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We develop a systematic coarse graining procedure for systems of N qubits. We exploit the underlying ge-
ometrical structures of the associated discrete phase space to produce a coarse-grained version with reduced
effective size. Our coarse-grained spaces inherit key properties of the original ones. In particular, our proce-
dure naturally yields a subset of the original measurement operators, which can be used to construct a coarse
discrete Wigner function. These operators also constitute a systematic choice of incomplete measurements for
the tomographer wishing to probe an intractably large system.

I. INTRODUCTION

Recently, the understanding of many-body quantum sys-
tems has dramatically progressed. Nowadays we are achiev-
ing an amazing degree of control over larger and larger sys-
tems [1, 2]. Therefore, verification during each stage of ex-
perimental procedures is of utmost importance; quantum to-
mography is the appropriate tool for that purpose.

The goal of quantum tomography is to reconstruct the state
of a system by performing multiple measurements on identi-
cally prepared copies of the system. Once the experimental
data are extracted, a numerical procedure determines which
density matrix fits best the measurements. This estimation
can be performed using different approaches, such as maxi-
mum likelihood estimation [3], or Bayesian methods [4-7].
However, tomography becomes harder as we explore more in-
tricate systems. If we look at the simple, yet illustrative case
of N qubits, which will serve as the consistent thread in this
paper, one has to make at least 2 + 1 measurements in differ-
ent bases before one can claim to know everything about an a
priori unknown system. With such an exponential scaling in
the number of qubits, it is clear that current methods rapidly
become intractable for present state-of-the-art experiments.

As a result, more sophisticated tomographical techniques
are called for. New protocols try to simplify the process
by making an educated guess about the nature of the state.
Among other assumptions, this includes rank deficiency [8—
12], extra symmetries [13—15], or Gaussianity [16]. While all
these approaches are extremely efficient, their pitfall is that
when the starting guess is inaccurate, they produce significant
systematic errors.

Here, we pursue a different approach, inspired by a notion
from statistical mechanics: coarse graining [17]. This oper-
ation transforms a probability density in phase space into a
“coarse-grained” density that is a piecewise constant function,
a result of density averaging in cells. This is the chief idea
behind the renormalization group [18], which allows a sys-
tematic investigation of the changes of a physical system as
viewed at different scales.

In our case, we consider a system of qubits and look at the
associated phase space, which turns out to be a discrete grid
of 2V x 2N points. We assign to each suitably defined line in

phase space a specific rank-one projection operator represent-
ing a pure quantum state. For each point of the grid, a suitable
quasi-probability as the Wigner function can be directly com-
puted from the measurement of the states associated with the
lines passing through that point. We coarse grain by combin-
ing groups of these lines into thick lines, which we will show
to be lines in the phase space of an effectively smaller system.
Our coarse-grained phase spaces are endowed with many nice
properties.

Most notably, our procedure systematically and naturally
reveals a subset of measurements which one could use to per-
form incomplete tomography. In addition, using the coarse-
grained points and lines, we show that one can define a dis-
crete Wigner function in largely the same way as it is de-
fined in the original space. When plotted, the coarse functions
resemble smoothed out versions of the originals, preserving
many of their prominent visual features.

II. PHASE SPACE OF N QUBITS

A qubit is a two-dimensional quantum system, with Hilbert
space isomorphic to C2. It is customary to choose two nor-
malized orthogonal states, say {|0),|1)}, as a computational
basis. The unitary matrices

o, = |0)(0] = [1)(1], oy = [0)(1[+[1){0], (2.1)
generate the Pauli group &), which consists of all the
Pauli matrices plus the identity, with multiplicative factors
+1,+i [19].

For N qubits, the corresponding Hilbert space is the tensor
product C?®---®C? = c?' A compact way of labeling both
states and elements of the corresponding Pauli group Py is by
using the finite field F,v. In Appendix A we briefly summa-
rize the basic notions of finite fields needed to proceed.

Let |v), v € F,v, be an orthonormal basis in the Hilbert

space c? (henceforth, field elements will be denoted by
Greek letters). The elements of the basis can be labeled by
powers of a primitive element ¢ (i.e., a root of an irreducible

primitive polynomial): {|0), |o),..., |62N_1 =1)}. Now the



equivalent version of (2.1) is [20-22]

Za=Y x(av)[v)(v],  Xg=) [v+B){v], (22

so that

ZoXp = x(aB)XpZy, (2.3)

which is the discrete counterpart of the Weyl-Heisenberg alge-
bra for continuous variables [23]. Here, the additive character
x is defined as y(a) = explimtr(e)] and the trace of a field
element (we distinguish it from the trace of an operator by the
lower case “tr”) is defined in Appendix A. Moreover, Z, and
Xp are related through the finite Fourier transform [24]

\/TNZX (vv)|Ivi(v], (2.4

v,V

so that X, = . Zy, Z 7.

The operators (2.2) generate the Pauli group &y of N
qubits and, with a suitable choice of basis, they can be factor-
ized into a tensor product of single-qubit Pauli operators. To
this end, it is convenient to consider oy as an N-dimensional
linear space over Z;. It is spanned by an abstract basis
{61,...,065}, so that given a field element o the expansion

N
=Y a6,
i=1

allows us the identification o < (ajy,...,ay). The basis {6;}
can be chosen to be orthonormal with respect to the trace op-
eration; i.e., tr(6;0;) = &;. This is a self-dual basis, which
always exist for the case of qubits. In this way, we associate
each qubit with a particular element of the self-dual basis:
qubit; < 6;. Using this basis, we have the factorization

ai €2y, (2.5)

Zg=01® @0,  Xg=o0l'® -R0N, (2.6)

where a; = tr(a.6;) and b; = tr(6;) are the corresponding ex-
pansion coefficients for & and § in the self-dual basis.

We next recall [25, 26] that the grid defining the phase space
for N qubits can be appropriately labeled by the discrete points
(o, B), which are precisely the indices of the operators Z, and
Xg: o is the “horizontal” axis and 3 the “vertical” one. In this
grid we can introduce the set of displacements

D(a,p) = (D(Ol,ﬁ)ZaXﬁ,

where ®(ct,3) is a phase required to avoid plugging extra
factors when acting with D. A sensible choice for the case
of qubits is ®*(a, B) = x(afB), which ensures the Hermitic-
ity of the displacement operators. In addition, we impose
®(a,0) =1 and ©(0, ) = 1, which means that the displace-
ments along the “position” axis o and the “momentum” axis 3
are not associated with any phase. These displacement opera-
tors shift phase space points, so the action of D(¢/’, ') maps
(a0, B)—(a+ o, B+ B'), justifying their designation. Note
that we still have to fix the sign of the phase ®(c, ). We
choose the phase as

®(a, B) = i) (~1

2.7)

yep, 28)

where f(x) = Yo< j<i<m—1 x> 2 which ensures that the oper-
ators defined in Eq. (3.3) below are rank-one projections.

On the phase space grid one can introduce a variety of ge-
ometrical structures with much the same properties as in the
continuous case [27-29]. The simplest are the straight lines
passing through the origin (also called rays), with equations

a=0, or B=Aa. 2.9)
The rays have a very remarkable property: the monomials
D(a, B) belonging to the same ray commute, and thus, have a
common system of eigenvectors {|y, 1)},

D(a, Aa) [y p) = exp(i&y 1) Wy 1), (2.10)
where A is fixed and exp(i&, 5) is the corresponding eigen-
value, so |y o) = |V) are eigenstates of Zy (displacement op-
erators labeled by the ray 8 = 0, which we take as the horizon-
tal axis). The projection operators associated with the lines of
equal slope are the projections onto these eigenvactors. In-
deed, we have that

1=8.), (@11)

1
|<'~Vv,l|ll/v’,)u> |2 = 5&7”5‘,1‘,/ + Z—N(

and, in consequence,
(MUBs) [30].

Now suppose for each ray we disregard the origin (0,0),
whose monomial is the identity operator. This leaves us with
2V — 1 commuting operators. If we then consider the whole
bundle of 2V + 1 rays (which are obtained by varying the
“slope” A over all of F,v), we can construct a complete set of
MUB operators arranged in a (2% — 1) x (2V 4 1) table [31].

To round up the scenario, we need to represent states in
phase space. The discrete Wigner function [32] is the appro-
priate tool. It can be considered as an invertible mapping

they are mutually unbiased bases

Wp(a,B) = o5 Trlp A, B)], (2.12)
so that
p=1Y Ala,B)Wp(a,B). (2.13)
B
The operational kernel is defined as
Ale, B) = 2N Y x(aa’—B)D(aB), (2.14)

a/ ﬁ/

which, in view of equation (2.4), can be interpreted as a dou-
ble Fourier transform of D(¢,3). One can check that this
kernel has all the good properties [33]: it is Hermitian, nor-
malized and covariant under the Pauli group. As a result, for
each point on the grid, the corresponding value of the Wigner
function can be computed from the probabilities of measuring
the pure states associated with the lines passing through that
point.
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FIG. 1. Graphical sketch of coarse graining. Here we consider dimension 16, and its diagonal ray, 8 = a. The first panel plots all the lines
of the form B = a + ¥, parametrized by the shift y. Points on the same line have the same colour. Axis labels correspond to powers of the

primitive element of F ¢, with the convention that ¢° is denoted by 0 and ¢'°

= 1. The middle panel shows the original grid with the axis

labels permuted such that coset elements are grouped together. We can see that this leads to distinct 4 x 4 blocks containing points of exactly
four different colours. These are shown expanded out in the small, lower four grids. One notices that these “coarse” blocks form the diagonal
ray and all its translates in dimension 4, which we show superimposed in the last panel.

III. COARSE GRAINING

As heralded in the Introduction, our goal is to tailor a pro-
cedure that allows us to coarse grain the phase space of a
multiqubit system; i.e., to break it down into simpler sub-
components.

To this end, we consider the number N of qubits to be com-
posite, i.e. N =mn. Let {ly, ..., ll;—1 } be a basis of Fom with
respect to Fom. We define

n—1
Q:():{Z’Z'juj | TjEFzm},
j=1

i.e., the subspace made of linear combinations of basis ele-
ments y,...,,—1 with coefficients in the base field Fo». We
can use this set €y, which we henceforth refer to as the initial
coset, to decompose the field Fomn into cosets:

(3.1

Co=1lp+C,  TEFm. (3.2)

The coarse-grained space will be labeled according to these
cosets.

We can imagine the process of coarse graining as partition-
ing the grid Fomn x Fomn in such a way that we superimpose
a grid of size 2 x 2™ on top, with each superimposed point
indexed by cosets rather than field elements in the original
grid. Each point in the coarse grid then contains a sub-grid
the same size as ' x F4,'. To provide some intuition for
this, we show a visual example of this process in action in
Fig. 1.

Our procedure for coarse-graining the grid arises naturally
from consideration of the line structure of phase space. We
will use the thin lines in Fomn to create thick lines in the coarse
phase space, by grouping together lines having the same slope,
and with intercepts in the same coset. We write thin lines in

the big field Fomn as |€§,M>, where A is the slope, and 7 is the

intercept. A large, coarse-grained line is denoted as |L(é)>,
where now the intercept is a whole coset.
To each line in the fine-grained phase space we can assign

a projector |€§,’l)) <€g//l) |, constructed as a linear combination of
the displacement operators. We choose as our convention for
the rays (y = 0) the all-positive sum

A
5 (M) =

ZD (a,Aa). (3.3)

2mn

These lines are eigenstates with eigenvalue +1 for all dis-
placement operators in the sum. Projectors with nonzero in-
tercepts are obtained by conjugating that of the ray with an
appropriate displacement operator.

The coarse lines are produced by grouping together lines
with intercepts in the same coset:

A A A
Ly =y e

re€s

34

The possible choices of slope for these lines will be limited to
elements of the subfield Fy», as these have natural analogues
between the two fields.

As discussed in more detail in Appendix B, the coarse rays
of Eq. (3.4) can be simplified and rewritten as the sum of dis-
placement operators

1

Zmn;liﬂa

re€o

IL(¢?><L(¢}L)I = (a, ).  (3.5)

One can check here that the inner sum over the elements of
o will cause some of the displacement operators to vanish.
The sum in brackets in Eq. (3.5) is either zero or a positive
constant. Hence, the projection associated to the thick lines
are a sum over a subset of the displacement operators associ-
ated with the thin lines. This leads us to the key idea of our



work: rather than measuring all the displacement operators,
we measure only those which are present in the rays of the
coarse-grained space.

We note here that the choice of €y is not unique, and will
ultimately determine the resultant set of displacement opera-
tors. For example, a special case occurs when the dimension
of the system is square. In this case, we can consider the rela-
tionship between the fields as a quadratic field extension, i.e.
when n = 2. In this case we can partition [F2, into Fom x Fom.
We can then choose the initial coset as the copy of the subfield
Fom C FzZm:

¢o={c'®"*D i=0,..,2"—1}, (3.6)
where o is a primitive element of Fo»» and we use the notation
o for 0. The subsequent cosets are obtained additively from
this subfield using the representatives 7; = o=+,

Finally, the coarse-grained phase space inherits a coarse-
grained Wigner function. A coarse kernel can be constructed
by grouping together kernel operators from the same coset,
ie.

D(CC)= Y ) Ap).

ae&ﬁecé

3.7

Desired properties of a Wigner function all follow from the
original kernel. As was the case with the displacement oper-
ators, differing choices of the subset €y will lead to differing
Wigner functions.

IV. EXAMPLES

We illustrate the previous ideas with some relevant exam-
ples. We have written a Python software package capable of
generating all the following results, which we make available
online [34]

The first nontrivial instance we can have is the case of two
qubits, so dimension 4. Using the irreducible primitive poly-
nomial x> +-x+1 =0, we have that F4 = {0,1,06,62 = o+ 1}.
The self-dual basis is {0, 0 + 1}, and we use it to produce the
displacement operators.

¢ 1IX 1Y | XX | YY
S| 11 1z G| 11 A%
(’:() Q:l Q:O Q:a

FIG. 2. Resultant operators from coarse-graining a dimension 4 sys-
tem down to dimension 2. Colours are indicative of particular coarse
rays. The left image coarse grains by taking €y = {0,0}, whereas
the lower image uses the subfield €y = {0,1}.

G XXX|YYY ¢, X1X|Y1Y
S| 111 | ZZZ S| 111 | Z1Z
o <y <o [y

FIG. 3. Resultant operators from coarse-graining a dimension 8 sys-
tem down to dimension 2. (Left panel) Coarse graining using the ba-
sis {1,0,0%}. The resultant measurements are unitarily equivalent
to a case where two of the qubits remain untouched. (Right panel)
Resultant operators when the coarse-graining uses the initial basis
{c,0%,67}. Here we obtain the interesting result that all resultant
operators commute.

Another basis for F4/F, is {1,0}. Taking all scalar mul-
tiples of iy = o from the prime field gives us €y = {0,0}.
We then obtain €; = 14 €y = {1,6?}. For each ray, we can
list the operators which survive in the inner sum over €y in
Eq. (3.5). Moreover, we can label the points of the coarse-
grained grids by those displacement operators. Disregarding
the identity operator, the resulting set {1X,1Z, 1Y} consti-
tutes the appropriate measurements to be performed to de-
termine which coarse-grained line they are in. They are es-
sentially Pauli measurements on one of the two qubits in the
system.

Alternatively, the dimension is a square, so we can choose
as our initial coset the subfield F,: €, = {0,1}. This yields
the second coset €5 = {0, 062}. We once again compute the
surviving operators using Eq. (3.5). The final result now is
{XX,YY,ZZ}. Here, we see that we are making a measure-
ment with the same Pauli operator on both qubits, thereby cap-
turing the full correlations between the two qubits. Figure 2
shows both partitioning methods side by side.

Our next example is the case of dimension 8. We choose o
a root of the irreducible primitive polynomial x* +x+1 =0,

€1 axxxpyxxzxyyjiyyy| € |xxx Xy xy|Zy 2y|yyvy|

Coroxixxyzxxyiyyixzyy Cge [XIXIXZXAYIYLYZYZ

Cos Ixxut|yvityxzaxyzg €, [LXLX[1Y1Y|ZXZXYXYX]

Q:O 111\ ZZ10\ Z1ZZ\\ZZZ Q:O 1111|1212 Z1Z1|ZZZ 7

€y Cps Coro € Co €y CooCon

FIG. 4. Resultant operators from coarse-graining a dimension 16
system down to dimension 4. The left panel contains the surviving
operators from the general basis method, the right panel from choos-
ing the subfield as €y. The cosets are listed in Egs. (4.4) and (4.5)
respectively. In the case of the left panel, these operators are unitarily
equivalent to a set where two qubits are untouched and the 2-qubit
MUB operators are applied to the rest. The right panel has no such
transformation.
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FIG. 5. (Top) Coarse-grained Wigner function for the state %(|00> +]11)) ®(]00) 4 ]11)). (Left) The original Wigner function in dimension 16.
The x-axis represents the computational basis, in the standard ordering |0000), |0001),|0010), etc. The Fourier basis, as defined via Eq. (2.4),
is on the y-axis and is similarly ordered. (Centre) Coarse graining over F4 with the polynomial basis {1,0}. Here the axes are not labeled by
single states, but rather by a set of states associated with each coset. (Right) Coarse graining with the subfield as the initial coset. (Bottom)
The same coarse graining procedure as above, but applied to the state %(|0001> +10010) + |0100) + |1000)).

and obtain a self-dual basis {6>,6°,6°}. An obvious choice
for a basis of Fg /IF, is a polynomial basis {1,5,62}. To con-
struct €y, we must take all possible linear combinations of &
and ¢ with coefficients in IF,. This produces

¢ ={0,0,0%,06*}. (4.1)
We obtain the second coset by adding the remaining subfield
element 1 to €y:

¢ ={1,6%6°, 06%. (4.2)
The traces of all elements in &y are 0, and the traces for all
elements in €; are 1. The surviving four operators are shown
in Fig. 3.

Using a Clifford transformation, we can “trace out” two
of the qubits. The sequence of CNOT gates: CNOT;
— CNOT{3 — CNOT,; — CNOT3; transforms the set into
{X11,Z11,Y11}, so we see that this partitioning is, after
a global change of basis, equivalent to measuring each Pauli
on only a single qubit.

If we choose instead the basis {c¢,06% 67} to build our
cosets, we get a more interesting result:

Cs = {0'76276370'6}.

¢ ={0,1,6* 0%}, (4.3)

The operators that survive have the form ZaX;;, o,fB €

{0,0"}, yielding the operators in Fig. 3, which all commute.
In this case, we are already ignoring one of the three qubits.
However, it is not possible to find a Clifford which will trace
out a remaining one as was the case with the polynomial basis
case. So, in a sense, using this partitioning we are ignoring
fewer qubits than before.

Dimension 16 is perhaps the first really interesting case.
First of all, we can consider it in two ways: m = 1,n =4, or
m = 2,n = 2. Essentially, to do the partitioning, we can look
at [F'|¢ as a quartic extension over [, or a quadratic extension
over 4. We consider the quadratic case, so we can coarse
grain in two ways. We work with Fg as constructed by the
irreducible primitive polynomial x* +x -+ 1 over 5, and x> +

x+ o’ over F4 where we denote a primitive element of Fy4 as
o’. We know from Eq. (3.6) that 6’ = ¢°, where o is the
primitive element in Fjs. Then F4 in 14 can be written as
{0,6°,6'0 65 =1}.

For the general case, we choose the basis {1, }. Taking all
FF4-multiples of &, we obtain ¢y = {0,5,0% 0'!}. The full
set of cosets is:

Q:():{Oacvcéacll}? €c5 :{6536 369363}3
Qto']o = {6103 683 673 614}7 Qtl = {17 647 6137 0-12}'
4.4

Proceeding in the standard way, and taking into account that
a self-dual basis is {63, 67,6'2, 63}, we obtain the operators
in Fig. 4. What is (un)interesting about these operators is that
we can transform them all into operators which completely
ignore two of the qubits. In particular, consider the follow-
ing sequence of operations: CNOT43 — CNOT3,; — CNOT3; —
CNOT 4 — CNOT>4. Application of this to the operators of
the first panel of Fig. 4 yields a new set of operators where the
last two qubits contain only 1, and the first two qubits contain
the full set of MUB operators on two qubits.

Alternatively, we can choose our initial coset as the sub-
field, and the coset representatives as 7; = o*(~1)+7. We ob-
tain the cosets

¢ ={0,1,6°,5'°}, ¢ ={0,0% 0%,0%},

€6 ={0%0",06%° 07}, €. ={c',6'% 63 0"}

4.5)

Using Eq. (3.5) we get the table shown in the right panel of
Fig. 4. Unlike in the previous case, there is no transformation
which will lead to us ‘tracing out’ two of the qubits. However,
we can bring these operators into a more basic form by apply-
ing the sequence CNOT 3 — CNOT,4. The resultant operators
have the property that on the first two qubits, we only have X,
and on the last two qubits only Z, so that they all commute.

To conclude, we present some of the coarse-grained Wigner
functions we obtain using our method. Those in dimensions
4 and 8 are somewhat trivial, so we focus on dimension 16.
Wigner functions for the states % (|00)+|11))(]00) +|11)) and
(/0001 4 [0010) + |0100) -+|1000)) are presented in Fig. 5.
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Recall in Section II that we could associate the elements of
F,~v with a basis in our Hilbert space. Then, in the coarse
Wigner functions, when we group the field elements into
cosets, we can consider this also as grouping together the as-
sociated basis states. Hence, the probabilities in these Wigner
functions become distributed over the cosets which contain
the constituent basis states of our target state. As a result, the
coarse Wigner functions resemble ‘smoother’ versions of the
original one to varying degrees.

V. CONCLUSIONS

Compared to the continuous Wigner function, the discrete
Wigner function is an adolescent formulation, slowly develop-
ing into adult maturity. Discrete phase space imposes several
new challenges, which leads to an intricate mapping of the
Wigner function.

Our coarse graining procedure shows a way to facilitate our
understanding when the number of qubits is high. While it is
always possible to ignore part of the system and to determine
the full Wigner function of the resulting reduced density ma-
trix, our approach allows more choices regarding which infor-
mation of the whole system is measured. In another extremal
case, the coarse-grained Wigner function is completely deter-
mined by a set of commuting operators that can be measured
simultaneously.

However, several open questions remain. An obvious
next step would be to extend the coarse graining procedure
to multi-qudit systems. Furthermore, knowing the coarse-
grained function, does there exist another subset of measure-
ments which will allow us to zoom in on specific areas of it
and gain more information? A logical first choice would be to
extend the set of measurements such that they include all op-
erators that correspond to slopes in the subfield. For example,
in the dimension 16 case, we would measure all operators for
therays ¢ =0and 8 = Ao, A € {0,6°,6'° 6!}, rather than
just three from each. This strategy would allow us to optimize
measurements in a very subtle way. Work along these lines is
in progress.
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Appendix A: Finite fields

In this appendix we briefly recall some background needed
for this paper. The reader interested in more mathematical
details is referred, e.g., to the excellent monograph by Lidl
and Niederreiter [35].

A commutative ring is a nonempty set R with two binary
operations, called addition and multiplication, such that it is
an Abelian group with respect to addition, and the multipli-
cation is associative. The most typical example is the ring of
integers Z, with the standard sum and multiplication. On the
other hand, the simplest example of a finite ring is the set Z,
of integers modulo n, which has exactly n elements.

A field F is a commutative ring with division, i.e., such
that 0 does not equal 1 and all elements of F' except O have
a multiplicative inverse (note that O and 1 here stand for the
identity elements for the addition and multiplication, respec-
tively, which may differ from the familiar real numbers 0 and
1). Elements of a field form Abelian groups with respect to
addition and multiplication (in this latter case, the zero ele-
ment is excluded). Note that the finite ring Z; is a field if and
only if d is a prime number.

The characteristic of a finite field is the smallest positive
integer d such that

1+14...41=0 (A1)
—_———

d times

and it is always a prime number. Any finite field contains a
prime subfield Z; and has d" elements, where rn is a natural
number. Moreover, the finite field containing d" elements is
unique up to isomorphism and is called the Galois field F .

We denote as Z,[x] the ring of polynomials with coeffi-
cients in Z,. If P(x) is an irreducible polynomial of degree
n (that is, one that cannot be factorized over Z;), the quotient
space Z4[X]/P(x) provides an adequate representation of F .
Its elements can be written as polynomials that are defined
modulo the irreducible polynomial P(x). The multiplicative
group of Fyn is cyclic and its generator is called a primitive
element of the field.

As a trivial example of a nonprime field, we consider the
polynomial x? +x+ 1 =0, which is irreducible over Z,. If & is
aroot of this polynomial, the elements {0, 1, o, c’=0+1=
o~ !} form the finite field F,, and o is a primitive element.

A basic map is the trace

) =a+al+...+al". (A2)
The image of the trace is always in the prime field Z,; and
satisfies

r(a+a') =tr(a) +tr(a’). (A3)
In terms of it we define an additive character as
i
x(a) =exp [ftr(a)] , (A9

which possesses two important properties:

Y x(aa)=d"8q.

o' €Fyn

x(a+a')=x(a)x(a),

(AS5)
Any finite field F;» can be also considered as an n-
dimensional linear vector space over its prime field F;. Given



a basis {0;}, (j = 1,...,n) in this vector space, any field ele-
ment can be represented as

n
a=Y a;6; (A6)
j=1

with a; € Z,4. In this way, we map each element of [F4» onto
an ordered set of natural numbers o < (ay,...,dp).

Two bases {6i,...,6,} and {6],...,6,} are dual when
tr(GkG[) = 6](71. (A7)

A basis that is dual to itself is called self-dual. A self-dual
basis exists if and only if either d is even or both n and d are
odd.

There are several natural bases in . One is the polyno-
mial basis, defined as

{1,0,62,...,0"*1}, (A8)

where o is a primitive element. An alternative is a normal
basis, constituted of

{G,Gd,...,cdnfl}. (A9)

The appropriate choice of basis depends on the specific prob-
lem at hand. For example, in Fy, the elements {c,c?} are
both roots of the irreducible polynomial. The polynomial ba-
sis is {1,0} and its dual is {02, 1}, while the normal basis
{0,072} is self-dual.

Appendix B: Derivation of equation for line operators

Here we present the derivation of our equation for the sur-
viving displacement operators. We begin by considering the

projectors for the rays,

gy e

ZDa?La

)ZaXla

B1)
As mentioned in Sec. I, the projectors for the shifted lines can
be obtained by applying an appropriate displacement operator
to induce a transformation. Let us ignore for now the ray with
infinite slope, o = 0. Then for the rest of the rays, we can shift
them vertically by applying the displacement operators of the
form D(0,7y):

2mn

ey (6| = ZD<o,y>D<a,m>D*<o,y>

2mn

= S Z‘I’ (a0, A0)XyZoXp 0 Xy, (B2)

where we recall the convention that all the phases ®(0,7) = 1.

Here, we can make further use of the commutation relation
in Eq. (2.3). We obtain

A
() =

S ZCD (0, M) x (YO Za X5 g

= S Zx(ya)D(a,/la)- (B3)

a
It is then straightforward to see that the thick rays, which are
obtained by summing over all intercepts Y in coset €,, can be
written as

A A
LENLE = 2 Z l Y, 2(ra)

redy

D(a, a). (B4)

Finally, we mention that for the infinite slope the analysis pro-
ceeds in exactly the same way, but that the lines are translated
by displacement operators of the form D(7,0) and Eq. (2.3)
gives us x(yB) instead.

Only those operators which have a non-zero term in the
sum will contribute, thus we consider them as the effective
displacement operators in the coarse phase space.

[1] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics
with ultracold gases,” Rev. Mod. Phys. 80, 885-964 (2008).

[2] R. Blatt and C. F. Roos, “Quantum simulations with trapped
ions,” Nat. Phys. 8, 277-284 (2012).

[3] M. G. A. Paris and J. lviehziéek, eds., Quantum State Estimation,
Lect. Not. Phys., Vol. 649 (Springer, Berlin, 2004).

[4] V. Buzek, R. Derka, G. Adam, and P. L. Knight, “Reconstruc-
tion of quantum states of spin systems: From quantum Bayesian
inference to quantum tomography,” Ann. Phys. 266, 454-496
(1998).

[5] R. Schack, T. A. Brun, and C. M. Caves,
rule,” Phys. Rev. A 64, 014305 (2001).

[6] F. Huszdr and N. M. T. Houlsby, “Adaptive Bayesian quantum
tomography,” Phys. Rev. A 85, 052120- (2012).

[7] Christopher Granade, Joshua Combes, and D G Cory, “Practi-
cal Bayesian tomography,” New J. Phys. 18, 033024 (2016).

Quantum Bayes

[8] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eis-
ert, “Quantum state tomography via compressed sensing,” Phys.
Rev. Lett. 105, 150401 (2010).

[9] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross,
S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y. K. Liu,
“Efficient quantum state tomography,” Nat. Commun. 1, 149 EP
(2010).

[10] S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quan-
tum tomography via compressed sensing: error bounds, sample
complexity and efficient estimators,” New J. Phys. 14, 095022
(2012).

[11] O. Landon-Cardinal and D. Poulin, “Practical learning method
for multi-scale entangled states,” New J. Phys. 14, 085004
(2012).

[12] T. Baumgratz, D. Gross, M. Cramer, and M. B. Plenio, “Scal-
able reconstruction of density matrices,” Phys. Rev. Lett. 111,


http://link.aps.org/doi/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys2252
http://dx.doi.org/http://dx.doi.org/10.1006/aphy.1998.5802
http://dx.doi.org/http://dx.doi.org/10.1006/aphy.1998.5802
http://link.aps.org/doi/10.1103/PhysRevA.64.014305
http://link.aps.org/doi/10.1103/PhysRevA.85.052120
http://stacks.iop.org/1367-2630/18/i=3/a=033024
http://link.aps.org/doi/10.1103/PhysRevLett.105.150401
http://link.aps.org/doi/10.1103/PhysRevLett.105.150401
http://dx.doi.org/10.1038/ncomms1147
http://dx.doi.org/10.1038/ncomms1147
http://stacks.iop.org/1367-2630/14/i=9/a=095022
http://stacks.iop.org/1367-2630/14/i=9/a=095022
http://stacks.iop.org/1367-2630/14/i=9/a=095022
http://stacks.iop.org/1367-2630/14/i=9/a=095022
http://link.aps.org/doi/10.1103/PhysRevLett.111.020401

020401 (2013).

[13] G. Téth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer,
and H. Weinfurter, “Permutationally invariant quantum tomog-
raphy,” Phys. Rev. Lett. 105, 250403 (2010).

[14] T. Moroder, P. Hyllus, G. Téth, C. Schwemmer, A. Niggebaum,
S. Gaile, O. Giihne, and H. Weinfurter, “Permutationally invari-
ant state reconstruction,” New J. Phys. 14, 105001 (2012).

[15] A. B. Klimov, G. Bjork, and L. L. Sinchez-Soto, “Opti-
mal quantum tomography of permutationally invariant qubits,”
Phys. Rev. A 87, 012109 (2013).

[16] J. Rehégek, S. Olivares, D. Mogilevtsev, Z. Hradil, M. G. A.
Paris, S. Fornaro, V. D’ Auria, A. Porzio, and S. Solimeno, “Ef-
fective method to estimate multidimensional Gaussian states,”
Phys. Rev. A 79, 032111 (2009).

[17] P. Castiglione, M. Falcioni, A. Lesne, and A. Vulpiani, Chaos
and Coarse Graining in Statistical Mechanics (Cambridge Uni-
versity Press, Cambridge, 2008).

[18] S. R. White, “Density matrix formulation for quantum renor-
malization groups,” Phys. Rev. Lett. 69, 2863-2866 (1992).

[19] I. Chuang and M. Nielsen, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge,
2000).

[20] M. Grassl, M. Rotteler, and T. Beth, “Efficient quantum circuits
for non-qubit quantum error-correction codes,” Int. J. Found.
Comput. Sci. 14, 757-775 (2003).

[21] A. Vourdas, “Quantum systems with finite Hilbert space,” Rep.
Prog. Phys. 67, 267-320 (2004).

[22] A. Vourdas, “Quantum systems with finite Hilbert space: Ga-
lois fields in quantum mechanics,” J. Phys. A 40, R285-R331
(2007).

[23] E. Binz and S. Pods, The Geometry of Heisenberg Groups
(American Mathematical Society, Providence, 2008).

[24] A. B. Klimov, L. L. Sanchez-Soto, and H. de Guise, “Multi-
complementary operators via finite Fourier transform,” J. Phys.
A 38, 2747-2760 (2005).

[25] W. K. Wootters, “Picturing qubits in phase space,” IBM J. Res.
Dev. 48, 99-110 (2004).

[26] K. S. Gibbons, M. J. Hoffman, and W. K. Wootters, “Discrete
phase space based on finite fields,” Phys. Rev. A 70, 062101
(2004).

[27] A.B. Klimov, J. L. Romero, G. Bjork, and L. L. Sanchez-Soto,
“Geometrical approach to mutually unbiased bases,” J. Phys. A
40, 3987-3998 (2007).

[28] A.B. Klimov, J. L. Romero, G. Bjork, and L. L. Sanchez-Soto,
“Discrete phase-space structure of n-qubit mutually unbiased
bases,” Ann. Phys. 324, 53-72 (2009).

[29] C. Muiioz, A. B. Klimov, and L L Sdnchez-Soto, “Symmetric
discrete coherent states for n-qubits,” J. Phys. A 45, 244014
(2012).

[30] W. K. Wootters and B. D. Fields, “Optimal state-determination
by mutually unbiased measurements,” Ann. Phys. 191, 363-381
(1989).

[31] S. Bandyopadhyay, P. O. Boykin, V. Roychowdhury, and
F. Vatan, “A new proof for the existence of mutually unbiased
bases,” Algorithmica 34, 512-528 (2002).

[32] G. Bjork, A. B. Klimov, and L. L. Sdnchez-Soto, “The discrete
Wigner function,” Prog. Opt. 51, 469-516 (2008).

[33] R. L. Stratonovich, “On distributions in representation space,”
Sov. Phys. JETP 31, 1012-1020 (1956).

[34] https://github.com/glassnotes/balthasar .

[35] R. Lidl and H. Niederreiter, Introduction to Finite Fields and
their Applications (Cambridge University Press, Cambridge,
1986).


http://link.aps.org/doi/10.1103/PhysRevLett.111.020401
http://link.aps.org/doi/10.1103/PhysRevLett.105.250403
http://link.aps.org/doi/10.1103/PhysRevA.87.012109
http://link.aps.org/doi/10.1103/PhysRevA.79.032111
http://link.aps.org/doi/10.1103/PhysRevLett.69.2863
http://dx.doi.org/ 10.1142/S0129054103002011
http://dx.doi.org/ 10.1142/S0129054103002011
http://dx.doi.org/10.1088/0034-4885/67/3/R03
http://dx.doi.org/10.1088/0034-4885/67/3/R03
http://stacks.iop.org/1751-8121/40/i=33/a=R01
http://stacks.iop.org/1751-8121/40/i=33/a=R01
http://stacks.iop.org/0305-4470/38/i=12/a=015
http://stacks.iop.org/0305-4470/38/i=12/a=015
http://dx.doi.org/10.1147/rd.481.0099
http://dx.doi.org/10.1147/rd.481.0099
http://link.aps.org/doi/10.1103/PhysRevA.70.062101
http://link.aps.org/doi/10.1103/PhysRevA.70.062101
http://stacks.iop.org/1751-8121/40/i=14/a=014
http://stacks.iop.org/1751-8121/40/i=14/a=014
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2008.10.003
http://stacks.iop.org/1751-8121/45/i=24/a=244014
http://stacks.iop.org/1751-8121/45/i=24/a=244014
http://dx.doi.org/ http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/ http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/ 10.1007/s00453-002-0980-7
http://www.jetp.ac.ru/cgi-bin/dn/e_004_06_0891.pdf
https://github.com/glassnotes/Balthasar

	Coarse graining the phase space of N qubits
	Abstract
	I Introduction
	II Phase space of N qubits
	III Coarse graining
	IV Examples
	V Conclusions
	VI Acknowledgments
	A Finite fields
	B Derivation of equation for line operators
	 References


