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Quantum Error-Correcting Codes

for Qudit Amplitude Damping
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Abstract

Traditional quantum error-correcting codes are desigmediife depolarizing channel modeled by generalized
Pauli errors occurring with equal probability. Amplitudardping channels model, in general, the decay process
of a multilevel atom or energy dissipation of a bosonic sysi@t zero temperature. We discuss quantum error-
correcting codes adapted to amplitude damping channelfigdrer dimensional systems (qudits). For multi-level
atoms, we consider a natural kind of decay process, and gario systems, we consider the qudit amplitude damping
channel obtained by truncating the Fock basis of the bosmides to a certain maximum occupation number. We
construct families of single-error-correcting quantunde® that can be used for both cases. Our codes have larger
code dimensions than the previously known single-errorexting codes of the same lengths. Additionally, we presen
families of multi-error correcting codes for these two amals, as well as generalizations of our construction tegiei
to error-correcting codes for the qutiit and A channels.

Index Terms

amplitude damping channel, quantum codes, qudit

I. INTRODUCTION

For ag-level quantum system with Hilbert spa€¥, called a qudit, the most general physical operations (or
guantum channels) allowed by quantum mechanics are coshpfaisitive, trace preserving linear maps which can
be represented in the following Kraus decomposition favitp) = >, Eka,Z, where the matrice&;, are called
Kraus operators of the quantum channélsatisfying the trace-preserving conditidn, E;Ek =1

In designing error-correcting codes for protecting messazarried by qudits sent through a channif, it is
usually assumed that the errors to be corrected are coryptetedom, with no knowledge other than that they

affect different qudits independently [16, 30]. The copmsding channel is the depolarizing channel which can
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be modeled by uniformly distributed error-operators gibgngeneralized Pauli operators [17, 25, 3X,)%(Z,)°,
for a,b € {0,1,...,q— 1}, whereX,|s) = |s+1 mod q), Z4|s) = w®|s), andw = exp(2ni/q). When it is clear
from the context, we may just writ?d and Z, dropping the index.

However, if further information about the error processvailable, more efficient codes can be designed. Indeed,
in many physical systems, the noise is likely to be unbaldrmtween amplitudeX-type) errors and phaseZ{
type) errors. Recently a lot of attention has been put insgihéng codes for this situation and into studying their
fault tolerance properties [1, 12, 15, 20, 34, 40]. All thessults use error models described by Kraus operators
that are generalized Pauli operators, but for those erralefsptheX -type errors (i.e., non-diagonal Pauli matrices)
happen with probabilityp,. which might be different from the probabilify, that Z-type errors (i.e., diagonal Pauli
matrices) happen. The quantum channels described by thisdfinoise are called asymmetric channels.

A closer look at the real physical process of amplitude dagpioise shows that one needs to go even further,
beyond Kraus operators of Pauli type. To be more preciseg fer2, the qubit amplitude damping (AD) channel

is given by the Kraus operators [9]

1 0 0
Ay = and A = \/’_Y

0 vI—qy 0 0

Since the error model of the qubit AD channel is not descripe&auli-type Kraus operators, the known techniques

1)

dealing with Pauli errors result in codes with non-optimafgmeters. Several new techniques for the construction
of codes adapted to this type of noise with non-Pauli Kraweratprs, and the qubit AD channel in particular, have
been developed [9, 15, 27, 28, 36]. Systematic methods fastaacting high performance single-error-correcting
codes [27, 36] and multi-error-correcting codes [11] hagerbfound.

In this paper, we discuss constructions of quantum code®frchannels of general qudit systems. Unlike
the qubit case, where the AD channel is unique, for quditesystthere are different AD channels associated
with different physical systems. We will focus on two difat models: multi-level atoms with a natural kind of
decay process, and bosonic systems obtained by truncagngdck basis of the bosonic modes to the maximum

occupation numbeg — 1 for a single bosonic mode.

II. THE AMPLITUDE DAMPING CHANNEL

For two-level atoms, the decay process at zero temperautescribed by the Kraus operatotg, A; as given
in Eq. (1). For multi-level atoms, there are different kinofsdecay processes at zero temperature. One natural

decay process is the cascade struckyevhere the decay process is governed by the master equapi35]

dp _ _ _
ir :Z k; (201'71,#0;&1,1' - U;‘;l,io—ifl,ip - /)Uz'tl,z'aifl,i) . 2
1<i<q—1
Here {|i)}_, is a basis of the Hilbert spad@?, oy, =li—1)(i] ando;", ; = |i)(i —1].

The solution to this master equation gives the Kraus exjmess

E(p) = AopAl+ > AypAl, (3)

0<i<j<q—1



where A;; = ,/7;;14)(j| with positive coefficientsy;;, and A, is a diagonal matrix with its elements determined
by A Ao + D o<i<j<q1 Ajinj = I. Furthermore, when the decay timeis small,v;; is of orderr* for any
j=1+¢ ¢>0.As a consequencel, is of orderr, and A;; is of order7!/? for anyj =i+ ¢, ¢ > 0. This is
intuitively sound as for the cascade structure, the firseotthnsition always happens frop+ 1) to |i).

As an example, for three-level atoms, i.¢+ 3, we have

Ao1 = /01]0)(1,
Aoz = v/702|0)(2], A1z = V2|1)(2],
Ao = [0){0] + /T =01 1) (1] + v/T =702 — 7122)(2],
where
Yo1 = 2koT 4+ O(7?),
Yoo = 2k1ko7* + O(T),
M2 = 2k17 4+ O(7?),

for k1 # ko. The values ofy;; are slightly different fork; = k», but the order ofy;; in terms ofr remains the
same.
The channeld describing energy dissipation of a bosonic system at zenpeeature is discussed in [9]. The

Kraus operators are given by

qg—1
,
Ap =) (k) (1 =) =Fyklr — k)(r, (4)
r==k
whereqg — 1 is the maximum occupation number of a single bosonic modgkan 0,1,...,¢ — 1. The parameter

v is of first order in terms of the decay time i.e.,y = cr + O(72). As a consequence, the non-identity part of

Ao is of orderr, and Ay, is of order7*/2 for 1 < k < d — 1.

For instance, for the qubit case, i..= 2, we have the qubit amplitude channel given by Eq. (1). er 3,

we have

Ao = [0)(0] + /T =~ [1)(1] + (1 = )[2)(2],
Ay = A10)(1] + /2y (1 =) [1)2],
and Az = v]0)(2].
Note that forg = 3, the non-diagonal Kraus operators of the chandefor bosonic systems are linear

combinations of the Kraus operators of the charfieHence codes correcting errors of the chariBedre also

codes for the channed.

IIl. ERRORCORRECTIONCRITERIA

A quantum error-correcting cod®@ is a subspace ofC?)®", the space of. qudits. For ak-dimensional code

space spanned by the orthonormal basig, i« = 1,..., K, and a set of error§, there is a physical operation



correcting all element#, € £ if the error correction conditions [2, 26] are satisfied:

Vi, g,k Ls (i | ELE5) = 6o, (5)
whereay; depends only ot andi. A code is said to be pure with respect to some set of e&dfsay; = 0 for
k # 1. A K-dimensional code with length is denoted by(n, K)).

For the AD channelX and 4, if the decay timer is small, we would like to correct the leading order erroat th
occur during amplitude damping [3, 4]. Similar as for the ifq@lse [16, Section 8.7], we will show below that in
order to improve the fidelity of the transmission through &2 channel= or A from 1 — O(7) to 1 — O(7t+1),
i.e., to correct errors, it is sufficient to be able to detecerrors of typed, and to correct up te errors of type
A;; with j > i of total orderr?/2 for the channeE (or to correct up ta: errors of typeA; with i > 0 for the
channelA). We will then say that such a code correttamplitude damping errors since it improves the fidelity,
just as much as a trugerror-correcting code would for the same channel. This tiract consequence of the
following sufficient condition for approximate error coct®n.

Theorem 1:Assume we are given a quantum channel with Kraus operdiprthat have a series expansion in
terms of/7 for a parameter. A quantum code? with orthonormal basig|c;) : i =1, ..., K} corrects errors up

to orderO(r") if the following conditions are fulfilled for all basis stat@:;),|c;) and all error operatorg, E;:
(il BLErle;) = 8ijum + O(r ) (6)
Proof: Assume we are given a quantum channel with Kraus operdig(s) that depend on some small
parameterr. We expand the operators in termsg¥ as

Ek(T) = Z Ekam/Q. (7)

m>0

This leads to the following description of the channel:

p= Y EepEl=Y"3"" EpmpE], 7 m1/2, ®)
k

kE m>0p>0
Given a quantum cod@ with orthonormal basig|c;): i = 1,..., K}, the conditions for perfect error correction
are
<Ci|E1J£ (T)Ei(T)|ej) = dijour. (9)

Using the expansion of the Kraus operators in terms/ef we get

> (al|EL, Eoule;)r ™2 = 6,0y (10)
m,pu>0
We are looking for sufficient conditions such that the realderror with respect te is of orderO(rt*!) for

somet > 0.



We write each Kraus operatdfy = By, + C) + Dy, as sum of three terms, where

By, = Z Egmt™/?, (11)

Cr= > Epmt™? (12)
m=t+1
Dk = Z Ekam/2. (13)
m>2t
Then the original channeV/ can be written as
N(p) =Y (Bi+ Ci + Di)p(Bi + Cr + Di)’ (14)
k
=> BipB| (15)
k
+> " BipCl + CipB] (16)
k
+> " BipD] + DipBf (17)
k
+ Z(Ck + Di)p(Cr + Dy)'. (18)
k
Condition (6) implies that
<Ci|B;;Bl|Cj> = 6ij/\kl7 (19)
(ci| BiCilej) = ijpm + O(rHH1). (20)

In particular, the error operatoi3; can be perfectly corrected. We first define the projectiorraipe onto one of
the spacésspanned by By|c;):i=1,..., K}:

Pp, = Bilei)(ei| B, (21)
and the partial isometry that maps; |c;) to |¢;):
Us, = »_ lei){ci| B]. (22)
We compute
Up, P, = <Z|Ci><ci|3£> > Bile;)(c;|Bf (23)
i j
=" lei){ci| B Brle;) (c;| Bf (24)
i
= Xrk Y |ei)(eil Bf. (25)

The last step follows from the fact that the error operatBgscan be perfectly corrected, which also determines

1We may, without loss of generality, use linear combinatiofishe original error operatord3;, such that these spaces become mutually

orthogonal.



the constant\;,. Then the partial correction operatBi,a is given by

Rpar(p) = Y _ | ik ? Z i) (ci| B p Belc)(cj]. (26)
For a general state k -
pQ = Z agjlei) (¢l (27)
in the quantum codé), the term (15) ofN(pg) reads
N, (pq) =Y Y aijBrles)(e;| By (28)
ko 1,j

Since the error operator8;, can be perfectly corrected (implied by Eqg. (19)), it can bevah that applying the
partial recovery operator t0/z, (pg) yields a state\p that is proportional to the original staje). Hence after

partial recovery we have

Rpar(N (p@)) = A\pg +S(pq), (29)

where the mags is given by the application of the partial recovery operdtothe terms given in (16), (17) and
(18). The summands (17) and (18) are all of or@gr*!), so we can ignore them, but (16) contains terms of

orderr!/2 for t < I < 2t. Applying the partial recovery operator to (16) and usin@)(&sults in the state

Ropart <Z BkPQC;]; + OkaB11>
k

= Z Ak Z lei)(ci| B (Z BipaC| + CipoB] ) Bylej)(c]

,J

—ZIMI S5 i (Iea) (el BLBilew ) ey |G Brleg)es| + le) el BLCilew) ey | B Brle;)(es)
%,_/ ————

i i’,5

>\kl6”/ >\lk6jj/
= Pkl (Z At (e |CT Brlej) lew)(ej| + ) A (el BECi[ewr) lei) ey |)
o n TSmOt L SumatO(rt)

=pQ > [Mkkl> Nty + M) + O
k,l

(30)

which is, up to ordeO(7!*1), proportional to the original state.
[ |
Note that in the proof of Theorem 1, we have split the errcerafors accordingly based on their expansion (7)
in terms of/7, see (11)—(13). Clearly, the high order pafRs can be completely ignored. Only the errdss of
approximately half the final order have to be corrected (M)je the errorsC have to obey some kind of error

detection criterion (20).



IV. STABILIZER AND ASYMMETRIC QUANTUM CODES

Before presenting our construction of quantum codes &dldo amplitude damping channels, we investigate the
performance of traditional quantum error-correcting de these channels.

Stabilizer codes are a large class of quantum codes whidhicanany good quantum codes [16, 30]. A stabilizer
code @ with n qudits encoding: qudits has distance if all errors of weight at mostf — 1 can be detected or have
no effect onQ, and we denote the parameters@fby [n, k, d],. Obviously a stabilizer code of distanee + 1
correctst AD error as it corrects arbitrary errors.

Calderbank-Shor-Steane (CSS) codes [6, 37] are a subdlalss stabilizer codes. It has been shown that CSS
codes can be used to construct codes for the binary AD chdqh@gSection 8.7]. The construction is based on
so-called asymmetric quantum codes, which have a directrgépation to the qudit case [13]. The following
theorem shows that those asymmetric CSS codes can also theousbtain error correcting codes for qudit AD
channels.

Theorem 2:An [n, k], CSS cod&) with pure X-distance2t + 1 and pureZ-distancet correctst AD error, i.e.,
errors up to ordeO(7").

Proof: The generalized Pauli operatoKa’;Zé form a basis for all operators on a single qudit. Hence we can
expand the error operators; in terms of tensor products of the generalized Pauli opesaithe diagonal error
operator4, of AD channels can be expanded in terms of the error operﬁprsvith the expansion coefficients
of the operatorstz, [ > 0 being of first order inr. The diagonal of the other error operatots or A; is zero.
They can be expanded in terms of opera@jﬁ(’“, k # 0, with the expansion coefficients being of ordgr.

Note that for CSS codesy and Z errors can be corrected independently. The error oper&tpidefined in (11)
of the proof of Theorem 1 are of order at mege in 7, and hence they contain no more thaX -errors and no
more thant/2 Z-errors. As the cod€) has X -distance2t + 1 and Z-distancet + 1, the error operator®;, can be
corrected. Similarly, for the error operatatg defined in (12), there are no more than X-errors and no more
thant Z-errors, which can be detected usi@g Hence, using Theorem 1, it follows th&k corrects all errors up

to orderO(7"). [

V. CLASSICAL ASYMMETRIC CODES

In this section, we construct quantum codes correcting@esiiD error using classical asymmetric codes. Codes
for the qubit case have been presented in [27, 36]. Thosesc@eself-complementary, i.e., the basis states are of
the form|y,) = %ﬂu) +|@)), whereu is ann-bit string, @ = 1 @ u, and1 is the all-one string.

For the non-binary case with > 2, we consider a similar construction. Defie= X?”, then the basis states

are chosen as

=

)

S
Vi
[000) + [111) + [222)).

|[u) = X'|u). (31)

Il
=]

For instance, foy = 3 andn = 3, we get|iyo) = \/ig(



The quantum cod& is then spanned by|¢y,)}, whereu € C is some length: string over the alphabet
{0,1,...,q—1} (C'is a classical code of length). The advantage of this construction is that the code autioaily
satisfies the error-detection condition for a sin@lﬁ; error ( = 1,2,...,q — 1), as the code is stabilized hy.
Now consider a classical code with codewords= {u + al: u € C,a=0,...,q— 1} and the corresponding
quantum code spanned Ky, ): u € C‘}. The problem of correcting a single error for the qudit AD iwhels can
then be reduced to finding certain classical codes.

The relevant classical channel is the classical asymmetiaanel [23]. Let the alphabet %, with the ordering
0<1<2<---<gq—1. A channel is called asymmetric if any transmitted symiaé received a$ < a. The
mostly studied asymmetric channel, dating back to Varshaj3®)], can be described by the following asymmetric
distanceA(x, y).

Definition 3 (see [21]):Let B ={0,1,...,q — 1} C Z. Forx,y € B", we define

1) w(x) =3, i

2) N(x,y) = >, max{y; — x;,0}.

3) A(x,y) := max{N(x,y), N(y,x)}.

If x is sent andy is received, we say thab(x — y) errors have occurred (note thaf > y; and hence each
summand inw(x —y) is nonnegative). A code correctirigerrors is called &-code.

Theorem 4 (see [21])A codeC C B™ correctsr errors of the asymmetrical channel if and only\fx,y) > r
forall x,y e C, x #y.

Our goal is to link these classical asymmetric codes to quarAD codes. As discussed above, we start from
the following definition.

Definition 5: A classical cod&” over the alphabeB is called self-complementary if for anyc C, 1®&x € C.
For any self-complementary codg there exists another codésuch that' = {u+al:ue C,a =0,...q—1}
and|C| = ¢|C|. We may, for example, choose alle C such that the first digit i§. FromC we derive the quantum

code Q spanned by{|¢,): u € C} as given in Eq. (31). Our main result is given by the followihgorem.

Theorem 6:If C is a classical (linear or non-linear) self-complementapgie correcting a single error with
respect to Definition 3, the® spanned by{|¢u): u € C} is a single-error-correcting code for the qudit AD
channels= and A.

Proof: Let E;; = |i)(j| with 4,5 € {0,1,...,¢ — 1} andi < j. For a small decay time, in order to improve
the fidelity of the transmission through the qudit AD chandegiven by Eq. (4) froml — O(7) to 1 — O(7?), it is
sufficient to correct a singlé’; ;. ,-error and detect oanl-error forl =1,2,...,q — 1. The self-complementary
form of |1,) given in Eq. (31) implies thak 4, ) = [¢u). In turn, this implies tha(zpv|Zf]|¢u) =0 for anyu,v
andl =1,2,...,¢q — 1, i.e., the error-detection condition for a sing?é error is fulfilled.

Next consider a single operaté?; ;. Every state of the quantum code is a linear combination atesic)
with ¢ € C. Applying the operatotZ; ;11 to |c) corresponds to a single asymmetric error. As the classmdé ¢
C' corrects a single asymmetric error, the distafddga, v) between any two codewords andv is at least two.

Therefore, the supports (set of basis states with non-zeefficient in the superposition) of the states,) and



Ez*(,ﬁ1|¢v> are disjoint for all positionsy, WhereEi(z‘zrl denotes the operatdr; ;1 acting at positionn. Hence
those states are mutually orthogonal. Finally note thatefoorsE; ;1 acting on the same position, the operator
EliHEi,iH is diagonal and hence in the span of the operaffjrswhich can be detected. [ |

Corollary 7: If there exists ar{n, K, 3), self-complementary cod€, then there exists afin, K/q)), quantum
code correcting a single AD error.

Such codes have, e.g., been studied in [14]. For linear ¢codedave the following corollary.

Corollary 8: If there exists arin, k + 1, 3], linear codeC' containing the all-one-vectdr € C, then there exists
an [n, k], CSS code correcting a single AD error.
In the preceding corollaries we have used the notgliolk’, d), for a classical code of lengtlh with K codewords
and minimum distance over an alphabet witly elements, and the notatidn, k, d], = (n, K = ¢*,d) when the

code is linear.

VI. SINGLE-ERROR-CORRECTING CODES. EVEN LENGTHS

We now use Theorem 6 to construct some families of good siegta-correcting AD codes. For this, we
need to find some good self-complementary single-errarecting classical asymmetric codes. The best known
direct construction of single-error-correcting codestfog binary asymmetric channel is the so-called Varshamov-
Tenengolts (VT)-Constantin-Rao (CR) code [10, 39], withadunal generalization tg > 2. These VT-CR codes
are non-linear codes, in both the binary and non-binaryscase

For the binary case, many of these VT-CR codes are indeed@@lplementary, and so they can be used to
construct families of good single-error-correcting quamtAD codes [36]. As the VT-CR codes are nonlinear, the
corresponding quantum codes are nonadditive codes. Wnftkly, for the non-binary case, the VT-CR codes are
no longer self-complementary, so one needs some otheraotishs of good single-error-correcting for asymmetric
channels.

We will use the idea of generalized concatenation, whichbees discussed in the context of constructing binary
AD codes in [36], and in the context of constructing (clasBiasymmetric codes in [18]. This method will allow
us to construct good self-complementary asymmetric licedes for the non-binary case, which will lead to good

single-error-correcting quantum codes for AD channels.

A. Qutrit Codes

First, we consider the case gf= 3. For the generalized concatenation construction, we @t outer code

as some ternary classical code over the alph&begt, 2}, and the inner codes as:
Cs ={00,11,22}, C; ={01,12,20}, C5 = {02,10, 21}. (32)

Then we have the following result.
Theorem 9:For n even, generalized concatenation with an oytet2, k, 3]3 code results in arn,n/2 + k|3
self-complementary linear codg. This code leads to afn,n/2 + k — 1]5 quantum stabilizer cod@, correcting

a single error for the channet and A.
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Proof: Note that(Cj, C;, and C; are all self-complementary codes correcting a single asgtmenerror.

Therefore, any outer ternary code will lead to a self-comm@etary ternary cod€’, and hence a quantum codk
A single amplitude damping error induces only a single ewith respect td), 1, 2. As the outer ternary code has

distance3, such an error can be corrected. |
Note that with respect to the symbdlsl, 2, the induced chann@; is nothing but the ternary symmetric channel

shown in Fig. 1.

0
~ 0 3
0 ~ ~
i 1 4
1 2 1 2 5 3
Rs3 Ra Rs

Fig. 1. The induced chann&s for ¢ = 3 (which is just the ternary symmetric channel), the induceanoelR4 for ¢ = 4, and the induced
channelR5 for ¢ = 5. The arrows indicate the possible transitions between sijgnb

Example 10:For n = 6, take the outer code of lengity2 = 3 as {000, 111, 222} with distance3. Generalized
concatenation yields a self-complementary ternary lineale of dimensior. The corresponding quantum co@e
encodes/2 + 1 — 1 = 3 qutrits. Both the best corresponding single-error-cdimgcguantum codg6, 2, 3]s and
the best possible asymmetric CSS cdde2, {3,2}]s (see Corollary 8) encode onf quitrits.

B. The Case; > 3

For ¢ = 4, we choose the inner codes as
Cy = {00,11,22,33}, C; = {01,12,23,30},
C; = {02,13,20,31}, C3 = {03,10,21,32}. (33)

Similar as in Theorem 9, an outer code with distance thredyi self-complementary code from which a quantum
AD code can be derived. However, in this case, the inducedraidor the outer code is no longer symmetric. A
single damping error will, for example, never map a codewafrthe inner code’; to a codeword ol’;5. So on
the level of the outer code, there are no transitions betweand 2, or betweenl and3. The induced quaternary
channelR, is shown in Fig. 1, where we see that errors only happen betwesghbors.

The above constructions far = 3,4 have a direct generalization to genegal- 2. For a giveng, choose the
outer code as some code over the alphgbet, . . ., q/:/l}. Theq inner code;, Cj, .. ., Cq”j are the double-
repetition codeCy = {00,11,...,(¢ — 1)(¢ — 1)} and all itsq — 1 cosetsC; = Cz @ (07), i.e., we apply the rule
that0: € C5. It is straightforward to check that each inner code has asgimc distance, hence corrects a single
asymmetric error. Similar as in the caseqf 4, a single damping error will only drive transitions between
for i = j & 1. For instance, fog; = 5, the induced channé®s is shown in Fig. 1. In general, we will write the
induced channel ag,, for outer codes ovef0,1,...,q — 1}.

Similar as Theorem 9, in general we have the following theore
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Theorem 11:For n even, an outefn/2, k], code correcting a single error for the chanfi@} leads to an
[n,n/2 + k], self-complementary linear code and hence arfn,n/2 + k — 1], quantum codeQ, correcting a
single error for the qudit AD channels and A.

Note that the chann&®, is no longer a symmetric channel, so outer codes of Hammistarutie3 are no longer
expected to give the best codes. It turns out, however, ihgteserror-correcting codes for the chanrie} are
equivalent to single-symmetric-error correcting coded.é® metric [5] (see also [24]), for which optimal linear

codes are known (for a more detailed discussion, see [18]).

VIl. SINGLE-ERROR-CORRECTINGCODES. ODD LENGTHS

The construction of AD codes for even lengths given in Secb&ed on generalized concatenation is relatively
straightforward. The inner codes are justodes of lengti2 with ¢ codewords and their cosets. In [18], codes
of odd length were obtained using a mixed-alphabet codatitige one position differently. This does not directly
translate to the situation considered here, as the reguttide has to be self-complementary.

Instead, we will use different inner codes, one of odd lesgthd the length-two code from above. In particular,
we can directly search far mutually disjoint inner codes of lengthwhich arel-codes.

For ¢ = 4, consider the followindZ,-linear codeCy of length3 generated by{111, 002, 020}:

000 111 222 333 002 113 220 331
020 131 202 313 022 133 200 311. (34)

The codeCy has asymmetric distancx as well as the three cosets. = Cy + 001, Cor = Cy + 010, and
Cs = Cy +100. Applying generalized concatenation to the outer cfel#’, 111/,222’, 333’} and the inner codes
of length2 and3 for the first two and the third position, respectively, yeld self-complementari-code|[7, 5],.
The corresponding quantum code has paramétery ,.

Note that the induced channel on the alphaf®t1’,2’,3'} is no longerR,, but the symmetric channel over
Z4. Therefore we have the following theorem fpe= 4.

Theorem 12:For n odd, an outer{(n — 1)/2,k, 3]s code leads to afn, (n + 1)/2 + k|4 self-complementary
linear 1-code C. The resulting quantum cod@ = [n,(n — 1)/2 + k]4 corrects a single error for the qudit AD
channels=E and A.

Proof: The inner codeg’; of length two as well as the inner cod€s of length three are self-complementary
1-codes. The outer code has distaBdcehich ensures that a single error mixing the inner codes eaoobrected.
For the outer code, we always take the last coordinate to lgpefs’, and all the other coordinates to be of type
5, fors =0,...,3. Hence, the inner code for the last coordinate of the outde ¢@s length three, while the other
inner codes have length two. Therefore, for an olter- 1)/2, k, 34 linear code, generalized concatenation yields
ann, (n+1)/2+ k|4 self-complementary linear-codeC, corresponding to afr, (n —1)/2+ k]4 quantum code.

[ |

We emphasize that the construction related to Theorem 1&lid only for ¢ = 4. For g > 5, the Z,-linear code



12

Cy generated by{111,013} and itsq cosets are all self-complementary codes with asymmetstadée2. For this,
note thatA(x,y) = 1 if and only if, up to permutationx —y € {(1,0,0),(1,—1,0)}. For ¢ > 5, the codeC)y
does not contain such a vector. Hence we obtain the analeguét as in Theorem 12 far > 5.

For ¢ = 3 andq = 5, however, we cannot partition the trivial coffe 3], into ¢ self-complementary codes, 2],
with asymmetric distanc®, substantiated by exhaustive search. However, we can usmancode of length five,
resulting in the following theorem.

Theorem 13:For ¢ = 3,5 andn odd, an outef(n — 3)/2, k], code correcting a single error for the symmetric
channel leads to a, (n+1)/2+ k], self-complementary code and hence afn, (n —1)/2+ k], quantum code
Q, correcting a single error for the qudit AD channglfor ¢ = 3, 5.

Proof: We can map the first digit of the outer code ¢agroups of codes of length. Again by exhaustive
search, we find that fay = 3, 5, we cannot partitios, 5], into ¢ self-complementary codés, 4], with asymmetric
distance2, but we can get codes[5, 3],. For ¢ = 3, the codeC\y is generated by00011,01201,11111}, while
for ¢ = 5 it is generated by 00011,00102,11111}.

Then our construction can be described as follows. Foi(ar- 3)/2, k], outer code, we use the length-5 code
described above as the inner code for the first digit, and eisgth-2 code for the remaining — 5)/2 digits,
leading to a code with length x 5 + % x 2 = n. Similar as in the proof of Theorem 12, it follows that the
resulting code corrects a single AD error. [ |

In the nonlinear case, we can find larger codes. The resdtswanmarized in Theorems 14, 15, and 16.

Theorem 14:For ¢ = 3 andn odd, an outer((n — 3)/2, K, 3), code leads to afin, 33 x 3("~/2K); self-
complementary code. The resultifig, 11 x 3(»~%/2K)); quantum code corrects one error for the AD channels
= and A.

Proof: An exhaustive search reveals that fpe= 3, we can find three disjoint self-complementary codes of

length5 and asymmetric distancewith at most33 codewords. Let
Co = {00000, 00011, 00112, 00220, 01021, 01110,
01202, 02022, 02101, 02120, 02211} (35)

ThenCy = {u+al|ue Cy,a=0,1,2}, C» = {u+ 00001 | u € Cy}, Cy = {u+00002 | u € Cyp}. We
construct the code similarly as in Theorem 13, i.e,. theriromele for the fist digit iSC;,, and for the remaining
(n — 5)/2 digits the inner code i€*. [ |

For ¢ = 5, we consider two constructions based on nonlinear codes.

Theorem 15:Then forq = 5 andn odd, an outer((n — 1)/2, K, 3), code leads to aiin, 20 x 5("~3)/2K)s;

self-complementary code. The resultifig, 4 x 5(*~3)/2K )5 quantum code corrects one error for the AD channel
A.
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Proof: Although we cannot partitiof3, 3]5, a weaker result can be obtained. Let
Co = {000,002,020,022}, Cy» = {001,004,021,024},
Cy = {003,011,031,033}, Cs = {010,023,041, 043},
Cy = {012,014,032,034}.

Furthermore, se€; = {u+al|ue Cy,a=0,1,2,3,4}.
Then we have a construction similar to Theorem 12, i.e., veeon® copy of the length-3 inner code gng-3)/2
copies of the length-2 inner code. [ |
Theorem 16:For ¢ = 5 andn odd, an outer((n — 3)/2, K, 3)5 code leads to ain, 295 x 5(*~5/2K); self-
complementary code. The resultif@, 59 x 5" ~5/2K))5 quantum code can correct one error for the AD channel
A.

Proof: In this construction we use self-complementary codes aftled. By non-exhaustive search, we can
find a self-complementary code witt95 codewords. Th&9 codewords 01’(76 are shown in Table I. From those
we deriveCy = {u+al |ue Cy,a=0,1,2,3,4} andCy = {u+0000i | u € Cy}, 1 < i < 5. Then we have

TABLE |

CODE CONSTRUCTION FORg = 5

00000 00202 01241 02200 031]
00002 00220 01404 02203 0321
00013 00223 01412 02211 0323
00020 00244 02000 02223 0323
00031 00303 02002 02314 033Q
00033 00311 02013 02321 033Q
00044 00314 02021 02332 0334
00111 00330 02032 02424 0341
00114 00332 02034 02440 0341
00122 00424 02114 03041 0343
00141 00442 02130 03044 0423
00200 01133 02143 03102

A P D O DN W O W P N O

a construction similar to that in Theorem 13. ]

As shown in Table I, for many lengths, the construction lblage Theorems 9, 13, and 14 outperforms both the
best known quantum codes with distarg;eand the CSS codes of Corollary 8. The dimension of the asyriume
guantum codes (AQECC) is taken from [14]. Only wher= 13, our construction performs worse than CSS and
AQECC. This might be due to the fact that the outer code we ese is the CSS cod, 1, {3, 2}], which is not
efficient since we also have CSS cael, {3, 2}].

VIIl. M ULTI-ERROR-CORRECTINGCODES

For the binary case, multi-error-correcting amplitude gdarg codes are discussed in [11]. The basic idea is that

for the encoding|0;) = |01), |1.) = |10), the amplitude damping channel simulates a binary erasumanel.



14

TABLE Il
DIMENSION OF SINGLEERRORCORRECTING QUANTUMAD CODES FROM THEG F(32) CONSTRUCTION WITH DISTANCE3, THE CSS
CONSTRUCTION ASYMMETRIC QUANTUM CODES(AQECC),AND THE GENERALIZED CONCATENATION CONSTRUCTIONGC).

n | GF(3%2) CSS AQECC GC (linear) GC (nonlinear)
4 30 30 1 3 3

5 31 3! 6 32 11

6 32 32 11 33 33

7 33 33 29 33 11 x 3t
8 34 34 84 35 35

9 35 35 35 35 11 x 33
10 36 36 36 36 36
11 36 37 37 37 11 x 3°
12 37 38 38 38 38
13 38 39 39 38 11 x 36
14 39 39 39 310 310
15 310 310 310 310 11 x 38
16 311 311 311 312 312

So one can use erasure-correcting code as outer codes docbdiés correcting amplitude damping errors. In this
section we consider generalizations of this constructionpoth the binary and non-binary cases.

It is mentioned in [11] that a possible generalization is$e|001), |010), |100) as the inner code, and a distance
t + 1 quantum code as an outer code. However, it turns out that aneactually use001), |010),|100), |111) as
the inner code, and a distante- 1 quantum code as an outer code. Here a single damping eridreniteated as
an erasure, and two damping errors or no damping can bedraatan error which is taken care of by the outer
code.

To generalize this idea to the cage> 2, one can take a similar approach. In this section we congfuer
channelA with Kraus operators given by Eq. (4). Fgr= 3, one can take the encodin@,) = |11), |11) = |02),
|21) = |20). Then the amplitude damping channel simulates a ternaigusrachannel. So one can use erasure-
correcting codes as outer codes to build codes correctirglitacie damping errors. Actually, using a similar idea
as the construction based ¢01), |010), |100), |111) for the binary case, one can ufg,) = |00), |1.) = |20),
|21) = |11), |3L) = ]02), and|4.,) = |22) as the inner code, and still a distance 1 quantum code as an outer
code. Here we give the general construction.

Assume the length of the inner coderis We choose the set
S ={laraz...an) | a1 +az+ ...+ a, is every (36)

as the orthonormal basis of the code, and let
K =19]. (37)

If we have an outer codp, k,t + 1] x, we get an[nm, K*], code correcting errors for.A. For ¢ = 3, the code

also corrects errors for the qutrit chan@elWe have the following theorem:
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Theorem 17:The code constructed above correcerrors for the channelsl and =.

Proof: We want to prove that the condition in Theorem 1 holds. Qebe the outefin, k,¢ + 1] x code. Take
any two error operator&, and E,/, and for any two vectorg);) and|;), we consider<wi|EgEg/|¢j). Suppose
that on some inner coddy, has an odd number of errors whilg, has an even number of errors. Th&n |¢;)
will be in the space spanned iy while Ey|+;) will be in the space perpendicular & So <wi|EgEg/|zpj) =0
and the condition in Theorem 1 automatically holds. By syimméhis argument also holds whety is even and
Ey is odd. Now assume that on each inner code, the number osarooresponding td’, and E, have the same
parity. We consider the series expansion of the operEﬁdEg/ with respect tor. For this, we expand the tensor

factor acting on the-th particle such that;; corresponds to the term of ordef. Combined, we get
E}Ep = (Aio + At + At +..)
® (Az0 + Ao17 + Ago® +...)
®...® (Ao + A1 T + A +..) (38)

Note that each ofig, Aso, ... Amo is either the identity operator or the zero operator, whiah be proved if we
take the limit7 — 0. For the terms of the fornf2(*), there are at most non-identity terms on the inner codes,
which will become0 according to the error-detection criterion. Thus the ctodiin Theorem 1 is satisfied.
[ |
Finally we give an explicit expression for the dimension loé todeK defined in (37) in terms of andm.
Theorem 18:
K qm/2 if ¢ is even. (39)
(¢™ +1)/2 if ¢ is odd.
Proof: Wheng is even, we mapaias ... an,) t0 |¢g—1—a1,as...an), which is a one-to-one mapping from
S to S. Wheng is odd, leti = min{j: a; # 0}, and we mapaias . ..am) 0 |a1...ai—1,9 — Gi, Git1 ... Qm),
which is a one-to-one mapping from\ {|00...0)} to S. So|S| = |S| wheng is even, andS| = |S| + 1 wheng
is odd. Thus|S| = ¢™/2 whengq is even, andS| = (¢"* + 1)/2 whengq is odd. [
In Table Ill, we compare our codes with both stabilizer coded AQECCs. We use the construction with= 3
andm = 2, and compare the codes that correcesrors. From[n/2, k, ¢ + 1]5 codes given (see also [29]), we can
construct our(n, K))3 codes whergk = 5%, and we compare them with stabilizer codesk’, 2t + 1]]3 that have
dimensionk’ = 3¥. It can be seen that our construction outperforms stabitipeles, and our performance gets
better in comparison for larger In most cases, our codes are better also better than thereyicn CSS codes.
Some of the CSS codes are optimal codes taken from [13], dredoare based on the best known classical ternary
codes [19]. For comparison, we also list an upper bok{fig on the maximal dimension of an AQECC based on

the known bounds for classical codes. In most cases, thiscboannot be achieved.
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TABLE Il
DIMENSION OF QUANTUM CODES FROM OUR CONSTRUCTION THAT CORRET AD ERRORS COMPARED WITH STABILIZER CODES
[n, k', 2t 4+ 1]3 AND PURE ASYMMETRICCSSCODES WITH PARAMETERYn, k", {2t + 1,¢t + 1}]3.

t n K logs K K k' klhax
2 10 5 1465 1 [10,1,{5,3}]s 2
2 12 25 2930 2 [12,3,{53}s 3
2 14 125 4395 4 [14,4,{5,3}]s 4
2 16 625 580 5 [16,5 {5 3]s 5
2 18 3125 7325 6 [187.{53}]s 7
2 20 15625 8790 8 [20,9,{5,3}]s 9
3 14 5 1465 N/A [14,0,{7,4}]s 0
3 16 25 2930 0 [16,1,{7,4}]s 1
3 18 125 4395 1 [18,3,{7.4}]s 3
3 20 625 580 3 [20,4,{7,4}]s 5
3 22 3125 7325 4 [22,6,{7,4}]s 6
3 24 15625 8790 6 [24,6,{7,4}]s 8
4 18 5 1.465 N/A  N/A -
4 20 25 2930 NA [20,0,{9,5}]s 1
4 24 625 5860 1 [24,4,{9,5}]s 5
4 26 3125 7.325 2 [26,4,{9,5}]s 6
4 28 15625 8790 3 [28,5{9,5}]s 8
5 26 5 1465 N/A [26,0,{13,6}]3 3
5 28 25 2930 0 [281,{11,6)]3 5
5 30 125 4395 1 [30,2,{11,6)]s 6
5 32 625 5860 1 [32,4,{11,6)]3 7
5 38 3125 7.325 4 [38,7,{11,6}]; 12
5 40 15625 8790 6 [40,8,{12,6}]; 14
6 30 5 1.465 N/A 2 0
6 36 25 2.930 0 ? 6
6 38 125 4395 1 [38,2{13,7}]s 8
6 40 625 5860 1 [40,3,{13,7}]s 10
6 42 3125 7.325 2 [42,5,{13,7)]s 11
6 44 15625 8790 2 [44,6,{13,7}]s 13

IX. APPLICATIONS TO OTHERAD CHANNELS

Our method can also be applied to some other amplitude d@rpiocesses. For instance, when= 3, in
addition to the channéf, there are the following natural decay processes of theeel-htoms: thé\-pattern or the
V pattern. They are illustrated together with tRechannel in Fig.2:

For the A-pattern, the master equation is
dp

9 _ (207300t — otarian — potaon)

+ k2(200_2p032 — 08'200_2p — po&ao_g),
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= %4 A

Fig. 2. Decay processes for three-level atoms with diffefevel-structures.

whereo;, andoy, are the same as above, and
o = 1002, o5y =12)(0]. (40)

By direct calculation, one can verify that the evolution bfst master equation can be expressed by using the

following Kraus operators:

2
p(r) = AipoAl, (41)
i=0
where
Ap = diag{1,1,/1 —v1 — 12},
A= yml0){2l,
Az = V72[1)(2], (42)
and
"= ’f = [1-ebk] —atar 4 0(2),
7= ]j} s {1 — 672(k1+k2)7} = 2ki7 + O(72).

Both ~; and~, are of first order inr.

For theV -pattern, the Kraus expression has been found in [8], wheayivien as

2
p(r) =3 Aipodl, (“43)
where -
Ap = diag{1, m, M},
Ay = yml0)(1,
Az = /7210)(2,
and

yi=1—e2M7" =2k 7 + O(7?),
Yo = 1-— 6_2k27— = 2/€2T + O(TQ).

Again, both~; and~s are of first orderr.

We also introduce the classical counterparts of these tvemrodls which are shown in Fig. 3. Here the arrows
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indicate the allowed transitions. The classical chanigland £, correspond to the amplitude damping channels

V and A, respectively.

2 2
IAU 1/\0
E1 £2

Fig. 3. Classical channels for trits: the arrows indicate alowed transitions.

For theV-channel and thé\-channel, we construct codes using similar ideas as shoavealf-or single-error-
correcting codes, we can still use the idea of self-compigarg codes based on the corresponding classical codes,
which have been studied in [33] and [22]. Unfortunately, @af these constructions can be adapted to make
self-complementary codes. For codes with short lengths,cam use numerical search.

For multi-error-correcting codes, we want to choose thésbafsthe inner code so that one single damping error
will project the state to an orthogonal subspace. Teand7T; be the set of binary strings of length with even

and odd parity, respectively:
T, ={x1za...2pm €{0,1}" |21 @22 B ... D xpy, = i} (44)

For the channeL,, a binary0 is mapped to the channel symbalsand 2, and a binaryl is mapped ta). For the
channell,, a binary0 is mapped to the channel symbalsand 7, and a binaryl is mapped to2. ThenT and
T, are mapped to the set of codfs and S; which are two sets of possible inner codes.

Example 19:For m = 2, we have

To = {00,11}, T, = {01,10}. (45)
For the channelL,, we get
So=1{00,11,12,21,22}, S, ={01,02,10,20}, (46)
and for the channef, channel:
So={00,01,10,11,22}, S, =1{01,02,10,20} (47)

We have the following theorem.

Theorem 20:For any codewordw € S;, i = 0,1, when an error of the corresponding channel occurs, the
resulting stringv will be in S;_;.

Proof: We only prove the case when the channelis the proof for the channel, follows using the same

argument. Letw = wyws ... w,, andv = vjvs...v,, and let the error occur at positian Thenwy is either 1
or 2, while v, = 0, andwy, = v, for all k£ # t. Suppose that in our construction; . .. w,, corresponds to the
binary stringa; .. . a,,, andv; ... v, corresponds to the binary strirg . .. b,,, then we havei, = 0, b, = 1, and
ay = by, for k # t. Sincea € T;, we know thatb € T} _;, and hencev € S;_;. [ |

Corollary 21: For any codewordv € S;, i = 0,1, when an odd number of errors of the corresponding channel
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occur, the resulting string will be in S;_;; when an even number of errors of the corresponding charooeirp
the resulting string will be in S;.

With arguments similar as those in the proof of Theorem 175 fe 0, 1, if we use the quantum cod®; spanned
by {|u): u € S;} as the inner code and dn, k,¢ + 1], code as the outer code, we get[ann, K*] code that
correctst errors for the corresponding quantum AD channel.

Finally we will give an explicit expression foiS;| in terms of m. To show its dependency om, we write
am = [So| and By, = [S1].

Theorem 22:

1 1
oy = [So| = 5(37” +1) and B, =[5]= 5(37” = 1). (48)

Proof: For any stringa = ajas ... a,, € Ty, eithera,, = 0 or a,,, = 1. For a,,, = 0, the strings inS, thata
maps to are just the strings . .. a,,_1 maps to, concatenated with a single symbol chosen from twiorap(7, 2
for £4, and0, 1 for L5). Fora,, = 1, the stringsa maps to are those that ... a,,_; maps to, concatenated with

a fixed symbol. So we have the recurrence relation
Qo = 2O‘mfl + ﬂmfl- (49)
We also have

Solving Eqs. (49) and (50) together with the initial conalitiv; = 1 and 5, = 2, we have

U = %(3’” +1) and B, = %(37” —1), (51)

which proves the theorem. [ |
To achieve the maximal size of the constructed code, we dhaulays choosé|u): u € Sy} as the inner code.

Example 23:We takem = 2, and the outer code i, 1, 3]; (see, e.g., [7]), which is

4
1
k) D W gt k) @ p+ ) ® g+ 1) @ [p) @ |g), (52)

TV

wherew = exp(27i/5). We substitutg0), 1), ..., |4) with |00}, [11),|12), |21), and |22), respectively, and get a
(10,5))3 code which correctg errors of the channédl. If we substitutel0), [1), ..., |4) with |00}, |01), |10), |11),
and|22), we get a((10,5))3 2-code for the channel. In comparison, the best stabilizer code of lengthwhich
corrects2 errors is[10, 1, 5]s.

Other examples for which our construction outperforms ibzain codes include the(12,25)); and (14,125))3
2-codes constructed from outer codfs 2, 3]; and [7, 3, 3]s, while the best corresponding stabilizer codes are
[12,2,5]3 and[14, 4, 5]3.
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