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Abstract. The poloidal modulation of the parallel velocity of charged particles

in the tokamak magnetic field modifies the strength of electron absorption of the

compressional wave in the Ion Cyclotron (IC) range of frequencies. We have

developed a model of this effect which is sufficiently simple to be numerically

tractable, and we have implemented it in the TORIC full-wave code, which solves

the wave equation in toroidal axisymmetric geometry. We find that the effect

is normally negligible in present-day devices, but its importance increases with

the dimensions and the temperature of the plasma, and should be taken into

account when estimating the competition between electron and ion heating and

the efficiency of current drive in future reactor-grade plasmas.

1. Introduction

That toroidicity influences absorption of the compressional wave (also known as

magnetosonic, or fast wave (FW)) by the electrons in the Ion Cyclotron (IC)

and magnetohydrodynamic (MHD) range of frequencies is known since some time

[1, 2, 3, 4, 5, 6, 7]. These authors have pointed out that the poloidal modulation of

the parallel velocity of charged particles modifies the longitudinal permeability of the

plasma (whose imaginary part describes electron Landau damping of electrostatic

waves). Grishanov and co-workers [8, 9] have specialized these calculations to two

particular tokamak configurations. To the best of our knowledge, however, these

effects have never yet been taken into account in a full wave solver in toroidal

geometry. The extension of the theory to all the electron contributions to the

dielectric tensor, so that it can be applied also to a wave which is not purely

electrostatic, is straightforward, but the ‘exact’ expressions for the coefficients of

the wave equations modified following the authors cited above are so cumbersome

that it is next to impossible to code them efficiently. To quantify the influence of

toroidicity on electron damping in realistic configurations, we have now implemented

an approximate formulation of these effects in the code TORIC [10].
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A first effect of toroidicity, namely the broadening of the Cherenkov-Landau

resonance due to the combination of the normal Doppler effect with the finite length

of the resonance of the individual electrons, was discussed in [11]. For the estimate

of the efficiency of direct electron heating and current drive, however, it is even more

important to take into account the effects of the modulation of the electrons parallel

velocity by the inhomogeneous static magnetic field on the location and duration of

these resonances. This is the object of the present study.

As a preliminary, in the next section we summarize the contributions of the electrons

to the high-frequency (hf) current, i.e. to the coefficients of the wave equations. As

just stated, our goal is to take into account the toroidal modulation of the electron

parallel velocity in the evaluation of these coefficients. For this purpose, in section 3

we briefly recall the features of the motion of charged particles in the tokamak

magnetic field relevant for our problem. We then introduce the approximations

we have found necessary in order to make the problem numerically tractable. In

summary, they consist in neglecting the contribution of trapped electrons altogether,

and in approximating the effects of toroidicity on the motion of passing particles as

a sinusoidal perturbation, which can then be treated in much the same way as the

gyration motion when evaluating the orbit integrals in the solution of the linearized

Vlasov equation. We will argue that these approximations are much less drastic

than it might appear from their formulation here. In the final section we present a

few examples of results from our model implemented in TORIC.

In medium size devices with electron temperature not exceeding a few keV

absorption of the compressional, or fast wave (FW), by electrons is usually very weak

compared to absorption by ions at IC resonances; its modification by toroidal effects

is, therefore, almost irrelevant. The importance of these modifications, however, can

be expected to increase with the temperature and the dimensions of the plasma.

Indeed, in large and hot fusion plasmas electron damping will be a more serious

competitor; and the fact that the FW will have to travel through a large plasma

volume before reaching IC resonances will enhance the effects of moderate changes

in the local electron damping, thereby allowing toroidicity effect to appreciably alter

the global balance between electron and ion heating.

The direction of these modifications depends on the parallel phase velocity of the

waves (cf. the comments after eqns (31) in section 3), and thus on the toroidal

spectrum launched by the antenna. For partial waves in the main peak of the typical

spectrum tailored for IC heating or current drive the main local change is due to the

fact that the duration of the Cerenkov resonance of individual electrons is maximum

when they occur near the outer equatorial plane, i.e. just below the antenna. This

tends to increase electron damping, particularly in the outer plasma layers, at the

expense of IC heating. The opposite effect, on the other hand, is to be expected

for slower partial waves which would be in resonance with an appreciable number of

trapped electrons. For such waves toroidicity tends to depress transit time magnetic
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damping (TTMD) more than it affects electron Landau damping (ELD) and the

mixed term (MXT) discussed by Stix [12], thereby altering the balance between

the two electron absorption channels, and appreciably reducing the total electron

damping. This latter effect, however, is dominant only for waves with relatively

large toroidal wavenumbers, which are not much represented in well-tailored toroidal

antenna power spectra. Its importance, moreover, could be somewhat overestimated

here by the fact that we have completely neglected absorption by trapped electrons.

On the whole, therefore, we find that taking into account toroidicity usually leads to

predict an increase of direct hf power absorption by the electrons, which in reactor-

grade plasmas can be far from negligible, and should be taken into account when

estimating the competition between ion and electron heating, and in particular the

efficiency of current drive.

2. The electron hf current in the Ion Cyclotron range of frequencies

In axisymmetric toroidal geometry it is convenient to represent hf fields and currents

as a superposition of toroidal and poloidal Fourier modes

~E(ψ, ϑ, ϕ; t) =
∑

m,n

~Emn(ψ) ei(mϑ+nϕ−ωt) (1)

(ψ ∼ r/a, with a the minor radius, labels magnetic surfaces; ϑ and ϕ are a poloidal

and the geometric toroidal angle, respectively). In axisymmetric plasmas toroidal

modes propagate independently, while poloidal modes are strongly coupled by

toroidicity. Solving the linearized Vlasov equation using this spectral representation,

the Finite Larmor Radius (FLR) electron current in the Ion Cyclotron and Lower

Hybrid (LH) range of frequencies is found to be

4πiω

c2
~e(ψ, ϑ, ϕ; t) =

∑

m,n

ei(mϑ+nϕ−ωt)
∑

m̄

{

ω2

c2
P̂e(k

m̄n
ζ , ψ, ϑ)Em−m̄,n

ζ (ψ)~b

− ~∇mn
⊥ ×

[

2τ̂e(k
m̄n
ζ , ψ, ϑ)

(

~∇m−m̄n
⊥ × ~Em−m̄,n

⊥ (ψ)
)]

+ i

[

~∇mn
⊥ ×

[

ξ̂(km̄n
ζ , ψ, ϑ)∇m−m̄n

‖ Em−m̄,n
ζ (ψ)~b

]

+∇mn
‖

[

ξ̂†e(k
m̄n
ζ , ψ, ϑ)~b ·

(

~∇m−m̄n
⊥ × ~Em−m̄,n

⊥ (ψ)
)]

~b

]}

(2)

where m and m̄ are the poloidal number of the Fourier representation of the current

and of the wave fields, respectively. The first line is the contribution of order

zero in the electron Larmor radius, whose non-Hermitian part describes Electron

Landau Damping (ELD); the second line is the FLR term describing Electron

TTMD; and the third is the ‘mixed’ FLR contribution identified by Stix [12]. The

operators ~∇mn
⊥ × and ∇ m̄n

‖ are the appropriate components respectively of the curl
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and of the gradient, expressed in the local field-aligned frame, and applied to the

(m, n) component of the hf current (outer summation) and to the (m̄, n) component

of the wave electric field (inner summation); their explicit form is given in [13]. The

coefficients P̂e, τ̂e, ξ̂e, and ξ̂
†
e have the form

P̂e(k
m̄,n
ζ , ψ, ϑ) = −

ω2
pe

ω2
Izz(k

m̄,n
ζ , ψ, ϑ)

τ̂e(k
m̄,n
ζ , ψ, ϑ) + τ̂i(ψ) =

1

2

ω2
pe

ω2

v2the
c2

Iyy(k
m̄,n
ζ , ψ, ϑ)

ξ̂e(k
m̄,n
ζ , ψ, ϑ) = −1

2

ω2
pe

Ωceω

v2the
c2

Iyz(k
m̄,n
ζ , ψ, ϑ)

ξ̂†e(k
m̄,n
ζ , ψ, ϑ) = −1

2

ω2
pe

Ωceω

v2the
c2

Izy(k
m̄,n
ζ , ψ, ϑ)

(3)

Here ωpe and Ωce are the electron plasma and cyclotron frequencies, vthe =

(2Te/me)
1/2 the electron thermal speed, and

km̄,n
ζ (ψ, ϑ) =

n+ m̄/q(ψ)

R(ψ, ϑ)
(4)

the effective parallel wavenumber of the Fourier mode (m̄, n), with q the safety

factor and R the major radius. Although not constant, km̄,n
ζ varies only on the scale

of the equilibrium MHD configuration, so that in the IC and LH range of frequencies

it can be expected to play in the plasma response to the waves the same role as k‖
in the uniform limit. The integrals Iαβ describe parallel space dispersion in toroidal

geometry, and are defined by

Iij(k
m̄,n
ζ , ψ, ϑ) = −2πiω

∫ ∞

0

dǫv

∫

B

v‖
Fe dµv

∫ t

−∞

ei[(m̄+qn)(ϑ′−ϑ)−ω(t′−t)] Πe
ij dt

′ (5)

where Fe(ψ, ǫv, µv) is the electron distribution function, ǫv = v2/2 and µv = v2⊥/2B

are the particle energy and magnetic moment per unit mass, with B the confining

magnetic field, and primes indicate that values are taken along the unperturbed

orbits of the guiding centers. The elements Πe
αβ in (5) are

Πe
yy =

[(

− v2the
2Fe

∂Fe

∂ǫv

)

+
1

B′
0

(

1−
km̄n
ζ v′‖
ω

)(

− v2the
2Fe

∂Fe

∂µv

)]

w2w′2

2

Πe
yz = 2

ω

km̄n
ζ vthe

(

− v2the
2Fe

∂Fe

∂ǫv

)

w2 u′

Πe
zy = 2

ω

km̄n
ζ vthe

[(

− v2the
2Fe

∂Fe

∂ǫv

)

+
1

B′
0

(

1−
km̄n
ζ v′‖
ω

)(

− v2the
2Fe

∂Fe

∂µv

)]

uw′2

Πe
zz = 2

(

− v2the
2Fe

∂Fe

∂ǫv

)

uu′

(6)

with u = v‖/vthe, w = v⊥/vthe, and it is assumed that a ‘thermal velocity’ vthe can

be meaningfully defined even if Fe is not a Maxwellian. The terms proportional to
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∂Fe/∂µv vanish at resonance, and, therefore, do not contribute to wave absorption;

as a consequence of the large charge to mass ratio of the electrons, moreover, the

anisotropy of Fe is always very small, i.e. ∂Fe∂µv ≈ 0. Thus eqn (6) can be simplified

to

Πe
ij =

(

− v2the
2Fe

∂Fe

∂ǫv

)

Πij

Πyy =
w2w′2

2
Πyz = 2

ω

km̄,n
ζ vth

w2 u′ Πzy = 2
ω

km̄,n
ζ vth

uw′2 Πzz = 2uu′

(7)

In the uniform plasma with Maxwellian electrons the integrals (5) can be expressed

in terms of the Plasma Dispersion Function (PDF) [14],

Z(x0) = − 1√
π

∫ +∞

−∞

e−u2

u− x0
du x0 = xm̄n

0 =
ω

km̄n
ζ vthe

(8)

and its derivatives. We will call the integrals (5) the Toroidal PDFs (TPDFs). We

recall that Πyy enters the evaluation of TTM damping, Πzz the evaluation of ELD,

while Πxy and Πxy enter the so-called mixed (MXD) term which determines the

wave polarization [12].

Toroidicity has two consequences on the electron response to the waves. Because

of the poloidal variation of km̄,n
ζ and the modulation of the parallel velocity by

the toroidal magnetic field well, Cerenkov-Landau resonances are localized in space

rather than in velocity. Because of the periodicity of the configuration, moreover,

resonances with harmonics of the bounce or transit frequency ωB of the parallel

motion are possible, which do not exist in the uniform, infinite limit. In the IC

range of frequencies the ratio ω/ωB is too large for these resonances to contribute

directly to the efficiency of wave absorption by the electrons, but their cumulative

effect nevertheless influences the electron response to the waves.

3. Modelling the effects of periodicity on Cerenkov-Landau resonances

To investigate the effects of the periodic toroidal modulation of the electron parallel

velocity on Cherenkov-Landau resonances, a short reminder of the parallel motion

of charged particles in axisymmetric toroidal configurations will be useful. At

frequencies much higher than the bounce or transit frequency of the electrons in the

torus the unperturbed orbits in eqn (5) can be evaluated as if the guiding centers

were tied to lines of force of the static magnetic field (this is already implicit in

the way the phase of the exponential in (5) has been written). The unperturbed

equation of motion is then

ϑt = σv̟B
R0

R

(

1− Λv
B

Beq

)1/2

with ̟B =

√
2ǫv
qR0

≪ ω (9)
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where subscript t stands for the time derivative, R the horizontal distance from the

vertical axis, R0 its value at the magnetic axis, and

Λv = Beq
µv

ǫv
=
v2⊥ eq

v2
(10)

(0 ≤ Λv ≤ 1). Here and in the following the subscript “eq” denotes quantities

evaluated at the outer equatorial plane, while quantities evaluated at the magnetic

axis will have a subscript “0”. In (9), σv is the sign of the parallel velocity on

the outer midplane plane (v‖ changes sign along the orbit only in the case of

trapped electrons), and ̟B is the highest angular transit frequency of electrons of

energy meǫv, namely those with Λv = 0 (i.e. v‖ = v, v2⊥ = 0). The argument of the

square root in (9) is always smaller than unity, and vanishes if Λv = Λtp = Beq/Bmax;

electrons on the magnetic surface ψ with Λv > Λtp are toroidally ‘trapped’ and do

not explore the whole magnetic surface.

To second order accuracy in the inverse aspect ratio εr = r/R0 the intensity of the

static magnetic field can be approximated as

B(ψ, ϑ) ≈ B0 (1− εr cosϑ) = Beq

(

1 +
εr

1− εr
(1− cosϑ)

)

ǫr =
a

R0

ψ (11)

where a is the minor radius, and ǫr is the inverse aspect ratio of the magnetic

surface ψ. Then eqn (9) becomes

ϑt

ω
= σvη̃B(1− Λv)

1/2 (1− ǫr cosϑ)

(

1− 1

2κT
(1− cosϑ)

)1/2

with
1

2κT
=

εr
1− εr

Λv

1− Λv

=
εr

1− εr

v2⊥eq

v2‖eq
and η̃B =

̟B

ω

(12)

(κT = 1 is the transition between trapping and passing). Explicit solutions of this

equation which could be used in the orbit integrals of the previous section are not

available (cf., however, the discussion on the accuracy at the end of this section),

and numerical solutions are manifestly far too cumbersome to be used in TORIC.

We can simplify our task, however, by taking advantage of the fact that in the

TPDF the orbit integrals are in turn integrated over velocity space. It is, therefore,

permissible to use for the orbits approximate expressions which are not uniformly

valid in velocity space, provided that the contribution of the velocity domain where

they fail is sufficiently small. For this purpose, we must discuss separately well-

passing and deeply trapped particles.

a) Passing electrons. For well passing electrons, κT ≫ 1, the primed orbits to be

used in the GTPDFs (5) can be obtained by solving (12) iteratively:

ϑ′ = ϑ+ ωBP (t
′ − t) + ǫBP [sin (ϑ+ ωBP (t

′ − t))− sinϑ] (13)
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with

ωBP =
v‖eq
qR0

(

1− 1

4κT

)

ǫBP = ǫr −
1

4κT
(14)

Recalling that km̄n
ζ given in (4) is the parallel component of the local wavevector of

the Fourier mode ~Em̄,n(ψ), the exponential in the orbit integrals (5) becomes

exp

{

i[(m̄+ qn)(ϑ′ − ϑ)− ω(t′ − t)]

}

=

= exp

{

i

[

(m̄+ qn)v‖eq
qR0

− ω

]

(t′ − t) + Ξm̄n
B (ψ,Λv)

[

sin

(

ϑ+
v‖eq
qR0

(t′ − t)

)

− sinϑ

]}

=
∑

k,ℓ

Jk(Ξ
m̄n
B ) Jℓ(Ξ

m̄n
B ) ei(k−ℓ)ϑ ei(k

m̄+ℓ,n
ζ

v‖eq−ω)(t′−t)

(15)

with

Ξm̄n
B (ψ; Λv) = ǫBP (m̄+ qn) ≃ ǫr −

1

2

ǫr
1− ǫr

Λv

1− Λv

(m̄+ qn) (16)

Note the close similarity of this equation to the expressions obtained by expanding

the gyromotion contribution to the phase in harmonics of the cyclotron frequency

(whose role is taken here by the bounce frequency). There is one important

complication, however: the ‘gyration angle’ is in velocity space, and in the GTPDF

is integrated over; the ‘bounce angle’, by contrast, is in space, and since the GTPDF

is needed at all poloidal points separately, the double Bessel series in eqn (15) cannot

be diagonalized.

The integral over t′ can nevertheless be performed, since to the present accuracy we

can also omit the primes in the factors Πij. The contribution of passing electrons

to the GTPDF can then be estimated as

IP
ij (k

m̄,n
ζ , ψ, ϑ) = 2π

∫ ∞

0

dǫv

∫

(κT>1)

B0

v‖
Fe Πij dµv

∑

k,ℓ

Jk(Ξ
m̄n
B ) Jℓ(Ξ

m̄n
B ) ei(k−ℓ)ϑ ω

ω − km̄+ℓ,n
ζ v‖

(17)

with the µv-integral extending over all passing particles (κT > 1). The summation

over ℓ with resonant denominators can be regarded as a broadening of the Cherenkov

resonance due to the cumulative effect of resonances with the periodic parallel motion

of the guiding centers.

b) Trapped electrons. To lowest order in the inverse aspect ratio the condition for a

particle to be toroidally trapped is

Λv > Λtp ≃ 1− εr
1 + εr

(18)

Roughly speaking, a particle is deeply trapped if it satisfies 1−Λv < ǫv by a sufficient

margin; the turning point is then

ϑtp ≃ 2
√
κT =

(

2(1− εr)

εr
(1− Λv)

)1/2

1− Λv ≪ εr (19)
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In the domain explored by a deeply trapped particle, moreover,

B

Beq

≃ 1 + εr(1− cosϑ) ≃ 1 + εr
ϑ2

2
(20)

Under these conditions eqn (9) becomes the equation of a linear oscillator around

ϑ = 0,

ϑ2
t

ϑ2
tp

≃ ω2
BT

(

1− ϑ2

ϑ2
tp

)

ωBT = ωB(εr/2)
1/2 ≃

(

1− εr
2εr

)1/2 v‖eq
qR0

(21)

Indeed, deriving both members with respect to t we obtain the linear equation

ϑtt = −ω2
BTϑ (22)

whose solution compatible with (21) is

ϑ = ϑtp sinωBT (t− teq) (23)

where t0 is the time of the last transit through the outer equatorial plane.

The presence of the ‘privileged’ time teq in eqn (23) makes it rather cumbersome

to write this solution in a form appropriate for the phase of the exponential in the

orbit integrals. To eliminate teq we can write

ϑ′ − ϑ = ϑtp

[

sinωBT (t
′ − teq)− sinωBT (t− teq)

]

=
(

ϑ2
tp − ϑ2

)1/2
sin

(

ωBT (t
′ − t)

)

+ ϑ
(

cos
(

ωBT (t
′ − t)

)

− 1
) (24)

Accordingly, the exponential in the trapped electrons contribution to the orbit

integral can be expanded as the product of two series in harmonics of ωBT

exp

{

i[(m̄+ qn)(ϑ′ − ϑ)− ω(t′ − t)]

}

=
∑

r,s

Jr(Ξ
m̄n
tp ) Cs(Ξm̄n

ϑ ) ei(r+s)ωBT (t′−t)

C2s = (−1)sJ2s(Ξ
m̄n
ϑ ) cos Ξm̄n

ϑ

C2s+1 = (−1)s+1J2s+1(Ξ
m̄n
ϑ ) sin Ξm̄n

ϑ

(25)

with

Ξm̄n
tp = (m̄+ qn)

(

ϑ2
tp − ϑ2

)1/2

Ξm̄n
ϑ = (m̄+ qn)ϑ (26)

Recalling the definition (21) of ωBT , the contribution of trapped electrons to the

GTPDF can then be approximated as

IT
ij(k

m̄,n
ζ , ψ, ϑ) = 2π

∫ ∞

0

dǫv

∫

(κT>1)

B0

v‖
Fe Πij dµv

∑

r,s

Jr(Ξ
m̄n
tp ) Cs(Ξm̄n

ϑ )
ω

ω − (r + s)kTv⊥eq

kT =

√

ǫr
2(1− ǫr)

1

qR0

(27)
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with the µv–integral extending over all trapping particles (κT < 1).

The space and velocity dependence of the integrand of eqn (27) makes its numerical

evaluation prohibitively lengthy; from this equation we can nevertheless derive a

useful conclusion. The fact that trapped electrons are very slow along magnetic

field lines is reflected in the factor (εr/2)
1/2 ≪ 1 affecting kT in the resonant

denominators. Thus trapped electrons can resonate only with waves with a very

slow parallel phase velocity. On the other hand, the inequality (qR0)
−1 ≪ |km̄,n

ζ |
is always satisfied by a large margin in practice. This means that if the antenna

spectrum is tailored to resonate with electrons with parallel velocities of the order

or a few times larger than the thermal speed, as is normally the case, very few

trapped electrons will experience a Cerenkov resonance. We conclude that FW

wave absorption by trapped electrons will usually play a very marginal role.

c) Implementation in the TORIC code. We take advantage of the last observation

to build a model sufficiently simple to be easily implemented in a full-wave solver of

Maxwell’s equations in toroidal geometry, yet reasonably accurate. For this purpose

we introduce the following simplifications:

(i) We will take into account the effects of the periodic modulation of the electron

parallel velocity only in the imaginary part of the GPDFs, responsible for wave

absorption;

(ii) We will use the expression (17) for the contribution of passing electrons, and

neglect completely the contribution of trapped electrons.

The last assumption is certainly questionable: the contribution of trapped electrons

to the absorption, although small, is not zero. It can nevertheless be justified by

stressing again that in the domain of velocity space in which eqn (17) does not apply

very few resonant electrons should normally be present.

With the above approximations the velocity space integrals in eqn (17) can be

performed using cylindrical velocity coordinates, obtaining

Iij(k
m̄,n
ζ ;ψ, ϑ) = −xm̄,n

0

[

Re
(

Zij(x
m̄n
0 )

)

+ iΓij(x
m̄,n
0 , ψ, ϑ)

]

(28)

with real part

Re
(

Zij(x
m̄n
0 )

)

=
1√
π
P

∫ ∞

−∞

e−u2

du

u− xm̄n
0

∫ ∞

0

e−w2

Πij(u, w)w dw (29)

(the singular integral to be evaluated as in section 2), and imaginary part

Γij(x
m̄,n
0 , ψ, ϑ) =

√
π
∑

k,ℓ

Fk,ℓ
ij (xm̄+ℓ,n

0 ;ψ, ϑ) cos (k − ℓ)ϑ (30)
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with

Fk,ℓ
ij (xm̄+ℓ,n

0 ;ψ, ϑ) = e−(xm̄+ℓ,n
0 )2

∫

Λv<Λtp

e−w2

Πij(x
m̄+ℓ,n
0 , w) Jk(Ξ

m̄+ℓ,n
B ) Jℓ(Ξ

m̄+ℓ,n
B )w dw

Ξm̄+ℓ,n
B = εr −

1

2

w2

(xm̄+ℓ,n
0 )2

εr
1− εr

(m̄+ qn)

(31)

(the function F depends on ϑ through the value of xm̄+ℓ,n
0 ). In the limit ǫr → 0 one

recovers the uniform-plasma result, as should be expected. Two further comments

about these results are worth being mentioned:

1) According to (30), Γij is stationary at the equatorial plane: it is maximum (in

absolute value) at ϑ = 0, and minimum at ϑ = π. It follows that the toroidal effects

on damping by the electrons are strongest just in front of the antenna, a fact that

under appropriate conditions can appreciably amplify their influence on the global

power balance.

2) The integral over perpendicular velocity in (31) is performed excluding the domain

of trapped electrons. Due to the different weight of the quantities Πij with w, this

reduces the (absolute) value of Γyy (TTMD) more than that Γzz (ELD) and of Γxy

and Γyx (MXD). The effect decreases with increasing parallel phase velocity of the

wave, because the number of trapped electrons in the excluded domain decreases

exponentially.

d) Some considerations about the accuracy. As already noted, no analytical solution

of eqn (9) is available to which our approximate solutions could be compared.

However, an approximate but completely explicit description of the parallel motion

of charged particles in the tokamak magnetic field (11) in terms of elliptic integrals

becomes possible [15] if the factor R0/R outside the square root in eqn (9) is omitted.

In this subsection, therefore, we explore the accuracy of our approximate solutions

by comparing them with the solutions obtained in the literature in terms of elliptic

functions.

Before proceeding, it is worth stressing that the just mentioned factor R0/R in

eqn (9) is essential for our problem, and cannot be omitted. In the first place,

the inaccuracy introduced is already of first order in the inverse aspect ratio. More

important, however, is the fact that if ϑt is written without this factor one finds that

the second derivative (m + qn)ϑtt of the wave phase seen by an electron along its

orbit would be proportional to Λv, implying ϑtt ≡ 0 for v⊥ = 0, i.e. to lowest order in

the inverse aspect ratio one would predict no localization of the Cerenkov resonance

of a strictly passing electron. This is in obvious contradiction with the resonance

condition k‖v‖ = ω, which states that for such an electron, which has a constant

v‖ = v, localization and duration of the resonance are determined to lowest order by

the ∼ 1/R variation of k‖ along the orbit. The outer factor in eqn (9) corresponds

precisely to the R−1 variation of k‖: in other words, writing the resonance condition
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Figure 1. Parallel velocity of passing electrons in the tokamak magnetic

field as function of the poloidal angle ϑ. The dashed lines correspond to the

approximation (28).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ϑ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

v
∥/
v

εr=0.333
Λtp=0.5

Λv
0.501
0.6
0.7
0.8
0.9

Figure 2. Parallel velocity of trapped particles in the tokamak magnetic

field as function of the poloidal angle ϑ. The dashed lines correspond to the

approximation (2).

in terms of the time history of the poloidal angle displaces the R−1 dependence of k‖
into the R−1 dependence of ϑt. Omitting this factor, therefore, leads to a completely

wrong estimate of the duration of Cerenkov resonances, and, therefore, of the effects

of toroidicity on electron Landau resonances.

For our purposes here, we have circumvented this difficulty by comparing, instead of

the solutions for the poloidal angle, the solutions for the parallel velocity, assuming

that in the analytic case the proportionality factor between ϑt and v‖ can be

regarded as independent from the poloidal angle, as implicitly assumed in [15].

This comparison is presented in fig. 1 for passing, and in fig. 2 for trapped electrons.

As can be deduced from these figures, our approximation are actually acceptable

in a wider range of Λv than stipulated above, and fail only in the vicinity of the

passing-trapping boundary. The same conclusion can be derived from fig. 3, where
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the approximations (14) and (21) for the bouncing frequency are compared to the

‘exact’ expressions in terms of elliptic functions.

4. Examples

4.1. Minority heating in medium-size tokamaks.

In minority heating scenarios in medium-size devices IC damping almost always

largely dominates over damping by the electrons, so that the effects of toroidicity on

the unperturbed electron motion do not significantly affect the global power balance.

As an example, we have chosen a typical minority heating scenario in a plasma of the

dimensions of the ASDEX Upgrade device (Hydrogen minority in Deuterium, central

density 6.4 1019 m−3, central temperatures Te = 4.25 keV, Ti = 2.28 keV, magnetic

field on axis B0 = 2.4 Tesla, applied frequency 36.5 MHz, representative toroidal

mode nϕ = 12; the selfconsistent quasilinear ion distributions and power absorption

profiles have been calculated assuming a total hf power of 1.6 MW). Taking into

account the effects considered in this note increases the fraction of power predicted

to be absorbed by the electrons in a Maxwellian plasma from 8% to 13%, while

absorption by the minority is predicted to decrease from 66.20% to 61.63%, and

harmonic absorption by Deuterium from 27.47% to 25.40%. While nearly doubling

of direct absorption of the waves by the electrons might not be regarded as a minor

effect, it is well below what can be put into evidence experimentally, in particular

because collisional redistribution of the absorbed power complicates the issue.

It is nevertheless interesting to illustrate the role of geometry and of the relative

strength of absorption by the different species by varying the assumed minority



13

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
nH/ne

0

10

20

30

40

50

60

70

80

[%
]

Maxw
Qlin
Coll

Figure 4. Influence of toroidicity on electron absorption and heating in a medium-

size plasma as function of the minority concentration. Green bullets: Maxwellian

plasma; blue squares: selfconsistent quasilinear ion distribution functions; red

triangles: same after collisional redistribution. Open symbols: without toroidicity

effects on electron absorption; Full symbols: with toroidicity effects on electron

absorption.

concentration in this plasma. The results are summarized in fig. 4. As the Hydrogen

concentration increases, screening of E+ at the IC resonance increases, decreasing IC

absorption per transit; multiple transits enhances the impact of toroidicity effects

on direct electron absorption. At the same time the energy in the suprathermal

Hydrogen population decreases, so that less power is collisionally transferred to the

electrons. The effect of toroidicity on direct electron absorption are best visible

around and just above the transition from the minority to the mode-conversion

regime, which is situated in this case around 15% minority concentration. In this

region, on the other hand, for the reason just mentioned a reduction can be seen in

the power gained by the electrons after collisional redistribution.

The effects on the direct absorption profiles are illustrated in fig. 5. They are barely

visible in the minority regime, but beyond the transition mode conversion the peak

of power deposition in the minority is appreciably lowered, explaining the reduced

collisional transfer to the electrons.

It is also interesting to investigate how the impact of toroidicity on direct electron

absorption depends on the toroidal wavenumber nϕ, i.e. on the average parallel phase

velocity of the wave (because the field of each toroidal mode is a superposition

of many coupled poloidal Fourier components, one value of nϕ corresponds to
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Figure 5. Power absorption profiles in a medium-size plasma, selfconsistent ion

distribution functions. Left: 5% Hydrogen, right: 20% Hydrogen. Full curves

with toroidal effects, dashed curves without toroidal effects.

a spectrum of k‖ values, which shrinks to nϕ/R0 on the magnetic axis; in our

simulations the range of poloidal modes used spanned the range −15 ≤ m ≤ +15).

For this purpose we have chosen the Hydrogen concentration of 13%, roughly at

the transition between minority and mode conversion. In present-day devices the

toroidal spectrum of antennas excited in the antisymmetric configuration for ion

heating typically spans the range −30 <∼ nϕ <∼ +30, with a peak around nϕ ∼ 12

to 15. In fig. 6 we present the results for a few selected toroidal modes (only the

Maxwellian plasma case has been considered: to iterate to obtain the selfconsistent

quasilinear solution makes sense only for a representative mode near the peak of the

spectrum, or for the entire spectrum). The increase of direct electron absorption

due to toroidicity is particularly spectacular for nϕ = 6: this is due to multi-transit,

because this mode is much more weakly damped than modes close to the main

peak of the spectrum. Again, this is not something that could easily be seen

experimentally, because the weight of this mode in the typical antenna toroidal

power spectrum is very small.

We can also note that for values of nϕ in the upper part of the spectrum (18 and 24)

direct electron absorption is depressed in the central region. This is because its

enhancement in the periphery is sufficient to appreciably decrease the power reaching

the core of the plasma (these modes are damped essentially in a single pass). Once

more, this effect would not show up in a simulation covering the entire toroidal

spectrum, because the weight of these mode is relatively small.

4.2. A minority heating scenario in ITER, non-activated phase.

In fusion-grade plasmas, such as ITER, electron damping is a more serious

competitor, because of the higher temperature, and of the thicker plasma layer

the waves must cross before reaching IC resonances.



15

0.0 0.2 0.4 0.6 0.8 1.0
ψ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 A=1, Z=1
A=2, Z=1
Electrons

0.0 0.2 0.4 0.6 0.8 1.0
ψ

0.0

0.1

0.2

0.3

0.4

0.5 A=1, Z=1
A=2, Z=1
Electrons

0.0 0.2 0.4 0.6 0.8 1.0
ψ

0.0

0.1

0.2

0.3

0.4

0.5

0.6
A=1, Z=1
A=2, Z=1
Electrons

0.0 0.2 0.4 0.6 0.8 1.0
ψ

0.0

0.1

0.2

0.3

0.4

0.5 A=1, Z=1
A=2, Z=1
Electrons

Figure 6. Hydrogen concentration 13%: power deposition profiles for selected

toroidal modes, selfconsistent ion distribution functions. From above left to below

right: nϕ = 6, 12, 18, and 24. Full curves with toroidal effects, dashed curves

without toroidal effects.

As an example, we have considered a minority heating scenario in a 4He plasma

with a Hydrogen minority (5% in density, with magnetic field 2.65 Tesla on axis;

at 40 MHz the IC resonance are very close to the axis. The central density was

assumed 4.9 1019 m−3, with central temperatures Te = 16.7 keV, Ti = 15.2 keV.

With the antenna of the dimensions proposed in [16] and 4 straps, the radiated

toroidal power spectrum has two well-defined peaks around nϕ = ±60; we have

therefore performed the consistency loop between TORIC and SSFPQL for the

representative mode nϕ = 60 (average k‖ ∼ 9.4 m−1 ‡) assuming a total power

of 20 MW. The predicted power deposition profiles in the Maxwellian plasma and

with the selfconsistent quasilinear ion distribution functions are shown in fig. 7.

A new effect can be observed in this case. In the relatively cold plasma near

the boundary the situation is similar to that in present day devices, and toroidal

‡ TORIC predicts a launched power spectrum shifted to slightly higher toroidal wavenumbers

than those in [16], and in the case of CD configuration a different weight between the positive and

negative part of the spectrum; this might depend on the supposed distance of the antenna from

the separatrix and the assumed density profile in the plasma periphery. We have checked that

from the point of view of the effects discussed here the difference is not significant.
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Figure 7. Minority Heating in ITER, 5% H in 4He, nϕ = 60. Left Maxwellian

plasma, right Selfconsistent ion distribution functions. Full curves with toroidal

effects, dashed curves without toroidal effects.

effects enhance electron damping. As the temperature increases away from the edge,

however, the ratio of the average phase velocity of the waves to the local electron

thermal speed decreases (it is around two on axis) so that the fraction of resonant

electrons which are toroidally trapped increases, and absorption by the electron

is depressed. This more than compensates the reduction in Poynting flux at the

transition through the outer layers, so that IC heating in the core is even slightly

enhanced. This enhancement is actually not really significant, since it is probably

of the same order as the inaccuracy in electron heating due to the complete neglect

of absorption by trapped electrons. The behaviour of the electron deposition profile

when toroidicity effects are taken into account, on the other hand, is robust, and is

not expected to change much if a better model for trapped electrons will become

available.

4.3. A current drive scenario in ITER, non-activated phase.

In ITER frequency windows for hf current drive in the IC range (ICCD) are difficult

to be found [17, 18]. In the initial non-activated phase, ICCD might be marginally

possible at the upper end of the planned frequency range. We have therefore

considered the same 4He plasma with a residual Hydrogen minority ∼ 3% in density

(well below the optimum for IC minority absorption) at a frequency of 53 MHz:

the IC resonances are then close to the inner boundary, so that absorption by the

electrons is maximized. In this example we have considered only a Maxwellian

plasma, because the density of power deposited in the ions is so low to make

quasilinear effects essentially negligible. Although this scenario is unlikely to be

really adopted, it is well suited to illustrate the effects discussed in this note.

With a 4 strap antenna excited in the CD configuration, the dominant lobe in the

toroidal power spectrum is peaked around nϕ = 30, with a secondary lobe peaked



17

nϕ electrons Hydrogen He4

w/o with w/o with w/o with

+30 74.43 94.39 22.65 4.96 2.91 0.65

-90 88.91 68.04 10.69 30.69 0.40 1.27

Table 1. Power repartition without (w/o) and with toroidal trapping with

Maxwellian distribution functions.
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Figure 8. ITER He4 plasma with 3% Hydrogen, 2.655 Tesla on axis, 53 MHz,

left nϕ = 30, right nϕ = −90. Power deposition profiles in a Maxwellian plasma,

normalized to 1 MW total. Dashed lines without, full lines with toroidal effects

on the electrons.

around nϕ = −90; depending on the detailed geometry of the antenna, the power

launched in the negative direction ranges between one third and half of the power

in the positive direction.

As can be seen from table 1, when toroidicity effects on the electrons are taken

into account (columns labeled with TE) TORIC predicts a substantial increase of

electron absorption of the wave propagating in the positive toroidal direction, and

a comparable decrease in electron absorption of the wave traveling in the negative

direction. At first sight this appears favorable to current drive. A look to the

deposition profiles (fig. 8), however, shows that the increased absorption of the

mode nϕ = +30 occurs mainly in the outer half of the plasma: indeed, at this high

electron temperature, the increased damping in the plasma periphery is large enough

to severely reduce the amount of power reaching the plasma core. Any increase of the

driven current, therefore, will be accompanied by a marked displacement of the CD

profile towards the outside. The importance of these modifications indicates that to

plan and interpret IC and CD experiments in large and hot plasmas attention should

be given also to the effects of toroidicity on direct absorption by the electrons.
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5. Conclusions

We have developed a model to take into account the effects of the poloidal

modulation of the parallel velocity of charged particles in the tokamak magnetic

field on the absorption of the Fast Wave by the electrons in the ion cyclotron range

of frequency. To make the model numerically tractable it has been necessary to

make some rather drastic approximations, which, however, appear acceptable under

most situations. The resulting change in the strength of damping by the electrons,

although locally moderate, can be amplified by the fact that it is largest in the

plasma periphery just in front of the antenna, and because the waves often have to

traverse a large volume of plasma were they are subject only to electron damping

before reaching IC resonances where they can heat the ions. Thus the effect is

usually (although not always) negligible in present-day medium size tokamaks,

but its importance is bound to increase with increasing plasma size and electron

temperature. In ITER and larger future tokamaks it will be important to take into

account these effects when estimating the competition between electron and ion

heating, or the efficiency of current drive.

[1] KALADZE, T., PYATAK, A., and STEPANOV, K., Sov. J. Plasma Phys. 8 (1982) 467.

[2] GRISHANOV, N. and NEKRASOV, F., Sov. J. Plasma Phys. (1987) 65.

[3] NEKRASOV, F., Sov. J. Plasma Phys. 16 (1990) 35.

[4] ELFIMOV, A. and PURI, S., Nucl. Fusion 30 (1990) 1215.

[5] ELFIMOV, A. and NEKRASOV, F., Sov. J. Plasma Phys. 18 (1992) 526.

[6] GRISHANOV, N., DE AZEVEDO, C., and DE ASSIS, A., Phys. of Plasmas 4 (1997) 1055.

[7] NEKRASOV, F., ELFIMOV, A., DE AZEVEDO, C., and DE ASSIS, A., Phys. Letters A

251 (1999) 44.

[8] GRISHANOV, N., LOULA, A., DE AZEVEDO, C., and NETO, J. P., Plasma Phys. Contr.

Fusion 45 (2003) 1791.

[9] GRISHANOV, N. and AZARENKOV, N., Plasmas Phys. Review 39 (2013) 1070.

[10] BRAMBILLA, M. and BILATO, R., Nuclear Fusion 49 (2009) 085004.

[11] BRAMBILLA, M., Physics Letters A 188 (1994) 376 .

[12] STIX, T., Nuclear Fusion 15 (1975) 737.

[13] BRAMBILLA, M., Plasma Physics and Controlled Fusion 41 (1999) 1.

[14] FRIED, B. D. and CONTE, S. D., The plasma dispersion function, N.Y. : Academic Press,

1961.

[15] BRIZARD, A. J., Physics of Plasmas 18 (2011) 022508.

[16] MESSIAEN, A. and WEYNANTS, R., Plasma Physics and Controlled Fusion 53 (2011)

085020.

[17] HANNAN, A., HELLSTEN, T., and JOHNSON, T., Nuclear Fusion 53 (2013) 043005.

[18] BRAMBILLA, M. and BILATO, R., Nuclear Fusion 55 (2015) 023016.


