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Abstract The insular cortex (IC) plays key roles in emotional and regulatory brain functions and

is affected across psychiatric diseases. However, the brain-wide connections of the mouse IC have

not been comprehensively mapped. Here, we traced the whole-brain inputs and outputs of the

mouse IC across its rostro-caudal extent. We employed cell-type-specific monosynaptic rabies virus

tracings to characterize afferent connections onto either excitatory or inhibitory IC neurons, and

adeno-associated viral tracings to label excitatory efferent axons. While the connectivity between

the IC and other cortical regions was highly bidirectional, the IC connectivity with subcortical

structures was often unidirectional, revealing prominent cortical-to-subcortical or subcortical-to-

cortical pathways. The posterior and medial IC exhibited resembling connectivity patterns, while

the anterior IC connectivity was distinct, suggesting two major functional compartments. Our

results provide insights into the anatomical architecture of the mouse IC and thus a structural basis

to guide investigations into its complex functions.

Introduction
The insular cortex (IC or insula) has been suggested to mediate a wide variety of brain functions,

such as the processing of external and bodily sensory information (Gogolla, 2017; Kurth et al.,

2010), bodily- and self-awareness (Craig, 2009; Craig, 2011), emotion regulation (Etkin et al.,

2015), feelings and complex social-affective functions like empathy (Damasio and Carvalho, 2013),

and switches between large-scale brain networks (Menon and Uddin, 2010).

Rodent studies further demonstrated roles for the IC in multisensory (Gogolla et al., 2014;

Rodgers et al., 2008) and pain processing (Tan et al., 2017), representation of valence

(Wang et al., 2018), learning and memory (Bermudez-Rattoni et al., 2005; Lavi et al., 2018), social

interactions (Rogers-Carter et al., 2018), gustation (Peng et al., 2015; Wang et al., 2018), drug

cravings and malaise (Contreras et al., 2007), and aversive states such as hunger, thirst, and anxiety

(Gehrlach et al., 2019; Livneh et al., 2020; Livneh et al., 2017).

While anatomical studies in diverse species highlight that the insula is one of the most complex

anatomical hubs in the mammalian brain (Allen et al., 1991; Cauda et al., 2012; Cechetto and

Saper, 1987; Menon and Uddin, 2010; Yasui et al., 1991), to date, there is no comprehensive con-

nectivity map of the IC of the mouse, a genetically accessible model organism widely employed in

systems neurosciences.

Here, we aimed at providing a comprehensive input and output connectivity description of the

mouse IC to facilitate the mechanistic investigation of insula functions. Furthermore, we compared
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the connectivity structure of the IC along its rostro-caudal axis to establish a connectivity-based

compartmentalization that may facilitate the comparison across species. Indeed, most physiological

and functional studies target specific subregions, often referred to as aIC and pIC, without clear con-

sensus on boarders and coordinates of these regions. Toward the goal of providing a connectivity-

based structure to future functional studies, we divided the mouse IC into three equally large subre-

gions along its rostro-caudal extent, namely an anterior, medial, and posterior insular part (aIC, mIC,

and pIC, respectively) spanning its entire extent. Although connectivity differences between granular

(GI), dysgranular (DI) or agranular (AI) parts of the IC have been reported previously (Maffei et al.,

2012), we did not distinguish them here, due to the technical challenge of specifically targeting

these subdivisions. Instead, we focus on cell-type-specific monosynaptic retrograde rabies virus trac-

ings (Wickersham et al., 2007a) to separately map inputs to excitatory and inhibitory neurons of the

IC across all of its subregions. To label outputs, we performed axonal AAV labeling of excitatory

efferents of the aIC, mIC and pIC.

We provide a whole-brain analysis of bidirectional connectivity of the longitudinal IC subregions

for the two major neuronal subclasses that is excitatory pyramidal neurons and inhibitory

interneurons.

Results

Viral-tracing approach to reveal the input-output connectivity of the
mouse IC
To map the connectivity of the entire mouse IC, we injected viral tracers into three evenly spaced

locations along the rostro-caudal axis with the aim of comprehensively tracing from its entire extent

and to assess possible parcellation of the mouse IC into connectivity-based subdomains. The most

anterior region, aIC, ranged from +2.45 mm to +1.20 mm from Bregma; the medial part, mIC, from

+1.20 mm to +0.01 mm from Bregma, and the posterior part, pIC, from +0.01 mm to �1.22 mm

from Bregma (see also Figure 1C).

In order to trace the monosynaptic inputs to the IC, we utilized a modified SADDG-eGFP(EnvA)

rabies virus (RV), which has been shown to label monosynaptic inputs to selected starter cells with

high specificity (Wall et al., 2010; Wickersham et al., 2007b). This virus lacks the genes coding for

the rabies virus glycoprotein (G) and is pseudotyped with the avian viral envelope EnvA. This restricts

its infection to neurons expressing the avian TVA receptor and to monosynaptic retrograde infection

of afferents (Figure 1A). We infected the IC of Camk2a-Cre and Gad2-Cre expressing mouse lines

to specifically target TVA and rabies virus glycoprotein expression to excitatory pyramidal or inhibi-

tory interneurons, respectively (see Figure 1A and Materials and methods).

In order to trace and quantify the axonal projections (outputs) of the IC, we injected Cre-depen-

dent adenoassociated virus (AAV2/5-DIO-eYFP) into Camk2a-Cre and Gad2-Cre transgenic mice

(see Figure 1B and Materials and methods). We did not observe long-range projections from IC

Gad2-Cre tracings (data not shown). Therefore, we here only present outputs from excitatory projec-

tion neurons performed in Camk2a-Cre transgenic mice.

We first confirmed the reliability and accuracy of a semi-automated approach that we developed

to quantify starter cells and input cells of rabies tracings. We compared counts from three different

humans and also human versus automated counts. We then calculated the relative percent differ-

ence (RPD) for comparisons between three different humans counting RV-labeled input cells within

the same brain and found that RPDs ranged from 0.64% to 1.08%. Comparing human versus auto-

mated cell counts for the same brain resulted in RPDs ranging from 0.02% to 0.67%, while compar-

ing human versus automated counts in three different brains resulted in RPDs ranging from 0% to

2% (see Materials and methods and Figure 1—figure supplement 3 for details). The overall low

RPDs validated our semi-automated approach.

We next assessed the spread and quality of our starter cell populations for both AAV and RV trac-

ings in a semi-automated manner (Figure 1C, Figure 1—figure supplement 1, Figure 1—figure

supplement 2 and Materials and methods). For RV experiments, starter cells were counted when

double positive for eGFP (i.e. SADDG+) and mCherry (i.e TVA+). For AAV tracings, starter cells were

counted as eYFP-positive cell bodies. We thereby defined both the total number and location of all

starter cells. The bulk of the starter populations for the distinct IC subregions were highly separated
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Figure 1. Tracing strategy and localizations for input and output viral tracings from distinct IC subregions. Schematic representation of Cre-dependent

(A) monosynaptic retrograde Rabies virus tracing (RV) and (B) anterograde axonal AAV tracings (AAV) used to determine respective input and output

connectivity to the IC. Tracings were performed in both excitatory (Camk2a-Cre) and inhibitory (Gad2-Cre) mouse lines for RV, and only in the Camk2a-

Cre mouse line for AAV. For RV tracings, AAV-FLEX helper viruses expressing mCherry-tagged TVA (1) and rabies-virus-specific G protein (2) were co-

Figure 1 continued on next page
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and non-overlapping for both RV and AAV tracings (Figure 1C, Figure 1—figure supplement 1C).

In some cases, a small percentage of starter neurons were detected in regions outside the bound-

aries of the IC, including in the Pir, S1 and S2, as well as the M1 (Figure 1—figure supplement 2A,

C). In these cases, we asked if contamination affected the qualitative connectivity structure. Toward

this goal, the percentage of total input was compared between tracings with different degrees of

spillover. There was no consistent qualitative difference in connectivity patterns due to strength of

spillover identifiable between the brains used in this study (see Materials and methods, Discussion

and Figure 1—figure supplement 2D). However, we excluded brains where separate starter cell

populations were detected outside the IC (see example picture Figure 1—figure supplement 2A,

right) or that did not yield strong starter cell populations (see also Materials and methods for exclu-

sion criteria). We also analyzed the layer distribution of our starter cells. While we found starter cells

across all cortical layers, there were substantial differences in starter cell distribution across layers.

However, the layers with more or less starter cells were consistent across Cre-lines and viruses

employed, and may thus reflect more general anatomical features that cannot be attributed to the

Cre-lines or viruses employed (see Figure 1—figure supplement 2B).

To compile the whole-brain connectivity maps for both RV and AAV tracings, we cut coronal sec-

tions (ranging from +2.65 to �6.2 mm relative to Bregma) and analyzed the long range, ipsilateral

connectivity on sections approximately 140 mm apart (Figure 1—figure supplement 4A–C, Materials

and methods). For the rabies virus tracings, we obtained brain-wide inputs ranging from 5000 to

45,000 cells, with convergence ratios ranging from 6 to 15 (Figure 1—figure supplement 1C). We

accounted for the variability between tracings by normalizing cell counts per region of interest (ROI)

to the total number of neurons per brain. We additionally obtained the cell density of each ROI as

cells/mm2.

For the AAV tracings, we identified a total of 600–800 million pixels per brain as IC efferents (Fig-

ure 1—figure supplement 1C). The tracings yielded a combination of identifiable single axons and

dense axon bundles, where we could not discriminate between individual axonal fibers. Therefore,

output from IC was quantified as overall amount of eYFP-positive pixels (and not axon numbers)

within distinct target brain regions. To account for animal-to-animal variation, we normalized each

ROI to the total amount of pixels identified brain-wide. Additionally, we calculated the innervation

density, given in percent of maximal ROI pixel count.

For both RV and AAV tracings, we determined the spatial location of the starter neurons. Within

this immediate surround of the starter cells we did not quantify inputs or outputs due to the ambigu-

ity to distinguish starter cells from input or outputs, respectively (Figure 1C, Figure 1—figure sup-

plement 4D). Thus, the quantifications of this study focus on the long-range connectivity of IC

subregions.

To ensure Cre-dependence of our approach, we performed control infections of WT mouse

brains. Mice lacking Cre-recombinase should not express eGFP when infected with RV. Indeed only

some GFP+ neurons were detected at the injection sites within the boundaries that we would nor-

mally exclude from our quantitative analysis (Figure 1—figure supplement 4D). To test the depen-

dence on RG supplementation for the synaptic jump of the virus and thus to ensure the

monosynaptic restriction, we injected TVA and RV into Camk2a-Cre or Gad2-Cre mice without the

Figure 1 continued

injected into the IC region of interest. Three weeks later EnvA-coated, eGFP-expressing modified RV lacking G protein was injected at the same

location (3). For anterograde tracings, a one-off injection of eYFP-expressing AAV-FLEX virus was administered into the chosen location. Three distinct

IC subregions were chosen for each tracing technique: anterior (aIC, red), medial (mIC, green) or posterior (pIC, blue). (C) Schematic illustration of the

lateral view of the IC including distances from Bregma (top panel) and heatmap showing average starter cell distribution for each tracing strategy at

each specific IC target (bottom panels). The three IC target subregions were mostly non-overlapping, and only a minimal percentage of cells were

detected in the Motor and Sensory Cortex (M/S), or Piriform Cortex (Pir) neighboring the IC. n = 3 mice per injection site/tracing strategy. Heatmap

intensity scale is the same for all three IC target subregions. Regions absent at specific Bregma levels indicated by dark gray squares.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Starter cell identification.

Figure supplement 2. Starter cells.

Figure supplement 3. Cell counting.

Figure supplement 4. Workflow of tracing quantification and data analysis.
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addition of RG. As expected, eGFP expression was detected in transfected neurons, but none was

expressed outside the boundaries that we would normally exclude from our quantitative analysis,

indicating that no synaptic jump had occurred and no long-range projections were labeled (Fig-

ure 1—figure supplement 4D).

Whole brain input/output map of mouse IC
To provide a detailed account of the brain-wide connectivity of the mouse IC, we analyzed its bidi-

rectional connectivity with 75 anatomical subregions (the detailed connectivity maps of the IC with

all subregions analyzed can be found in the Figure 2—figure supplements 1–3). To first gain an

overview of the overall IC connectivity, we pooled these detailed datasets into overall connectivity

patterns between the IC and 17 larger brain regions (Figure 2).

While there were some quantitative differences, overall the anterior to posterior extent of the IC

connected to largely the same major brain regions and no major brain region was exclusively con-

nected to one but not the other IC regions. We also did not observe marked differences in the con-

nectivity patterns of inhibitory versus excitatory neurons, as both major neuronal cell classes

exhibited similar connectivity patterns. However, while both, excitatory and inhibitory cells of all IC

subregions received strong intrainsular inputs and inputs from sensory cortices, ordinary one way-

ANOVAs, performed for each brain region separately, revealed that specifically the prefrontal (F(2,6)
= 7.610, *p=0.0226), motor (F(2,6) = 8.586, *p=0.0174) and association cortices (F(2,6) = 22.16,

*p=0.0017) sent significantly different amounts of inputs onto inhibitory neurons of the aIC, the mIC

or pIC (Figure 2A, top left; see also Supplementary file 3 for statistics). Tuckey’s posthoc multiple

comparisons test showed that aIC received stronger inputs from the prefrontal cortex compared to

mIC and pIC (aIC vs. mIC *p=0.0413 and aIC vs. pIC *p=0.0413) and from the motor cortex com-

pared to pIC (*p=0.0185). Associative cortices on the other hand sent stronger inputs onto pIC

inhibitory neurons than onto aIC or mIC inhibitory neurons (pIC vs. aIC **p=0.0017 and pIC vs. mIC

*p=0.0141). Inputs to mIC were stronger compared to inputs to the aIC (*p=0.0407).

Concerning the projections arising from the IC, a one-way ANOVA found a difference in output

strength toward other IC regions (F(2,6) = 0.5403, *p=0.0455). Posthoc testing showed that the pIC

projected more strongly to other IC regions than the aIC (*p=0.0498; Figure 2A, top right; see also

Supplementary file 3 for statistics).

We next assessed the connectivity of the IC with subcortical brain regions. Overall the IC connec-

tivity was characterized by three major connections: strong projections to the striatum from the aIC,

and bidirectional connections with diverse subregions of the amygdala and the thalamus. One-way

ANOVAs further revealed significant differences between excitatory inputs to olfactory areas (F(2,6) =

6.360, *p=0.0329) and the pallidum (F(2,6) = 5.147, *p=0.0499), as well as inhibitory inputs to the

amygdala (F(2,6) = 15.80, **p=0.0041) and excitatory outputs to the claustrum (F(2,6) = 45.59,

***p=0.0002), the striatum (F(2,6) = 10.13, *p=0.0119) and the hindbrain (F(2,6) = 9.178, *p=0.0149).

Posthoc Tuckey’s multiple comparison tests showed that excitatory inputs from olfactory areas, were

significantly stronger to the mIC than to the aIC (*p=0.0353). Further, the inhibitory neurons of the

pIC received significantly stronger inputs from the amygdala than the mIC (*p=0.0443) or aIC

(**p=0.0033). Concerning outputs, projections to the striatum were significantly stronger from the

aIC than from the mIC (*p=0.0194) or the pIC (*p=0.0204; Figure 2A, bottom; see also

Supplementary file 3 for statistics). Interestingly, the mIC, containing the ‘gustatory cortex’ was

most heavily connected with olfactory regions and sent more projections to the claustrum than pIC

(***p=0.0002) or aIC (**p=0.004). However, also the pIC sent more projections to the claustrum than

aIC (**p=0.005). Furthermore, the aIC sent significantly more excitatory outputs to the Hindbrain

than the pIC (*p=0.0125). Between IC subregions along the rostro-caudal axis, we found that, over-

all, the pIC received twice as many inputs from the sensory cortices (41 ± 11% of total excitatory

input connectivity) as the other IC subregions (20 ± 5% and 23 ± 7% for mIC and aIC, respectively).

In contrast, the aIC received the majority of inputs from the motor cortex.

The aIC sent almost one third of its projections to the striatum, while for the mIC and pIC about

10% of the efferents were innervating the striatum. (aIC 32 ± 6% of outputs, as compared to 9 ± 1%

for mIC and 11 ± 2% for the pIC). An inverse pattern was observed for the amygdala projections.

About 5–7% of the mIC’s and pIC’s efferents were directed to different amygdala subnuclei, while

only 1.5% of the aIC efferents were directed to the amygdaloid complex. Given the strong connec-

tivity of the entire IC with important subcortical regions, such as the striatum, the amygdala or the
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thalamus, we describe the IC connectivity to these major interactions partners in more detail in the

following sections.

IC-amygdala connectivity
It has been well established that IC and amygdala are heavily interconnected (Allen et al., 1991;

Augustine, 1996; McDonald et al., 1999; Santiago and Shammah-Lagnado, 2005) and many

important brain functions, for example in valence processing or emotion regulation and awareness,

have been suggested to rely on this anatomical link. However, we still lack a detailed understanding

of the functional interplay of IC and amygdala, a network affected across many psychiatric disorders.
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Figure 2. Whole-brain IC connectivity map. (A) Comparison of inputs to excitatory and inhibitory IC neurons (left) and outputs of excitatory neurons of

the IC (right) of all three IC subregions (aIC, red; mIC, green; pIC, blue) across the 17 major brain regions that displayed connectivity. Region values are

given as percentage of total cells (RV) or of total pixels (AAV). Data is shown as average ± SEM. n = 3 mice per condition. Top panel shows cortical

connectivity, bottom panel shows subcortical connectivity. One-way ANOVAs per subregion followed by Tuckey’s multiple comparison test were

performed to generate p-values. Significant differences between inputs to excitatory or inhibitory neurons to IC subregions or between outputs from

the IC subregions were labeled as ***p<0.001, **p<0.01, *p<0.05. For detailed statistics see Supplementary file 3. (B) Individual input-output maps for

the three IC subdivisons highlighting selected brain regions. Weight of arrowhead and thickness of arrow shaft indicate strength of connection. Green

arrowheads indicate inputs, red arrowheads indicate outputs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Brain-wide dataset for aIC.

Figure supplement 2. Brain-wide dataset for mIC.

Figure supplement 3. Brain-wide dataset for pIC.

Figure supplement 4. Instructions to query the datasets with custom questions.
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Recent studies in mice have begun to expose functionally distinct projection pathways between the

IC and amygdala (Gehrlach et al., 2019; Lavi et al., 2018; Schiff et al., 2018; Wang et al., 2018).

We thus next analyzed the detailed connectivity between the nuclei of the mouse amygdala and the

IC.

As expected, the afferent connectivity from the amygdala to all three IC subregions was provided

by cortex-like subregions of the amygdala, including the basolateral amygdala (BLA), the amygdalo-

piriform transition area (APir), the cortical amygdala (ACo) and the extended amygdala (EA), but not

from striatum-like nuclei such as the central nucleus of the amygdala (CeA) and medial amygdaloid

nucleus (MeA) (Figure 3A–C).

Interestingly, the APir sent very strong inputs to the IC. Inhibitory neurons of the pIC received

very strong APir inputs which differed significantly between IC subregions (F(2,6) = 10.55,

*p=0.0109). Posthoc tests showed that pIC received the strongest inputs (pIC vs. mIC *p=0.0469

and pIC vs. aIC *p=0.0121). On the other hand, excitatory neurons of all IC subregions received

comparable amounts of APir inputs. Significant differences were also observed for inhibitory inputs

from the EA (F(2,6) = 7.297, *p=0.0247), the ACo (F(2,6) = 14.06, *p=0.0054) and the ventral BLA

(vBLA) (F(2,6) = 22.80, *p=0.0016). In those regions, a similar pattern as for APir, namely inhibitory

neurons of the pIC being more targeted than mIC or aIC, was shown by Tuckey’s multiple compari-

son test. From the EA, pIC received significantly more inputs than mIC (*p=0.0321), from the ACo,

pIC received significantly more inputs than the aIC (**p=0.0055) and from the ventral BLA (vBLA),

pIC received more inputs than mIC (*p=0.0244) and aIC (**p=0.0013). Additionally, mIC received

more inputs than the aIC from vBLA (*p=0.0494). Concerning input strength to excitatory cells, there

were significant differences found between the IC subregions for inputs from the anterior (F(2,6) =

6.009, *p=0.0369) and posterior part (F(2,6) = 43.25, ***p=0.0003) of the BLA (aBLA, pBLA) as well as

from the lateral amygdala (LA) (F(2,6) = 7.609, *p=0.0226). In all three cases posthoc tests showed

that mIC received more excitatory inputs than aIC and/or pIC. From the aBLA inputs were signifi-

cantly more pronounced to the mIC than the pIC (*p=0.0315), from the pBLA significantly more to

the mIC than both the pIC (***p=0.0005) and the aIC (***p=0.0004) and from the LA more to the

mIC than the pIC (*p=0.0199).

Concerning the outputs emerging from the IC, we found that for the majority of amygdala subnu-

clei, the inputs from the IC emerged in a gradient manner with most inputs provided by the pIC,

fewer inputs from the mIC and almost no inputs from the aIC. The only exceptions for this trend

were the LA, the aBLA, and the EA. (Figure 3C,D). Ordinary one-way ANOVAs revealed significant

differences among output strength to the aBMA (F(2,6) = 5.803, *p=0.0396) and APir (F(2,6) = 11.37,

*p=0.0091). Posthoc Tuckey’s multiple comparison tests showed that to the APir, outputs were sig-

nificantly stronger from the pIC than aIC (**p=0.0086) or mIC (*p=0.0365). On the other hand,

aBMA received more inputs from the mIC than from the aIC (*p=0.0379).

IC-striatum connectivity
The striatum, the main input region of the basal ganglia, is implicated in optimizing behavior through

refining action selection, reward- and aversion processing, habit formation and modulating motor

responses (Graybiel and Grafton, 2015). Previous work in rodents describing projections to the stri-

atum indicated that the IC targeted the ventral and ventro-lateral striatum, converging with projec-

tions from piriform cortex (Pir), medial prefrontal cortex (mPFC), perirhinal cortex (PERI) and the BLA

(Hintiryan et al., 2016; Hunnicutt et al., 2016).

We analyzed the detailed connectivity between the IC and the striatum (Figure 4), focusing on

the IC-to-striatum outputs, given that there was, as expected, no afferent connection from the stria-

tum to any IC subregion (Figure 2A). Consistent with a previous study (Hunnicutt et al., 2016), we

found that the ventral regions of the striatum were more innervated by IC projections than dorsal

regions (Figure 4B). However, the vast majority of the innervations we detected came specifically

from the aIC, which displayed both broad and very dense projections across the ventro-lateral cau-

date putamen (CPu), spanning almost the entire structure along its rostro-caudal axis (Figure 4B–D).

A one-way ANOVA further showed that the difference in output strength between IC subregions to

the CPu was significantly different (F(2,6) = 25.92, **p=0.0011). Posthoc testing revealed that the sig-

nificant difference was due to higher output from the aIC than the mIC (**p=0.0022) and the pIC

(**p=0.0017). Furthermore, the nucleus accumbens core (NAcC) and the interstitial nucleus of the

posterior limb of the anterior commissure (IPAC) were densely innervated by aIC projections, despite
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Figure 3. IC-amygdala connectivity. (A) Coronal sections depicting the amygdala with its subregions. Distances are provided as anterior-posterior

positions relative to Bregma. (B) Representative images from excitatory inputs (top row, eGFP-expressing neurons) and outputs (bottom row, eYFP-

positive neurons). Different Bregma levels are shown for each IC target site, as indicated on the images (�0.9 mm, �1.2 mm, �2.0 mm). Scale bar = 200

mm. (C) Comparison of excitatory and inhibitory inputs detected in the amygdala (left) and excitatory outputs from the IC to the amygdala (right) in

Figure 3 continued on next page
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their low relative percentage of outputs (Figure 4B–D). However, the significant difference between

output strength to the IPAC, that was revealed by an one-way ANOVA (F(2,6) = 7.394, **p=0.0240),

was due to differences between the pIC and the aIC (*p=0.0312) and between the pIC and the mIC

(*p=0.0433).

The mIC and pIC also projected to the CPu, but to a much weaker extent than aIC (approximately

5-fold lower). However, both mIC and pIC densely innervated the IPAC (to around 60% density)

(Figure 4D). Overall, mIC and pIC showed a very similar connectivity pattern to the striatum with 9%

and 11% of total output, respectively. In contrast, aIC output to the striatum represents the largest

Figure 3 continued

percent of total in- or output, respectively (aIC, red; mIC, green; pIC, blue). Data is shown as average ± SEM. n = 3 mice per condition. One-way

ANOVAs per subregion followed by Tuckey’s multiple comparison test were performed to generate p-values. Significant differences between inputs to

excitatory or inhibitory neurons to IC subregions or between outputs from the IC subregions were labeled as ***p<0.001, **p<0.01, *p<0.05. For

detailed statistics see Supplementary file 3. (D) Input cell density (top row) and percent output density (bottom row) plots along the anterior-posterior

axis covering the entire amygdala. We selected aBLA, pBLA, CeA and APir to provide the areas with most differences between the IC subregions. n = 3

mice per condition. Data shown as average ± SEM.
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Figure 4. IC-striatum connectivity. (A) Coronal sections depicting the striatum with its subregions. (B) Representative images from excitatory outputs

(eYFP-positive neurons). Note the dense innervation of CPu, NAcC and NAcSh by the aIC. Different Bregma levels are shown for each aIC, mIC and

pIC, as indicated on the images. Scale bar = 500 mm. (C) Comparison of excitatory outputs from the three IC subregions to the striatum in percent of

total output (aIC, red; mIC, green; pIC, blue). Values are given as percentage of total pixels. Data shown as average ± SEM, n = 3 mice per condition.

One-way ANOVAs per subregion followed by Tuckey’s multiple comparison test were performed to generate p-values. For detailed statistics see

Supplementary file 3. (D) Plots depict the density of IC innervation along the anterior-posterior axis of the striatum. n = 3 mice per condition, data

shown as average ± SEM.
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output out of all regions innervated by aIC (31.8%). Both, mIC and pIC specifically innervated striatal

patches (Brimblecombe and Cragg, 2017), as seen for mIC in Figure 4B.

Taken together, we found a large difference in the innervation of the striatum along the rostro-

caudal axis of the insula, with the aIC providing the strongest projections.

IC-thalamic connectivity
We next assessed the third largest subcortical connectivity partner of the IC: the thalamus. Thalamo-

cortical projections are thought to be essential drivers of cortical activity in sensory areas and asso-

ciative brain regions (Hunnicutt et al., 2014). Cortico-thalamic feedback projections stemming from

layer 6, in turn, shape thalamic cell activity via monosynaptic and disynaptic connections

(Crandall et al., 2015). The function of cortical regions has often been inferred by characterizing the

type of thalamic input they receive (Sherman and Guillery, 2006).

The afferent connectivity to the aIC originated mainly from higher-order associative and motor

nuclei, with the majority of inputs arising from the polymodal association group of thalamic nuclei

(medio-dorsal (MD) and centro-median (CM) nuclei) (Figure 5). Furthermore, the aIC and mIC

received innervation from two sensory-motor related nuclei, the ventro-medial (VM) and the ventral

anterio-lateral (VAL) nucleus. Input strength from the CM, as revealed by one-way ANOVAs, was sig-

nificantly different between IC subregions to both excitatory (F(2,6) = 15.61, **p=0.0042) and inhibi-

tory neurons (F(2,6) = 21.56, **p=0.0018). In both cases, posthoc testing showed that this difference

was due to stronger inputs to the aIC compared with both other IC subregions for both the excit-

atory (aIC vs. mIC **p=0.0082, aIC vs. pIC **p=0.0059) and the inhibitory inputs (aIC vs. mIC and aIC

vs. pIC **p=0.0031) (Figure 5C). The afferents of pIC, on the other hand, originated majorly from

sensory-related nuclei, with the greatest inputs from the posterior complex (Po) and the ventral pos-

terior complex (VPC). While the pIC also received inputs from the MD, it was only weakly innervated

by the CM. A one-way ANOVA revealed a significant difference in medial geniculate nucleus

(MGN) inputs to excitatory neurons between different IC subregions (F(2,6) = 12.23, **p=0.0076).

Tuckey’s multiple comparison tests showed that inputs were stronger to the pIC compared with

both aIC (*p=0.0119) and mIC (*p=0.0126). Interestingly, the afferents of mIC exhibited characteris-

tics of both aIC and pIC, receiving projections from sensory-, motor- related, and higher order tha-

lamic nuclei.

As expected from thalamo-cortical pathways (Hunnicutt et al., 2014), IC outputs reciprocated

their thalamic inputs. For example, the aIC strongly and densely innervated the VM, MD and CM,

thus putatively closing the thalamo-cortico-thalamic loop. The strongest aIC projection innervated

the VM, and these projections tended to be stronger than projections from the mIC or pIC

(Figure 5C, right). The pIC strongly and densely innervated the VPC in particular, and had almost no

projections to any other thalamic nucleus. Furthermore, there was a significant difference found by

one-way ANOVA between output strengths to the VP (F(2,6) = 9.316, *p=0.0145). Overall, the VP

received its strongest inputs from the pIC and much less input from aIC (*p=0.0224) or mIC

(*p=0.0260) (Figure 5C, right).

Bidirectional connectivity
We next investigated the reciprocity of the IC connectivity with other brain areas by correlating

inputs to excitatory neurons with their respective outputs (Figure 6A).

We first assessed the reciprocity of the connections between the IC and other cortical regions.

We found a significant correlation for the connectivity of the mIC and pIC with other cortical regions

and a strong trend for correlation for the mIC with other cortical regions. Thus, the IC was mostly

bidirectionally connected to many other cortical regions.

Subcortical regions, on the other hand, were most often not bidirectionally connected to the IC.

Instead, we could define many connections with the subcortex as either being IC input-dominated

(stronger subcortical-to-cortical connectivity, Figure 6B, green) or IC output-dominated (stronger

cortical-to-subcortical connectivity, Figure 6B, blue). No region strongly reversed its connectivity

characteristic when comparing between aIC, mIC and pIC. However, the mid- and hindbrain nuclei

received less pIC innervation compared to aIC and mIC (e.g. compare raphe nuclei (RN) input vs out-

put coordinates in Figure 6A), suggesting that pIC has a less direct influence on neuromodulatory

systems.
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Figure 5. IC-thalamus connectivity. (A) Coronal sections depicting the thalamus with subregions that connect to the IC. (B) Representative images from

excitatory inputs (top row, eGFP-expressing cell bodies) and outputs (bottom row, eYFP-positive neurons). Different Bregma levels are shown for each

IC subregion as indicated on the images. Scale bar = 500 mm. (C) Comparison of inputs to excitatory or inhibitory neurons of all three IC subregions

(left) and of outputs from excitatory IC neurons to the thalamus (aIC, red; mIC, green; pIC, blue). Values are calculated as percentage of total cells (RV)

Figure 5 continued on next page
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This analysis revealed, that amongst the amygdala subnuclei, the CeA was strongly innervated by

the IC without sending backward projections. The opposite was true for subnuclei such as the APi,

AA, ACo, or BMA, who mostly send projections to the IC or were bidirectionally connected. Interest-

ingly, the thalamus was mostly bidirectionally connected with the IC, whereas the striatum, midbrain

and hindbrain connectivity was mostly dominated by projections from the IC to the subcortical

regions (Figure 6B, bottom).

However, this analysis did not address reciprocity of connectivity at the level of single neurons

but rather brain regions. Thus, inhibitory neurons in the IC could receive inputs from a brain region

that is densely innervated by IC axons. For this reason, we also compared reciprocity of connections

for inhibitory neurons (Figure 6—figure supplement 1). In line with the finding that we detected

very few overall differences between excitatory and inhibitory cell connectivity, this analysis revealed

very similar results as shown in Figure 6A for excitatory neurons.

Comparison of input and output distributions
Throughout our analyses, we have seen distinctions arising between the three IC subregions we tar-

geted. To test whether these observations represent meaningful differences, we correlated in an

unbiased manner all input tracings to each other (including inhibitory and excitatory connectivity

experiments). We additionally performed the same analysis for all output tracings. We compared the

17 major brain regions in a pairwise fashion and hierarchically clustered the correlation coefficients

(Figure 7 and Materials and methods). Overall, there was a high degree of similarity for the input-

input comparisons (average correlation coefficients of 0.7 ± 0.16), and, to a lesser extent, for the out-

put-output comparison (average correlation coefficients of 0.45 ± 0.28). However, for both inputs

and outputs, two distinct clusters did form, separating the aIC tracings from a grouped mIC/pIC

pool. Furthermore, for both inputs and output correlations (Figure 7A,B), the mIC and pIC tracings

were so similar that they did not fall into separate clusters. Indeed, the relative location of the starter

cell population (left columns, green gradient) did not lead to a separate clustering of mIC and pIC

targeted tracings. Finally, for the input data, there was no correlation separating excitatory and

inhibitory tracings, supporting our conclusions stated earlier that the IC afferents for these two cell

types is similar.

Taken together, the input- and output-patterns of aIC suggest a functional difference compared

to mIC and pIC regions. In particular, for the output network, a key difference arises from the high

degree of efferent connectivity between the aIC and striatum, and to a lesser extent, the motor cor-

tex, as compared with the mIC and pIC (Figure 2A). For inputs to the IC, the difference is not so

profound, with subtle variations in regions such as the motor cortex (as with outputs, biased towards

the aIC) the sensory cortex (pIC-biased), the amygdala (slight pIC/mIC bias) and producing the two

clusters.

Discussion
In this study, we systematically mapped the brain-wide input- and output connectivity of inhibitory

and excitatory neurons of three subregions of the mouse insular cortex. All IC subregions exhibit

multifaceted and brain-wide connectivity patterns, with a substantial degree of intra-insular cross

talk. These factors result in a series of complex, multi-modal hubs, suggesting that each subregion is

not limited to a single specialized function.

By performing unbiased cluster analysis, we found differences in IC connectivity along the rostral-

caudal axis, in particular in regards to both in- and outputs to and from the aIC as compared to

those of the mIC and pIC. For the outputs, this difference is in part due to a specifically strong ven-

tro-lateral striatum innervation by the aIC. Overall, the aIC also showed a bias toward connectivity

Figure 5 continued

or of total pixels (AAV). Data shown as average ± SEM, n = 3 mice per condition. One-way ANOVAs per subregion followed by Tuckey’s multiple

comparison test were performed to generate p-values. Significant differences between inputs to excitatory or inhibitory neurons to IC subregions or

between outputs from the IC subregions were labeled as **p<0.01, *p<0.05. For detailed statistics see Supplementary file 3. (D) Input cell density (top

row) and output density (bottom row) plots along the anterior-posterior axis. Thalamus regions of interest are shown, n = 3 mice per condition, data

shown as average ± SEM.
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Figure 6. IC input-output relationships for excitatory cells. The global dataset was further subdivided into subregions of higher specificity (see

Figure 2—figure supplements 1–3). (A) The average value for each excitatory input and output was correlated for the three IC subregions. Data is

divided into cortical (left panels) and subcortical (right panels) regions. Subregions that lacked both input and output neurons are not included in the

graphs. Note the high correlation in the cortical connectivity as compared to the connectivity in the subcortex for all datasets (r = Pearson’s correlation

coefficients). (B) Heatmaps showing fold-difference between inputs to outputs per brain subregion for each IC target. Green gradient represents

connectivity characterized by stronger inputs to the IC from target regions, blue gradient represents connectivity characterized by stronger projections

from the IC to target regions. Subregions where no signal was detected for both input and output conditions were omitted. Data shown as ratio from

the average of three mice per condition per IC subregion. The meaning of the abbreviations can be found in Supplementary file 1.

Figure 6 continued on next page
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with locomotion-related areas, such as the motor cortices (M1, and M2), the ventro-medial (VM) and

centro-median thalamic (CM) nuclei and, the substantia nigra and the midbrain reticular nucleus.

This connectivity pattern may provide an anatomical foundation for why optogenetic stimulation of

the aIC can elicit appetitive and seeking behavior and has been described as a ‘positive valence’

region (Peng et al., 2015; Wang et al., 2018). Overall, our data suggest a general role of the aIC

with functional roles beyond that of a ‘sweet cortical field’ (Peng et al., 2015), since intra-insular pro-

jections from the mIC and pIC, which process diverse bodily information, are one of its main input

sources. Based on its connectivity and knowledge gained in previous functional studies, the aIC

could serve as an integrator of positive-valence signals that then guide motivated behavior through

its downstream projections, in particular via the ventral striatum and motor cortex. Given our

approach we could not dissect further differences between the dorsal (AID) and ventral division of

aIC (AIV), but studies performed in hamsters and rats have suggested a further distinction of projec-

tion patterns between the AID and AIV (Hintiryan et al., 2016; Maffei et al., 2012;

McDonald et al., 1999; Reep and Winans, 1982).

Interestingly, our correlation and clustering analysis suggests that the mIC is more similar to the

pIC. The GI/DI of the mIC is referred to as the ‘gustatory cortex’ in the Allen Mouse Brain Atlas

(Lein et al., 2007). Notably, we found that the mIC received strong olfactory related inputs (from

Figure 6 continued

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Input-output relationships for excitatory output and inhibitory input.
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Figure 7. Connectivity-based subregions of the IC. Matrices of hierarchically clustered pair-wise correlation coefficients (Pearson’s) of animals (A) inputs

vs. inputs (N = 18 mice) or (B) outputs vs outputs (N = 9 mice). The pair-wise correlations were performed on the data organized into 17 major brain

regions (see Figure 2). Far left gradient bar (green hues) indicates the center of the starter cells, ranked relative to every mouse in the dataset. Note for

both input and output correlations, a clear cluster forms from the aIC-targeted animals (top left boxed sections and red-colored dendrograms),

whereas the mIC- and pIC-targeted animals intermingle in a second cluster (larger boxed areas). Interestingly, the clustering algorithm did not separate

excitatory (Camk2a-Cre) from inhibitory (Gad2-Cre) rabies virus tracings.
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the Pir, APir, and piriform-amygdalar area (CxA)). Furthermore, compared to the aIC and pIC, the

mIC sends more outputs to memory related areas, such as the entorhinal cortex and the ventral hip-

pocampus. Indeed, previous studies demonstrated the role of the mIC in conditioned taste aversion

(CTA) (Lavi et al., 2018). Taken together with previous functional studies, our anatomical description

supports a role for the mIC as a learning hub, involved in various aspects of consummatory behav-

iors, such as texture processing of food, palatability, taste aversion or preference. Potentially, this

could extend past consummatory domains, into social transmission of food preferences or reproduc-

tive behavior.

We also extended our recent findings of pIC connectivity (Gehrlach et al., 2019), and can now

clearly establish it as an anatomically defined subregion of the mouse IC through direct comparison

of its connectivity as compared to the aIC, in particular. The pIC exhibits a multimodal convergence

of inputs from subcortical sites carrying bodily and limbic information streams. In addition, it sends

strong projections to subcortical regions implicated in emotional and motivated functions

(Simmons et al., 2013). This includes innervation of sensory, autonomic, motor associative and lim-

bic structures. Furthermore, there are more intra-insular outputs from the pIC than from the aIC,

implying a caudal-to-rostral flow of information, as has been suggested previously (Craig, 2009;

Fujita et al., 2010).

Our analysis of the reciprocity of IC connectivity with other cortical or subcortical regions revealed

strong correlations between in- and outputs for cortical regions across all IC subregions. In contrast,

many subcortical regions sent strong projections to the IC (raphe nuclei (RN), basal forebrain (BF),

olfactory regions, and thalamic nuclei) or predominantly received axonal inputs from the IC (CeA,

striatum, SNr, and BNST), revealing strong directionality of connections between the IC and subcor-

tical regions. These comparisons come with the caveat that we have no physiological measurements

of relative connectivity strength.

Interestingly, inhibitory interneurons, irrespective of which IC subregion was analyzed (APir aside),

displayed very similar connectivity patterns and strength when compared to excitatory pyramidal

neurons. This was supported by our correlation and hierarchical cluster analysis and is in agreement

with several rabies virus tracings studies in other brain regions (Beier et al., 2015; Do et al., 2016;

Luo et al., 2019; Wall et al., 2016) and may underlie the balance of excitation and inhibition in cor-

tex (Sohal and Rubenstein, 2019; Yizhar et al., 2011).

Although this investigation sought to systematically compare brain-wide IC connectivity, there are

limitations that need to be considered.

First, despite there being good separation between the bulk of the starter cell populations into

our defined IC subregions, there is a small proportion of overlap that may influence the connectivity.

This only affects the results when comparing with mIC results, as aIC and pIC starter populations

were completely separated. The exact extent of starter cell distributions into other subregions is

visualized in Figure 1C and Figure 1—figure supplement 2C.

Contamination into ventrally or dorsally neighboring non-IC regions may also influence the results

we observed. We thus quantified the extent of starter-cell spillover into neighboring regions (Fig-

ure 1—figure supplement 2C).

First, we considered whether there was a correlation between the amount of spillover in each

individual brain and the overall strength of connectivity between the IC and major brain regions. We

did not find that tracings with more spillover would systematically exhibit more connectivity to other

regions of the brain compared to the same tracing with less spillover, confirming that the amount of

spillover did not qualitatively bias our results (Figure 1—figure supplement 2D). However, while

spillover was very limited for most tracing conditions, there was a sizable amount of spillover into

Pir specifically for the input tracings to the excitatory neurons of the aIC. We thus considered in

detail whether this spillover may explain the differences we report for aIC versus mIC and pIC

connectivity.

In Figure 2A, we detected one significant difference for inputs onto excitatory neurons between

the IC subregions. This difference was a significantly stronger innervation from olfactory areas to the

mIC than the aIC. Because the inputs were stronger onto mIC these differences cannot be explained

by the piriform contamination of aIC starter cells. All other significant differences detected between

major brain regions and the IC subregions (Figure 2) were found for inputs onto inhibitory neurons,

which did not suffer from contamination.
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We next considered what is known about Pir connectivity. The Pir is known to receive strong

inputs from olfactory areas (Wang et al., 2020). Therefore, if our results reported for excitatory input

tracings to the aIC were largely affected from the starter cell contamination in the Pir, we would

expect to have significantly higher innervation of the aIC compared to both the mIC and the pIC.

However, this is not what we observe arguing that the Pir contamination does not drive a major

qualitative difference in our tracings from aIC.

Taken together, while it is important to note that our aIC rabies tracings onto excitatory neurons

contain a sizeable amount of Pir starter cells, based on the nature of differences we observed

between aIC and mIC/pIC connectivity as well as existing Pir tracing results, we do not believe that

this spillover affects the main conclusions on aIC versus mIC/pIC connectivity we make in this study

(Figure 1—figure supplement 2C–D).

In order to limit spillover into the neighboring motor and somatosensory cortices, injection sites

were aimed toward the center of the IC. As a consequence, the amount of starter cells in the GI was

overall smaller than in DI or AI (Figure 1—figure supplement 2C). Furthermore, we detected that in

AAV tracings, we traced from comparatively more starter cells in the AI in the aIC compared to mIC/

pIC. However, this bias was not present for excitatory rabies tracings. The true starter cell distribu-

tions should always be considered when interpreting tracing data.

It is furthermore noteworthy that one major limitation of the datasets presented here is the lack

of tracings to and from the brainstem. Previous studies have shown strong connections between IC

and brainstem nuclei such as NTS and DMV (Cobos et al., 2003; Gaytán and Pásaro, 1998;

Saper and Stornetta, 2015; Shipley, 1982). While we did not address this connectivity due to prac-

tical reasons, future studies will be required to comprehensively map the connectivity between the

IC and the brainstem in the mouse.

As AAV tracing originating from three different starter locations and differing sizes of starter cell

populations led to varying degrees of axonal labeling, acquisition settings had to be adjusted for

each brain individually. In order to be able to interpret results, we therefore display data as percent-

age of total. This type of presentation comes with the caveat that smaller regions are underrepre-

sented, for example the DRN that only provided below 0.1% of the total inputs consistently

projected to the IC. Thus functional implications cannot solely be determined from the relative num-

ber of inputs. The alternative, using density analysis, underrepresents larger areas, such as the corti-

cal regions (please refer to the pivot table in the Supplementary file 2 which allows custom plots of

densities for all data presented here).

Additionally, counting labeled fiber presence after AAV infection to detect the output strength

does not directly represent synaptic connectivity. Recent technology using a fluorescent protein

tagged to a synaptic marker (e.g. AAV-DIO-mRuby-T2A-synaptophysin-eGFP, [Knowland et al.,

2017]) or the trans-synaptic infection of AAV1-Cre (Zingg et al., 2017) would overcome this

limitation.

Lastly, even though retrograde tracing with G deleted rabies virus is a powerful tool for circuit

tracings, it still comes with technical limitations. As detailed by Callaway and Luo, 2015, the label-

ing of inputs is only partial and could be biased toward certain cell types, differential labeling of

active versus inactive synapses, or neuromodulatory versus fast neurotransmitter synapses. More

recently, it has also been shown that uptake efficiency and spread of rabies virus is influenced by

neuronal activity (Beier et al., 2017). Given these biases in transsynaptic spread and in the absence

of physiological measurements of synaptic strength, the anatomical findings reported here should

be regarded as rather qualitative since we cannot draw conclusions about the strength of a given

connection.

Bearing this in mind, this study highlights specific IC connectivity patterns that warrant further

functional investigation. These include the localized targeting of pIC projections to the IPAC, which

may be involved in motivated behaviors like approach, seeking and feeding. In the amygdala, all IC

regions project to the BLA, but only the pIC innervated the pBLA. Understanding the role of this

pathway would help in both describing IC function and the specificity of amygdala subregions. The

APir is also preferentially targeted by pIC projections, and reciprocates this connection, which may

provide an interesting pathway for odor-related responses.

Accompanying this study, we provide an excel sheet that contains the entire dataset

(Supplementary file 2). Using the pivot table function of Microsoft Excel allows to recreate any plot

presented in this study and to query and reanalyze the datasets for individual questions. In the excel
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sheet, we provide five example pivot tables and describe the workflow to create such tables in Fig-

ure 2—figure supplement 4.

Taken together, our dataset combined with functional studies suggest that the insula is a hub

that integrates bodily information with memory and emotional content and to guide behavior and

maintain homeostasis.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(M. musculus)

Camk2a-Cre https://www.jax.org/strain/005359 IMSR Cat# JAX:005359,
RRID:IMSR_JAX:005359

B6.Cg-Tg(Camk2a-cre)
T29-1Stl/J

Genetic reagent
(M. musculus)

GAD2-Cre https://www.jax.org/strain/010802 IMSR Cat# JAX:010802,
RRID:IMSR_JAX:01002

Gad2tm2(cre)Zjh/J

Software, algorithm CellProfiler 3.0.0 https://cellprofiler.org/ CellProfiler Image
Analysis Software,
RRID:SCR_007358

Software, algorithm FIJI Fiji is just ImageJ, NIH
(https://imagej.net/Fiji)

Fiji, RRID:SCR_002285

Software, algorithm Autonomous_neuron_
detection.ijm

This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/autonomous_
neuron_detection.ijm)

Software, algorithm Counting_RV.ijm This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/counting_RV.ijm)

Software, algorithm Roi_set_atlas This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
tree/master/ROI_set_atlas)

Software, algorithm Leica Application
Suite X 3.3.0.16799

https://www.leica-microsystems.com/
products/microscope-software/
details/product/leica-las-x-ls/

Leica Application Suite X,
RRID:SCR_013673

Software, algorithm Autonomous_pixel_
detection.ijm

This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/autonomous_
pixel_detection.ijm)

Software, algorithm Counting_AAV.ijm This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/counting_AAV.ijm)

Software, algorithm Python 3.6 http://www.python.org/ Python Programming Language,
RRID:SCR_008394

Software, algorithm Analysis_RV.py This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/analysis_RV.py)

Software, algorithm Analysis_AAV.py This paper, GitHub
(https://github.com/GogollaLab/
tracing_quantification_and_analysis/
blob/master/analysis_AAV.py)

Software, algorithm GraphPad Prism GraphPad Software, CA
(https://graphpad.com)

GraphPad Prism,
RRID:SCR_002798

Other AAV2/5-EF1a-DIO-eYFP UNC Vector Core
https://www.med.unc.edu/
genetherapy/vectorcore/

In-Stock AAV Vectors –
Dr. Karl Deisseroth, 100 ul Aliquots

5.6 � 1012 vg/ml

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Other AAV2/8-EF1a-FLEX-
TVA-mCherry

UNC Vector Core
https://www.med.unc.edu/
genetherapy/vectorcore/

In-Stock AAV Vectors –
Dr. Karl Deisseroth, 100 ul Aliquots

4.2 � 1012 vg/ml

Other AAV2/8-CA-FLEX-RG UNC Vector Core
https://www.med.unc.edu/
genetherapy/vectorcore/

In-Stock AAV Vectors –
Dr. Karl Deisseroth, 100 ul Aliquots

2.5 � 1012 vg/ml

Other SADDG-eGFP(EnvA) UNC Vector Core
https://www.med.unc.edu/
genetherapy/vectorcore/

In-Stock AAV Vectors –
Dr. Karl Deisseroth, 100 ul Aliquots

3 � 108 ffu/ml

Animals
Mice between 2 and 6 months of age were used in accordance with the regulations from the govern-

ment of Upper Bavaria (Animal license AZ: 55.2-1-54-2532-56-2014). Camk2a-Cre (B6.Cg-Tg

(Camk2a-cre)T29-1Stl/J) mice were used for both retrograde rabies virus tracings and anterograde

axonal tracings. Retrograde rabies virus tracings were also performed in Gad2-Cre (Gad2tm2(cre)

Zjh/J) mice. Both female and male mice were employed (Fig S1c). For controls, we used male

C57Bl6\NRj mice. All mice group housed 2–4 mice/cage and were kept on an inversed 12 hr light/

dark cycle (lights off at 11:00 am). Mice were provided with ad libitum access to standard chow and

water.

Viral constructs
Unless otherwise stated, the following constructs were obtained from the UNC Vector Core (Gene

Therapy Center, University of North Carolina at Chapel Hill, USA). For anterograde tracings AAV2/5-

EF1a-DIO-eYFP (5.6 � 1012 vg/ml) was used. For retrograde rabies virus tracings AAV2/8-EF1a-

FLEX-TVA-mCherry (4.2 � 1012 vg/ml), AAV2/8-CA-FLEX-RG (2.5 � 1012 vg/ml), and G-deleted

EnvA-pseudotyped rabies virus -eGFP (SADDG-eGFP(EnvA)) (3 � 108 ffu/ml), were prepared as

described before (Gehrlach et al., 2019; Wickersham et al., 2007b).

Surgeries
Anesthesia was initiated with 5% isoflurane and maintained at 1–2.5% throughout surgery. Metami-

zol (200 mg/kg, s.c., WDT, Garbsen, Germany) was injected for peri-operative analgesia and carpro-

fen (s.c., 5 mg/kg, once daily for 3 days, Zoetis) for post-operative pain management. Mice were

secured in a stereotaxic frame (Stoelting, IL), placed on a heating pad (37˚C) and eye ointment

(Bepanthen, Bayer) was applied. For viral infusions, pulled glass-pipettes were attached to a microli-

ter syringe (5 mL Model 75 RN, Hamilton, NV) using a glass needle compression fitting (#55750–01,

Hamilton), mounted on a syringe pump controlled by a microcontroller (UMP3 + micro4, WPI). After

trepanation of the skull, mice were unilaterally injected with 100–150 nL of a 6:1 (RG: TVA) mixture

of helper-viruses. The following coordinates (mm from Bregma) were used: for anterior IC: AP: +1.9

mm, ML: + or - 2.7 mm, DV: �3.0 mm. For medial IC: AP: 0.7 mm, ML: + or – 3.7 mm, DV: �4.0

mm. For posterior IC: AP: �0.5 mm, ML: + or – 4.05 mm, DV:- 4.0 mm. The trepanation was sealed

with bone wax and the skin sutured. After 3–4 weeks, 350 nL of SADDG-eGFP(EnvA) was injected

into the same coordinates. Mice were sacrificed 7 days after infusion of the rabies virus. For axonal

AAV-tracings in Camk2a-Cre mice, AAV2/5-EF1a-DIO-eYFP (80–100 nl) was injected unilaterally into

either the aIC, mIC or pIC coordinates mentioned above. Mice were sacrificed 4 weeks after the

injections.

Histology
Animals were anesthetized with ketamine/xylazine (100 mg/kg and 20 mg/kg BW, respectively, Ser-

umwerk Bernburg) and perfused intra-cardially with 1x PBS followed by 4% paraformaldehyde (PFA)

in PBS. Brains were post-fixed for an additional 24 hr in 4% PFA at 4˚C. Brains were embedded in

agarose (3% in Water) and 70 mm coronal sections were cut with a VT1000S vibratome (Leica Biosys-

tems). Every second section, ranging between approximately +2.65 to �6.2 mm from Bregma, was
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mounted on glass slides using a custom-made mounting medium containing Mowiol 4–88 (Roth,

Germany) as described elsewhere (Mowiol mounting medium, 2006) with 0.2 mg/mL DAPI (Sigma-

Aldrich, MO).

Imaging
Slides containing rabies virus tracings were imaged using a 5x/0.15 NA objective on an Axioplan2

epifluorescent microscope (Zeiss, Jena, Germany) equipped with a Ludl controllable stage (Visitron

Systems, Puchheim, Germany), a CoolSnapHQ2 CCD camera (Teledyne Photometrics, AZ), and

orchestrated by mManager 2.0 beta software (Edelstein et al., 2014). Excitation was provided by an

X-cite halogen lamp (Excelitas Technologies, MA) with 350/50x (DAPI) and 470/40x (eGFP) filter

cubes.

Axonal AAV tracings were imaged on an SP5 or SP8 laser scanning confocal microscope (Leica,

LAS AF and LAS X 3.5.0.18371, respectively) using a 10x/0.40 NA objective, and a 1 Airy disc pin-

hole. 405 nm and 488 nm laser lines were used to image DAPI and eYFP channels. Single optical

z-section images of 10 mm thickness from the middle (z-axis) of the section were acquired. For each

brain, we determined the densest efferents outside the insular cortex, and adjusted the acquisition

settings to obtain a nearly saturated signal.

Starter volumes for RV tracings were determined by imaging sections covering the injection site

with an SP5 microscope using the 10x objective. 10 z-stacks of 7 mm step-size through each section

were acquired. For AAV starter cells, sections covering the injection site were imaged as a single

plane on the epifluorescent microscope with a 5x objective.

Starter volume detection
Both RV and AAV starter cell volumes were determined semi-automatically using CellProfiler 3.0.0

(Kamentsky et al., 2011). For each image, a set of ROIs were defined for the insular and adjacent

regions present. For RV images, rabies-virus-positive cells were detected in the eGFP image, and

the corresponding cell objects masked over the mCherry (TVA) image. mCherry signal was then

detected and back-related to the eGFP+ cell. The individual double-positive cells were traced

through the z-stacks and related to their corresponding ROI. For AAV images, eYFP+ cell bodies

were segmented and related to their corresponding ROI.

To determine starter cell volumes per cortical layer, ROIs were defined for the layers and cells

counted using the Cell Counter plugin in FIJI (Fiji is just ImageJ, NIH). The option ‘show all’ was

active, so no cells were counted more than once. For RV tracings, only double-positive cells within

the insular were counted throughout the z-stacks. For AAV tracings, eYFP+ cells in the insular

throughout the z-stacks were counted.

To address the potential issue that starter cell spillover into brain regions neighboring the IC

could affect our data, we compared starter cell distributions between all three brains of each condi-

tion. We quantified the percentage of spillover into the piriform cortex (Pir) and motor and sensory

cortex (M/S). We then compared the connectivity patterns of the brains with the least amount/

absent spillover and the brain with the highest amount of spillover. Only brains that did not show dif-

ferences to brains without spillover were included in this study. Overall, we excluded two brains

where starter cell populations were clearly detected outside the IC and that would have shown dif-

ferent connectivity patterns, and three brains that did not yield strong starter cell populations.

Monosynaptic retrograde rabies virus tracing
All image processings were performed in FIJI (Figure 1—figure supplement 4A). Collated images

for each brain section were stitched to a single image with the Grid/StitchCollection plugin. Autono-

mous detection of labeled neurons was performed using a customized macro script. eGFP images

were background subtracted (rolling ball, pixel width 20), and the eGFP+ cell bodies detected using

Trainable Weka Segmentation (University of Waikato, New Zealand), trained on a small subset of

images for each tracing. For training of the classifier, images from a single brain with different

amounts of eGFP+ cell bodies and noise were used. After background subtraction, the Trainable

Weka Segmentation classifier was retrained until it reliably picked up the cell bodies in the subsets

of images used for training. The settings obtained through this process were applied for autono-

mous eGFP+ neuron detection in which segmented images were binarized and a watershed
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segmentation run (https://github.com/GogollaLab/tracing_quantification_and_analysis/blob/master/

autonomous_neuron_detection.ijm). To count labeled neurons and assign them to a brain region, a

second customized macro script was used on the binary image (https://github.com/GogollaLab/trac-

ing_quantification_and_analysis/blob/master/counting_RV.ijm).

‘We created our own ROI-sets for each brain section by merging information from coronal maps

of two mouse reference atlases (Paxinos and Franklin, and Allen Brain Atlas). The library can be

found here: https://github.com/GogollaLab/tracing_quantification_and_analysis/tree/master/ROI_

set_atlas.

For each section to analyze, we first determined the distance from Bregma, taking into account

previous and following sections to achieve the most accurate result. Then, the corresponding library

ROI-set was laid over the image and moved manually to fit the section. Regions were further manu-

ally adjusted to correct for section warping, tissue damage and to exclude artefacts. The two mouse

brain atlases were used as references to ensure proper alignment. In case of uneven cutting, more

than one reference ROI-set was used.

The number of positive cells was determined using the ‘Analyze Particles’ plugin (size = 70–1000,

circularity = 0.30–1.0). Data output was calculated as cell counts for a given ROI normalized to the

total cell counts for the individual brain (% of total input). Additionally, cell density was calculated as

total cell number per ROI area. The injection site was excluded from the analysis, to ensure no

starter cells are counted as input cells.

We calculated the relative difference between three individual human counts as:

RPD1 ¼
ðhuman count1� human count2� human count3Þ

ðhuman count1þ human count2þ human count3Þ=3

�

�

�

�

�

�

�

�

We tested the performance of our semiautomated approach compared to the average human

counts by:

RPD2 ¼
ðaverage human count� automated countÞ

ðaverage human countþ automated countÞ=2

�

�

�

�

�

�

�

�

We compared the counts of one human in three brains versus the automated approach using the

same equation as RPD2.

Axonal AAV tracing
Collated images were stitched for each brain section using Leica Application Suite X 3.3.0.16799.

Image processing was done in FIJI using customized macro scripts (Figure 1—figure supplement

4B). First, hessian ridge detection and thresholding was performed as described elsewhere

(Grider et al., 2006). Threshold settings were determined before running the macro script to ensure

equal processing within a sample. Briefly, this results in binary images of the eYFP+ axons while elim-

inating background fluorescence (https://github.com/GogollaLab/tracing_quantification_and_analy-

sis/blob/master/autonomous_pixel_detection.ijm). These images were then quantified with a second

script where, similar to the rabies virus quantification, the custom-made ROI atlas was manually

adjusted for every coronal section (https://github.com/GogollaLab/tracing_quantification_and_analy-

sis/blob/master/counting_AAV.ijm). The particle analyzer was used to count pixels. Percent of total

output was calculated from the thresholded image, with the eYFP+ pixel count of each ROI normal-

ized to the total of all eYFP+ pixels identified from the individual brain. Additionally, percent innerva-

tion density was calculated as the proportion of eYFP+ pixels covering the maximal pixel count for

its ROI. Clearly distinguishable passing fiber bundles (such as in the striatum, cerebral peduncles,

anterior commissure, internal- and external capsules, and pyramidal tract) were excluded from the

analysis. As with the RV tracings, the starter volume was also excluded from all analysis.

Data collection and statistical analysis
Data acquired by RV and AAV tracings was analyzed using a custom-written code in Python 3.6 (see

Figure 1—figure supplement 4C and the code found at: https://github.com/GogollaLab/tracing_

quantification_and_analysis/blob/master/analysis_RV.py, https://github.com/GogollaLab/tracing_

quantification_and_analysis/blob/master/analysis_AAV.py). Cells (for RV) and pixels (for AAV) were

grouped in both 17 large brain regions, and the 75 sub-regions thereof. Regions with less than
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0.03% connectivity were considered below background threshold, and set to zero. Starter cell vol-

ume and artificial signals were excluded before further processing of data. First, total cell count

across bregma/ROI and ROI/bregma were calculated. After calculation of cell count, percent input

and density/bregma, data was clustered into lower and higher hierarchies. Separate analysis of

amygdala, thalamus and striatum was obtained by sorting of the respective ROIs into separate data

frames for the creation of pivot tables.

To create plots that display the data along the anterior-posterior axis (e.g. % density innervation),

we first linearly interpolated missing values and then smoothed the data using a Savitzky-Golay-Filter

(scipy.signal.savgol_filter).

Group comparison of connectivity patterns were made using ordinary one-way ANOVAs per sub-

region, followed by Tuckey’s multiple comparisons test. The same test was used to compare starter

cell distribution over regions between injection sites (aIC, mIC, pIC). Comparisons between starter

cell distributions over cortical layers were done with a two-way RM ANOVA followed by Tuckey’s

multiple comparisons test. For input-output correlations to test for reciprocity, analysis was per-

formed using GraphPad Prism (GraphPad Software, CA). For the correlation matrices of input vs.

input and output vs. output, the data of the 17 major brain regions (% of total in- or output) was cor-

related by computing the pair-wise Pearson’s correlation coefficients of all input or output tracings,

respectively. Then, the correlation coefficients were hierarchically clustered with the complete-link-

age clustering method. All quantifications of RV and AAV tracings were done masked.

All codes for quantification and analysis of RV and AAV tracings are available at https://github.

com/GogollaLab/tracing_quantification_and_analysis.

All animal numbers are reported in Figures and their legends. No statistical methods were used

to predetermine sample size, but it is comparable to published work (Ährlund-Richter et al., 2019;

Do et al., 2016; Luo et al., 2019).
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