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Quantum Error-Correcting Codes

for Qudit Amplitude Damping
Markus Grassl, Linghang Kong, Zhaohui Wei, Zhang-Qi Yin, Bei Zeng

Abstract

Traditional quantum error-correcting codes are designed for the depolarizing channel modeled by generalized

Pauli errors occurring with equal probability. Amplitude damping channels model, in general, the decay process

of a multilevel atom or energy dissipation of a bosonic system at zero temperature. We discuss quantum error-

correcting codes adapted to amplitude damping channels forhigher dimensional systems (qudits). For multi-level

atoms, we consider a natural kind of decay process, and for bosonic systems, we consider the qudit amplitude damping

channel obtained by truncating the Fock basis of the bosonicmodes to a certain maximum occupation number. We

construct families of single-error-correcting quantum codes that can be used for both cases. Our codes have larger

code dimensions than the previously known single-error-correcting codes of the same lengths. Additionally, we present

families of multi-error correcting codes for these two channels, as well as generalizations of our construction technique

to error-correcting codes for the qutritV andΛ channels.

Index Terms

amplitude damping channel, quantum codes, qudit

I. I NTRODUCTION

For a q-level quantum system with Hilbert spaceCq, called a qudit, the most general physical operations (or

quantum channels) allowed by quantum mechanics are completely positive, trace preserving linear maps which can

be represented in the following Kraus decomposition formN (ρ) =
∑

k EkρE
†
k, where the matricesEk are called

Kraus operators of the quantum channelN satisfying the trace-preserving condition
∑

k E
†
kEk = 1l.

In designing error-correcting codes for protecting messages carried byn qudits sent through a channelN , it is

usually assumed that the errors to be corrected are completely random, with no knowledge other than that they

affect different qudits independently [16, 30]. The corresponding channelN is the depolarizing channel which can
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be modeled by uniformly distributed error-operators givenby generalized Pauli operators [17, 25, 31](Xq)
a(Zq)

b,

for a, b ∈ {0, 1, . . . , q − 1}, whereXq|s〉 = |s+ 1 mod q〉, Zq|s〉 = ωs|s〉, andω = exp(2πi/q). When it is clear

from the context, we may just writeX andZ, dropping the indexq.

However, if further information about the error process is available, more efficient codes can be designed. Indeed,

in many physical systems, the noise is likely to be unbalanced between amplitude (X-type) errors and phase (Z-

type) errors. Recently a lot of attention has been put into designing codes for this situation and into studying their

fault tolerance properties [1, 12, 15, 20, 34, 40]. All theseresults use error models described by Kraus operators

that are generalized Pauli operators, but for those error models, theX-type errors (i.e., non-diagonal Pauli matrices)

happen with probabilitypx which might be different from the probabilitypz thatZ-type errors (i.e., diagonal Pauli

matrices) happen. The quantum channels described by this kind of noise are called asymmetric channels.

A closer look at the real physical process of amplitude damping noise shows that one needs to go even further,

beyond Kraus operators of Pauli type. To be more precise, forq = 2, the qubit amplitude damping (AD) channel

is given by the Kraus operators [9]

A0 =




1 0

0
√
1− γ



 and A1 =




0

√
γ

0 0



 . (1)

Since the error model of the qubit AD channel is not describedby Pauli-type Kraus operators, the known techniques

dealing with Pauli errors result in codes with non-optimal parameters. Several new techniques for the construction

of codes adapted to this type of noise with non-Pauli Kraus operators, and the qubit AD channel in particular, have

been developed [9, 15, 27, 28, 36]. Systematic methods for constructing high performance single-error-correcting

codes [27, 36] and multi-error-correcting codes [11] have been found.

In this paper, we discuss constructions of quantum codes forAD channels of general qudit systems. Unlike

the qubit case, where the AD channel is unique, for qudit systems there are different AD channels associated

with different physical systems. We will focus on two different models: multi-level atoms with a natural kind of

decay process, and bosonic systems obtained by truncating the Fock basis of the bosonic modes to the maximum

occupation numberq − 1 for a single bosonic mode.

II. T HE AMPLITUDE DAMPING CHANNEL

For two-level atoms, the decay process at zero temperature is described by the Kraus operatorsA0, A1 as given

in Eq. (1). For multi-level atoms, there are different kindsof decay processes at zero temperature. One natural

decay process is the cascade structureΞ, where the decay process is governed by the master equation [32, 35]

dρ

dτ
=
∑

1≤i≤q−1

ki
(
2σ−

i−1,iρσ
+
i−1,i − σ+

i−1,iσ
−
i−1,iρ− ρσ+

i−1,iσ
−
i−1,i

)
. (2)

Here{|i〉}q−1
i=0 is a basis of the Hilbert spaceCq, σ−

i−1,i = |i− 1〉〈i| andσ+
i−1,i = |i〉〈i− 1|.

The solution to this master equation gives the Kraus expression

Ξ(ρ) = A0ρA
†
0 +

∑

0≤i<j≤q−1

AijρA
†
ij , (3)
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whereAij =
√
γij |i〉〈j| with positive coefficientsγij , andA0 is a diagonal matrix with its elements determined

by A†
0A0 +

∑

0≤i<j≤q−1 A
†
ijAij = I. Furthermore, when the decay timeτ is small, γij is of orderτ ℓ for any

j = i + ℓ, ℓ > 0. As a consequence,A0 is of orderτ , andAij is of orderτ ℓ/2 for any j = i + ℓ, ℓ > 0. This is

intuitively sound as for the cascade structure, the first order transition always happens from|i+ 1〉 to |i〉.
As an example, for three-level atoms, i.e.,q = 3, we have

A01 =
√
γ01|0〉〈1|,

A02 =
√
γ02|0〉〈2|, A12 =

√
γ12|1〉〈2|,

A0 = |0〉〈0|+
√

1− γ01|1〉〈1|+
√

1− γ02 − γ12|2〉〈2|,

where

γ01 = 2k2τ +O(τ2),

γ02 = 2k1k2τ
2 +O(τ3),

γ12 = 2k1τ +O(τ2),

for k1 6= k2. The values ofγij are slightly different fork1 = k2, but the order ofγij in terms ofτ remains the

same.

The channelA describing energy dissipation of a bosonic system at zero temperature is discussed in [9]. The

Kraus operators are given by

Ak =

q−1
∑

r=k

√
(
r

k

)√

(1− γ)r−kγk|r − k〉〈r|, (4)

whereq− 1 is the maximum occupation number of a single bosonic mode, and k = 0, 1, . . . , q− 1. The parameter

γ is of first order in terms of the decay timeτ , i.e., γ = cτ + O(τ2). As a consequence, the non-identity part of

A0 is of orderτ , andAk is of orderτk/2 for 1 ≤ k ≤ d− 1.

For instance, for the qubit case, i.e.,q = 2, we have the qubit amplitude channel given by Eq. (1). Forq = 3,

we have

A0 = |0〉〈0|+
√

1− γ|1〉〈1|+ (1− γ)|2〉〈2|,

A1 =
√
γ|0〉〈1|+

√

2γ(1− γ)|1〉〈2|,

and A2 = γ|0〉〈2|.

Note that for q = 3, the non-diagonal Kraus operators of the channelA for bosonic systems are linear

combinations of the Kraus operators of the channelΞ. Hence codes correcting errors of the channelΞ are also

codes for the channelA.

III. E RROR CORRECTIONCRITERIA

A quantum error-correcting codeQ is a subspace of(Cq)⊗n, the space ofn qudits. For aK-dimensional code

space spanned by the orthonormal basis|ψi〉, i = 1, . . . ,K, and a set of errorsE , there is a physical operation
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correcting all elementsEk ∈ E if the error correction conditions [2, 26] are satisfied:

∀i, j, k, l : 〈ψi|E†
kEl|ψj〉 = δijαkl, (5)

whereαkl depends only onk and l. A code is said to be pure with respect to some set of errorsE if αkl = 0 for

k 6= l. A K-dimensional code with lengthn is denoted by((n,K)).

For the AD channelsΞ andA, if the decay timeτ is small, we would like to correct the leading order errors that

occur during amplitude damping [3, 4]. Similar as for the qubit case [16, Section 8.7], we will show below that in

order to improve the fidelity of the transmission through theAD channelΞ or A from 1 −O(τ) to 1 −O(τ t+1),

i.e., to correctt errors, it is sufficient to be able to detectt errors of typeA0 and to correct up tot errors of type

Aij with j > i of total orderτ t/2 for the channelΞ (or to correct up tot errors of typeAi with i > 0 for the

channelA). We will then say that such a code correctst amplitude damping errors since it improves the fidelity,

just as much as a truet-error-correcting code would for the same channel. This is adirect consequence of the

following sufficient condition for approximate error correction.

Theorem 1:Assume we are given a quantum channel with Kraus operatorsEk that have a series expansion in

terms of
√
τ for a parameterτ . A quantum codeQ with orthonormal basis{|ci〉 : i = 1, . . . ,K} corrects errors up

to orderO(τ t) if the following conditions are fulfilled for all basis states |ci〉, |cj〉 and all error operatorsEk, El:

〈ci|E†
kEl|cj〉 = δijνkl +O(τ t+1) (6)

Proof: Assume we are given a quantum channel with Kraus operatorsEk(τ) that depend on some small

parameterτ . We expand the operators in terms of
√
τ as

Ek(τ) =
∑

m≥0

Ekmτ
m/2. (7)

This leads to the following description of the channel:

ρ 7→
∑

k

EkρE
†
k=
∑

k

∑

m≥0

∑

µ≥0

EkmρE
†
kµτ

(m+µ)/2. (8)

Given a quantum codeQ with orthonormal basis{|ci〉 : i = 1, . . . ,K}, the conditions for perfect error correction

are

〈ci|E†
k(τ)El(τ)|cj〉 = δijαkl. (9)

Using the expansion of the Kraus operators in terms of
√
τ , we get

∑

m,µ≥0

〈ci|E†
kmEℓµ|cj〉τ (m+µ)/2 = δijαkℓ. (10)

We are looking for sufficient conditions such that the residual error with respect toρ is of orderO(τ t+1) for

somet > 0.
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We write each Kraus operatorEk = Bk + Ck +Dk as sum of three terms, where

Bk =
t∑

m=0

Ekmτ
m/2, (11)

Ck =

2t∑

m=t+1

Ekmτ
m/2, (12)

Dk =
∑

m>2t

Ekmτ
m/2. (13)

Then the original channelN can be written as

N (ρ) =
∑

k

(Bk + Ck +Dk)ρ(Bk + Ck +Dk)
† (14)

=
∑

k

BkρB
†
k (15)

+
∑

k

BkρC
†
k + CkρB

†
k (16)

+
∑

k

BkρD
†
k +DkρB

†
k (17)

+
∑

k

(Ck +Dk)ρ(Ck +Dk)
†. (18)

Condition (6) implies that

〈ci|B†
kBl|cj〉 = δijλkl, (19)

〈ci|B†
kCl|cj〉 = δijµkl +O(τ t+1). (20)

In particular, the error operatorsBk can be perfectly corrected. We first define the projection operator onto one of

the spaces1 spanned by{Bk|ci〉 : i = 1, . . . ,K}:

PBk
=
∑

i

Bk|ci〉〈ci|B†
k, (21)

and the partial isometry that mapsBk|ci〉 to |ci〉:

UBk
=
∑

i

|ci〉〈ci|B†
k. (22)

We compute

UBk
PBk

=

(
∑

i

|ci〉〈ci|B†
k

)


∑

j

Bk|cj〉〈cj |B†
k



 (23)

=
∑

i,j

|ci〉〈ci|B†
kBk|cj〉〈cj |B†

k (24)

= λkk
∑

i

|ci〉〈ci|B†
k. (25)

The last step follows from the fact that the error operatorsBk can be perfectly corrected, which also determines

1We may, without loss of generality, use linear combinationsof the original error operatorsBk such that these spaces become mutually

orthogonal.
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the constantλkk. Then the partial correction operatorRpart is given by

Rpart(ρ) =
∑

k

|λkk|2
∑

i,j

|ci〉〈ci|B†
k ρBk|cj〉〈cj |. (26)

For a general state

ρQ =
∑

i,j

αij |ci〉〈cj | (27)

in the quantum codeQ, the term (15) ofN (ρQ) reads

NBk
(ρQ) =

∑

k

∑

i,j

αijBk|ci〉〈cj |B†
k. (28)

Since the error operatorsBk can be perfectly corrected (implied by Eq. (19)), it can be shown that applying the

partial recovery operator toNBk
(ρQ) yields a stateλρQ that is proportional to the original stateρQ. Hence after

partial recovery we have

Rpart(N (ρQ)) = λρQ + S(ρQ), (29)

where the mapS is given by the application of the partial recovery operatorto the terms given in (16), (17) and

(18). The summands (17) and (18) are all of orderO(τ t+1), so we can ignore them, but (16) contains terms of

orderτ l/2 for t < l ≤ 2t. Applying the partial recovery operator to (16) and using (20) results in the state

Rpart

(
∑

k

BkρQC
†
k + CkρQB

†
k

)

=
∑

k

|λkk|2
∑

i,j

|ci〉〈ci|B†
k

(
∑

l

BlρQC
†
l + ClρQB

†
l

)

Bk|cj〉〈cj |

=
∑

k,l

|λkk|2
∑

i,j

∑

i′,j′

αi′,j′

(

|ci〉 〈ci|B†
kBl|ci′〉

︸ ︷︷ ︸

λklδii′

〈cj′ |C†
l Bk|cj〉〈cj |+ |ci〉〈ci|B†

kCl|ci′〉 〈cj′ |B†
lBk|cj〉

︸ ︷︷ ︸

λlkδjj′

〈cj |
)

=
∑

k,l

|λkk|2
∑

i′,j′

αi′,j′

(∑

j

λkl 〈cj′ |C†
l Bk|cj〉

︸ ︷︷ ︸

δjj′µ
∗

kl
+O(τ t+1)

|ci′〉〈cj |+
∑

i

λlk 〈ci|B†
kCl|ci′〉

︸ ︷︷ ︸

δii′µkl+O(τ t+1)

|ci〉〈cj′ |
)

= ρQ
∑

k,l

|λkk|2(λklµ∗
kl + λ∗klµkl) +O(τ t+1)

(30)

which is, up to orderO(τ t+1), proportional to the original state.

Note that in the proof of Theorem 1, we have split the error-operators accordingly based on their expansion (7)

in terms of
√
τ , see (11)–(13). Clearly, the high order partsDk can be completely ignored. Only the errorsBk of

approximately half the final order have to be corrected (19),while the errorsCk have to obey some kind of error

detection criterion (20).
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IV. STABILIZER AND ASYMMETRIC QUANTUM CODES

Before presenting our construction of quantum codes tailored to amplitude damping channels, we investigate the

performance of traditional quantum error-correcting codes on these channels.

Stabilizer codes are a large class of quantum codes which contain many good quantum codes [16, 30]. A stabilizer

codeQ with n qudits encodingk qudits has distanced if all errors of weight at mostd− 1 can be detected or have

no effect onQ, and we denote the parameters ofQ by [[n, k, d]]q. Obviously a stabilizer code of distance2t + 1

correctst AD error as it correctst arbitrary errors.

Calderbank-Shor-Steane (CSS) codes [6, 37] are a subclass of the stabilizer codes. It has been shown that CSS

codes can be used to construct codes for the binary AD channel[16, Section 8.7]. The construction is based on

so-called asymmetric quantum codes, which have a direct generalization to the qudit case [13]. The following

theorem shows that those asymmetric CSS codes can also be used to obtain error correcting codes for qudit AD

channels.

Theorem 2:An [[n, k]]q CSS codeQ with pureX-distance2t+1 and pureZ-distancet correctst AD error, i.e.,

errors up to orderO(τ t).

Proof: The generalized Pauli operatorsXk
qZ

l
q form a basis for all operators on a single qudit. Hence we can

expand the error operatorsAi in terms of tensor products of the generalized Pauli operators. The diagonal error

operatorA0 of AD channels can be expanded in terms of the error operatorsZ l
q, with the expansion coefficients

of the operatorsZ l
q, l > 0 being of first order inτ . The diagonal of the other error operatorsAij or Ai is zero.

They can be expanded in terms of operatorsZ l
qX

k
q , k 6= 0, with the expansion coefficients being of order

√
τ .

Note that for CSS codes,X andZ errors can be corrected independently. The error operatorsBk defined in (11)

of the proof of Theorem 1 are of order at mostt/2 in τ , and hence they contain no more thant X-errors and no

more thant/2 Z-errors. As the codeQ hasX-distance2t+1 andZ-distancet+1, the error operatorsBk can be

corrected. Similarly, for the error operatorsCk defined in (12), there are no more than2t X-errors and no more

than t Z-errors, which can be detected usingQ. Hence, using Theorem 1, it follows thatQ corrects all errors up

to orderO(τ t).

V. CLASSICAL ASYMMETRIC CODES

In this section, we construct quantum codes correcting a single AD error using classical asymmetric codes. Codes

for the qubit case have been presented in [27, 36]. Those codes are self-complementary, i.e., the basis states are of

the form |ψu〉 = 1√
2
(|u〉+ |ū〉), whereu is ann-bit string, ū = 1⊕ u, and1 is the all-one string.

For the non-binary case withq > 2, we consider a similar construction. DefinēX = X⊗n
q , then the basis states

are chosen as

|ψu〉 =
1√
q

q−1
∑

l=0

X̄ l|u〉. (31)

For instance, forq = 3 andn = 3, we get|ψ0〉 = 1√
3
(|000〉+ |111〉+ |222〉).
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The quantum codeQ is then spanned by{|ψu〉}, whereu ∈ C̃ is some length-n string over the alphabet

{0, 1, . . . , q−1} (C̃ is a classical code of lengthn). The advantage of this construction is that the code automatically

satisfies the error-detection condition for a singleZ l
q error (l = 1, 2, . . . , q − 1), as the code is stabilized bȳX.

Now consider a classical code with codewordsC = {u + α1 : u ∈ C̃, α = 0, . . . , q − 1} and the corresponding

quantum code spanned by{|ψu〉 : u ∈ C̃}. The problem of correcting a single error for the qudit AD channels can

then be reduced to finding certain classical codes.

The relevant classical channel is the classical asymmetricchannel [23]. Let the alphabet beZq with the ordering

0 < 1 < 2 < · · · < q − 1. A channel is called asymmetric if any transmitted symbola is received asb ≤ a. The

mostly studied asymmetric channel, dating back to Varshamov [38], can be described by the following asymmetric

distance∆(x,y).

Definition 3 (see [21]):Let B = {0, 1, . . . , q − 1} ⊂ Z. For x,y ∈ Bn, we define

1) w(x) :=
∑n

i=1 xi.

2) N(x,y) :=
∑n

i=1 max{yi − xi, 0}.

3) ∆(x,y) := max{N(x,y), N(y,x)}.

If x is sent andy is received, we say thatw(x − y) errors have occurred (note thatxi ≥ yi and hence each

summand inw(x− y) is nonnegative). A code correctingt-errors is called at-code.

Theorem 4 (see [21]):A codeC ⊂ Bn correctsr errors of the asymmetrical channel if and only if∆(x,y) > r

for all x,y ∈ C, x 6= y.

Our goal is to link these classical asymmetric codes to quantum AD codes. As discussed above, we start from

the following definition.

Definition 5: A classical codeC over the alphabetB is called self-complementary if for anyx ∈ C, 1⊕x ∈ C.

For any self-complementary codeC, there exists another codẽC such thatC = {u+α1 : u ∈ C̃, α = 0, . . . q−1}
and|C| = q|C̃|. We may, for example, choose allu ∈ C̃ such that the first digit is0. FromC̃ we derive the quantum

codeQ spanned by{|ψu〉 : u ∈ C̃} as given in Eq. (31). Our main result is given by the followingtheorem.

Theorem 6:If C is a classical (linear or non-linear) self-complementary code correcting a single error with

respect to Definition 3, thenQ spanned by{|ψu〉 : u ∈ C̃} is a single-error-correcting code for the qudit AD

channelsΞ andA.

Proof: Let Eij = |i〉〈j| with i, j ∈ {0, 1, . . . , q − 1} and i < j. For a small decay timeτ , in order to improve

the fidelity of the transmission through the qudit AD channelA given by Eq. (4) from1−O(τ) to 1−O(τ2), it is

sufficient to correct a singleEi,i+1-error and detect oneZ l
q-error for l = 1, 2, . . . , q − 1. The self-complementary

form of |ψu〉 given in Eq. (31) implies that̄X|ψu〉 = |ψu〉. In turn, this implies that〈ψv|Z l
q|ψu〉 = 0 for anyu,v

and l = 1, 2, . . . , q − 1, i.e., the error-detection condition for a singleZ l
q error is fulfilled.

Next consider a single operatorEi,i+1. Every state of the quantum code is a linear combination of states|c〉
with c ∈ C. Applying the operatorEi,i+1 to |c〉 corresponds to a single asymmetric error. As the classical code

C corrects a single asymmetric error, the distance∆(u,v) between any two codewordsu andv is at least two.

Therefore, the supports (set of basis states with non-zero coefficient in the superposition) of the states|ψu〉 and
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E
(α)
i,i+1|ψv〉 are disjoint for all positionsα, whereE(α)

i,i+1 denotes the operatorEi,i+1 acting at positionα. Hence

those states are mutually orthogonal. Finally note that forerrorsEi,i+1 acting on the same position, the operator

E†
i,i+1Ei,i+1 is diagonal and hence in the span of the operatorsZ l

q, which can be detected.

Corollary 7: If there exists an(n,K, 3)q self-complementary codeC, then there exists an((n,K/q))q quantum

code correcting a single AD error.

Such codes have, e. g., been studied in [14]. For linear codes, we have the following corollary.

Corollary 8: If there exists an[n, k+1, 3]q linear codeC containing the all-one-vector1 ∈ C, then there exists

an [[n, k]]q CSS code correcting a single AD error.

In the preceding corollaries we have used the notation(n,K, d)q for a classical code of lengthn with K codewords

and minimum distanced over an alphabet withq elements, and the notation[n, k, d]q = (n,K = qk, d) when the

code is linear.

VI. SINGLE-ERROR-CORRECTINGCODES: EVEN LENGTHS

We now use Theorem 6 to construct some families of good single-error-correcting AD codes. For this, we

need to find some good self-complementary single-error-correcting classical asymmetric codes. The best known

direct construction of single-error-correcting codes forthe binary asymmetric channel is the so-called Varshamov-

Tenengolts (VT)-Constantin-Rao (CR) code [10, 39], with a natural generalization toq > 2. These VT-CR codes

are non-linear codes, in both the binary and non-binary cases.

For the binary case, many of these VT-CR codes are indeed self-complementary, and so they can be used to

construct families of good single-error-correcting quantum AD codes [36]. As the VT-CR codes are nonlinear, the

corresponding quantum codes are nonadditive codes. Unfortunately, for the non-binary case, the VT-CR codes are

no longer self-complementary, so one needs some other constructions of good single-error-correcting for asymmetric

channels.

We will use the idea of generalized concatenation, which hasbeen discussed in the context of constructing binary

AD codes in [36], and in the context of constructing (classical) asymmetric codes in [18]. This method will allow

us to construct good self-complementary asymmetric linearcodes for the non-binary case, which will lead to good

single-error-correcting quantum codes for AD channels.

A. Qutrit Codes

First, we consider the case ofq = 3. For the generalized concatenation construction, we choose the outer code

as some ternary classical code over the alphabet{0̃, 1̃, 2̃}, and the inner codes as:

C0̃ = {00, 11, 22}, C1̃ = {01, 12, 20}, C2̃ = {02, 10, 21}. (32)

Then we have the following result.

Theorem 9:For n even, generalized concatenation with an outer[n/2, k, 3]3 code results in an[n, n/2 + k]3

self-complementary linear codeC. This code leads to an[[n, n/2 + k − 1]]3 quantum stabilizer codeQ, correcting

a single error for the channelsΞ andA.
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Proof: Note thatC0̃, C1̃, and C2̃ are all self-complementary codes correcting a single asymmetric error.

Therefore, any outer ternary code will lead to a self-complementary ternary codeC, and hence a quantum codeQ.

A single amplitude damping error induces only a single errorwith respect tõ0, 1̃, 2̃. As the outer ternary code has

distance3, such an error can be corrected.

Note that with respect to the symbols0̃, 1̃, 2̃, the induced channelR3 is nothing but the ternary symmetric channel

shown in Fig. 1.

0̃

1̃ 2̃✛ ✲✡
✡
✡✣✡

✡
✡✢ ❏

❏
❏❪❏
❏
❏❫

0̃

1̃ 2̃

3̃

✲✛

✲✛
✻

❄

✻

❄

0̃

1̃

2̃ 3̃

4̃

✛ ✲❇
❇
❇▼❇
❇
❇◆ ✂

✂
✂✍✂
✂
✂✌

✚
✚✚❃✚✚✚❂

❩
❩❩⑦❩

❩❩⑥

R3 R4 R5

Fig. 1. The induced channelR3 for q = 3 (which is just the ternary symmetric channel), the induced channelR4 for q = 4, and the induced

channelR5 for q = 5. The arrows indicate the possible transitions between symbols.

Example 10:For n = 6, take the outer code of lengthn/2 = 3 as{0̃0̃0̃, 1̃1̃1̃, 2̃2̃2̃} with distance3. Generalized

concatenation yields a self-complementary ternary linearcode of dimension4. The corresponding quantum codeQ
encodes6/2 + 1 − 1 = 3 qutrits. Both the best corresponding single-error-correcting quantum code[[6, 2, 3]]3 and

the best possible asymmetric CSS code[[6, 2, {3, 2}]]3 (see Corollary 8) encode only2 qutrits.

B. The Caseq > 3

For q = 4, we choose the inner codes as

C0̃ = {00, 11, 22, 33}, C1̃ = {01, 12, 23, 30},

C2̃ = {02, 13, 20, 31}, C3̃ = {03, 10, 21, 32}. (33)

Similar as in Theorem 9, an outer code with distance three yields a self-complementary code from which a quantum

AD code can be derived. However, in this case, the induced channel for the outer code is no longer symmetric. A

single damping error will, for example, never map a codewordof the inner codeC0̃ to a codeword ofC2̃. So on

the level of the outer code, there are no transitions between0̃ and 2̃, or betweeñ1 and 3̃. The induced quaternary

channelR4 is shown in Fig. 1, where we see that errors only happen between ‘neighbors.’

The above constructions forq = 3, 4 have a direct generalization to generalq > 2. For a givenq, choose the

outer code as some code over the alphabet{0̃, 1̃, . . . , q̃ − 1}. The q inner codesC0̃, C1̃, . . . , Cq̃−1
are the double-

repetition codeC0̃ = {00, 11, . . . , (q − 1)(q − 1)} and all itsq − 1 cosetsCĩ = C0̃ ⊕ (0i), i.e., we apply the rule

that 0i ∈ Cĩ. It is straightforward to check that each inner code has asymmetric distance2, hence corrects a single

asymmetric error. Similar as in the case ofq = 4, a single damping error will only drive transitions betweenĩ, j̃

for ĩ = j̃ ± 1̃. For instance, forq = 5, the induced channelR5 is shown in Fig. 1. In general, we will write the

induced channel asRq for outer codes over{0̃, 1̃, . . . , q̃ − 1}.

Similar as Theorem 9, in general we have the following theorem.
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Theorem 11:For n even, an outer[n/2, k]q code correcting a single error for the channelRq leads to an

[n, n/2 + k]q self-complementary linear codeC and hence an[[n, n/2 + k − 1]]q quantum codeQ, correcting a

single error for the qudit AD channelsΞ andA.

Note that the channelRq is no longer a symmetric channel, so outer codes of Hamming distance3 are no longer

expected to give the best codes. It turns out, however, that single-error-correcting codes for the channelRq are

equivalent to single-symmetric-error correcting codes inLee metric [5] (see also [24]), for which optimal linear

codes are known (for a more detailed discussion, see [18]).

VII. S INGLE-ERROR-CORRECTINGCODES: ODD LENGTHS

The construction of AD codes for even lengths given in Sec. VIbased on generalized concatenation is relatively

straightforward. The inner codes are just1-codes of length2 with q codewords and their cosets. In [18], codes

of odd length were obtained using a mixed-alphabet code, treating one position differently. This does not directly

translate to the situation considered here, as the resulting code has to be self-complementary.

Instead, we will use different inner codes, one of odd lengths and the length-two code from above. In particular,

we can directly search forq mutually disjoint inner codes of length3 which are1-codes.

For q = 4, consider the followingZ4-linear codeC0′ of length3 generated by{111, 002, 020}:

000 111 222 333 002 113 220 331

020 131 202 313 022 133 200 311. (34)

The codeC0′ has asymmetric distance2, as well as the three cosetsC1′ = C0′ + 001, C2′ = C0′ + 010, and

C3′ = C0′ +100. Applying generalized concatenation to the outer code{0̃0̃0′, 1̃1̃1′, 2̃2̃2′, 3̃3̃3′} and the inner codes

of length2 and3 for the first two and the third position, respectively, yields a self-complementary1-code[7, 5]4.

The corresponding quantum code has parameters[[7, 4]]4.

Note that the induced channel on the alphabet{0′, 1′, 2′, 3′} is no longerR4, but the symmetric channel over

Z4. Therefore we have the following theorem forq = 4.

Theorem 12:For n odd, an outer[(n − 1)/2, k, 3]4 code leads to an[n, (n + 1)/2 + k]4 self-complementary

linear 1-codeC. The resulting quantum codeQ = [[n, (n − 1)/2 + k]]4 corrects a single error for the qudit AD

channelsΞ andA.

Proof: The inner codesCĩ of length two as well as the inner codesCi′ of length three are self-complementary

1-codes. The outer code has distance3 which ensures that a single error mixing the inner codes can be corrected.

For the outer code, we always take the last coordinate to be oftype s′, and all the other coordinates to be of type

s̃, for s = 0, . . . , 3. Hence, the inner code for the last coordinate of the outer code has length three, while the other

inner codes have length two. Therefore, for an outer[(n− 1)/2, k, 3]4 linear code, generalized concatenation yields

an [n, (n+1)/2+k]4 self-complementary linear1-codeC, corresponding to an[[n, (n− 1)/2+k]]4 quantum code.

We emphasize that the construction related to Theorem 12 is valid only for q = 4. For q > 5, theZq-linear code
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C0 generated by{111, 013} and itsq cosets are all self-complementary codes with asymmetric distance2. For this,

note that∆(x,y) = 1 if and only if, up to permutation,x − y ∈ {(1, 0, 0), (1,−1, 0)}. For q > 5, the codeC0

does not contain such a vector. Hence we obtain the analogue result as in Theorem 12 forq > 5.

For q = 3 andq = 5, however, we cannot partition the trivial code[3, 3]q into q self-complementary codes[3, 2]q

with asymmetric distance2, substantiated by exhaustive search. However, we can use aninner code of length five,

resulting in the following theorem.

Theorem 13:For q = 3, 5 andn odd, an outer[(n− 3)/2, k]q code correcting a single error for the symmetric

channel leads to an[n, (n+1)/2+k]q self-complementary codeC and hence an[[n, (n− 1)/2+k]]q quantum code

Q, correcting a single error for the qudit AD channelA for q = 3, 5.

Proof: We can map the first digit of the outer code toq groups of codes of length5. Again by exhaustive

search, we find that forq = 3, 5, we cannot partition[5, 5]q into q self-complementary codes[5, 4]q with asymmetric

distance2, but we can getq codes[5, 3]q. For q = 3, the codeC0′ is generated by{00011, 01201, 11111}, while

for q = 5 it is generated by{00011, 00102, 11111}.

Then our construction can be described as follows. For an[(n− 3)/2, k]q outer code, we use the length-5 code

described above as the inner code for the first digit, and use length-2 code for the remaining(n − 5)/2 digits,

leading to a code with length1 × 5 + n−5
2 × 2 = n. Similar as in the proof of Theorem 12, it follows that the

resulting code corrects a single AD error.

In the nonlinear case, we can find larger codes. The results are summarized in Theorems 14, 15, and 16.

Theorem 14:For q = 3 andn odd, an outer
(
(n − 3)/2,K, 3

)

3
code leads to an(n, 33 × 3(n−5)/2K)3 self-

complementary code. The resulting((n, 11 × 3(n−5)/2K))3 quantum code corrects one error for the AD channels

Ξ andA.

Proof: An exhaustive search reveals that forq = 3, we can find three disjoint self-complementary codes of

length5 and asymmetric distance2 with at most33 codewords. Let

C̃0′ = {00000, 00011, 00112, 00220, 01021, 01110,

01202, 02022, 02101, 02120, 02211} (35)

ThenC0′ = {u + α1 | u ∈ C̃0′ , α = 0, 1, 2}, C1′ = {u + 00001 | u ∈ C0′}, C2′ = {u+ 00002 | u ∈ C0′}. We

construct the code similarly as in Theorem 13, i.e,. the inner code for the fist digit isCi′ , and for the remaining

(n− 5)/2 digits the inner code isCĩ.

For q = 5, we consider two constructions based on nonlinear codes.

Theorem 15:Then for q = 5 andn odd, an outer
(
(n − 1)/2,K, 3

)

5
code leads to an(n, 20 × 5(n−3)/2K)5

self-complementary code. The resulting((n, 4× 5(n−3)/2K))5 quantum code corrects one error for the AD channel

A.
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Proof: Although we cannot partition[3, 3]5, a weaker result can be obtained. Let

C̃0′ = {000, 002, 020, 022}, C̃1′ = {001, 004, 021, 024},

C̃2′ = {003, 011, 031, 033}, C̃3′ = {010, 023, 041, 043},

C̃4′ = {012, 014, 032, 034}.

Furthermore, setCi′ = {u+ α1 | u ∈ C̃i′ , α = 0, 1, 2, 3, 4}.

Then we have a construction similar to Theorem 12, i.e., we use one copy of the length-3 inner code and(n−3)/2

copies of the length-2 inner code.

Theorem 16:For q = 5 andn odd, an outer((n − 3)/2,K, 3)5 code leads to an(n, 295 × 5(n−5)/2K)5 self-

complementary code. The resulting((n, 59× 5(n−5)/2K))5 quantum code can correct one error for the AD channel

A.

Proof: In this construction we use self-complementary codes of length 5. By non-exhaustive search, we can

find a self-complementary code with295 codewords. The59 codewords ofC̃′
0 are shown in Table I. From those

we deriveC0′ = {u+ α1 | u ∈ C̃0′ , α = 0, 1, 2, 3, 4} andCi′ = {u+ 0000i | u ∈ C0′}, 1 ≤ i < 5. Then we have

TABLE I

CODE CONSTRUCTION FORq = 5

00000 00202 01241 02200 03110

00002 00220 01404 02203 03212

00013 00223 01412 02211 03231

00020 00244 02000 02223 03233

00031 00303 02002 02314 03300

00033 00311 02013 02321 03303

00044 00314 02021 02332 03342

00111 00330 02032 02424 03410

00114 00332 02034 02440 03412

00122 00424 02114 03041 03431

00141 00442 02130 03044 04234

00200 01133 02143 03102

a construction similar to that in Theorem 13.

As shown in Table II, for many lengths, the construction based on Theorems 9, 13, and 14 outperforms both the

best known quantum codes with distance3, and the CSS codes of Corollary 8. The dimension of the asymmetric

quantum codes (AQECC) is taken from [14]. Only whenn = 13, our construction performs worse than CSS and

AQECC. This might be due to the fact that the outer code we use here is the CSS code[[5, 1, {3, 2}]], which is not

efficient since we also have CSS code[[4, 1, {3, 2}]].

VIII. M ULTI -ERROR-CORRECTINGCODES

For the binary case, multi-error-correcting amplitude damping codes are discussed in [11]. The basic idea is that

for the encoding|0L〉 = |01〉, |1L〉 = |10〉, the amplitude damping channel simulates a binary erasure channel.
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TABLE II

DIMENSION OF SINGLE-ERROR-CORRECTING QUANTUMAD CODES FROM THEGF (32) CONSTRUCTION WITH DISTANCE3, THE CSS

CONSTRUCTION, ASYMMETRIC QUANTUM CODES (AQECC),AND THE GENERALIZED CONCATENATION CONSTRUCTION(GC).

n GF (32) CSS AQECC GC (linear) GC (nonlinear)

4 30 30 1 3 3

5 31 31 6 32 11

6 32 32 11 33 33

7 33 33 29 33 11× 31

8 34 34 84 35 35

9 35 35 35 35 11× 33

10 36 36 36 36 36

11 36 37 37 37 11× 35

12 37 38 38 38 38

13 38 39 39 38 11× 36

14 39 39 39 310 310

15 310 310 310 310 11× 38

16 311 311 311 312 312

So one can use erasure-correcting code as outer codes to build codes correcting amplitude damping errors. In this

section we consider generalizations of this construction,for both the binary and non-binary cases.

It is mentioned in [11] that a possible generalization is to use|001〉, |010〉, |100〉 as the inner code, and a distance

t+ 1 quantum code as an outer code. However, it turns out that one can actually use|001〉, |010〉, |100〉, |111〉 as

the inner code, and a distancet+1 quantum code as an outer code. Here a single damping error will be treated as

an erasure, and two damping errors or no damping can be treated as an error which is taken care of by the outer

code.

To generalize this idea to the caseq > 2, one can take a similar approach. In this section we considerthe

channelA with Kraus operators given by Eq. (4). Forq = 3, one can take the encoding|0L〉 = |11〉, |1L〉 = |02〉,
|2L〉 = |20〉. Then the amplitude damping channel simulates a ternary erasure channel. So one can use erasure-

correcting codes as outer codes to build codes correcting amplitude damping errors. Actually, using a similar idea

as the construction based on|001〉, |010〉, |100〉, |111〉 for the binary case, one can use|0L〉 = |00〉, |1L〉 = |20〉,
|2L〉 = |11〉, |3L〉 = |02〉, and |4L〉 = |22〉 as the inner code, and still a distancet + 1 quantum code as an outer

code. Here we give the general construction.

Assume the length of the inner code ism. We choose the set

S = {|a1a2 . . . am〉 | a1 + a2 + . . .+ am is even} (36)

as the orthonormal basis of the code, and let

K = |S|. (37)

If we have an outer code[[n, k, t+ 1]]K , we get an[[nm,Kk]]q code correctingt errors forA. For q = 3, the code

also corrects errors for the qutrit channelΞ. We have the following theorem:
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Theorem 17:The code constructed above correctst errors for the channelsA andΞ.

Proof: We want to prove that the condition in Theorem 1 holds. LetQ be the outer[[n, k, t+1]]K code. Take

any two error operatorsEℓ andEℓ′ , and for any two vectors|ψi〉 and |ψj〉, we consider〈ψi|E†
ℓEℓ′ |ψj〉. Suppose

that on some inner code,Eℓ has an odd number of errors whileEℓ′ has an even number of errors. ThenEℓ′ |ψj〉
will be in the space spanned byS while Eℓ|ψi〉 will be in the space perpendicular toS. So 〈ψi|E†

ℓEℓ′ |ψj〉 = 0

and the condition in Theorem 1 automatically holds. By symmetry, this argument also holds whenEℓ is even and

Eℓ′ is odd. Now assume that on each inner code, the number of errors corresponding toEℓ andEℓ′ have the same

parity. We consider the series expansion of the operatorE†
ℓEℓ′ with respect toτ . For this, we expand the tensor

factor acting on thei-th particle such thatAij corresponds to the term of orderτ j . Combined, we get

E†
ℓEℓ′ = (A10 +A11τ +A12τ

2 + . . .)

⊗ (A20 +A21τ +A22τ
2 + . . .)

⊗ . . .⊗ (Am0 +Am1τ +Am2τ
2 + . . .) (38)

Note that each ofA10, A20, . . . Am0 is either the identity operator or the zero operator, which can be proved if we

take the limitτ → 0. For the terms of the formΩ(τ t), there are at mostt non-identity terms on the inner codes,

which will become0 according to the error-detection criterion. Thus the condition in Theorem 1 is satisfied.

Finally we give an explicit expression for the dimension of the codeK defined in (37) in terms ofq andm.

Theorem 18:

K =







qm/2 if q is even.

(qm + 1)/2 if q is odd.
(39)

Proof: Whenq is even, we map|a1a2 . . . am〉 to |q− 1− a1, a2 . . . am〉, which is a one-to-one mapping from

S to S̄. When q is odd, leti = min{j : aj 6= 0}, and we map|a1a2 . . . am〉 to |a1 . . . ai−1, q − ai, ai+1 . . . am〉,
which is a one-to-one mapping fromS \ {|00 . . .0〉} to S̄. So |S| = |S̄| whenq is even, and|S| = |S̄|+1 whenq

is odd. Thus|S| = qm/2 whenq is even, and|S| = (qm + 1)/2 whenq is odd.

In Table III, we compare our codes with both stabilizer codesand AQECCs. We use the construction withq = 3

andm = 2, and compare the codes that correctst errors. From[[n/2, k, t+1]]5 codes given (see also [29]), we can

construct our((n,K))3 codes whereK = 5k, and we compare them with stabilizer codes[[n, k′, 2t+1]]3 that have

dimensionK ′ = 3k
′

. It can be seen that our construction outperforms stabilizer codes, and our performance gets

better in comparison for largert. In most cases, our codes are better also better than the asymmetric CSS codes.

Some of the CSS codes are optimal codes taken from [13], and others are based on the best known classical ternary

codes [19]. For comparison, we also list an upper boundk′′max on the maximal dimension of an AQECC based on

the known bounds for classical codes. In most cases, this bound cannot be achieved.
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TABLE III

DIMENSION OF QUANTUM CODES FROM OUR CONSTRUCTION THAT CORRECT t AD ERRORS COMPARED WITH STABILIZER CODES

[[n, k′, 2t + 1]]3 AND PURE ASYMMETRICCSSCODES WITH PARAMETERS[[n, k′′, {2t + 1, t+ 1}]]3 .

t n K log3 K k′ k′′ k′′max

2 10 5 1.465 1 [[10, 1, {5, 3}]]3 2

2 12 25 2.930 2 [[12, 3, {5, 3}]]3 3

2 14 125 4.395 4 [[14, 4, {5, 3}]]3 4

2 16 625 5.860 5 [[16, 5, {5, 3}]]3 5

2 18 3125 7.325 6 [[18, 7, {5, 3}]]3 7

2 20 15625 8.790 8 [[20, 9, {5, 3}]]3 9

3 14 5 1.465 N/A [[14, 0, {7, 4}]]3 0

3 16 25 2.930 0 [[16, 1, {7, 4}]]3 1

3 18 125 4.395 1 [[18, 3, {7, 4}]]3 3

3 20 625 5.860 3 [[20, 4, {7, 4}]]3 5

3 22 3125 7.325 4 [[22, 6, {7, 4}]]3 6

3 24 15625 8.790 6 [[24, 6, {7, 4}]]3 8

4 18 5 1.465 N/A N/A –

4 20 25 2.930 N/A [[20, 0, {9, 5}]]3 1

4 24 625 5.860 1 [[24, 4, {9, 5}]]3 5

4 26 3125 7.325 2 [[26, 4, {9, 5}]]3 6

4 28 15625 8.790 3 [[28, 5, {9, 5}]]3 8

5 26 5 1.465 N/A [[26, 0, {13, 6}]]3 3

5 28 25 2.930 0 [[28, 1, {11, 6}]]3 5

5 30 125 4.395 1 [[30, 2, {11, 6}]]3 6

5 32 625 5.860 1 [[32, 4, {11, 6}]]3 7

5 38 3125 7.325 4 [[38, 7, {11, 6}]]3 12

5 40 15625 8.790 6 [[40, 8, {12, 6}]]3 14

6 30 5 1.465 N/A ? 0

6 36 25 2.930 0 ? 6

6 38 125 4.395 1 [[38, 2, {13, 7}]]3 8

6 40 625 5.860 1 [[40, 3, {13, 7}]]3 10

6 42 3125 7.325 2 [[42, 5, {13, 7}]]3 11

6 44 15625 8.790 2 [[44, 6, {13, 7}]]3 13

IX. A PPLICATIONS TO OTHERAD CHANNELS

Our method can also be applied to some other amplitude damping processes. For instance, whenq = 3, in

addition to the channelΞ, there are the following natural decay processes of three-level atoms: theΛ-pattern or the

V pattern. They are illustrated together with theΞ channel in Fig.2:

For theΛ-pattern, the master equation is

dρ

dτ
= k1(2σ

−
12ρσ

+
12 − σ+

12σ
−
12ρ− ρσ+

12σ
−
12)

+ k2(2σ
−
02ρσ

+
02 − σ+

02σ
−
02ρ− ρσ+

02σ
−
02),
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Fig. 2. Decay processes for three-level atoms with different level-structures.

whereσ−
12 andσ+

12 are the same as above, and

σ−
02 = |0〉〈2|, σ+

02 = |2〉〈0|. (40)

By direct calculation, one can verify that the evolution of this master equation can be expressed by using the

following Kraus operators:

ρ(τ) =

2∑

i=0

Aiρ0A
†
i , (41)

where

A0 = diag{1, 1,
√

1− γ1 − γ2},

A1 =
√
γ1|0〉〈2|,

A2 =
√
γ2|1〉〈2|, (42)

and

γ1 =
k2

k1 + k2

[

1− e−2(k1+k2)τ
]

= 2k2τ +O(τ2),

γ2 =
k1

k1 + k2

[

1− e−2(k1+k2)τ
]

= 2k1τ +O(τ2).

Both γ1 andγ2 are of first order inτ .

For theV -pattern, the Kraus expression has been found in [8], which is given as

ρ(τ) =

2∑

i=0

Aiρ0A
†
i , (43)

where

A0 = diag{1,
√

1− γ1,
√

1− γ2},

A1 =
√
γ1|0〉〈1|,

A2 =
√
γ2|0〉〈2|,

and

γ1 = 1− e−2k1τ = 2k1τ +O(τ2),

γ2 = 1− e−2k2τ = 2k2τ +O(τ2).

Again, bothγ1 andγ2 are of first orderτ .

We also introduce the classical counterparts of these two channels which are shown in Fig. 3. Here the arrows
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indicate the allowed transitions. The classical channelsL1 andL2 correspond to the amplitude damping channels

V andΛ, respectively.

2

1 0✲

❏
❏
❏❫

2

1 0

✡
✡

✡✢

❏
❏
❏❫

L1 L2

Fig. 3. Classical channels for trits: the arrows indicate the allowed transitions.

For theV -channel and theΛ-channel, we construct codes using similar ideas as shown above. For single-error-

correcting codes, we can still use the idea of self-complementary codes based on the corresponding classical codes,

which have been studied in [33] and [22]. Unfortunately, none of these constructions can be adapted to make

self-complementary codes. For codes with short lengths, one can use numerical search.

For multi-error-correcting codes, we want to choose the basis of the inner code so that one single damping error

will project the state to an orthogonal subspace. LetT0 andT1 be the set of binary strings of lengthm with even

and odd parity, respectively:

Ti = {x1x2 . . . xm ∈ {0, 1}m | x1 ⊕ x2 ⊕ . . .⊕ xm = i}. (44)

For the channelL1, a binary0 is mapped to the channel symbols1 and2 , and a binary1 is mapped to0 . For the

channelL2, a binary0 is mapped to the channel symbols0 and1 , and a binary1 is mapped to2 . ThenT0 and

T1 are mapped to the set of codesS0 andS1 which are two sets of possible inner codes.

Example 19:Form = 2, we have

T0 = {00, 11}, T1 = {01, 10}. (45)

For the channelL1, we get

S0 = {00 , 11 , 12 , 21 , 22 }, S1 = {01 , 02 , 10 , 20}, (46)

and for the channelL2 channel:

S0 = {00 , 01 , 10 , 11 , 22}, S1 = {01 , 02 , 10 , 20} (47)

We have the following theorem.

Theorem 20:For any codewordw ∈ Si, i = 0, 1, when an error of the corresponding channel occurs, the

resulting stringv will be in S1−i.

Proof: We only prove the case when the channel isL1, the proof for the channelL2 follows using the same

argument. Letw = w1w2 . . . wm andv = v1v2 . . . vm, and let the error occur at positiont. Thenwt is either1

or 2 , while vt = 0 , andwk = vk, for all k 6= t. Suppose that in our construction,w1 . . . wm corresponds to the

binary stringa1 . . . am, andv1 . . . vm corresponds to the binary stringb1 . . . bm, then we haveat = 0, bt = 1, and

ak = bk, for k 6= t. Sincea ∈ Ti, we know thatb ∈ T1−i, and hencev ∈ S1−i.

Corollary 21: For any codewordw ∈ Si, i = 0, 1, when an odd number of errors of the corresponding channel
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occur, the resulting stringv will be in S1−i; when an even number of errors of the corresponding channel occur,

the resulting stringv will be in Si.

With arguments similar as those in the proof of Theorem 17, for i = 0, 1, if we use the quantum codeQi spanned

by {|u〉 : u ∈ Si} as the inner code and an[[n, k, t+ 1]]|Si| code as the outer code, we get an[[nm,Kk]] code that

correctst errors for the corresponding quantum AD channel.

Finally we will give an explicit expression for|Si| in terms ofm. To show its dependency onm, we write

αm = |S0| andβm = |S1|.
Theorem 22:

αm = |S0| =
1

2
(3m + 1) and βm = |S1| =

1

2
(3m − 1). (48)

Proof: For any stringa = a1a2 . . . am ∈ T0, eitheram = 0 or am = 1. For am = 0, the strings inS0 that a

maps to are just the stringsa1 . . . am−1 maps to, concatenated with a single symbol chosen from two options (1 , 2

for L1, and0 , 1 for L2). For am = 1, the stringsa maps to are those thata1 . . . am−1 maps to, concatenated with

a fixed symbol. So we have the recurrence relation

αm = 2αm−1 + βm−1. (49)

We also have

αm + βm = 3m. (50)

Solving Eqs. (49) and (50) together with the initial condition α1 = 1 andβ1 = 2, we have

αm =
1

2
(3m + 1) and βm =

1

2
(3m − 1), (51)

which proves the theorem.

To achieve the maximal size of the constructed code, we should always choose{|u〉 : u ∈ S0} as the inner code.

Example 23:We takem = 2, and the outer code is[[5, 1, 3]]5 (see, e. g., [7]), which is

|k〉 7→ 1

5
√
5

4∑

p,q,r=0

ωk(p+q+r)+pr |p+ q + k〉 ⊗ |p+ r〉 ⊗ |q + r〉 ⊗ |p〉 ⊗ |q〉, (52)

whereω = exp(2πi/5). We substitute|0〉, |1〉, . . . , |4〉 with |00〉, |11〉, |12〉, |21〉, and |22〉, respectively, and get a

((10, 5))3 code which corrects2 errors of the channelV . If we substitute|0〉, |1〉, . . . , |4〉 with |00〉, |01〉, |10〉, |11〉,
and |22〉, we get a((10, 5))3 2-code for the channelΛ. In comparison, the best stabilizer code of length10 which

corrects2 errors is[[10, 1, 5]]3.

Other examples for which our construction outperforms stabilizer codes include the((12, 25))3 and ((14, 125))3

2-codes constructed from outer codes[[6, 2, 3]]5 and [[7, 3, 3]]5, while the best corresponding stabilizer codes are

[[12, 2, 5]]3 and [[14, 4, 5]]3.
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