technical challenges such as reliability, device-to-device 
variation, and large-scale integration still hinder the transfer 
of these emerging neuromorphic computing technologies to 
the domain of consumer electronics.14

In contrast to software, an actual biological system requires 
a physical form of interfacing with actual devices and circuits. 
This combination of hardware and biological systems consti-
tutes an unconventional type of hybrid intelligent agent that 
merges the two domains.15–18 Such a hybrid approach is requi-
site for the local processing of biological signals, extraction of 
specific patterns, and realization of devices that act upon the 
environment in a biologically relevant fashion.18 This bidirec-
tionality requires that both domains, hardware and biological, 
speak a similar language, yet operate on the same time scale 
to enable real-time interaction.16 In other words, the develop-
ment of hybrid agents capable of achieving this is an essential 
requirement for fully autonomous bioelectronics applications 
that face specific bandwidth constraints in communication 
that will potentially enhance the human–machine interaction 
in areas such as neurorehabilitation, neuroengineering, and 
prosthetics, as well as for basic research.16,19–21

The field of hardware-based neuromorphic computing 
has rapidly grown over the past several years, with the main 
advancements driven by the development of inorganic mate-
rials and devices.22,23 Although successful, this approach has 
revealed limitations in certain aspects of neuromorphic com-
puting. Hardware-based agents, for instance, are still strug-
gling to reach the energy efficiency of the brain.24 In addition, 
biorealistic emulation (or biophysical realism) of the neural 
processing functions is questionable in many cases of inor-
ganic devices, since their phenomena are often based on elec-
tronic devices. In addition, biophysical realism is questionable 
in many cases in inorganic devices, since the emulation of the 
neural processing functions is mainly based on electronic 
devices.24

However, biological processing relies on ionic, chemi-
cal, and biochemical signals and its basic building blocks 
are immersed in a common electrochemical environment.1 
Moreover, direct interfacing of inorganic devices with biology 
poses obstacles. Many inorganic devices are unable to oper-
ate in biologically relevant environments, due to the fact that 
their microscopic mechanisms are in many cases sensitive to 
moisture.25 Therefore, their operation demands complex pack-
aging, or indirect contact with a biological environment.26 This 
leads to unavoidable mismatch between neuromorphic devices 
and biology that hinders further development of hybrid agents.

Among other emerging technologies, devices based on 
organic materials are the latest entry into the list for brain-
inspired computing.27,28 Organic materials have shown a level 
of maturity and enjoy widespread acceptance, for instance, 
organic light-emitting-diodes (OLEDs) are already in the 
consumer electronics.29,30 The field of organic bioelectronics 
is also rapidly advancing, demonstrating a viable route for 
organic materials in interfacing biology with electronics.31,32

This work provides a brief historical overview of the basic 
biophysical and artificial models of the building blocks that 
are found in the nervous system. These models are the main 
source of inspiration for the realization of devices for brain-
like computing. We also review the latest advancements in 
organic neuromorphic devices for the implementation of 
hardware and hybrid intelligent agents (for more detailed 
reading about organic neuromorphic electronics, please refer 
to the topical reviews27,33,34). A comparison between biophys-
ical and artificial models of the nervous system is provided, 
indicating the gap between them in several aspects of neural 
processing. Due to their intrinsic properties, organic neuro-
morphic devices have the potential to more precisely capture 
the diversity of biological neural processing and therefore 
enhance biophysical realism. Finally, we briefly discuss 
future challenges and directions for the field of organic neu-
romorphic devices.

Biological neural processing
The basic building blocks of biological networks are the neu-
rons and synapses (Figure 1a).1 A typical neuron consists of 
the soma, axon, and dendrites. Neurons are electrically excit-
able cells that produce, process, and transmit the basic com-
munication event in biological processing. This is a form of 
electrical impulse, the action potential that consists of an ionic 
current flowing through the cell. Input signals are collected 
from the dendrites in the soma and accumulate over time. 
Above a certain threshold, the neuron fires an action poten-
tial toward the next neuron that propagates through the axon. 
Neurons are connected with each other through nanogap junc-
tions (∼nm), the synapses.

A synapse conveys electrical or chemical signals between 
pre- and postsynaptic neurons. There are two types of syn-
apses, chemical and electrical. In chemical synapses, action 
potentials that arrive at the presynaptic neuron trigger the 
release of chemical messengers from the presynaptic to the 
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postsynaptic neuron. These messengers, known as neurotrans-
mitters, bind to specific receptors of the postsynaptic terminal 
and thereby modulate the voltage of the postsynaptic neuron. 
In electrical synapses, the voltage of the postsynaptic neuron 
is modulated with ionic currents through the synapse when 
action potentials arrive at the presynaptic neuron. In both 
cases, electrical activity at the presynaptic neuron modulates 
the connection strength between the pre- and postsynaptic 
neurons. This connection strength can be quantified and is also 
known as synaptic weight, w.

Variation of w over time, known as synaptic plasticity, hap-
pens in a range of time scales. Short-term plasticity lasts for 
milliseconds to minutes, while long-term plasticity persists 
for longer periods of time, ranging from minutes to the life-
time of the brain itself.35,36 Short-term plasticity serves various 
computational tasks, while long-term synaptic changes sup-
port the development of neural networks, and are considered 
as the biological substrate of learning and memory.35 On top 

of that, biological neural networks are immersed in a com-
mon, “wet” electrochemical environment that consists of vari-
ous ionic and biochemical carriers of information. This “wet” 
environment is the source of information carriers and provides 
unprecedented modes of communication between distant neu-
ral populations. The plethora of phenomena found in biologi-
cal neural processing is the main source of inspiration for the 
artificial implementation of neural networks and brain-like 
computing.

Organic devices for brain-inspired computing
Artificial implementation
The field of ANNs aims to mimic and harness the capabil-
ity of the brain to process information in a highly efficient 
manner. The history of ANNs can be traced back to the early 
1940s, when McCulloch and Pitts introduced a simplified 
model of a neuron (Figure 1b).37 A McCulloch–Pitts neuron 
receives binary inputs, and by adding them toward an output 
with a stepwise activation function as a threshold, it returns 
a binary output. In that sense, McCulloch–Pitts neurons are 
able to perform simple Boolean functions. Indeed, when 
arranged in a network, McCulloch–Pitts neurons capture the 
essence of logical computation. Even though the McCulloch–
Pitts model is only loosely analogous to biological neurons, 
it reproduces some key principles of neural processing such 
as the summation of presynaptic inputs in the dendrites, and 
the binary “all-or-nothing” action potential in neurons through 
a stepwise activation function.38 Although the introduction of 
McCulloch–Pitts neurons represents a milestone in ANNs, the 
rigidity of the model becomes obvious after closer examina-
tion. Every input has the same significance toward its sum-
mation at the output, while simultaneously this significance 
cannot be dynamically modulated. Soon after the introduction 
of McCulloch–Pitts neurons, it became apparent, by the pio-
neering work of Hebb, that the activity-dependent develop-
ment or adaptability of biological neural networks was the 
essence of learning.39

A revised version of the McCulloch–Pitts model, known 
as a perceptron, was introduced by Rosenblatt in the late 
1950s (Figure 1b).40 A weight, wi, is now assigned to every 
input, for expressing the strength of influence of each input 
xi to the output y, and is analogous to the connection strength 
between neurons through a synapse. This tunable weight wi 
allows for training the network by modulating wi, in order 
to perform specific computational tasks through repetitive 
presentation of (labeled or known) examples. This process 
captures the essence of biological learning, in which the rep-
etition of a task or external stimulus induces memory toward 
a desired behavior/function. Mathematically, the output of a 
perceptron is given by the weighted summation of inputs or 

y f w xi i
i

= ( )∑ . f is the activation function, which defines the 

output for a given set of inputs and is an abstract representation 
of the firing rate of action potentials in biological neurons.41 

Figure 1. Neural processing: Biological versus artificial 
implementation. (a) The basic building blocks of biological 
neural processing are the neurons and synapses. Neurons 
are electrically excitable cells that produce action potentials. 
Input signals that are collected at the dendrites accumulate 
over time, and above a certain threshold, the neuron fires an 
action potential toward the next neuron. Neurons are connected 
with each other through the synapses. Electrical activity at a 
presynaptic neuron modulates the connection strength between 
the pre- and postsynaptic neuron. The connection strength is 
also known as synaptic weight, w. (b) Artificial implementation 
of a neuron. McCulloch–Pitts neuron: Binary inputs are 
summed toward an output with a stepwise activation function 
f as a threshold, and the neuron returns a binary output. 
Perceptron: In a perceptron, synaptic weights wi are added to 
the inputs of a McCulloch–Pitts neuron for taking into account 
the connection strength between neurons. The activation 
function f in perceptrons is nonlinear. Although not biologically 
realistic, perceptron still represents the basic building block of 
contemporary artificial neural networks.37,40
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Here, f is a stepwise function in binary McCulloch–Pitts neu-
rons and nonlinear in perceptrons.42 Although primitive in 
form, perceptrons still constitute the predecessor building 
blocks of contemporary ANNs that enabled a wide range of 
real-world applications and are still useful in many simple 
classification applications.

The figure of merit for the implementation of hardware-
based ANNs with actual electronic devices is the emulation 
and implementation of the synaptic weight, w, as it allows 
for trainable circuits. In neuromorphic computing. In the 
CMOS based neuromorphic electronics, the w is mapped 
in a combination of binary memories (4-, 8-bit), while in 
emerging non-CMOS electronics, w is mapped in the resis-
tance level of a nonvolatile memory device. A nonvolatile 
memory cell is an electronic device that can store single 
or multiple memory states (defined as a resistance level) 
for a certain period of time, commonly termed as data 
(or state) retention. The states can be modulated with an 
external stimulus (for instance electrical, optical, chemical, 
and mechanical); they can also be accessed/read by a low 
amplitude external stimulus that does not interfere with the 
memory states. The mapping of w requires devices to be 
tuned in an analog fashion or exhibit multiple resistance 
states, to emulate the gradual coupling strength between 
biological neurons.22,43

In contrast, with the other extreme of traditional binary 
memories (with 0s and 1s), gradual programming of mem-
ory allows for fine tuning between inputs and the output of a 
perceptron during the weight update in a training process.22,43 
Although biological synapses are nonlinear (refer to the next 
section), linear and symmetric programming of analog memo-
ries is preferable for practical purposes, as it allows for weight 
update without any prior knowledge of the running weight 
(blind update).44 Consequently, blind update relaxes the need 
for continuous access/reading of the memory state after each 
programming cycle, and this reduces the computational cost 
during training. In fact, this is essential for parallel updating 
and training.45

A variety of neuromorphic functions have been recently 
demonstrated with organic devices made of electrochemical,46–53 
electronic,54 and ferroelectric55–57 phenomena. Moreover, 
basic aspects of short- and long-term synaptic plasticity 
have been emulated with organic devices over the past few 
years (Figure 2a–b).46,47,49,51,56–67 Such devices have shown 
excellent analog memory phenomena (∼500 states)49 and 
endurance (>109 switching cycles),51,67 with ultralow opera-
tion voltage (∼mV),49 low switching energy (∼fJ/μm2),45 and 
sufficient data retention characteristics (∼hours).68 Among 
various device concepts, electrochemical devices based 
on organic mixed-conductors have recently emerged for 
brain-inspired computing (organic electrochemical transis-
tors or OECTs, and electrochemical organic neuromorphic 
devices or ENODes).27,33 Mapping synaptic weights is facile 
in electrochemical organic neuromorphic devices, as almost 
linear tuning of the device resistance is achieved by proper 

programming conditions and by the use of a third, gate ter-
minal that decouples the read and write actions.45,67 In situ 
polymerization of the active organic material during the 
device operation even allows for an evolvable type of organic 
electrochemical transistor that emulates the formation of 
new synapses in biological networks (synaptogenesis).66,69,70 
A particularly appealing aspect is that organic neuromorphic 
devices are compatible with low-cost, additive fabrication 
techniques such as inkjet printing.65,71 Moreover, organic 
neuromorphic devices exhibit unconventional form factors 
such as integration in flexible/stretchable substrates,72,73 and 
operation in aqueous environments.46 These unique uncon-
ventional form factors are of particular interest for the fusion 
of bioelectronics and neuromorphics as well as for emulating 
the actual neural environment which is in principle “wet.” 
Organic devices and small-scale circuits have been also 
leveraged for the realization of neuro-inspired sensory and 
actuation systems.72,73

The next logical outcome for brain-inspired computing 
with organic materials is the implementation of ANNs, since 
the emergence of analog memory devices allows for the map-
ping of synaptic weights in a network (Figure 2c–e). Of par-
ticular interest when implementing hardware-based ANNs, 
is the mapping of the perceptron function w xi i

i∑  (weighted 
summation of inputs) in a crossbar configuration (Figure 2c).27 
This function can be mapped directly in crossbars accord-
ing to Kirchhoff’s Voltage Law I w vi i

i
= ∑ , where vi is an 

input voltage and I is the total current of a crossbar column. 
Functional mapping of the perceptron operation in a cross-
bar configuration requires that parasitic communication (or 
sneak-path) of neighboring cells be eliminated.22 To prevent 
these issues, access devices are commonly used that allow 
only programming of selected devices.74 Parasitic-free opera-
tion allows for parallel device access that reduces the compu-
tational time and cost dramatically during training.

Toward this approach, small-scale ANNs with organic 
devices have been demonstrated.67,75–77 These networks 
were programmed to execute the function of basic logic 
gates. In a network that has been trained to perform a logic 
gate function, combinations of inputs result in specific net-
work outputs. Therefore, these gates are able to classify 
various combinations of inputs for simple decision-making 
or logical reasoning processes (if this and that condition is 
true, then the result is . . .). Recently, a path toward scalable 
organic-based networks has been shown for parallel pro-
gramming/training, by combining electrochemical organic 
neuromorphic devices with an ionic diode (memristive 
switching device) as the access device.67 Of particular 
interest for future applications, is the use of such ANNs in 
a more generic neuromorphic system, a hybrid agent,78–81 
for local signal processing in bioelectronics.18 Indeed, con-
cepts of local processing and feature extraction can mini-
mize data transfer from the acquisition site to peripheral 
electronics, thereby allowing for fully autonomous applica-
tions in bioelectronics.
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Biophysical realism
Major efforts toward the description of biophysics in biologi-
cal neural processing were made almost in parallel with the 
early development of ANNs. In the early 1950s, Hodgkin 
and Huxley provided an accurate and rigorous description 
for the origin and propagation of electrical signals in bio-
logical neurons.41,82–84 The Hodgkin–Huxley model provides 
a detailed description of the initiation process of the basic 

communication event in biological neural processing, namely 
the action potential. The model describes the time-dependent 
relationship between the voltage across a biological lipid 
bilayer membrane and the ionic flow through it.

Figure 3 depicts a neuron and more detailed description 
of the cell membrane, which is surrounded by a common, 
water-based electrolyte in the outer (extracellular) and the 
inner (intracellular) membrane space. The electrolyte contains 

Figure 2. Organic devices for brain-inspired computing. (a) Organic nonvolatile memory devices can be used for mapping the synaptic 
weight, w, of a perceptron in an artificial neural network (ANN). An electrochemical organic neuromorphic device (ENODe) exhibits 
excellent analog memory phenomena (for emulating short- and long-term synaptic plasticity functions) and endurance with ultralow 
operation voltage, low switching energy, and sufficient data retention characteristics (the conductance of the channel can be modulated 
in an analog fashion by applying a series of input pulses).49 (b) Organic neuromorphic devices are compatible with low-cost fabrication 
techniques such as inkjet printing.71 (c) Mapping of the perceptron function in crossbar configuration. Every cell in the crossbar consists of 

an analog memory device and an access device. The perceptron function or the weighted summation of inputs w xi i
i∑ , is a direct result 

of Kirchhoff’s Voltage Law I w vi i
i

= ∑  in a crossbar array.27 (d) ANN network with ENODes. Every cell consists of an ENODe and an ionic 

diode as an access device (ionic floating-gate memory). The network is trained in parallel operation to function as an exclusive OR (XOR) 
logic gate.67 (e) Concepts of local data processing and feature extraction in bioelectronics with neuromorphic systems based on organic 
devices. In this example, a neuromorphic system would be able to detect brain seizures and initiate the operation of a drug delivery device 
for suppressing the seizure. Operation of the system in a closed-loop manner is essential for fully autonomous applications.18
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various ionic species, such as Na+, K+, and Cl–, as well as 
neurotransmitters, which are chemical carriers of informa-
tion. The equivalent circuit of the membrane between the 
extracellular and intracellular space consists mainly of the 
following elements: (1) voltage-gated ion channels (voltage-
sensitive) that are selective to specific ions (i.e., Na+, K+, Cl–). 
(2) Contribution of an ionic leakage current across the mem-
brane. (3) An ionic current source that expresses the active 
transport of ionic species from proteins that act as ion pumps 
(ATP-powered) from/to the common extracellular space, 
through the membrane.

The total ionic current through the membrane is 

I t V C
dV t

t
m m m

m
,( ) = ⋅ ( )

, where t is time, Vm is the voltage and 

Cm is the capacitance of the membrane. The set of nonlinear 
equations of Figure 3 describes in detail the initiation of action 
potentials in neuron cells, as a result of complex exchange of 
ionic species between the outer and inner part of the mem-
brane. Through this ionic exchange, neurons integrate ionic 
signals over time and this alters the membrane potential, Vm. 
When Vm exceeds a certain threshold, neurons fire an action 
potential and then the membrane rests back to the equilibrium 
potential. A relatively simple model for describing such spik-
ing neural behavior is the leaky integrate-and-fire model.85 

The Hodgkin–Huxley model is com-
putationally quite expensive, particu-
larly in simulating large networks. To 
prevent these expensive calculations, 
approximations have been developed 
(the FitzHugh–Nagumo model).86,87 It is 
notable that other elements might also 
exist in the membrane model of Figure 
3, such as neurotransmitter-gated ion 
channels that permit ion flow under the 
influence of specific chemical species, 
the neurotransmitters.88

A closer examination and compari-
son of the artificial implementation (a 
perceptron) with a biophysical neuron 
(Hodgkin–Huxley model) leads to the 
conclusion that, although successful 
from a technological point of view, the 
former is an abstract representation of 
biological neurons without reflecting 
the diversity/wealth of actual neural 
processing (Figure 4).24,89

A perceptron is static as it performs 
floating-point arithmetic, while the 
Hodgkin–Huxley model describes the 
time-dependent response. Time-domain 
processing is exceptionally important in 
biological networks, in which process-
ing is event-based through sequences 
of action potentials, but also energy-

efficient, as these events are of low amplitude and relatively 
sparse (the amplitude is in the range of ∼μV-mV and usually 
<200 events/s, in different modes such as spike bursting).90 
Memory and learning in biological networks are facilitated by 
plasticity that is dependent on the relative timing of spikes that 
arrive at the synapses, with time correlation between spikes 
or even spike rates playing an important role in the synaptic 
modulation.91,92 Spiking neural networks (SNNs) more pre-
cisely capture the phenomena of biological neural processing, 
with spike-timing and rate that is incorporated in their opera-
tion for information encoding.93–95 At a lower level, devices 
and small-scale inorganic circuits that emulate the spiking 
behavior and temporal processing of neurons are also emerg-
ing.96–98 Moreover, organic devices for oscillatory or spiking 
neuromorphic electronics have also been recently reported.72,73

In contrast to an artificial neuron, biological neural pro-
cessing is spatiotemporal, as it happens not only in time, but 
also in space, with input/output signals distributed in the 
dendrites of neurons acting as delay lines with nonconstant 
impedance (Figure 4a).99 This distribution induces a range of 
time delays between inputs and outputs along neurons, and 
even equips them with the ability to discriminate or decode 
time-dependent signal patterns.100 The output of such neurons 
is sensitive to specific temporal sequences, and this is a key 
property for sensory processing (vision, audition), which by 

Figure 3. Hodgkin–Huxley model of biological neurons that describes in detail the 
initiation/temporal response of action potentials in biological cells—illustration of a 
neuronal biological membrane.1,82–84 The neuron itself as well as the membrane are 
surrounded by the extracellular medium, a global electrolyte that contains various ions 
species (Na+, K+, Cl–). The membrane also encloses the intracellular medium that is similar 
to the extracellular space. The membrane forms a capacitor due to the difference in 
ionic concentrations between the intracellular and extracellular space. Various elements/
mechanisms on the membrane surface are acting in parallel and the equivalent circuit of 
the membrane is depicted on the right. The sum of all ionic current contributions through 

the membrane is I t V I t V I Im m i m L P
i

, ,( ) = ( ) + +∑ , with Ii(t,Vm) being the current of the ith 

voltage-gated ion channel, IL the leakage current and IP the ionic current through ion 
pumps. The current of the ith voltage-gated ion channel is I t V g t V V Vi m i m m i, ,( ) = ( ) ⋅ −( ),  
where gi(t,Vm) is the channel conductance and Vi is the voltage difference of the voltage-
gated channel. Similarly, the leakage current of the membrane is I V g V VL m L m L( ) = ⋅ −( ), with 
gL being the leakage conductance and VL its potential difference.
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definition occurs in the time domain.101 In biological neural 
processing, time is inherently embedded in physical space 
since propagation of ionic/molecular signals is finite and slow, 
in contrast to contemporary electronics.102,103 Spatial depen-
dence is not usually considered in ANNs, as input signals are 
summed in single points in space.

Biological neural processing involves exchanges of various 
ionic and molecular species, hence there is diversity in infor-
mation carriers with every carrier type to hold specific role 

in processing. And yet, biological neu-
rons possess the cellular machinery for 
recognizing and selectively processing 
a variety of information carriers (Figure 
4b). For instance, voltage-gated and 
neurotransmitter-gated ion channels 
offer ionic and molecular recognition, 
respectively.1 Moreover, in chemical 
synapses the synaptic strength is modu-
lated by chemical messengers, the neu-
rotransmitters. The description of those 
ionic/molecular processes is absent in 
ANNs, as the synaptic weight is mod-
eled only by a real number without con-
sidering the specificity of those ionic 
and molecular markers.

Biological neural networks are 
immersed in a common electrochemi-
cal environment in extracellular space 
(e.g., an electrolyte). Global concentra-
tions of information carriers in extra-
cellular space also collectively regulate 
the neural network activity under cer-
tain constraints in a top-bottom manner, 
a phenomenon broadly know as homeo-
stasis (Figure 4c).104–106 This top-bottom 
regulation imposes additional degrees 
of collective influence on the network 
activity, or even training of networks 
in a chemical manner (for instance in 
pharmacological treatment, neurotrans-
mitters, drugs, or neurotoxins).107 
Neuromodulators, such as dopamine, 
are known to influence neural networks 
on a global scale and their presence is 
associated with reward or aversion dur-
ing behavioral tasks.108 The essence of 
homeostasis, in a broader perspective, 
is to preserve the neural environment 
under certain physiological conditions 
that are crucial for the existence of life. 
Therefore, homeostasis is believed to 
be basic manifestation of intelligence, 
as is closely related to the ultimate goal 
of living systems which is self-preser-
vation.109,110 Moreover, the excitabil-

ity of neurons, and as such their tendency to produce action 
potentials, can also be regulated globally through the volt-
age-gated ionic channels.111 Although a common input that 
loosely resembles homeostasis is used in ANNs (also known 
as a bias), global ionic and biochemical phenomena are rarely 
considered in practice.

Neural activity is also influenced by electrical perturba-
tions of the common electrolyte in extracellular space.112,113 
This activity can be orchestrated by oscillatory electrical 

Figure 4. Biophysical realism in electrochemical organic neuromorphic devices. 
(a) Spatiotemporal processing. Left: Biological neural processing is spatiotemporal. In 
biological neurons, inputs/outputs are distributed over space, while in artificial neurons 
(i.e., a perceptron) inputs/outputs are concentrated in single points in space and the spatial 
aspect is missing.99,100 Right: The response of organic electrochemical transistors (OECTs) is 
spatiotemporal—the response time of OECTs depends on the distance between the input 
(gate) and output (drain) terminals.117,118 (b) Ionic/molecular recognition. Left: In a neuronal 
membrane, voltage- and neurotransmitter-gated ionic channels offer ionic and molecular 
recognition.1 Right: Ionic recognition in OECTs (selectivity of Na+ over K+ ions) is introduced 
by engineering the organic material of the gate electrode.119 (c) Homeostasis. Left: In the 
brain, global parameters such as temperature, ionic and neurotransmitter concentrations 
regulate collectively neural networks.104,105 Right: Homeostasis in OECTs is induced by using 
a global input for the collective addressing of a device array.124 (d) Functional connectivity. 
Left: Macroscopic electrical oscillations in the brain synchronize distant brain regions and 
induce a functional type of connectivity between them.115,127 Right: Global voltage oscillations 
synchronize an array of OECT devices, each one receiving stochastic and independent 
input signals. The devices are functionally connected through the global oscillation.126,127 
Note: PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate).
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perturbations that are commonly found in the brain (Figure 
4d). These electrical oscillations even synchronize the activ-
ity of groups of neurons that form distant networks.114–116 
Synchronization of different neural groups thus induces a 
functional type of connectivity (that lasts for short periods of 
time), since these groups share a common, time-dependent, 
neural activity due to the common oscillation they receive.

Features of biophysical realism that are mere abstractions in 
artificial neurons or ANNs, are akin to the operation principles 
of organic neuromorphic devices based on mixed-conductors 
(Figure 4). Organic electrochemical transistors (OECTs) have 
the ability for spatiotemporal information processing (Figure 
4a).46,117 The operation of OECTs in electrolytes permits the 
realization of multiterminal transistors, in which a single 
channel can be probed with an array of gates. The response 
of such a device depends not only on time, but also on the 
distance between the device terminals.117,118 As a result of this, 
spatially distributed voltage inputs on the gate electrode array 
correlate with the output of the transistor leading to the ability 
of the multi-terminal device to discriminate between different 
stimuli orientations. This behavior is analogous to biological 
phenomena, such as the ability of the primary visual cortex to 
detect edges from visual stimuli. This and similar functions 
in a single organic electronic device enables the emulation of 
complex spatiotemporal processing functions with compact 
device configurations, or even the discrimination of biological 
(sensory) signals that span over space and time.

The intrinsic properties of OECTs and their materials also 
enable the introduction of ionic or even molecular recognition 
(Figure 4b). By engineering the chemical structure of the active 
materials (i.e., channel or gate material) OECTs are capable 
of ionic signal discrimination in sensing, for instance selectiv-
ity of Na+ over K+ ions, or selectivity of Ca+, NH4

+ ions.119–121 
Selective detection of neurotransmitters such as dopamine, in 
the presence of other interfering chemical compounds is also 
possible with OECTs.122,123 The above examples emphasize the 
potential of OECTs to emulate the selectivity of ionic channels 
in processing (voltage- or neurotransmitter-gated channels in 
biological membranes), or to decouple the variety of informa-
tion carriers that are present in the biological environment.

The operation of an array of OECTs in common/global 
electrolytes, can be leveraged in order to induce global regula-
tion of the array (Figure 4c).124 A common gate electrode can 
collectively address or modulate the output of the device array. 
Global regulation depends on the electrolyte concentration, a 
behavior which is reminiscent of biological homeostasis.124,125 
In the actual neural environment, homeostatic or global param-
eters such as temperature, neurotransmitters, as well as ionic/
chemical species regulate the activity of large neural networks 
(for instance various pharmacological agents induce or sup-
press collective neural activity, namely epileptic events).104,105 
At the level of neuromorphic functions, homeostasis allows 
for the existence of a “global pool” of information carriers that 
regulate or interact with a device array in a range of spatiotem-
poral scales on top of single device behavior.

Due to the inherent capability of a device array to operate 
in common electrolytes, the response of the device array when 
receiving stochastic input signals can be synchronized with a 
global oscillatory input signal (Figure 4d).126,127 Although not 
physically connected with metal lines, such devices are func-
tionally connected through the global oscillatory input as they 
share a common correlation over time. In the brain, apart from 
actual structurally connected networks, networks also exist 
that share common activity over short periods of time and are 
thus functionally connected.116 Phenomena such as functional 
connectivity can be harnessed for inducing a transient link 
between different blocks in a neuromorphic circuit.

Conclusions
Organic devices for brain-inspired computing have rapidly 
evolved over the past few years, delivering metrics that are in 
some cases competitive with or even outperform their inor-
ganic counterparts (for instance low-power operation, analog 
memory phenomena, tunable linearity during weight update). 
With these properties, organic devices can enable applications 
for neuromorphic computing and ANNs in domains such 
as local data processing, training and feature extraction in 
energy-restricted environments. Their facile interfacing with 
biology, also opens new avenues in neuromorphic sensing, 
actuation and closed-loop control in bioelectronics.

Nevertheless, materials development, long-term reliability 
and large-scale integration are major challenges that need to 
be addressed for real-world applications. Toward this direc-
tion, the materials that are used for organic neuromorphic 
devices should be air-stable, or able to be encapsulated with 
oxygen or moisture barriers. Thin-film deposition processes 
should also be further improved in terms of reliability and spa-
tial homogeneity in order to pave the way for large-scale inte-
gration. Moreover, parasitic reactions should be minimized in 
electrochemical devices in order to avoid device degradation 
or any lethal reaction byproducts for living organisms in the 
case of biointerfacing. Major challenges still exist to down-
scale device metrics (for instance operation voltages) in order 
to approach those of biological phenomena such as action 
potentials. Especially for biointerfacing, the intrinsic device 
noise is critical and additional investigations are therefore 
needed for further improvements.

In the longer term, it is now well recognized that ANNs 
still face major challenges in approaching biological levels 
of intelligence and therefore neuroscience-driven develop-
ment is essential for revisiting the computational primitives of 
the brain. Toward this approach, organic devices have shown 
the potential for biophysical realism in neuromorphics, by 
emulating aspects of biological neural processing that are 
nontrivial to be accessed by the inorganic counterparts. As 
an illustration, biological aspects of homeostasis, functional 
connectivity and ionic/molecular recognition rise naturally in 
such neuromorphic devices with inherent sensing capabili-
ties. Ultimately, improving metrics and ANN-driven develop-
ment in the shorter-term combined with neuroscience-driven 
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development of novel device concepts in the longer-term, will 
allow organic materials to be an enabling technology for inno-
vations in human-oriented neuromorphic computing.
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