
Letter Vol. X, No. X / April 2016 / Optica 1

Quantum metrology at the limit with extremal
Majorana constellations
F. BOUCHARD1, P. DE LA HOZ2, G. BJÖRK3, R. W. BOYD1,4, M. GRASSL5,
Z. HRADIL6, E. KARIMI1,7,*, A. B. KLIMOV8, G. LEUCHS5,1, J. ŘEHÁČEK6, AND
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Quantum metrology allows for a tremendous
boost in the accuracy of measurement of diverse
physical parameters. The estimation of a ro-
tation constitutes a remarkable example of this
quantum-enhanced precision. The recently intro-
duced Kings of Quantumness are especially ger-
mane for this task when the rotation axis is un-
known, as they have a sensitivity independent of
that axis and they achieve a Heisenberg-limit scal-
ing. Here, we report the experimental realization
of these states by generating up to 21-dimensional
orbital angular momentum states of single pho-
tons, and confirm their high metrological abilities.
© 2016 Optical Society of America
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The conventional description of the quantum world involves
a key mathematical object—the quantum state—that conveys
complete information about the system under study: once it is
known, the probabilities of the outcomes of any measurement
can be predicted. This statistical description entails counterintu-
itive effects that have prompted several notions of quantumness,
yet no single one captures the whole breadth of the physics.

There are, however, instances of quantum states that behave
in an almost classical way. The paradigm of such a behavior is

that of coherent states of light [1]: they are as much localized as
possible in phase space, a property that is preserved under free
evolution.

The concept of coherent states has been extended to other
physical systems [2]. The case of a spin is of paramount impor-
tance. The corresponding spin coherent states have minimal
uncertainty and they are conserved under rotations. So, in the
usual way of speaking, they mimic a classical angular momen-
tum as much as possible. One could rightly wonder what kind
of state might serve as the opposite of a coherent state. The
answer will depend on the ways to formalize the idea of being
“the opposite” [3]. Here, we take advantage of the Majorana
representation, which maps a pure spin S into 2S points on the
Bloch sphere [4].

It turns out that the Majorana representation of a coherent
state consists of a single point (with multiplicity 2S). At the
opposite extreme, we can imagine states whose Majorana rep-
resentations are spread uniformly over the sphere. The result-
ing states are precisely the Kings of Quantumness [5, 6]. With
such symmetric spreadings, the constellations essentialy map
onto themselves for relatively small rotations around arbitrary
axes. This means that they resolve rotations around any axis
approximately equally well. We emphasize that the problem of
estimating a rotation is of utmost interest in magnetometry [7–9],
polarimetry [10, 11], and metrology in general [12]. In this work,
we experimentally demonstrate the generation of these states
and certify their potential for quantum metrology [13].

Let us first set the stage for our experiment. We consider
a system that can be described in terms of two independent
bosonic modes, with creation operators â†

α, with α ∈ {+,−}.
This encompasses many different instances, such as strongly cor-
related systems, light polarization, Bose-Einstein condensates,
and Gaussian-Schell beams, to mention only but a few [14].
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Fig. 1. (a) The Majorana constellations in the Bloch sphere
for the Kings (orange) and the NOON states (yellow) corre-
sponding to spin S = 3, 5, 6, and 10. (b) The Laguerre-Gauss
representation of the same Kings and NOON states, shown in
(a), where the azimuthal index ` corresponds to m in the Dicke
basis. We consider the fundamental radial mode; i.e., p = 0,
where p is the radial index of the Laguerre-Gauss modes.

The Stokes operators for these two-mode systems can be com-
pactly expressed as [15] Ŝ = 1

2 â†
ασαβ âβ, where σ denote the

Pauli matrices and summation over repeated indices is assumed.
One can verify that Ŝ2 = Ŝ0(Ŝ0 + 11), with Ŝ0 = N̂/2 and
N̂ = â†

αδαβ âβ = N̂+ + N̂− being the total number of excitations.
From now on, we restrict our attention to the case where N

is fixed. This corresponds to working in a (2S + 1)-dimensional
Hilbert space HS of spin S (with N = 2S). This space HS is
spanned by the Dicke basis |S, m〉, wherein the action of Ŝ oper-
ators is the standard for an angular momentum. Sometimes, it
is preferable to use the two-mode Fock basis |N+, N−〉; related
to the Dicke basis by N+ = S + m and N− = S−m.

Spin coherent states are constructed much in the same way
as in the canonical case [2]: they are displaced versions of the
north pole of the Bloch unit sphere S2. If n is a unit vector in
the direction of the spherical angles (θ, φ), they can be defined as
|n〉 = eiφŜz eiθŜy |S, S〉. They are not orthogonal, but one can still
decompose an arbitrary state |Ψ〉 using this overcomplete set.
The associated coherent-state wave function is Ψ(n) = 〈n|Ψ〉,
and the corresponding probability distribution, Q(n) = |Ψ(n)|2,
is nothing but the Husimi function.

The wave function Ψ(n) can be expanded in terms of the
Dicke basis |S, m〉. If the corresponding coefficients are Ψm =

〈S, m|Ψ〉, we obtain Ψ(n) = (1 + |z|2)−S ∑S
m=−S cmΨm zS+m,

where cm =
√
(2S)!/[(S−m)!(S + m)!] and z = tan(θ/2)e−iφ

is the complex number derived by the stereographic projection
of (θ, φ). Apart from the unessential positive prefactor, this is a
polynomial of order 2S; thus, |Ψ〉 is determined by the set {zi}
of the 2S complex zeros of Ψ(n). These zeros, which are also the
zeros of Q(n), specify the so-called constellation by an inverse
stereographic map of {zi} 7→ (θi, φi).

Since the spherical harmonics YKq(n are a complete set of
orthonormal functions on S2, they may be used to expand the
Husimi function Q(n). The resulting coefficients, $Kq, are noth-
ing but the standard state multipoles [16] and there are 2S + 1
of them (see Supplemental material). The monopole is trivial,
as it is just a constant term. The dipole indicates the position
of the state in the Bloch sphere. When it vanishes, the state
has vanishing (first-order) polarization and points nowhere in
the mean. If the quadrupole also vanishes, the variance of the
state is uniform; i.e., no directional signature can be observed
in its second-order fluctuations and we say that it is second-
order unpolarized. Similar interpretation holds for higher-order
multipoles. One can also look at these multipoles as the Kth

Fig. 2. (a) Sketch of the experimental setup and (b) density
plots of the experimentally reconstructed Husimi Q functions
for the same King states as in Fig. 1. The fidelities of these
reconstructed states are (from left to right) 0.94, 0.87, 0.91, and
0.93. The differences with the theoretical Q functions cannot
be visually noticed.

directional moments of the state constellation and, therefore,
these terms resolve progressively finer angular features.

The quantity ∑q |$Kq|2 gauges the overlap of the state with
the Kth multipole pattern. It seems thus suitable to look at the
cumulative distribution [17] AM = ∑M

K=1 ∑K
q=−K |$Kq|2, which

concisely condenses the state angular capacity up to order M
(1 ≤ M ≤ 2S). Observe that the monopole is omitted, as it is just
a constant term.

The spin coherent states |n〉 have remarkably simple con-
stellations, just the point −n, and maximize AM for all orders
M, confirming yet from another perspective the outstanding
properties of these states [5].

In contradistinction, the Kings are those pure states that make
AM ≡ 0 for the highest possible value of M. This means that
they convey the relevant information in higher-order fluctua-
tions. The search for these states has been systematically under-
taken recently in Ref. [5], where the interested reader can check
the details (see also Supplemental Material, where one can find
the nonzero components Ψm of the Kings). The resulting Majo-
rana constellations for some values of S are depicted in Fig. 1.
For S = 3, the constellation is a regular octahedron and the state
is third-order unpolarized (M = 3). For S = 5, it consists of
two pentagons. For S = 6 we have the icosahedron, and the
corresponding state is fifth-order unpolarized. For S = 10 we
have a slightly stretched dodecahedron (i.e., the four pentagonal
rings that define its vertices are displaced against the pole) and
it is fifth-order unpolarized. As we can appreciate, the Kings
have the points very symmetrically placed on the unit sphere, so
their constellations possess many axes along which they return
to themselves after a rotation. Consequently, they can resolve
relatively small angles around a large number of axes.

Other states with a high degree of angular resolution are the
NOON states, given by |NOON〉 = 1√

2
(|N, 0〉 − |0, N〉) in the

two-mode Fock basis and 1√
2
(|S, S〉 − |S,−S〉) in the Dicke basis.

As shown in Fig. 1 their Majorana constellation consists of 2S
equidistantly placed points around the equator of S2. A rotation
around the z axis of angle π/(2S) makes |NOON〉 orthogonal
to itself, whereas for π/S it returns to itself. This nicely supports
the ability of NOON states to detect small rotations.



Letter Vol. X, No. X / April 2016 / Optica 3

Fig. 3. Experimental results of the projection of the S = 3, 6 and 10 (first, second, and third column, respectively) Kings states,
|Ψ(S)〉, onto themselves after a rotation of ω around the axis u, R̂(ω,u); i.e., 〈P̂〉 = |〈Ψ(S)|R̂(ω,u)|Ψ(S)〉|2. The axes are presented
graphically along with the associated constellations. The first row corresponds to rotations along the axes passing through the
Majorana points (pink arrows) and the second row corresponds to rotations along the axes normal to the facets of the constellations
(blue arrows). The experimental results (red and blue dots) are shown along with the theoretical results (blue and green curves) for
all rotation axes.

To compare the performance of these two classes of states,
let us assume we have to estimate a rotation R(ω,u) of angle
ω around an axis u of spherical angles (Θ, Φ). We consider
only small rotations and take the measurement to be a projec-
tion of the rotated state onto the original one; i.e., it can be
represented by P̂ = |Ψ〉〈Ψ|. As discussed in the Supplemental
material, the respective sensitivities (defined as the ratio ∆ω =
∆P̂/|∂〈P̂〉/∂ω|, the variance being ∆P̂ = [〈P̂2〉 − 〈P̂〉2]1/2) are

∆ωKings =

√
3

2
1√

S(S + 1)
,

∆ωNOON =
1√
2

1√
2S2 cos2 Θ + S sin2 Θ

. (1)

The sensitivity of the Kings is completely independent of
the rotation axis and with a Heisenberg-limit scaling 1/S for
large S. For the NOON states, the sensitivity scales as 1/S when
Θ = 0, but can be as bad as 1/

√
S when Θ = π/2. In short, it

is essential to know the rotation axis to ensure that the NOON
state is aligned to achieve its best sensitivity.

We stress that the measurement scheme for ∆ω involves only
second-order moments of Ŝ. Given their properties, one could
expect that detecting higher-order moments will bring out even
more advantages of the Kings.

To check these issues we have generated these extremal states
for the cases of S = 3, 5, 6 and 10, using orbital angular momen-
tum (OAM) states of single photons [18], which has already
proven fruitful in quantum metrology [19]. Working at the
single-photon regime is not essential, but it highlights the po-
tential implications for quantum information processing [20].
Therefore, the index m in the Dicke basis is identified with the
OAM eigenvalue ` of a single photon along its propagation di-
rection. In general, there exist many families of optical modes

carrying OAM, but we choose the Laguerre-Gauss basis LG`,p,
where p is the radial index. Since the radial profile is irrelevant
to the experimental realization of the Kings states, for the sake
of simplicity, we always set the radial index to its fundamental
value, i. e. p = 0. The resulting transverse profiles of both the
Kings and the NOON states are as in Fig. 1(b).

We experimentally create the Kings by means of spontaneous
parametric downconversion. A sketch of the experimental setup
is shown in Fig. 2(a). A quasi-continuous wave UV laser oper-
ating with a repetition rate of 100 MHz and an average power
of 150 mW at a wavelength of 355 nm is used to pump a type-I
β-barium borate crystal. The single photons, signal and idler,
are subsequently coupled to single mode fibres to filter their
spatial mode. One of the photons, the idler, is used as a trigger.
The other photon, the signal, is made incident on a first spatial
light modulator (SLM1), where the desired quantum states were
imprinted on the signal photon holographically [21]. The gen-
erated photonic Kings are subsequently imaged onto a second
spatial light modulator (SLM2) by a 4 f system. The second SLM
possessing the desired hologram followed by a single mode op-
tical fibre perform the projective measurement on the state of
the signal photon. Both photons are sent to avalanche photodi-
ode detectors (APD) and coincidence counts are recorded by a
coincidence box with a coincidence time window of 3 ns [22].

To verify the accurate experimental generation of these
states, we perform quantum state tomography to reconstruct the
Husimi Q function, as shown in Fig. 2(b). The average fidelity
of the resulting states is above 90%; i.e., 94%, 87%, 91% and 93%,
respectively (see Supplemental Material).

We now study the behaviour of such states under rotations
in the sphere S2. This is experimentally realized by projective
measurements of the Kings onto themselves after a rotation
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Fig. 4. Rotational sensitivity ∆ω for the Kings (red) and
NOON states (blue). The solid curves correspond to the theory
predicted in Eq. (1) and the points correspond to experimental
results. In the case of the Kings, we show the mean rotational
sensitivity over all axes presented in Fig. 3, where the error
bars correspond to variation in sensitivity from axes to axes.
For the NOON states, we show the rotational sensitivity for
rotation axes with Θ = 0 and Θ = π/2.

ω around several axes (see Fig. 3). To demonstrate the high
sensitivity to rotation of these states along arbitrary axes, we
perform such rotations around each axis passing through the
Majorana points, and facets of the Kings constellations. For
the cases of S = 3, 6 and 10, we find four-, five- and three-
fold symmetry axes passing through their Majorana points and
three-, three- and five-fold symmetry axes passing through the
normals to the facets of their constellations, respectively. Note
that, since we are dealing with OAM, these rotations correspond
to rather abstract mode transformations, although the polar axis
still represent a physical real-space rotation around the optical
axis.

Finally, in Fig. 4 we experimentally check the sensitivity of
the Kings and NOON states. As we can see, the experimental
sensitivity of the Kings is completely independent of the orien-
tation of the rotation axes (within the error bars). In the limit
of small rotation angles, the NOON states overcome the Kings
all the way up to cos Θ = 1/

√
3. Nonetheless, since the Kings

achieve the ideal sensitivity irrespectively of the axis, they are
the most appropriate to detect rotation around arbitrary axes.

The problem of the Kings is closely related to other notions as
states of maximal Wehrl-Lieb entropy [23], Platonic states [24],
the Queens of Quantumness [25] or the Thomson problem [26].
However, there are still many things to elucidate concerning
these links. They are though a nice illustration of the connec-
tions between different branches of science, and on how some
seemingly simple problems—distributing points in the most
symmetric manner on a sphere—can illuminate such compli-
cated optimization problems that we have just described.

Thus far, efforts were concentrated in estimating the rotation
angle, which in terms of magnetometry means that we only
want to know the magnetic field magnitude. The Kings will
allow for a simultaneous precise determination of the rotation
axis (i.e., the magnetic field direction). Our experimental results
corroborate that this extra advantage can pave the way to much
more refined measurement schemes.
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