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Abstract
We consider the task of discovering functional dependencies in data for target attributes
of interest. To solve it, we have to answer two questions: How do we quantify the depen-
dency in a model-agnostic and interpretable way as well as reliably against sample size and
dimensionality biases? How can we efficiently discover the exact or α-approximate top-
k dependencies? We address the first question by adopting information-theoretic notions.
Specifically, we consider the mutual information score, for which we propose a reliable
estimator that enables robust optimization in high-dimensional data. To address the second
question, we then systematically explore the algorithmic implications of using this measure
for optimization. We show the problem is NP-hard and justify worst-case exponential-time
as well as heuristic search methods. We propose two bounding functions for the estimator,
which we use as pruning criteria in branch-and-bound search to efficiently mine dependen-
cies with approximation guarantees. Empirical evaluation shows that the derived estimator
has desirable statistical properties, the bounding functions lead to effective exact and greedy
search algorithms, and when combined, qualitative experiments show the framework indeed
discovers highly informative dependencies.

Keywords Information theory · Knowledge discovery · Approximate functional
dependency · Pattern mining · Algorithms · Branch-and-bound

1 Introduction

Given data D from a joint distribution p(I, Y ) over input variables I = {X1, . . . , Xd} and a
target of interest Y , it is a fundamental problem in knowledge discovery to find subsetsX ⊆ I
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that jointly influence or (approximately) determine Y . These dependencies are essential for
a variety of applications. In scientific domains, for example, the analysis often involves
identifying compact sets of descriptors that capture the underlying process of the various
phenomena under investigation [1,2]. The task of functional dependency discovery can be
formulated as finding the top-k attribute subsets X ∗

1 , . . . ,X ∗
k ⊆ I with

Q(X ∗
i ; Y ) = max{Q(X ; Y ) : Q(X ∗

i−1; Y ) ≥ Q(X ; Y ),X ⊆ I} , (1)

where Q is some function quantifying the functional dependency of Y on X .
For an effective knowledge discovery procedure, Q should be able to identify any type of

dependency, e.g., nonlinear, multivariate, without a priori assumptions on the underlying data
generating process p [3]. Moreover, solutions to Eq. (1), besides being efficient, should be
exact or come with approximation guarantees. These guarantees can, in particular, verify the
absence of meaningful dependencies for Y and prompt the acquisition of new and potentially
more relevant features [2]. These two requirements differentiate our task from similar and
well-known applications such as key discovery for data management [4], feature selection in
machine learning [5], and Markov blanket discovery in Bayesian networks [6]. The former
operates under a closed world assumption and hence the discovered keys will not generalize
to unseen data drawn from the same distribution p. Unlike feature selection where the end-
user is a machine learning algorithm, we are interested in providing the analyst with sparse
but exact solutions where all interactions are accounted for, rather than high-dimensional,
greedy solutions for pairwise associations (see [7] for a survey on scores Q designed for
feature selection). Lastly, Markov blanket algorithms1 often operate under the assumption
that p is faithfully represented by a DAG, implying a unique Markov blanket. Additionally,
high-order dependencies (e.g., Y = X⊕ Z ) are neglected due to the greedy search employed.
The variant we consider does not impose a DAG structure for p, nor faithfulness, and is
therefore better suited for exploratory analysis and high-order dependencies.

Given categorical data D, the ideal choice for Q is the information-theoretic measure
fraction of information [9–11], defined as

F(X ; Y ) = H(Y ) − H(Y |X )

H(Y )
,

where H(Y ) = −∑
y∈Y p(y) log(p(y)) denotes the Shannon entropy and H(Y | X ) =∑

x∈X p(x)H(Y | X = x) the conditional Shannon entropy. The numerator is themutual
information I (X ; Y ) = H(Y ) − H(Y | X ). The entropy measures the uncertainty about
Y , while the conditional entropy measures the uncertainty about Y after observing X . The
fraction of information then represents the proportional reduction in uncertainty about Y by
knowing X . Moreover, the extreme values F(X ; Y ) = 1 and F(X ; Y ) = 0 correspond to
functional dependency and statistical independence, respectively.

Estimating the mutual information I (X ; Y ) naively with empirical probabilities, however,
can lead to an overestimation of the true dependency between X and Y—a behavior known
as dependency-by-chance [12]. While asymptotically efficient [13], the empirical estimator
Î (X ; Y ) has an increasing bias with the domain size of variables [14], and hence, is unsuited
for dependency discoverywherewehave to soundly compare different variable sets of varying
dimensionality and consequently of widely varying domain sizes. It is even possible that a
dependency is indicated, whenX and Y are actually independent in p (see Fig. 1). As a result,

1 Established Markov blanket algorithms, e.g., IAMB [8], or the more specialized PCMB [6], are primarily
based on greedy search and independence tests, combined with mutual information to rank candidates. To
find all possible Markov blankets, there are extensions based on the random greedy algorithm and repeated
algorithm executions [6].
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Fig. 1 Histogram of plug-in mutual information estimates Î for independent dice rolls. Top: For a pair of dice
d1, d2, we perform 50 independent rolls and compute Î (d1; d2). We repeat this process with 10, 000 simula-
tions and plot the histogram for 20 equal-frequency bins. Despite having a population value of I (d1; d2) = 0,
the histogram has a right-tailed bell shape with expected valueE[ Î (d1; d2)] ≈ 0.44. Bottom: Same procedure
but with 5 dice. Here the histogram has a left tail, with E[ Î ({d1, d2, d3, d4}; d5)] ≈ 2.48

Î (I; Y ) is a trivial and uninformative maximizer for Eq. (1). To the best of our knowledge,
there are no exact algorithms that efficiently solve Eq. (1) incorporating more refined mutual
information estimators.

To obtain a statistically reliable estimator for high-dimensional mutual information, we
propose a correction to the plug-in Î by subtracting its expected value E0[ Î (X ; Y )] under
a suitable null hypothesis model. We choose the nonparametric permutation model [15, p.
214], under which the expected value is computed as the average Î (X ; Yσ ) over all sample
permutations σ . The resulting estimator Î0(X ; Y ) = Î (X ; Y ) − E0[ Î (X ; Y )], which we
term the reliable mutual information, not only accounts for dependency-by-chance, but is
also efficiently computed. For the discovery part, we show that maximizing Eq. (1) with
Î0 is NP-hard. To enable efficient exact, approximate, and heuristic algorithms, we derive
two bounding functions for Î0 that can be used with branch-and-bound and greedy search to
heavily prune the search space.

In this articlewebuild upon and extendour recentwork published asMandros et al. [16,17].
In the former paper, we introduced the general problem, a corrected estimator, and a bounding
function that allows branch-and-bound search for the strongest dependencies. In the second
paper, we focused on the discovery aspect, proved NP-hardness, proposed a tighter bounding
function, and investigated better algorithms for both exact and heuristic search. In this paper,
we present these results in a unified way that allows for more detail and insight in both the
problem and proposed solutions. In particular, we provide a more comprehensive derivation
of our estimator and make the link to nonparametric permutation tests. We show that in our
setting mutual information is not submodular, which excludes approximation guarantees of
greedy optimization for this function. Last, we extend the evaluation and include comparisons
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with a corrected estimator using a parametric null model, and by performing bias, variance,
and precision/recall experiments.

Our overall contributions are the following. We derive a consistent and reliable estima-
tor for mutual information to correct the positive bias, as well as accompany the estimator
with a set of useful properties that can be used for optimization (Sect. 2). We then study
the algorithmic aspects, show that maximizing the reliable estimator is NP-hard (Sect. 3),
and derive two effective bounding functions that can be used by algorithms to prune the
search space (Sect. 4). The first function is applicable to any estimator having a monotoni-
cally increasing (w.r.t. the superset relation) correction term, while the second is specifically
tailored to our proposed reliable estimator and has an unbounded pruning potential over the
first. We propose an admissible branch-and-bound algorithm to discover the α-approximate
top dependencies for desired approximation guarantee α ∈ (0, 1], and in addition, a fast
greedy algorithm (Sect. 5). Last, we perform an extensive evaluation for the estimator, prun-
ing functions, and resulting discovery framework (Sect. 6). The experiments demonstrate an
excellent performance for the greedy algorithm combined with Î0 (a non-monotonic, non-
submodular set function), with optimal or nearly optimal results in all 35 real-world datasets
under investigation.

2 Reliable mutual information and properties

In this section we derive our estimator for mutual information, as well as properties to be
used for optimization. We start with preliminaries and notation.

Let us denote by [n] the set of positive integers up to n. The symbols log and ln refer to
the logarithms of base 2 and e, respectively. We assume a set of discrete random variables
I = {X1, . . . , Xd} and Y is given along with an empirical sampleDn = {d1, . . . ,dn} of their
joint distribution p. For a variable X we denote its domain, called categories (or distinct
values), by V (X) but we also write x ∈ X instead of x ∈ V (X) whenever clear from the
context. We identify a random variable X with the labeling X : [n] → V (X) it induces on
the data sample, i.e., X(i) = di (X). Moreover, for a set S = {S1, . . . , Sl} of labelings over
[n], we define the corresponding vector-valued labeling by S(i) = (S1(i), . . . , Sl(i)). With
XQ for a subset Q ⊆ [n], we denote the map X restricted to domain Q.

We define cX : V (X) → Z+ to be the empirical counts of X , i.e., cX (x) = |{i ∈ [n] :
X(i) = x}|. We further denote with p̂X : V (X) → [0, 1], where p̂X (x) = cX (x)/n, the
empirical distribution of X . Given another random variable Z , p̂Z | X=x : V (Z) → [0, 1] is
the empirical conditional distribution of Z given X = x , with p̂Z |X=x(z) = cX∪Z (x,z)/cX (x)

for z ∈ Z . However, we use p̂(x) and p̂(z | x), respectively, whenever clear from the context.
These empirical probabilities give rise to the empirical conditional entropy Ĥ(Y | X) =∑

x∈X p̂(x)Ĥ(Y | X = x), the empiricalmutual information Î (X; Y ) = Ĥ(Y )−Ĥ(Y | X),
and the empirical fraction of information F̂(X; Y ) = Î (X; Y )/Ĥ(Y ). These estimators are
also known as plug-in estimators, because they arise from simply “plugging in” the empirical
distribution p̂ instead of p.

2.1 Reliable mutual information

Intuitively, the reason why Î is unreliable as an estimator for I is that it does not take into
account the confidence in the empirical estimates Ĥ(Y |X = x) for subsets X ⊆ I. This is
particularly profound for the extreme case where the empirical count cX (x) is equal to 1. In
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this situation cX∪Y (x, y) = 1 exactly for one value of y ∈ V (Y ) and, hence, Ĥ(Y |X = x)
is trivially equal to 0 independent of the true distribution p. This case is likely to occur
for many of the sampled values for X if the data size n is small compared to the observed
domain ofX—even when I (X ; Y ) = 0, which coincides with the highest error, because then
H(Y |X = x) = H(Y ) while Ĥ(Y |X = x) = 0.

The tendency for the plug-in estimator Î to overestimate is more formally explained by
the bias result of Roulston [14], where

bias( Î (X ; Y )) = |V (X ∪ {Y })| − |V (X )| − |V (Y )| + 1

2n
.

We see that the bias is independent of the actual distribution p and it depends solely on
the domain sizes and the number of samples n. The bias is high when the X , Y , samples
produce jointly a large domain compared to their marginal domains and sample size n, and
is at the highest when X and Y are independent in the underlying distribution p, i.e., when
p(X , Y ) = p(X )p(Y ), and hence I (X ; Y ) = 0.

These last observations suggest a correction for the empirical Î (X ; Y ) by subtracting its
bias assuming independence for X and Y . A nonparametric choice for the null model is the
permutation model [15, p. 214], arriving at the bias E[ Î (X ; Y ) − I (X ; Y ) | I (X ; Y ) = 0]
expressed as the expected value

E0[ Î (X ; Y )] = 1

n!
∑

σ∈Sn
Î (X; Yσ ) , (2)

where Sn denotes the symmetric group of [n], i.e., the set of bijections from [n] to [n], and
Yσ denotes the composition of map Y with the permutation σ ∈ Sn , i.e., Yσ (·) = Y (σ (·)).
Essentially, Eq. (2) is the average empirical mutual information over all possible sample
permutations with fixed marginal counts. With this, the reliable mutual information is
defined as

Î0(X ; Y ) = Î (X ; Y ) − E0[ Î (X ; Y )] ,

and the reliable fraction of information as

F̂0(X ; Y ) = Î0(X ; Y )/Ĥ(Y ) .

The reliable estimator Î0 controls the number of false positives by being unbiased under
the null hypothesis with fixed marginal counts. In relation to statistical hypothesis testing
and permutation tests, here we subtract the expected value of the null distribution instead of
finding the exact probability of the tail. Our approach is more flexible as it does not require a
fixed confidence interval, but instead it adapts to the data and the different dimensionalities
encountered during search2. Moreover, we will see below that computing the mean is much
more efficient than enumerating all possible permuted datasets to obtain the exact probability
(which is only applicable for small data). Intuitively, Î0 works in the following way: when
it appears in a sample that Î (X ; Y ) is high for a X ⊆ I with a large domain, many of the
permutations will also show high dependency, and hence the correction is large as well. From
here on we use these quantities interchangeably since Ĥ(Y ) is just a constant normalization,
and we abbreviate the correction terms E0[ Î (X; Y )] as m0(X , Y , n) and the normalized
version as b0(X , Y , n) = E0[F̂(X; Y )] = m0(X , Y , n)/Ĥ(Y ).

2 Normally in such cases one would consider multiple hypothesis testing to control the family-wise error rate,
e.g., Bonferroni correction. Our approach does not depend on the number of hypotheses, with the level of
conservatism controlled by the domain size of variables. This means that it does not become unnecessarily
strict for large hypothesis spaces, e.g., a high-dimensional dataset, and better adapts to the data at hand.
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Regarding the evaluation of Eq. (2), a naive approach with n! possible permutations is
computationally infeasible.However,Vinh et al. [18] show that the complexity is dramatically
reduced by reformulating it as a function of contingency table cell values and exploiting
symmetries. Let the observed domains of X and Y be V (X ) = {x1, . . . , xR} and V (Y ) =
{y1, . . . , yC }, respectively.We define shortcuts for the observedmarginal counts ai = c(X =
xi ) and b j = c(Y = y j ) as well as for the joint counts ci, j = c(X = xi , Y = y j ). The
contingency table c for X and Y is then the complete joint count configuration c = {ci, j :
1 ≤ i ≤ R, 1 ≤ j ≤ C}. The empirical mutual information for X and Y can then be
computed as

Î (X , Y ) = Î (c) =
R∑

i=1

C∑

j=1

ci j
n

log
ci j n

ai b j
.

Each σ ∈ Sn results in a contingency table cσ . We denote with T = {cσ : σ ∈ Sn} the
set of all such contingency tables. Crucially, all these tables have the same marginal counts
ai , b j , i ∈ [1, R], j ∈ [1,C]. Hence, we can rewrite

m0(X , Y , n) =
∑

cσ ∈T
p̂0(cσ )

R∑

i=1

C∑

j=1

cσ
i j

n
log

cσ
i j n

ai b j
,

where p̂0(c) is the probability of contingency table c ∈ T . This allows us to re-order the
terms to have a per-cell contribution to m0, rather than per-contingency-table c ∈ T , i.e.,

m0(X , Y , n) =
R∑

i=1

C∑

j=1

n∑

k=0

p̂0(c
σ
i j = k)

k

n
log

kn

aib j
.

Under the permutation model, the empirical counts cσ
i j are distributed hypergeometrically,

i.e.,

p̂0(c
σ
i j = k) =

(
bi
k

)(
n − bi
a j − k

)

/

(
n

a j

)

.

These probabilities can be computed efficiently in an incrementalmanner using the support of
the hypergeometric distribution, i.e., k is nonzero for k ∈ [max(0, ai +b j −n),min(ai , b j )],
and the hypergeometric recurrence formula

p̂0(k + 1) = p̂0(k)
(ai − k)(b j − k)

(k + 1)(n − ai − b j + k + 1)
.

The complexity for m0 is then O(nmax{|V (X )|, |V (Y )|}) [19]. Moreover, the computation
can be done in parallel for each individual cell.

In addition to being computationally efficient, the resulting reliable dependency score
F̂0(X ; Y ) = F̂(X ; Y )−b0(X , Y , n) satisfies several other properties. First of all, it is indeed
a consistent estimator of F . In particular, Vinh et al. [20] show that limn→∞ m0(X , Y , n) = 0,
and together with the consistency of the plug-in F̂ [13], we have that limn→∞ F̂0(X ; Y ) =
F(X ; Y ). Moreover, F̂0(X ; Y ) remains upper-bounded by 1, although this value is only
attainable in the limit case n → ∞ (for true functional dependencies). Most importantly,
contrary to the naive estimator, we have that F̂0 approaches zero3 as the empirical domain

3 In fact, it is principally not lower bounded by 0 since m0 can be larger than Î . These cases strongly indicate
independence.
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V (X ) increases relative to the data size n. We show this by proving the monotonicity of m0

with respect to the subset relation.

Theorem 1 Given two sets of variables X ,X ′ with X ⊆ X ′ ⊆ I, then m0(X , Y , n) ≤
m0(X ′, Y , n), i.e., the expected value under the permutation model is monotonically increas-
ing with respect to the subset relation.

Proof Using the chain rule of information and that mutual information is nonnegative [21,
Chapter 2], we have that I (X ; Y ) ≤ I (X ′; Y ). Then for each σ ∈ Sn it holds that I (X ; Yσ ) ≤
I (X ′; Yσ ), and hence

∑
σ∈Sn Î (X ; Yσ ) ≤ ∑

σ∈Sn Î (X
′; Yσ ), which concludes the proof. 
�

Theorem 1 states that m0(X , Y , n) can indeed penalize spurious dependencies that appear
with high dimensional X ⊆ I, justifying therefore the adjective reliable for the two esti-
mators. In the following section, we couple the above information-theoretic quantities with
relations for empirical attributes.

2.2 Specializations and labeling homomorphisms

Since we identify sets of random variables with their corresponding sample-index-to-value
map, they are subject to the following general relations of maps with common domains.

Definition 1 Let A and B be maps defined on a common domain N . We say that A is
equivalent to B, denoted as A ≡ B, if for all i, j ∈ N it holds that A(i) = A( j) if and only
if B(i) = B( j). We say that B is a specialization of A, denoted as A � B, if for all i, j ∈ N
with A(i) �= A( j) it holds that B(i) �= B( j).

A special case of specializations is given by the subset relation of variable sets, e.g., if
X ⊆ X ′ ⊆ I then X � X ′. The specialization relation implies some important properties
for empirical probabilities and information-theoretic quantities.

Proposition 1 Given variables X , Z , Y , with X � Z, the following statements hold:

(a) there is a projection π : V (Z) → V (X), s.t. for all x ∈ V (X), it holds that p̂X (x) =∑
z∈π−1(x) p̂Z (z)

(b) Ĥ(X) ≤ Ĥ(Z)

(c) Ĥ(Y | Z) ≤ Ĥ(Y | X)

(d) Î (X; Y ) ≤ Î (Z; Y )

Proof Let us denote with p and q the p̂X∪Y and p̂Z∪Y distributions, respectively. Statement
a) follows from the definition. For (b), we define h(x) = −p(x) log p(x) for x ∈ X , and
similarly h(z) for z ∈ Z . We show that for all x ∈ X , h(x) ≤ ∑

z∈π−1(x) h(z). The statement

then follows from the definition of Ĥ . We have

h(x) = −p(x) log p(x)

= −
⎛

⎝
∑

z∈π−1(x)

q(z)

⎞

⎠ log

⎛

⎝
∑

z∈π−1(x)

q(z)

⎞

⎠

= −
∑

z∈π−1(x)

⎛

⎝q(z) log

⎛

⎝
∑

s∈π−1(x)

q(s)

⎞

⎠

⎞

⎠
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≤ −
∑

z∈π−1(x)

q(z) log q(z) =
∑

z∈π−1(x)

h(z) ,

where the inequality follows from the monotonicity of the log function (and the fact that q(z)
is positive for all z ∈ Z ).
(c) Let us first recall the log-sum inequality [21, p. 31]: for nonnegative numbers
a1, a2, . . . , an and b1, b2, . . . , bn ,

n∑

i=1

ai log
ai
bi

≥
( n∑

i=1

ai
)∑n

i=1 ai∑n
i=1 bi

, (3)

with equality if and only if ai/bi constant. We have

Ĥ(Y | Z) = −
∑

z∈Z ,y∈Y
q(z, y) log

q(z, y)

q(z)

(a)= −
∑

x∈X ,y∈Y

∑

z∈π−1(x)

q(z, y) log
q(z, y)

q(z)

(3)≤ −
∑

x∈X ,y∈Y

( ∑

z∈π−1(x)

q(z, y)
)

∑

z∈π−1(x)

q(z, y)

∑

z∈π−1(x)

q(z)

= −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(x)
= Ĥ(Y | X) .

d) We have Î (Z; Y ) = Ĥ(Y ) − Ĥ(Y | Z) ≤ Ĥ(Y ) − Ĥ(Y | X) = Î (X; Y ) following from
(c). 
�

To analyze themonotonicity properties of the permutationmodel, the following additional
definition will be useful.

Definition 2 We call a labeling X homomorphic to a labeling Z (w.r.t. the target variable
Y ), denoted as X � Z , if there exists σ ∈ Sn with Y ≡ Yσ such that X � Zσ .

See Table 1 for examples of both introduced relations. Importantly, the inequality of mutual
information for specializations (Proposition 1d) carries over to homomorphic variables and
in turn to their correction terms.

Proposition 2 Given variables X , Z , Y , with X � Z, the following statements hold:

(a) Î (X; Y ) ≤ Î (Z; Y )

(b) m0(X , Y , n) ≤ m0(Z , Y , n)

Proof Let σ ∗ ∈ Sn be a permutation for which Y ≡ Yσ ∗ and X � Zσ ∗ . Property a) follows
from

Î (Z; Y ) = Î (Zσ ∗ ; Yσ ∗) = Î (Zσ ∗ ; Y ) ≥ Î (X; Y ) ,

where the inequality holds from Proposition 1d). For (b), note that for every σ ∈ Sn , it holds
from Proposition 1d) that Î (Zσ◦σ ∗ ; Y ) ≥ Î (Xσ ; Y ). Hence

m0(Z , Y , n) = 1

n!
∑

σ∈Sn
Î (Zσ ; Y )
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Table 1 Specialization and
homomorphism examples

X1 X2 X3 X4 Y

a a a b a

a b b a b

b c b b b

b c c c b

We have X1 � X2, X1 � X2, X1 � X3, X1 � X4, X2 � X3. Note
that X3 �� X4 as there is no σ ∈ S4 that satisfies specialization w.r.t.
X4 and Y ≡ Yσ

= 1

n!
∑

σ∈Sn
Î (Zσ◦σ ∗ ; Y )

≥ 1

n!
∑

σ∈Sn
Î (Xσ ; Y ) = m0(X , Y , n) .


�

3 Hardness of optimization

In this section, we prove the NP-hardness of maximizing F̂0 (and hence Î0) by providing a
reduction from thewell-knownNP-hardminimum set cover problem: given a finite universe
U = {u1, . . . , un} and collection of subsets B = {B1, . . . , Bm} ⊆ 2U , find a set cover, i.e.,
a sub-collection C ⊆ B with

⋃
B∈C B = U , that is of minimal cardinality [22, Chap. 16.1].

A partial set cover C ⊆ B is one where
⋃

B∈C B �= U .
The reduction consists of two parts. First, we construct a base transformation τ1(U ,B) =

Dl that maps a set cover instance to a dataset Dl , such that the plug-in F̂ is monotonically
increasing with coverage, and in particular, set covers correspond to attribute sets with an
empirical fraction of information score F̂ of 1, and correction terms b0 that are a monoton-
ically increasing function of their cardinality. In a second step, we calibrate the b0 terms
such that all candidate set covers have a higher F̂0 value than partial set covers. The latter
is achieved by copying the dataset Dl a suitable number of times k such that the correc-
tion terms are sufficiently small but the overall transformation, denoted τk(U ,B) = Dkl , is
still of polynomial size. Combining these, we arrive at a polynomial time reduction, where
maximizing F̂0 in Dkl corresponds to finding a minimal set cover for set cover instance
(U ,B).

The base transformation τ1(U ,B) = Dl is defined as follows. The datasetDl containsm
descriptive attributes I = {X1, . . . , Xm} corresponding to the sets of the set cover instance,
and a target variable Y. The sample size is l = 2n + m + 1 with a logical partition of the
sample into the three regions S1 = [1, n], S2 = [n + 1, 2n], and S3 = [2n + 1, l]. The target
attribute Y assigns to data points one of three values corresponding to the three parts, i.e.,
Y : [l] → {a, b, c} with
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u1 u2

u3 u4

u5

B1 B3

B4 B2

X1 X2 X3 X4 Y

1 1 a 1 1 a
2 a 2 2 a a

S1 3 3 a a a a
4 4 a 4 a a
5 a 5 a 5 a

6 a a a a b
7 a a a a b

S2 8 a a a a b
9 a a a a b
10 a a a a b

11 b c c c c
12 c b c c c

S3 13 c c b c c
14 c c c b c
15 c c c c c

Fig. 2 Base transformation example. Left: a set cover instanceU = {u1, . . . , u5} and B = {B1,B2, B3, B4}.
Right: the resulting D15 using τ1(U ,B) (bold indicates the set cover)

Y ( j) =

⎧
⎪⎨

⎪⎩

a, j ∈ S1
b, j ∈ S2
c, j ∈ S3

,

and the descriptive attributes Xi assign up to n + 3 distinct values depending on the set of
universe elements covered by set Bi , i.e., Xi : [l] → {1, 2, . . . , n, a, b, c} with

Xi ( j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j, j ∈ S1 ∧ u j ∈ Bi
a, ( j ∈ S1 ∧ u j /∈ Bi ) ∨ j ∈ S2
b, j = 2n + i

c, j ∈ S3 \ {2n + i}
.

See Fig. 2 for an illustration.
In a nutshell, the base transformation establishes a one-to-one correspondence between

C ⊆ B and variable sets X ⊆ I, which we denote with I(C). We note the following two
remarks. Let us use a for (a, . . . , a), and

⋃
C as a short-cut for

⋃
B∈C B. We have that

S1 and S2 couple the amount of uncovered elements U \ ⋃
C to the conditional entropy

Ĥ(Y | I(C) = a) via

p̂(Y = a | I(C) = a) = |U \
⋃

C|/(n + |U \
⋃

C|) .

In addition, part S3 links the size of C to the number of distinct values of I(C) on S3, i.e.,
|C| = V (I(C)S3) − 1. We now establish three central properties for the base transformation.

Lemma 1 Let τ1(U ,B) = Dl be the transformation of a set cover instance (U ,B), and
C, C′ ⊆ B two sets. The following statements hold.

(a) If | ⋃ C| ≥ | ⋃ C′|, then F̂(I(C); Y ) ≥ F̂(I(C′); Y ), i.e., the plug-in F̂ is monotonically
increasing with coverage, and in particular, C is a set cover if and only if F̂(I(C); Y ) = 1,

(b) If C is a set cover and C ′ is not, then Î (I(C); Y ) − Î (I(C′); Y ) ≥ 2/l.
(c) If C and C′ are both set covers, then I(C) � I(C′) if and only if |C| ≤ |C′|.
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Proof Statement a) follows from the definition of τ1.
To show (b), since F̂(I(C′); Y ) and thus Î (I(C′); Y ) aremonotone in | ⋃ C′|, it is sufficient

to consider the case where |U \⋃
C′| = 1, i.e., only one element u ∈ U is uncovered. In this

case we have

Î (I(C); Y ) − Î (I(C′); Y ) = Ĥ(Y | I(C′)) − Ĥ(Y | I(C))
︸ ︷︷ ︸

=0

and, moreover, as required

Ĥ(Y | I(C′)) = − p̂(a, a) log p̂(a | a) − p̂(a, b) log p̂(b | a)
= −1

l
log

(
1

n + 1

)

− n

l
log

(
n

n + 1

)

≥ 2

l
.

For (c) observe that for variable set X = I(C) corresponding to set cover C, we have for
all i, j ∈ S1 that X (i) �= X ( j). Thus, XS1 ≡ X ′

S1
for variable set X ′ = I(C′) corresponding

to set cover C′. Moreover, we trivially have XS2 ≡ X ′
S2
. Finally, let Q, Q′ ⊆ S3 denote the

indices belonging to S3 where X and X ′ take on values different from (c, . . . , c). Note that
all values in these sets are unique. Furthermore, if |C| ≤ |C′| then |Q| ≤ |Q′| and in turn
|Q\Q′| ≤ |Q′ \Q|. This means we can find a permutation σ ∈ Sn such that for all i ∈ Q\Q′
it holds that σ(i) = j with j ∈ Q′ \ Q and σ(i) = i for i /∈ Q ∩ Q′ (that is σ permutes
all indices of non-(c, . . . , c) values of C in S3 to indices of non-(c, . . . , c) values of C′). For
such a permutation it holds that Yσ ≡ Y and XS3 � X ′

S3σ
. Therefore, X � X ′ as required. 
�

Now, although set covers C ⊆ B correspond to variable sets I(X ) with the maximal
empirical fraction of information value of 1, due to the correction term, it can happen that
F̂0(I(X ′); Y ) ≥ F̂0(I(X ); Y ) for a variable set I(X ′) corresponding to a partial set cover. To
prevent this, we make use of the following upper-bound of the expected mutual information
under the permutation model.

Proposition 3 ([20], Thm. 7) For a sample of size n of the joint distribution of variables A
and B having a, b ∈ Z+ distinct values, respectively, we have

m0(A, B, n) ≤ log

(
n + ab − a − b

n − 1

)

.

Proposition 3 implies that we can arbitrarily shrink the correction terms if we increase the
sample size but leave the number of distinct values constant. Thus, we define the extended
transformation τi (U ,B) = Dil through simply copying Dl a number of i times, i.e., by
defining d j = d( j mod l) for j ∈ [l + 1, il]. With this definition, we proceed with the
NP-hardness result.

Theorem 2 Given a sample of the joint distribution of variables I and Y , the problem of
maximizing F̂0( · ; Y ) over all possible subsets X ⊆ I is NP-hard.

Proof First, let us assume that there exists a number k ∈ O(l) such that w.r.t. transformation
τk , all set covers C ⊆ B and their corresponding variable sets X = I(C) have correction
terms with m0(X , Y , kl) < 2/l. Since all properties of Lemma 1 transfer from τ1 to τk , this
implies that for all variable sets X ′ = I(C′) corresponding to partial set covers C′ ⊆ B, it
holds that
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F̂0(X ; Y ) = F̂(X ; Y ) − m0(X , Y , kl)/Ĥ(Y )

> F̂(X ; Y ) − 2/(l Ĥ(Y ))

≥ F̂(X ; Y ) − ( Î (X ; Y ) − Î (X ′; Y ))/Ĥ(Y )

= F̂(X ′; Y ) ≥ F̂0(X ′; Y ) ,

where the greater-than follows from Lemma 1(a) and 1(b). Thus, all X corresponding to set
covers have larger F̂0 than partial set covers. Moreover, we know that C must be a minimum
set cover as required, because for a smaller set cover C′, we would have I(C′) � I(C) by
Lemma 1(c), and thus b0(I(C′), Y , kl) ≤ b0(I(C), Y , kl) from Proposition 2(b)—therefore,
I(C) would not maximize F̂0.

Now, to find the number k that defines the final transformation τk , let Dil = τi (U ,B) and
C be a set cover of (U ,B). Since X = I(C) has at most l distinct values in Dil and Y exactly
3, from Proposition 3 and the monotonicity of ln, we have that

ln(2)m0(I(C), Y , n) ≤ ln

(
il + 3l

il − 1

)

≤ ln

(
i + 3

i − 1

)

≤ 4

i − 1
,

where the last inequality follows from ln(x) ≤ x − 1. Thus, for k > 2l/ ln 2 + 1 ∈ O(l)
we have m0(X , Y , kl) < 2/l as required. The proof is concluded by noting that the final
transformation τk(U ,B) is of size O(l2m) (where l = 2n +m + 1), which is polynomial in
the size of the set cover instance. 
�

4 Admissible bounding functions for effective search algorithms

The NP-hardness established in the previous section excludes the existence of a polynomial
time algorithm for maximizing the reliable fraction of information (unless P=NP), leaving
therefore exact but exponential search and heuristics as the two options. For both, and partic-
ularly the former, reducing the search space can lead to more effective algorithms. For this
purpose, we derive in this section bounding functions (also called optimistic estimators) for
the reliable fraction of information F̂0 to be used for pruning.

Recall that an admissible bounding function f̄ is an upper bound to the optimization
function value f of all supersets of a candidate solution X ⊆ I. The value f̄ (X ) is called
the potential of node X , and it must hold that f̄ (X ) ≥ f (X ′) for all X ′ with X ⊆ X ′ ⊆ I.
With this property, all supersets X ′ of X can be pruned if f̄ (X ) ≤ f (X ∗), where X ∗ is the
best candidate solution found during search. Therefore, for optimal pruning, the bounding
function has to be as tight as possible. At the same time, it needs to be efficiently computable.
For example, while the ideal bounding function for the reliable fraction of information would
be

f̄ideal(X ) = max{F̂0(X ′; Y ) : X ⊆ X ′ ⊆ I} , (4)

solving Eq. (4) is equivalent to the original problem and hence NP-hard.
A first attempt for an efficient bounding function involves the upper bound of the fraction

of information (i.e., F = 1) and the monotonicity of the b0 term with respect to the subset
relation (Theorem 1). In particular, for all X ⊆ X ′ ⊆ I, it follows that

F̂0(X ′; Y ) = Ĥ(Y ) − Ĥ(Y | X ′)
Ĥ(Y )

− b0(X ′, Y , n)

≤1 − b0(X , Y , n) .
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Hence, we define

f̄mon(X ) = 1 − b0(X , Y , n) (5)

to be themonotonicity-based admissible bounding function. This optimistic estimator is both
inexpensive4, and applicable to any estimator that has a monotonically increasing correction
term. However, it is potentially loose as it assumes that full information about the target can
be attained, without the “penalty” of an increased b0 term.

An alternative idea leading to a more principled admissible bounding function, is to relax
the maximum over all supersets to the maximum over all specializations of X . We define the
specialization-based bounding function f̄spc(X ) through

f̄spc(X ) = max{F̂0(X ′; Y ) : X � X ′}
≥ max{F̂0(X ′; Y ) : X ⊆ X ′ ⊆ I} = f̄ideal(X ) . (6)

While Eq. (6) constitutes an admissible bounding function, it is unclear how it can be
efficiently evaluated. To do so, let us denote by R+ the operation of joining a labeling R with
the target attribute Y , i.e., R+ = {R, Y } (see Table 2 for an example). This definition gives
rise to a simple constructive form for computing f̄spc.

Theorem 3 The function f̄spc can be efficiently computed as f̄spc(X ) = F̂0(X+; Y ) in time
O(n|V (X )||V (Y )|).
Proof We start by showing that the (·)+ operation causes a positive gain in F̂0, i.e., for
an arbitrary labeling R it holds that F̂0(R+; Y ) ≥ F̂0(R; Y ). It is sufficient to show that
Î0(R+; Y ) ≥ Î0(R; Y ). We have

Î0(R
+; Y ) =

(
Ĥ(Y ) + Ĥ(R+) − Ĥ(R+, Y )

)

− 1

n!

⎛

⎝
∑

σ∈Sn
(Ĥ(Yσ ) + Ĥ(R+) − Ĥ(R+, Yσ )

⎞

⎠

= 1

n!
∑

σ∈Sn
Ĥ(R+, Yσ ) − Ĥ(R+, Y )

≥ 1

n!
∑

σ∈Sn
Ĥ(R, Yσ ) − Ĥ(R, Y ) = Î0(R; Y ) ,

since Ĥ(R+, Y ) = Ĥ(R ∪ Y , Y ) = Ĥ(R, Y ), and from Proposition 1(b), for every σ ∈ Sn ,
Ĥ(R+, Yσ ) ≥ Ĥ(R, Yσ ).

To conclude, let Z be an arbitrary specialization of X . We have by definition of Z and
Z+, that X+ � Z+. Moreover, F̂( · ; Y ) = F̂({ · } ∪ {Y }; Y ) = 1. Thus

F̂0(X+; Y ) = F̂(X+; Y ) − b0(X+, Y , n)

= 1 − b0(X+, Y , n)

≥ 1 − b0(Z+, Y , n)

= F̂0(Z+; Y ) ≥ F̂0(Z; Y ) ,

as required. Here, the first inequality follows from Proposition 1(b), the second from the
positive gain of Z+ over Z.

4 one can cache the b0(X , Y , n) term for Eq. (5) while computing F̂0(X ; Y ) for a X ⊆ I during search
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Regarding the complexity, recall that b0(X , Y , n) can be computed in time
O(nmax{|V (X )|, |V (Y )|}). The complexity follows from |V (X+)| ≤ |V (X )||V (Y )|. 
�
In a nutshell, the (·)+ can only increase the F̂0 value, and X+ constitutes the most efficient
specialization of X in terms of growth in F̂ and b0 (which is not necessarily attainable by a
subset of input variables). Note that the X+ operation is not computed explicitly since it is
obtained as the nonzero cell counts of the joint contingency table for X and Y (which has to
be computed for F̂0(X ; Y ) anyway). The following proposition shows that this idea indeed
leads to a superior bound compared to f̄mon.

Proposition 4 Let X ⊆ I and Δ = f̄mon(X ) − f̄spc(X ). The following statements hold:

(a) Δ ≥ 0 for all datasets, i.e., f̄spc(X ) ≤ f̄mon(X )

(b) there are datasets D4l for all l ≥ 1 s.t. Δ ∈ Ω(1 − 1
log 2l )

Proof (a)

f̄spc(X ) = 1 − b0(X+, Y , n)

≤ 1 − b0(X , Y , n) = f̄mon(X ) ,

where the inequality holds from Proposition 1(b) and X � X+.
(b) For l ≥ 1 we construct a datasetD4l with two variables X : [4l] → {a, b} and Y : [4l] →

[2l], with

X(i) =
{
a, i mod 2 = 1

b, i mod 2 = 0

and Y (i) = �i/2� , respectively (see Table 2). We have

Δ = 1 − b0(X , Y , 4l) − 1 + b0(X
+, Y , 4l)

︸ ︷︷ ︸
=Ĥ(Y | X+

σ )/Ĥ(Y )=0

= 1

n!
∑

σ∈Sn
Ĥ(Y | Xσ )/Ĥ(Y )

≥ min
σ∈Sn

Ĥ(Y | Xσ )/Ĥ(Y ) .

One can show that the minimum of the last step is attained by the permutation σ ∗ ∈ Sn
with

σ ∗(i) =
{
2i − 1, i ∈ [1, 2l]
4l − 2(4l − i), i ∈ [2l + 1, 4l] ,

which corresponds to sorting the a and b values of X (see Table 2). For this permutation
the normalized conditional entropy evaluates to 1 − 1/ log(2l) as required. 
�
Thus, we have established that f̄spc is tighter than f̄mon, and even that the difference can be

arbitrary close to 1. Put differently, their ratio, and thus the potential for additional pruning,
is unbounded.

Regarding their applicability to other mutual information estimators, f̄mon only requires
monotonicity for the correction term, while f̄spc additionally needs a positive gain w.r.t. to the
(·)+ operation. The former is easier to satisfy. Computationally, f̄spc(X ) is more expensive
than f̄mon(X ) by a factor of |V (Y )|. In practice one can combine both optimistic estimators
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Table 2 Construction showing
the advantage of bound f̄spc
versus f̄mon

X Y X+ Xσ∗

a 1 (a,1) a

b 1 (b,1) a

a 2 (a,2) a

b 2 (b,2) a

.

.

.

X Y X+ Xσ∗

.

.

.

a 2l-1 (a,2l-1) b

b 2l-1 (b,2l-1) b

a 2l (a,2l) b

b 2l (b,2l) b

We have f̄spc(X) = 1 − b0(X
+, Y , n) = 0 while f̄mon(X) = 1 −

b0(X , Y , n) ≥ 1−1/ log(n/2), i.e., all specializations of X that contain
full information about Y are injective (key) maps (see Proposition 4)

Algorithm 1 OPUS: Given a set of input variables I, function f , bounding function f̄ , and
α ∈ (0, 1], the algorithm returns the X ∗ ⊆ I satisfying f (X ∗) ≥ αmax{ f (X ′) : X ′ ⊆ I}
1: function OPUS(Q,S)
2: if Q is empty then
3: return S
4: else
5: (X ,Z) = pop(Q)

6: R = {(X ∪ {Z}, Z) : Z ∈ Z}
7: X ∗ = argmax{ f (X ′) : X ′ ∈ R ∪ {S}}
8: R′ = {(X ′, Z) ∈ R : α f̄ (X ′) > f (X ∗)}
9: Z ′ = {Z : (X ′, Z) ∈ R′}
10: [(X1, Z1), . . . , (Xk , Zk )] = sort(R′)
11: Q′ = Q ∪ {(Xi ,Z ′ \ {Z1, . . . , Zi }) : i ∈ [k])}
12: return OPUS(Q′,X ∗)

13: X ∗ = OPUS({(∅,I)}, ∅)

in a chain-like manner: first check the pruning condition w.r.t. f̄mon and only compute f̄spc
if that first check fails. That is, whenever f̄mon(X ) is sufficient to prune a candidate X we
can still do so with the same computational complexity. However, the additional evaluation
of f̄spc(X ) can be a disadvantage in case it still does not allow to prune. This trade-off is
evaluated in Sect. 6.3.

5 Algorithms

In this section we provide two search algorithms, one exponential and one heuristic, for
maximizing the reliable fraction of information. Both make use of the bounding functions
proposed. For simplicity, we solve the top-1 problem, but both algorithms can be trivially
extended to a top-k formulation.
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Algorithm 2 GRD: Given a set of input variables I, function f , and bounding function f̄ ,
the algorithm returns the X ∗ ⊆ I approximating f (X ∗) = max{ f (X ′) : X ′ ⊆ I}
1: function GRD(C,S)
2: if I \ C is empty or f̄ (C) ≤ f (S) then
3: return S
4: else
5: R = {C ∪ {Z} : Z ∈ I \ C}
6: C∗ = argmax{ f (X ′) : X ′ ∈ R}
7: X ∗ = argmax{ f (X ′) : X ′ ∈ {S,C∗}}
8: return GRD(C∗,X ∗)

9: X ∗ = GRD(∅, ∅)

5.1 Exponential search

Branch-and-bound, as the name suggests, consists of two main ingredients, a strategy
to explore the search space and a bound for the optimization function at hand (see, e.g.,
[23, Chap. 12.4]). Besides being very effective in practice for hard problems, this style of
optimization also provides the option of relaxing the required result guarantee to that of an
α-approximation for accuracy parameter α ∈ (0, 1]. Hence, using α-values of less than 1
allows to trade accuracy for computation time in a principled manner. Here, we consider
optimized pruning for unordered search (OPUS), an advanced variant of branch-and-
bound that effectively propagates pruning information to siblings in the search tree [24].
Algorithm 1 shows the details of this approach.

In addition to keeping track of the best solutionX ∗ explored so far, the algorithmmaintains
a priority queueQof pairs (X ,Z), whereX ⊆ I is a candidate solution andZ ⊆ I constitutes
the variables that can still be used to refine X , e.g., X ′ = X ∪ {Z} for a Z ∈ Z. The top
element is the one with the smallest cardinality and the highest f̄ value (a combination
of breadth-first and best-first order). Starting with Q = {(∅, I)}, X ∗ = ∅, and a desired
approximation guarantee α ∈ (0, 1], in every iteration OPUS creates all refinements of the
top element of Q and updates X ∗ accordingly (lines 5-7). Next the refinements are pruned
using f̄ and α (line 8). Following, the pruned list is sorted according to decreasing potential
(a “trick” to propagate the most refinement elements to the least promising candidates [24]),
the possible refinement elementsZ ′ are non-redundantly propagated to the refinements of the
top element, and finally the priority queue is updated with the new candidates (lines 9-11).

5.2 Heuristic search

A commonly used alternative to exponential search for optimizing dependency measures is
the standard greedy algorithm (see [5,7]). This algorithm only refines the best candidate in
a given iteration. Moreover, bounding functions can be incorporated as an early termination
criterion. For the reliable fraction of information in particular, there is potential to prune
many of the higher levels of the search space. The algorithm is presented in Algorithm 2.

The algorithm keeps track of the best solution X ∗ explored, as well as the best candidate
for refinement C∗. Starting with X ∗ = ∅ and C∗ = ∅, the algorithm in each iteration (i.e.,
search space level) checks whether C∗ can be refined further, i.e., if I \ C∗ is not empty, or if
C∗ has potential (the early termination criterion). If not, the algorithm terminates returning
X ∗ (lines 2-3). Otherwise C∗ is refined to all possible refinements, and the best one is selected
as a candidate to update X ∗ (lines 5-7).
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Table 3 Example data
demonstrating
non-submodularity of I , Î , Î0 in
our supervised scenario where the
target Y is fixed (Proposition 5)

A B C Y

a a a a

a a b b

a b b a

b b a b

Concerning the approximation ratio of the greedy algorithm, there exists a large amount of
research focused on submodular and/or monotone functions, e.g., [25–27]. Recall that for a
set I = {X1, . . . , Xd}, a function f : 2I → R is called submodular if for everyX ⊆ X ′ ⊆ I
and Xi ∈ I \ X ′, it holds that

f (X ′ ∪ {Xi }) − f (X ′) ≤ f (X ∪ {Xi }) − f (X ) ,

i.e., it satisfies the diminishing returns property. The following proposition establishes that
I , Î , and Î0, are all violating this property.

Proposition 5 Given I = {X1, . . . , Xd} and target variable Y , the mutual information
I (.; Y ), the plug-in Î (.; Y ), and corrected Î0(.; Y ) are not submodular w.r.t. the first argu-
ment.

Proof We prove it via an intuitive counter example. Let us consider the data of Table 3 and
the corresponding induced empirical distribution p̂. Here B and C are connected to Y via a
XOR function, where Y is marginally independent of B and C , but functionally dependent
on {B,C}. For sets {A}, {A, B}, and element C , we have that

Î ({A, B,C}; Y ) − Î ({A, B}; Y ) = 0.5

> Î ({A,C}; Y ) − Î ({A}; Y ) = 0.19 ,

i.e., there is a violation of the diminishing returns property, and hence Î is not submodular.
By considering p = p̂, it is straightforward to show that I is also not submodular.

Regarding Î0, we have that

Î0({A, B,C}; Y ) − Î0({A, B}; Y ) = 0.17

> Î0({A,C}; Y ) − Î0({A}; Y ) = −0.17 ,

and hence Î0 is not submodular. Also note that while both Î and I are monotone functions
with respect to the subset relation (Theorem 1), Î0 is not. 
�

While approximation results for submodular and/ormonotone functions are not applicable
to Î0, we empirically evaluate the quality of solutions in Sect. 6.3.2.

6 Evaluation

In this section, we investigate the empirical performance of discovering dependencies with
the reliable fraction of information F̂0, including the estimated bias and variance of F̂0 as an
estimator, the consistency of correctly retrieving the top minimal dependency on synthetic
data, and the performance of the bounding functions for both branch-and-bound and greedy
search. We additionally perform qualitative experiments with two case studies.
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6.1 Empirical bias and standard deviation

Here, we evaluate the estimated bias and variance of F̂0 for various degrees of dependency.
We do so by creating synthetic data from various models for which we know the true F .
Let us denote by P the set of all joint probability mass functions over two random variables
X and Y with |V (X)| = |V (Y )| = 3, and by P[a,b] all such probability mass functions for
which we have a score of Fp(X; Y ) ∈ [a, b]. We consider four different dependency score
regions: “weak” P[0,0.25), “low” P[0.25,0.5), “high” P[0.5,0.75), and “strong” P[0.75,1].

Let τ(Dn) be the result of estimator τ computed on data Dn . We denote with
bn(p, τ ) and stdn(p, τ ) the bias and standard deviation of τ when fixing the under-
lying pmf to p ∈ P , i.e., bn(p, τ ) = EDn∼p[τ(Dn)] − Fp(X; Y ) and stdn(p, τ ) =√
EDn∼p[(τ (Dn) − EDn∼p[τ(Dn)])2]. We sample uniformly 100 pmfs p(1), . . . , p(100), 25

from each dependency region. For every p(i) we calculate the true Fp(i) value and compute

the expectation terms by sampling per pmf p(i) a total of 1000 datasets Dn ∼ p(i) of size n.
We average over P[a,b] regions and end up with estimates μn(τ,P[a,b]) and σn(τ,P[a,b]) for
the average bias and standard deviation of estimator τ and sample size n.

In addition to the plug-in F̂ , we consider two additional estimators. The first is based
on the same correction principle but with a parametric model and asymptotic values, and
particular the χ2 distribution, proposed by Vinh et al. [28]. This corrected estimator, which
we denote as F̂χ,α , is defined as

F̂χ,α(X ; Y ) = Î (X , Y ) − 1
2nχα,l(X ,Y )

Ĥ(Y )
,

where χα,l(X ,Y ) is the critical value corresponding to a significance level 1 − α and degrees
of freedom l(X , Y ) = (

∏
X∈X V (X)−1)(V (Y )−1). Here, α can be thought as a parameter

regulating the amount of penalty. The second follows an alternative correction resulting from
the application of the quantification adjustment framework proposed by Romano et al. [12].
We denote this estimator by F̂adj, which is defined as

F̂adj(X ; Y ) = Î (X , Y ) − E0[ Î (X , Y )]
Ĥ(Y ) − E0[ Î (X , Y )] .

For this experiment we consider τ = {F̂0, F̂adj, F̂, F̂χ,95, F̂χ,99} and n ∈ {5, 10, 20, 30,
40, 50, 60}.5 We expect the small sample sizes for the small domain size |V (X)| = 3 to
behave similar to larger data sizes combined with the potentially huge domains V (X ) for
X ⊆ I occurring during search.

We first focus on the general behavior of the bias and standard deviation for each estimator
τ , and plot in Fig. 3 the average biasμn(τ,P[0,1]) and standard deviation σn(τ,P[0,1]) across
different data sizes n. We observe that the corrected estimator F̂0 exchanges the positive bias
of F̂ for a smaller, negative bias, and has the tendency to underestimate the true dependency
for small n, as desired. Additionally, it converges very fast to 0 with respect to n. The F̂adj
has a very small positive bias, while the F̂χ,α has a large negative bias and slow convergence
that become more profound for increased α.

Regarding the standard deviation, the right plot show that the F̂adj has by far the largest,
which is to be expected as it also has the smallest bias. The plug-in F̂ also has a large
standard deviation that in combination with the relatively high bias, show that F̂ is not

5 The α values in F̂χ,α are chosen according to Vinh et al. [28]
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Fig. 3 Empirical bias and standard deviation of estimators averaged over p ∈ P[0,1]. Average bias

μn(τ,P[0,1]) (left) and standard deviation σn(τ,P[0,1]) (right) of estimators τ ∈ {F̂0, F̂adj, F̂, F̂χ,95, F̂χ,99}
for all 100 sampled pmfs p(i) ∈ P[0,1] across different data sizes n
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Fig. 4 Bias of estimators averaged over p ∈ P[0,0.25) and p ∈ P[0.75,1]. Average bias μn(τ,P[0,0.25)) (left)
and μn(τ,P[0.75,1]) (right) of estimators τ ∈ {F̂0, F̂adj, F̂, F̂χ,95, F̂χ,99} across different data sizes n

a suitable estimator for functional dependency discovery. The F̂χ,95, F̂χ,99, and F̂0, have
similar standard deviations, with F̂0 being slightly higher for n = 5. In general, estimators
achieve better bias by trading variance, and from Fig. 3 we see that in comparison to all
estimators, F̂0 has the best bias for variance trade-off.

It is also interesting to consider the bias behavior not on average forP[0,1], but specifically
for weak and strong dependencies, i.e., the cases where F is closer to independence and
functional dependency, respectively, and plot in Fig. 4 the average biases μn(τ,P[0,0.25))
(left) and μn(τ,P[0.75,1]) (right). Looking at the left plot we see that the reliable fraction of
information F̂0 has a very small negative bias, and F̂ has the largest positive bias and very
slow convergence. Both F̂χ,95 and F̂χ,99 have a large negative bias, particularly F̂χ,99, while
F̂adj is practically unbiased. Regarding strong dependencies, the right plot shows that both
F̂, F̂adj have a small positive bias, while the rest have large negative biases for n = 5. For
both F̂χ,95 and F̂χ,99 the bias is particularly high and does not converge fast to 0, unlike F̂0
that does after only n = 10 data samples. From a bias perspective, F̂0 shows the best reliable
behavior, with small and “fast” negative bias across the whole range of dependencies.

With these observations, we can conclude that F̂0 is a suitable estimator for F , and par-
ticularly for exploratory tasks, as it does not require parameters and parametric assumptions
in order to produce results. The F̂adj, although practically unbiased, has a very large standard
deviation. The F̂χ,α has the ability of regulating the amount of penaltywithα, but that requires
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Fig. 5 Precision, recall, and F1 score for retrieving the minimal top dependency. Top: Probability tables for a
Bayesian networkwith 5 variables X1, X2, X3, X4, Y , and only one edge X → Y . The fraction of information
for this dependency is 0.25. Middle: Precision and recall of estimators τ ∈ {F̂0, F̂adj, F̂, F̂χ,95, F̂χ,99}
for retrieving X4 as the top minimal dependency, averaged over 1000 sampled data for each sample size
n = {5, 10, 20, 30, 40, 50, 60}. Bottom: The corresponding F1 score

prior knowledge about the data. For example, α = 0.99 and α = 0.95 heavily penalize and
can miss dependencies in higher levels. Smaller α values will cause F̂χ,α to start behaving
more like F̂ and overestimate dependencies. The reliable F̂0 does that automatically with the
data-dependent quantity E0[ Î ].

6.2 Precision, recall, and F1

Next we evaluate the performance of F̂0 in correctly retrieving the minimal top dependency
on synthetic data.

We create a Bayesian network with input variables I = {X1, X2, X3, X4} of domain
size 3 and a binary target variable Y . The only edge is X4 → Y with the corresponding
probability tables shown in Fig. 5. Variables X ∈ I are uniformly distributed. The minimal
top dependency in this network has score F(X4; Y ) = 0.25, with all other subsets of I,
excluding the supersets of X4, having a score of 0. We are interested in the problem of
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retrieving X ∗ = {X4} from sampled data as the top dependency. That is, we want the
solutions sets to contain X4, and at the same time be as small in cardinality as possible. An
appropriate metric to quantify this is the F1 score, which is a weighted combination of both
precision and recall. For example, the top result X ∗ = {X1, X4} of estimator τ has a recall
of 1, precision 0.5, and recall 0.66.

Like before, we consider τ ∈ {F̂0, F̂adj, F̂, F̂χ,95, F̂χ,99} and samples sizes n =
{5, 10, 20, 30, 40, 50, 60}, and for each n we sample 1000 datasets according to the network.
Since the number of attributes is small, we use level-wise exhaustive search. We randomize
the order of which candidates are explored in each level to remove any bias introduced from
the deterministic order6. We plot the average precision, recall, and F1 score, over 1000 data
for each estimator and n in Fig. 5.

We see that the F̂0, F̂χ,95, and F̂χ,99, have much better F1 curves than F̂ and F̂adj,
with those of F̂0 and F̂χ,99 being the best. The plug-in estimator F̂ almost always retrieves
{X1, X2, X3, X4} as a solution for n ≥ 20, and hence has very high recall but very small
precision. For n = 5, 10, the estimate is already 1 before the last level of the search, and
hence F̂ returns proper subsets of I resulting in slightly higher precision. In other words,
F̂ returns arbitrary solutions. The adjusted F̂adj performs much better than F̂ , but the large
variance does not allow it to compete in terms of precision with the corrected estimators, and
hence has much lower F1 across all n.

We observe again that F̂0 shows good performance. In fact, it has a similar F1 curve to
that of F̂χ,99 that corresponds to a significance level of 1%. At the same time, Fig. 3 suggests
that smaller α values for F̂χ,α can lead to better bias and variance trade-off, but that would
harm the F1 score as we can see for F̂χ,95 at 5%. The reliable F̂0 achieves both high F1 and
good bias-variance trade-off, without the need of any parameter, and hence is much more
suitable for exploratory tasks.

6.3 Optimization performance

We next investigate the optimization performance of the algorithms and bounding functions
proposed on real-world data. Our code is available online.7

We consider datasets from the KEEL data repository [29]. In particular, we use all classi-
fication datasets with d ∈ [10, 90] and no missing values, resulting in 35 datasets with 52000
and 30 rows and columns on average, respectively. All metric attributes are discretized in 5
equal-frequency bins. The datasets are summarized in Table 4. The runtimes are averaged
over 3 runs.

Weuse twometrics for evaluation, the relative runtime difference and the relativedifference
in number of explored nodes. For methods A and B, the relative runtime difference on a
particular dataset is computed as

rrd(A, B) = (τA − τB)

max(τA, τB)
,

where τA and τB are the run times for A and B, respectively. The rrd score lies in [−1, 1],
where positive (negative) values indicate that B is proportionally faster (slower). For example,

6 For example, let us assume that the top score for the first level of the search space, i.e., all singletons, is < 1.
The first candidate from the second level is {X1, X2}. It might be that for an estimator τ that τ({X1, X2}; Y ) =
τ({X3, X4}; Y ) = 1, and hence the algorithmwill return as a solution {X1, X2} and not {X3, X4} that contains
X4, resulting in 0 precision and recall instead of 0.5 and 1, respectively. Randomization alleviates this issue.
7 https://github.com/pmandros/fodiscovery
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Fig. 6 Evaluating the branch-and-bound optimization. Relative nodes explored difference (top) and relative
runtime difference (bottom) between methodsOPUSspc andOPUSmon. Positive (negative) numbers indicate
thatOPUSspc (OPUSmon) is proportionally “better”. The datasets are sorted in decreasing number of attributes

a rrd score of 0.5 corresponds to a factor of 2 speed-up, 0.66 to a factor of 3, 0.75 to 4, etc.
The relative nodes explored difference rnd is defined similarly. For both scores, we consider
(−0.5, 0.5) to be a region of practical equivalence, i.e., a factor of 2 of improvement is
required to consider a method “better”.

6.3.1 Branch-and-bound

We first investigate the performance of the exponential algorithm by comparing OPUSspc
and OPUSmon, i.e., Alg. 1 with f̄spc and f̄mon as bounding functions, respectively. For a fair
comparison, we set a common α value for both methods on each dataset by determining the
largest α value in increments of 0.05 such that they terminate in less than 90 minutes. The
results are in Table 4.

In Fig. 6 we present the comparison between OPUSspc and OPUSmon. The top plot
demonstrates that f̄spc can lead to a considerable reduction in nodes explored over f̄mon. In
particular, 15 cases have at least a factor of 2 reduction, 7 have 4, and there is one 1 with
760. For 20 cases there is no practical difference. The plot validates that the potential for
additional pruning is indeed unbounded (Sect. 4). In terms of runtime efficiency (bottom
plot), OPUSspc is “faster” in 70% of the datasets. In more detail, and considering practical
improvements, 12 datasets have at least a factor of 2 speedup, 6 have 4, 1 has 266, while
only 2 have a factor of 2 slowdown. Moreover, we observe from the plot (since datasets are
sorted in decreasing number of attributes) a clear correlation between number of attributes
and efficiency: the 6 out of 10 datasets with the slowdown are also the ones with the lowest
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Fig. 7 Evaluating f̄spc for heuristic optimization. Relative time difference between methods GRDspc and
GRD. Positive (negative) numbers indicate that GRDspc (GRD) is proportionally “better”. The datasets are
sorted in decreasing number of attributes

number of features. We observe in general that both bounding functions, and particularly
the f̄spc, make the branch-and-bound search very effective in practice, requiring a couple of
minutes on average for termination with good approximation guarantees.

In Table 4 we also show the maximum depth and solution depth for OPUSspc, i.e., how
far in the search space the algorithm had to go and in which level the solution was found.
We see that indeed the F̂0 retrieves solutions small in cardinality, 3.6 on average, which is
a reasonable number for the size of the data considered. The f̄spc on the other hand, with
5.9 maximum depth level on average, prunes many of the higher levels of the search space,
which explains to a large extend its effectiveness.

6.3.2 Greedy

We now proceed with the evaluation for the heuristic search. We present the relative runtime
differences of GRD and GRDspc, i.e., Algorithm 2 with and without f̄spc, in Fig. 7 (results
in Table 4). While the greedy algorithm is fast, the plot shows that f̄spc indeed improves the
efficiency of the heuristic search, as we find that for 12 datasets there is a speedup of at least
a factor of 2, and 8 of at least a factor of 4.

Next, we investigate the quality of the greedy results. Note that this is possible as we
have access to the branch-and-bound results. In Fig. 8 we plot the differences between the
F̂0 score of the results obtained by greedy and branch-and-bound on each dataset. Note that
branch-and-bound uses the same α values as with the experiments in Sec 6.3.1, and that we
only plot the nonzero differences in the two plots, left for α = 1, i.e., optimal solutions, and
right for α < 1, i.e., approximate solutions with guarantees.

At a first glance, we observe that there is no difference in 21 out of 35 cases considered,
7 where greedy is better (this of course on the datasets where α < 1), and 7 for branch-
and-bound. Out of the 21 cases where the two algorithms have equal F̂0, 16 of them have
α = 1, i.e., the greedy algorithm is optimal roughly 45% of the time. Moreover, the cases
where branch-and-bound is better is only by a small margin, 0.03 on average, while greedy
“wins” by 0.1 on average. Another observation from the right plot of Fig. 8 is that the largest
differences between the two algorithms is for the 3 datasets where the lowest α values where
used, i.e., 0.05, 0.1, and 0.35.

In Fig. 9 we consider the relative runtime difference between greedy and branch-and-
bound, i.e., GRDspc and OPUSspc. As expected, the greedy algorithm is significantly faster
in the majority of cases. There are, however, 4 cases where branch-and-bound terminates
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much faster, which also happen to coincide with more aggressive α values for branch-and-
bound.

6.4 Case studies

We close this section with examples of concrete dependencies discovered in two different
applications: determining thewinner of a tic-tac-toe configuration andpredicting the preferred
crystal structure of octet binary semi-conductors. Both settings are examples of problems
where elementary input features are available, but to correctly represent the input/output
relation either nonlinear models have to be used or—if interpretable models are sought—
complex auxiliary features have to be constructed from the given elementary features.

The game of tic-tac-toe [30] is one of the earliest examples of this complex feature con-
struction problem. Tic-tac-toe is a game of two players where each player picks a symbol
from {x, o} and, taking turns, marks his symbol in an unoccupied cell of a 3× 3 game board.
A player wins the game if he marks 3 consecutive cells in a row, column, or diagonal. A
game can end in draw, if the board configuration does not allow for any winning move. The
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Fig. 10 Tic-tac-toe example. Left: Board with input variables in corresponding board positions, and variables
contained in top dependency marked in red. Right: Number of winning combinations each position is involved
in

dataset consists of 958 end gamewinning configurations (i.e., there are no draws). The 9 input
variables I = {X1, . . . , X9} represent the cells of the board, and can have 3 values {x, o, b},
where b denotes an empty cell (see Fig. 10). The output variable Y with V (Y ) = {win, loss}
is the outcome of the game for player x .

Searching for dependencies reveals as top pattern with empirical fraction of information
F̂ = 0.61 and corrected score F̂0 = 0.45 the variable set

X = {X1, X3, X5, X7, X9}
i.e., the four corner cells and the middle one. This is a sensible discovery as these cells
correspond exactly to those involved in the highest number of winning combinations (see
Fig. 10). Moreover, removing a variable results in the loss of a considerable amount of
information, while adding a variable would provide more information, but also redundancy.
That is, the increase of fraction of information would not be higher than the increase of b̂0.

Our second example is a classical problem from Materials Science [31], which has
meanwhile become a canonical example for the challenge of the automatic discovery of
interpretable and “physically meaningful” prediction models of material properties [1,2].
The task is to predict the symmetry or crystal structure in which a given binary compound
semi-conductor material will crystalize. That is, each of the 82 material involved consist of
two atom types (A and B) and the output variable Y = {rocksalt, zincblende} describes the
crystal structure it prefers energy-wise. The input variables are 14 electro-chemical features
of the two atom types considered in isolation: the radii of the three different electron orbitals
shapes s, p, and d of atom type A denoted as rs(A), rp(A), rd(A), as well as four important
energy quantities that determine its chemical properties (electron affinity, ionization potential,
HOMO and LUMO energy levels); the same variables are defined for component B.

For this dataset the top dependency with F̂0 = 0.707 and uncorrected empirical fraction
of information F̂ = 0.735 is

X = {rs(A), rp(A)}
i.e., the atomical s and p radii of component A. Again, this is a sensible finding, since these
two variables constitute two out of three variables contained in the best structure prediction
model that can be identified using the nonlinear subgroup discovery approach [1] (see Fig.
11). Also both features are involved in the best linear LASSOmodel based on systematically
constructed nonlinear combinations of the elementary input variables [2]. The fact that not
all variables of those models are identified can likely be explained by the facts that (a) the
continuous input variables had to be discretized and (b) the dataset is extremely small with
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Fig. 11 Materials Science example. Binary semiconductors that crystalize as zinkblende (boxes) and rocksalt
(circles). Blue and green materials are correctly classified by subgroup-based prediction model—the involved
rules (annotated) use elements of the top dependency discovered. Source: Goldsmith et al. [1]

only 82 entries, which renders the discovery of reliable patterns with more than two variables
very challenging.

7 Discussion and Conclusions

We considered the dual problem of measuring and efficiently discovering functional depen-
dencies from data. For a model-agnostic and interpretable knowledge discovery procedure,
we adopted an information-theoretic approach and proposed a consistent and robust estima-
tor for mutual information suitable for optimization in high-dimensional data. We proved
the NP-hardness of the problem, and derived two bounding functions for the estimator that
can be used to prune the search space. With these, we can effectively discover the optimal,
or α-approximate top-k dependencies with branch-and-bound. The experimental evaluation
showed that the estimator has desired statistical properties, the bounding functions are very
effective for both exhaustive and heuristic algorithms, and the greedy algorithm provides
solutions that are nearly optimal. Qualitative experiments on two case studies indicate that
our proposed framework indeed discovers informative dependencies.

While the given reduction from set cover can be extended to show that, unless P=NP, no
fully polynomial time approximation scheme exists, the possibility for weaker approximation
guarantees remains. In particular, the strong empirical performance of the greedy algorithm
hints that F̂0 could have a certain structure favored by the greedy algorithm, e.g., some
weaker form of submodularity (we remind that F̂0 is neither submodular nor monotone). For
instance, one could explore ideas from Horel and Singer [32] where a monotone function is
ε-approximately submodular if it can be bounded by a submodular function within 1 ± ε.
Another idea is that of restricted submodularity formonotone functions [33], where a function
is submodular over a subset of the search space. One can also explore the submodularity
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index for general set functions [34], where a proxy for the degree of non-submodularity is
incorporated in the approximation guarantee.

For future work, the proposed bounding functions are likely to be applicable to a larger
selection of corrected-for-chance dependency measures. For example, the monotonicity-
based bounding function only requires a correction term that ismonotonically increasingwith
the superset relation. Additionally, it is also of interest to discover functional dependencies
given continuous data. As entropy has been defined for such data, e.g., differential and
cumulative entropy [35], it is possible to instantiate fraction of information scores. The
question would be in what way these measures can be corrected for chance, and whether
optimistic estimators exist that allow for efficient and exact optimization.
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