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The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between
electronic, magnetic and lattice degrees of freedom. In order to obtain a microscopic understanding
of ultrafast demagnetization, information on the response of all three subsystems is required. A
consistent description of demagnetization and microscopic energy flow, however, is still missing.
Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to
laser excitation with ab initio calculations of the electron-phonon interaction and energy-conserving
atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics
and previously reported electron and magnetization dynamics. Our approach reveals that the spin
system is the dominating heat sink in the initial few hundreds of femtoseconds and implies a transient
non-thermal state of the spins. Our results provide a clear picture of the microscopic energy flow
between electronic, magnetic and lattice degrees of freedom on ultrafast timescales and constitute
a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics

of all three subsystems.

I. INTRODUCTION

The discovery of ultrafast demagnetization in ferro-
magnetic nickel in 1996 by Beaurepaire et al. [I] induced
a paradigm shift in the field of magnetism. The exper-
iment proved that magnetic order can be manipulated
on femtosecond time scales, therefore offering new per-
spectives in data storage. Since then, researchers have
worked towards a microscopic understanding of the phe-
nomenon [IHI4]. To acquire microscopic insights into the
processes governing the ultrafast demagnetization in itin-
erant 3d ferromagnets, knowledge about the response of
electronic, magnetic and lattice degrees of freedom to
laser excitation is required. Most of the experimental
work in literature focuses either on the magnetization
dynamics using the time-resolved magneto-optical Kerr
effect (tr-MOKE) [1, B, 15H22] or time-resolved X-ray
magnetic circular dichroism (tr-XMCD) [23H25], or on
the electronic response using time-resolved photoemis-
sion methods [13] [15] [26] 27]. In contrast, the lattice re-
sponse has only recently received similar experimental at-
tention [28430]. Knowledge of the lattice dynamics is es-
sential, as it plays several important roles in the dynamics
of the system: First of all, it serves as a sink for angular
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momentum [2§]. Second, in addition to receiving angular
momentum, the lattice is also an energy sink: it drains
energy from the electronic system on ultrafast timescales
via the creation of phonons. Hence, the electron-phonon
coupling strength strongly influences the energy content
of the electronic system and consequently also the magne-
tization dynamics. Finally, the lattice response is in turn
also influenced by the magnetization dynamics, both dur-
ing the demagnetization and the magnetization recovery
(remagnetization). The demagnetization of an isolated
sample requires spin excitations, e.g. spin flips and/or
magnons, which cost energy. This is also visible in the
equilibrium heat capacity, which shows a divergence at
the Curie temperature [31I]. Due to this energy cost, ul-
trafast demagnetization reduces the energy content in the
electronic system and thus indirectly influences the lat-
tice dynamics as well.

Several models have been developed and used to de-
scribe the magnetization dynamics of 3d ferromagnets
following laser excitation [T}, 3, [, [@] [7, B2 [33]. In addi-
tion to the magnetization dynamics, however, a consis-
tent model should also describe the electronic and lattice
responses correctly. In particular, due to the relatively
large heat capacity of the lattice, an accurate description
of electron-lattice equilibration is important. Nonethe-
less, literature values for the electron-phonon coupling
parameter Gop of nickel vary by more than an order of
magnitude [T, B, 26, B0, B4H41]. So far, experimental
studies of ultrafast lattice heating in nickel have mostly
employed optical techniques [306], 37, 42], which are sensi-
tive to both the electronic and the lattice responses. The
most direct technique to study the lattice is diffraction,
but there are only few studies that measured the lattice
heating directly with time-resolved diffraction [43] 44].
In addition, often the electron-phonon coupling was de-
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duced from observables without considering the energy
cost of demagnetization [3|, 34, [36, B7, 41]. The large
spread in literature values for G, can manifest itself in
an imprecise description of the electron-lattice equilibra-
tion and makes different models less comparable.

To obtain a consistent model for the microscopic
energy flow and the magnetization dynamics, it is
paramount to compare theoretical results to the response
of all three subsystems, including the lattice. At the
same time, the energy flow dynamics between the subsys-
tems need to be described consistently. In particular, en-
ergy flow to and from magnetic degrees of freedom needs
to be considered. Regarding the existing demagnetiza-
tion models, the microscopic three-temperature model
(M3TM) introduced by Koopmans et al. [3] as well as
conventional micromagnetic and atomistic spin dynam-
ics simulations [T}, [45H47] disregard the energy flow as-
sociated to the magnetization dynamics. In contrast, the
three-temperature model (3TM) introduced by Beaure-
paire et al. takes energy flow to and from the spin sys-
tem into account [I], 48]. However, to deduce the three
different coupling constants of the 3TM reliably from ex-
perimental data, information on the response of more
than one subsystem is required. In addition, the 3TM
describes the spin system based on its properties in ther-
mal equilibrium, which is a questionable assumption on
short time scales after laser excitation [7}, 26]. Similarly,
a modified version of the M3TM includes energy flow
to and from the spin system, but also assumes a ther-
malized spin system [I8]. Dvornik et al. introduced an
energy-conserving model that goes beyond a thermal de-
scription of the spin system by employing micromagnetic
simulations [40], but no direct comparison to experimen-
tally measured lattice dynamics has been made yet.

In this work, we fill this gap by providing a compre-
hensive experimental and theoretical description of the
lattice dynamics in ferromagnetic nickel. We use fem-
tosecond electron diffraction (FED) to directly measure
the lattice response to laser excitation. The excellent
time resolution of our electron diffraction setup allows
us to resolve the lattice heating in nickel on femtosec-
ond time scales. In addition, we perform spin-resolved
density functional theory (DFT) calculations to obtain
the electron-phonon coupling parameter G.,. Based on
these results, we first compare the experimental data to
two-temperature models (TTM). A comparison between
the commonly used TTM and a modified TTM with
strong electron-spin coupling reveals that energy trans-
fer to and from magnetic degrees of freedom has a strong
impact on the lattice dynamics. In the next step, we use
energy-conserving atomistic spin dynamics (ASD) simu-
lations to obtain a consistent description of the response
of the different subsystems to laser excitation. This hy-
brid approach of spin dynamics simulations and energy
flow model is shown to provide a consistent description of
both the non-equilibrium dynamics of the spin system as
well as the energy flow between the different subsystems.

II. EXPERIMENT

The samples were freestanding, polycrystalline nickel
films with a thickness of 20 nm sandwiched between 5 nm
layers of SigNy on both sides to avoid oxidation. They
were prepared on NaCl crystals by magnetron sputter
deposition at room temperature. To obtain freestand-
ing samples, the thin films were transferred onto stan-
dard TEM grids using the floating technique [49]. The
samples were not exposed to a magnetic field before the
measurements.

To study the ultrafast structural dynamics of nickel,
we used the compact femtosecond electron diffractome-
ter described in Ref. [50]. The samples were excited using
ultrashort (ca. 50-80 fs FWHM) laser pulses with differ-
ent wavelengths (2300 nm, 770 nm and 480 nm), at 4 kHz
repetition rate. The measurements were conducted at
room temperature (295K). The structural response of
the sample was probed in transmission using short elec-
tron pulses. The kinetic energy of the electrons was 60-
76 keV, depending on the experiment. In total, the tem-
poral resolution achieved in the experiments was around
170fs. Figure a) illustrates the measurement princi-
ple and shows a diffraction pattern of our polycrystalline
nickel sample.

To analyze the changes in the diffraction pattern after
laser excitation, the recorded images were radially aver-
aged. A typical radial average of our nickel samples is
displayed in Fig. [[(b) (solid blue line). Next, we per-
formed a fit to the radial averages. In the first step of
the fitting routine (static fit), we fitted the average of
all radial averages before laser excitation to a function
consisting of Lorentzian peaks plus a background func-
tion, all convolved with a Gaussian. The peak ampli-
tudes of the Lorentzians were adjustable but the peak
positions were fixed in the fit, except for a parameter for
the conversion of pixels to scattering vector, a param-
eter accounting for aberrations of the electron lens and
small correction factors for the individual peaks (<5 %
deviation). The peak width was one fit parameter, i.e.
it was the same for all peaks. The fit result is displayed
in Fig.[[{b) (dashed black line). We used the range from
the Bragg reflections (111) to (511), as shown. From the
Bragg reflection intensities, we deduce that the sample
has a preferred orientation, but this does not affect our
analysis of the lattice dynamics. In the second step of
the fitting routine, which yields the lattice dynamics af-
ter laser excitation (dynamic fit), we fixed all parameters
of the fit function at the values obtained from the static
fit, except the change in atomic mean-squared displace-
ment (MSD), the lattice expansion and the background
parameters, and fitted all the radial averages of the mea-
surement. The MSD is related to the peak intensities as
follows [51]:

1(t)

1 = exp{—g ¢ (7)) (1

Here, g is the scattering vector, (u?) is the MSD and I,
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Figure 1. Details of the femtosecond electron diffraction ex-
periment. (a) Schematic diagram of the experiment. The
electrons in the sample are excited using a visible or infrared
laser pulse. The excited electrons transfer energy to the spins
as well as to the lattice, depending on the respective coupling
strengths (black arrows). The lattice response is probed us-
ing an ultrashort electron pulse, which diffracts off the sample.
Diffraction patterns are recorded in transmission. b) Radial
average of the diffraction pattern (solid blue line) before laser
excitation. The dashed black line is a fit to the data (static
fit). The background contribution obtained from the static fit
was subtracted. ¢) Differences of the radial averages at sev-
eral pump-probe delays (solid lines) compared to the radial
average before laser excitation. The dashed black line shows
the fits to the data (dynamic fit). The details of the fits are
described in the text.

is the intensity before laser excitation. Figure C) shows
changes of the radial averages after laser excitation for
several pump-probe delays together with the fit results
of the dynamic fit (dashed black lines). The fit yields
the evolution of the MSD as a function of pump-probe
delay, which is then converted into lattice temperature
using the tabulated Debye-Waller factor of Ref. [51].
Figure [2| shows the evolution of the MSD and the lat-
tice temperature as a function of pump-probe delay for a
pump wavelength of 2300 nm (0.54eV). The temperature
rise can be well described by a single exponential func-
tion, convolved with the instrument response of ~ 170 fs.
The inset of Fig. [2] shows the time constants of the sin-
gle exponential function (fit results) for different fluences.
The time constant is found to increase linearly with ex-
citation density (dotted red line). Our time resolution

S 2] e 1850
32
?_ 10F o
3 7 1500 >
o 8f = ] =
%) 8 |+ s wtT 1450 8
= 6 2 e £
= SR PR {400 2
> ¢ 2 8
QS 5| = 1350 @
c 2 S
O Final lattice temperature [K]
ol . . " 4300

-1 (0] 1 2 3 4
Time delay [ps]

Figure 2. Time evolution of the mean squared displacement
(MSD) and the lattice temperature after laser excitation with
2300 nm light. In this measurement, the absorbed energy den-
sity was 1230 —5 J The black dots show the experimental data
and the black hne is a fit with a single exponential function,
convolved with a Gaussian (FWHM: 170 fs) to account for the
time resolution. The grey shaded area represents the standard
error of the data points, obtained from the fit of the radial
averages. The inset shows the time constants (fit result) for
different excitation densities. The error bars represent the
standard errors of the single exponential fits. The dotted red
line is a linear fit to the data (7 = a - (Tana — 295K) + b),
with @ = 0.341 + 0.07 % and b = 360 £ 20fs. The errors of a
and b are the standard errors from the fit.

of around 170 fs enables us to resolve the lattice heating.
We observe time constants that are significantly faster
than previous electron diffraction reports [43], [44].

IITI. RESULTS AND ENERGY FLOW MODELS
A. Two-temperature models

To go beyond a phenomenological description of the
lattice dynamics and connect our observations to micro-
scopic quantities, a model is required. For non-magnetic
materials, a frequently used model is the TTM [52] 53],
which describes the time evolution of the system by con-
sidering the lattice and the electrons as two coupled heat
baths. In magnetic materials, such an approach neglects
the magnetic degrees of freedom. However, they have
a non-negligible contribution to the total heat capacity,
as shown in Fig. a). Several approaches have been in-
troduced to take into account energy flow to and from
magnetic degrees of freedom [I} 40} 54]. Here, we follow
the approach of Refs. [26, [54] and consider electronic
and magnetic degrees of freedom as one heat bath with
a common temperature. In the following, we refer to
the magnetic contribution as ”spins” for simplicity. Note

that this includes the orbital magnetic moment. The
TTM equations are modified in the following way:
dT,
a(Ti): 7 = Gep(Tes)  (Tes = Th) (2)

dt
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Figure 3. Temperature-dependence of model parameters and
schematic diagrams of the models. (a) Heat capacities of the
electron (orange) and lattice subsystems (grey) as well as the
combined heat capacity of electrons and spins (blue). Elec-
tronic and lattice heat capacities are calculated based on the
spin-resolved DFT results. Since the magnetic contribution
to the heat capacity cannot be calculated using DFT, we use
the combined heat capacity of electrons and spins determined
from experiments [31] for the s-TTM. The magnetic contribu-
tion peaks at the Curie temperature 7. (vertical dotted line).
The light blue shaded area corresponds to the error estimate.
(a) Electron-phonon coupling parameter Gep as a function of
electron temperature, obtained from the spin-resolved DFT
calculations. The sum of majority and minority Gep is shown.
Panels (c¢), (d) and (e) are schematic diagrams of the s-=TTM,
the regular TTM and the ASD simulations, respectively (see
text for details).

Mes — Gop(T)- (1~ Te) +5(0) (3)
with Gep: electron-phonon coupling, 7j: lattice temper-
ature, Tos: temperature of electrons and spins, ¢;: lat-
tice heat capacity, co: electron heat capacity, cs: spin
heat capacity, S(t): source term (laser excitation). Fig-
ure[3{c) shows a schematic diagram of this modified TTM

[Ce (Tes) +cs (TGS)] :

4

(s-TTM) and Figure [3[d) visualizes the regular TTM for
comparison. The only difference between the two models
is that in the case of the s-TTM, the spin heat capacity
is added to the electronic heat capacity. For this we used
the combined heat capacity of electrons and spins pro-
vided by Ref. [31] (blue curve of Fig. [3(a)). The electron-
phonon coupling parameter Gep, shown in Fig. (b), as
well as the heat capacity of the lattice (grey curve of
Fig. B[a)), were obtained using spin-resolved DFT cal-
culations. The details of the calculations are described
in Appendix A. For the comparison of the s-TTM to
a regular TTM we also calculated the heat capacity of
the electrons from the DFT calculations (orange curve
of Fig. B(a)). To compare the two models to the ex-
perimentally measured lattice response, we determined
the absorbed energy densities based on the lattice tem-
perature in the range 1.5-4ps and the heat capacities.
The arrival time of the laser pulse was determined from
the exponential fits described earlier. Figure (] presents
the results for the s-TTM (blue curves) and the regu-
lar TTM (orange curves) for a range of fluences along-
side experimental results (black dots). The regular TTM
predicts a lattice response that is faster than the exper-
imental results and is therefore inadequate for describ-
ing of the dynamics of the system. In contrast, the s-
TTM yields remarkable agreement with the experimen-
tal results, in particular since the lattice response in this
model is determined by ab initio results and literature
values, without any fit parameters. Clearly, the s-TTM
describes the phonon dynamics much better than the reg-
ular TTM. This is an indication that a non-negligible
amount of energy flows to the spin-system, in agreement
with the results of Ref. [26]. This energy transfer leads
to a significantly lower transient electronic temperature
compared to the regular TTM (see Fig. [f](e)), which re-
sults in a slower electron-lattice-equilibration (see Equa-
tions [2J3). Note that in general, non-thermal electron
and phonon distributions can also lead to a slow-down
of the electron-lattice-equilibration. We found that for
nickel, non-thermal distributions cannot explain our ob-
servations (see Appendix B for details).

In conclusion, the ssTTM is able to capture the main
features of the energy flow to and from magnetic degrees
of freedom. It therefore provides a good description of
the lattice response. However, a shortcoming of the s-
TTM is that it implies quasi-instantaneous demagnetiza-
tion dynamics, in disagreement with experimental results
Bl 22]. To add a realistic description of the magnetiza-
tion dynamics, an explicit treatment of the spin system
is required, which will be discussed in the next section.

B. Atomistic spin dynamics simulations

In order to better describe the dynamics of the spin
subsystem as well as its impact on the other two subsys-
tems, we performed ASD simulations, which describe the
spin system based on a classical Heisenberg model and
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Figure 4. Comparison of the experimental results with the
regular two-temperature model (TTM) and the modified two-
temperature model with infinitely strong electron-spin cou-
pling (s-=TTM). The lattice temperature predicted by the
regular TTM (solid orange lines) and the s-TTM (solid blue
lines) is displayed together with the experimental data for
different energy densities (excitation wavelength: 2300 nm).
Panel (c) also shows the evolution of the electronic tempera-
tures for the two models (dashed lines). The grey areas repre-
sent the standard error of the experimental data points. Both
the TTM and the s-TTM results for the lattice temperature
are convolved with a Gaussian (FWHM: 150fs) to account
for the pulse duration of the electron pulse. Note that this
is less than the convolution width for the single exponential
fits of Fig. [2] because the pump pulse duration of ~80fs is al-
ready included in the TTM and s-TTM. The displayed energy
densities correspond to the absorbed energy densities of the
s-TTM.

the stochastic Landau-Lifshitz-Gilbert equation (s-LLG).
Details are described in Appendix C. In the ASD simula-
tions, the evolution of electron and lattice temperature is
described based on the TTM while additionally coupling
the spin system to the electron system. A schematic di-
agram of the model is displayed in Fig. e). Commonly,
ASD simulations disregard the energy cost of exciting the
spin system since the electron system is considered as a
heat bath that acts on the spins. However, in order to
account for energy flow between the electron and spin sys-
tem, the ASD simulations need to be energy-conserving.

This was achieved following a similar approach as de-
scribed in Ref. [55]. The energy H{S;(¢)} of the spin
system was monitored during each time step At of the
ASD simulation and the spin energy change AFE; was
calculated:

B, = (St + A0} - WS (@)

Here, S; are the individual spins of the simulation and
the factor % is a correction factor that accounts for the
quantized nature of the spins (see Appendix C for de-
tails). The energy change AE; of the spin system was
subtracted from the electron system, thus coupling the
two systems in an energy-conserving way. We note that
in our model direct spin-phonon coupling is not consid-
ered, which is a reasonable approximation due to the fast
time scales of the demagnetization dynamics [3, 22] and
the low magnetocrystalline anisotropy of nickel [56]. We
therefore modify the TTM equation describing the evo-
lution of the electronic temperature in the following way:

AT, AE,
Ce Tt = Gep (1—‘1 - Te) + S(t) - At (5)

Figure [5a)-(e) compares the results of the ASD sim-
ulations (solid red lines) using this approach with our
experiments (black dots). Similar to the s-TTM, the
ASD simulations maintain the excellent agreement with
the experimentally measured lattice dynamics, confirm-
ing the strong influence of the magnetization dynamics
on the lattice dynamics. Notably, the main advantage of
the ASD simulations is the improved description of the
spin system and its magnetization dynamics compared
to the s-TTM. This is shown in Fig. [p[f), which com-
pares the magnetization dynamics from the ASD simu-
lations with experimental results from Ref. [22]. Also
for the other fluences, a much better description of the
magnetization dynamics is obtained, as shown in Ap-
pendix C. In addition to the magnetization dynamics,
the ASD simulations also yield good agreement with pre-
viously reported time- and angle-resolved photoemission
(tr-ARPES) measurements of the electronic temperature
[26], shown in Fig. g). Regarding the lattice dynamics,
we find that for very high fluences (Fig. [5| (d) and (e)),
the agreement of the ASD simulations with the exper-
iments is less good. This can be due to pump-induced
changes of the electronic band structure, which are not
included in the model and become more pronounced at
higher fluences. For low and moderate absorbed energy
densities from 80 C% to 540 Cﬁ, the ASD simulations
yield excellent agreement with the lattice response. The
comparison to the electronic, magnetic and lattice re-
sponses shows that beyond describing the lattice dynam-
ics, the ASD simulations offer a consistent description of
the dynamics of all three subsystems.

To highlight and discuss some of the key advantages of
the ASD simulations and to gain further insights into the
energy flow between the different subsystems, we now dis-
cuss the details of the temperature and energy dynamics.



(@ 320
300
380 T T T T T
(b) PP
340 ‘/,»*" |
3006 20" ‘ ‘ ‘ 310 J/cm® |
© 900} s gleCtroNs | |
spins
8001 lattice 1
< o experiment
o 700 1
3 e ___
S 600 Curie temperature -
2
b 5001 1
|_ —___
o y ]
3
300 g ) ) ) 540 J/icm” |
(d) 500 , , R
400 + / 4
3
300 ; ) ) ) 9}0 J/icm
(e) j "“.. .‘ A4 v
450 / ]
3
300 ' ) ) ) 13@0 Jicm
-0.5 0 0.5 1 1.5 2 25
Time delay [ps]
® 1 51@ 1500 3
== 540 J/cm 770 J/cm
o
S o8l | === 1000
= \ s —
= e
06/ \> 500
0 1 2 0 02 04 06

Time delay [ps] Time delay [ps]

Figure 5. Atomistic spin dynamics (ASD) simulations and
comparison to the experiment. Panels (a)-(e) show the com-
parison between ASD simulations (solid red lines) and exper-
iments (black dots) for different absorbed energy densities.
The energy densities are slightly different compared to Fig. [
due to the different spin heat capacity in the ASD simula-
tions. In the simulations, the pump pulse has a FWHM of
80fs. The results for the lattice temperature are convolved
with a Gaussian (FWHM: 150 fs) to account for the pulse du-
ration of the electron pulse. Panel (c) additionally displays
the evolution of the electronic (solid blue line) and the spin
temperature (solid green line). Panel (f) displays the mag-
netization dynamics predicted by the ASD simulations (solid
green line), normalized to the magnetization at Ty = 0K,
as well as experimental results from Ref. [22] for the same
absorbed energy density (dashed black line). Panel (g) com-
pares the evolution of the electronic temperature in the ASD
simulations (solid blue line) to experimental data from Ref.
[26] (black dots). In this case, we assumed a shorter pump
pulse duration in the simulations (FWHM: 30fs). The grey
shaded areas of Panels (a)-(e) represent the standard error of
the data points. The grey shaded area of Panel (g) represents
the error of the experimental data points from Ref. [26].
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Figure 6. Microscopic energy flow between electronic, mag-
netic and lattice degrees of freedom according to the atom-
istic spin dynamics (ASD) simulations. Panel (a) shows how
the additional energy after laser excitation is distributed be-
tween the three different subsystems as a function of time.
The black line corresponds to the total additional energy in
the material, demonstrating that energy is conserved in the
model. The dashed green line shows the hypothetical energy
content of an equilibrated spin system with the magnetization
dynamics of the ASD simulations (Fig. [f[f)). Panel (b) visu-
alizes the energy flow during the demagnetization. There is
a large energy flow from the electrons to the spin system and
as well as energy flow from electrons to the lattice. Panel (c)
shows the energy flow during remagnetization. Energy flows
back from the spins to the electrons. In addition, energy flows
from the electrons to the lattice, such that the electron as well
as the spin energy decreases while the lattice energy increases.

For this discussion, we also calculate a spin temperature
(see Appendix C for details). Note that the spin sys-
tem is not always in internal thermal equilibrium during
the simulations, as will be discussed later. Figure c)
displays the temperature dynamics of electrons (blue),
phonons (red) and spins (green) after the initial laser ex-
citation for an absorbed energy density of 540 # The
electron temperature increases rapidly when the laser
pulse excites the sample. Contrary to the assumptions
made for s-TTM, however, the spin temperature does
not follow the electron temperature instantly. Instead,
the spin temperature increase is slower and delayed due
to the finite coupling between electrons and spins. Af-
ter ~160fs, the two subsystems have reached a similar
temperature, and they cool down at similar rates while
the lattice still heats up. Finally, thermal equilibrium is
reached after ~2-2.5 ps.

In addition to the temperatures, the ASD simulations
also provide the energy dynamics of the different sub-



systems, shown in Fig. @(a). After the initial laser ex-
citation, the total additional energy in the system (solid
black line) stays constant and energy is only transferred
between subsystems. Initially, the electron system (solid
blue line) absorbs all of the deposited energy. The rise
of the electronic temperature initiates the demagnetiza-
tion dynamics and energy immediately starts flowing to
the spin system (solid green line). Here, we identify the
key feature that is not captured by the regular TTM: Al-
ready shortly after excitation, the spin system contains
more energy than the electron system, which leads to the
significant slow-down of the lattice dynamics. The energy
flow during demagnetization is schematically depicted in
Fig.[6(b). In addition to the energy flow to the spin sys-
tem, energy also flows to the lattice, although at a lower
rate. After ~150fs, the energy flow to the spin system
stops due to the lower electronic temperature. This initi-
ates the remagnetization dynamics. Energy starts flow-
ing back from the spin system to the electrons, which is
visualized in Fig. @(c) Energy also flows from the elec-
trons to the lattice, such that in total, the electrons lose
further energy, although at a much slower rate than dur-
ing the demagnetization (see Fig. [6a)). Note that there
is no direct energy flow from the spins to the lattice in the
model, but the net energy flow from spins to the lattice is
indirect via the electrons. These processes continue until
thermal equilibrium is established.

The ASD simulations provide the spin temperature,
the spin energy as well as the magnetization simulta-
neously. By comparing these three quantities, further
conclusions on the non-equilibrium spin system can be
drawn. First of all, note that despite the fact that the
spin temperature rises above the Curie temperature (see
Fig. C)), the system does not demagnetize completely,
as displayed in Fig. f). This demonstrates that on
short time scales after laser excitation, the spin system
is not in internal thermal equilibrium. To further an-
alyze the characteristics of this transient non-thermal
state, we compare the magnetization and energy con-
tent of the spin system following laser excitation to the
case in which the spin system is heated quasi-statically.
The latter case is obtained from the ASD simulations by
increasing the energy of the system in small steps and
waiting for the system to reach equilibrium after each
step. Note that due to the classical nature of the ASD
simulations, thermal equilibrium of the spin system cor-
responds to Boltzmann statistics. Therefore, in all sim-
ulations we use a rescaled temperature model [47] to ob-
tain accurate equilibrium relationships between magneti-
zation, spin temperature and energy content of the spin
system (see Appendix C for details). By comparing the
simulations of the laser-excited dynamics to the equilib-
rium relationships, we find that on short time scales after
laser excitation, the ASD simulations predict a spin en-
ergy content that is higher than in equilibrium for the
same magnetization. This is visualized by the dashed
green line in Fig. @(a), which shows the energy content
of a hypothetical, thermalized spin system with the mag-

netization dynamics predicted by the ASD simulations
(see Fig. [f[f)). The comparison to the actual spin en-
ergy indicates that on short timescales, the spin system
is in a transient non-thermal state with a large amount
of high-energy spin excitations, in agreement with previ-
ous experimental results [26]. This behavior is analogous
to non-thermal phonon distributions: In cases in which
high-energy phonons couple strongly to the lattice, the
atomic displacements can be relatively small compared
to the lattice energy content on short time scales [57],
because the equilibrium relationship between atomic dis-
placements and lattice energy content is not applicable.
Similarly, if the distribution of spin excitations differs
from thermal equilibrium, the equilibrium relationship
between magnetization and energy content of the spin
system is not applicable. In the ASD simulations, the
energy transfer from electrons to the spin system creates
mostly high-energy spin excitations due to the localized
nature of the electron-spin interaction. During the ther-
malization of the spin system, these excitations then de-
cay into more delocalized spin waves with a larger magne-
tization reduction per energy. The lifetime of a spin wave
mode can be estimated by 7 ~ 51— [58], where w is the
angular frequency of the spin wave and « is the Gilbert
damping. In nickel, for the high-energy spin waves at the
Brillouin zone boundary [59], this corresponds to a life-
time of ~70fs. Consequently, the relationship between
magnetization and spin energy relaxes towards the ther-
mal relationship within a few hundred femtoseconds. On
longer time scales, the behavior of the magnetization re-
verses: the magnetization recovery is delayed compared
to the energy flow out of the spin system, particularly
for high fluences. The direct comparison of magnetiza-
tion and spin energy for several fluences is shown in Ap-
pendix C. We find that if the magnetization is strongly
reduced, the spin-system remains non-thermal for several
picoseconds. This behavior is in agreement with previ-
ous ASD simulation results and was attributed to domain
formation [7]. The comparison of the laser-induced dy-
namics to quasi-static heating highlights a main advan-
tage of the ASD simulations: in contrast to temperature
models, also non-thermal states of the spin system can be
described, since the evolution of the spins is simulated di-
rectly. The non-equilibrium behavior of the spin system
predicted by the ASD simulations results in good agree-
ment of the model with the experimentally measured lat-
tice dynamics as well as the magnetization dynamics.

Consequently, using ASD simulations we have im-
proved the theoretical description in two key aspects
compared to the s-TTM: First, the magnetization dy-
namics are described realistically since we no longer as-
sume infinite electron-spin coupling, which leads to in-
stantaneous demagnetization. Second, we no longer use
the equilibrium spin heat capacity to describe the spin
system in this highly non-equilibrium scenario. Instead,
we directly calculate the energy content of the spin sys-
tem in the ASD simulations. These improvements allow
for an excellent quantitative description of the experi-



mentally measured lattice dynamics and provide a con-
sistent model for the dynamics of the three subsystems
after laser excitation.

Lastly, while most parameters in the ASD simulations
are directly linked to measurable quantities such as the
Curie temperature, this is not the case for the Gilbert
damping parameter «, which is only indirectly accessi-
ble. Here, we use a=0.01, which yields good agreement
with the lattice dynamics and is consistent with literature
[60, [6I]. We tested different values for o from 0.005 to
0.02, shown in Appendix C, and found good overall agree-
ment to the experimental data, therefore showing the ro-
bustness of the model regarding variations of a. Since
experimental results can always be influenced by trans-
port or sample-specific effects, a more precise result for o
could be obtained by measuring the dynamics of several
subsystems on the same sample, ideally on a freestand-
ing thin film. Furthermore, since « is a phenomenological
constant that comprises several microscopic effects, ad-
ditional accuracy could be gained by disentangling these
microscopic effects in a future model.

IV. SUMMARY AND CONCLUSIONS

In this work we combined direct experimental measure-
ments of the lattice response with first-principles calcu-
lations of the electron-phonon interaction and atomistic
spin dynamics (ASD) modelling in order to obtain a full
picture of the dynamics in ferromagnetic nickel following
laser excitation. The combination of theory and experi-
ment enabled us to study the influence of the energy cost
of demagnetization on the lattice dynamics. We found
that energy flow to and from the spin system leads to a
significant slow-down of the lattice dynamics. The spin
system is the dominant heat sink in the initial few hun-
dreds of femtoseconds. Consequently, it is paramount to
include the energy flow to and from the spin system in
any description of the laser-induced dynamics. In case
only the lattice dynamics is of interest, a modified TTM
employing electron-phonon coupling from first-principles
calculations and incorporating infinitely strong electron-
spin coupling (s-TTM) suffices. The agreement of the
s-TTM with the measured lattice dynamics proved to
be vastly superior to that of the regular TTM. A con-
sistent description of the coupled energy flow between
all three subsystems and of the magnetization dynam-
ics is obtained with energy-conserving ASD simulations,
again incorporating electron-phonon coupling from first
principles. Both models unambiguously demonstrate the
strong influence of the magnetization dynamics on the
lattice dynamics, highlighting the importance of consid-
ering their coupling in a full description of the material’s
response to laser excitation. In addition, the ASD simu-
lations predict that shortly after excitation, the spin sys-
tem is in a transient non-thermal state and absorbs more
energy compared to thermal equilibrium. This finding
is corroborated by the excellent agreement of the ASD

simulations to the lattice, the electron and the magneti-
zation dynamics. Therefore, our findings indicate that in
order to describe both the microscopic energy flow and
the magnetization dynamics accurately, an approach that
considers non-thermal spin dynamics is necessary.

We expect our findings to be valid for other magnetic
metals as well, in particular for other itinerant 3d ferro-
magnets, but also for antiferromagnetic or ferrimagnetic
metals. Furthermore, a quantitative description of the
microscopic energy flow in ferromagnetic metals is valu-
able for the design of high-speed spintronic structures,
since the functionality of magnetic heterostructures de-
pends on their behavior in non-equilibrium states. This,
in turn, is governed by the microscopic energy flow and
magnetization dynamics within each component as well
as interfacial coupling.
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APPENDIX A: DFT CALCULATIONS

The calculations of the electron-phonon energy trans-
fer rates were performed using the DFT code abinit [62-
60]. The norm-conserving electron-ion pseudopotential
was generated using the FHI package [67] and is of GGA-
PBE type [68]. 10 electrons were treated explicitly and
18 electrons were frozen in the core. The plane wave ex-
pansion of the electronic wavefunction had a cutoff of 50
Ha. 20 electronic bands were calculated. These bands
are calculated with Fermi occupation featuring a smear-
ing of 0.001 Ha. An unshifted k-point grid of 32 x 32 x 32
points was used. The experimental lattice constant of
the fcc lattice of d = 6.6594 ap (=3.5240 A) was used.
Figure a) shows the result for the spin-polarized elec-
tronic DOS. The DFT calculation predicts a magnetic
moment of 0.815 up, which is larger than the experimen-
tally measured value of 0.616 up [69]. This overestima-
tion mainly affects the minority DOS at the Fermi level.
We therefore tested its effects on our models by shift-
ing the minority DOS to lower energies in several steps,
until the maximum of the minority DOS coincides with



the Fermi level. We then calculated TTM results based
on these shifted DOS. Since the differences in the lattice
responses are small, we conclude that the overestima-
tion of the magnetic moment has no significant effect on
our results. Regarding the phonons, the shape and en-
ergy range of the calculated phonon DOS (not shown)
agree well with neutron scattering experiments [70]. The
phonon DOS is used to calculate the lattice heat capac-
ity, resulting in excellent agreement with experimental
results [31].
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Figure 7. Spin-polarized electronic density of states (DOS)
and electron phonon coupling of nickel, calculated using spin-
resolved DFT. (a) Electronic DOS. The Fermi level is marked
with a dashed black line. (b) Electron-phonon-coupling pa-
rameter Gep as a function of electron temperature. The ma-
jority Gep (blue), the minority Gep (red) and their sum (black)
is displayed.

To obtain the electron-phonon coupling G¢p, the spin-
resolved electron-phonon matrix elements were computed
as described in Ref. [71] for a 8 x 8 x 8 grid of g-points.
From the results, we extracted the Eliashberg functions
(also phonon-branch resolved) for majority and minor-
ity electrons. The electron-phonon couplings as well as
the electronic heat capacities were then calculated as in
Ref. [57]. The result for the electron-phonon coupling is
displayed in Fig. b). For the calculation of the spin-
resolved electron-phonon coupling and electronic heat ca-
pacities, we assume that the particle number is conserved
within each spin type. In practice, for the electron tem-
peratures reached in our experiments, the chemical po-
tential shifts are small, and thus the differences between
assuming two separate chemical potentials or assuming a
common chemical potential are small. For the tempera-
ture models as well as the ASD simulations, we use the
sum of majority and minority G, (black curve of Fig-
ure b)) Correspondingly, the electronic heat capacity

used in the models is also the sum of minority and ma-
jority electronic heat capacity.

We note that our result for the electron-phonon cou-
pling is significantly larger compared to results by Lin
et al. [38], but similar to a spin-resolved calculation by
Ritzmann et al. [30]. We also find significant differences
compared to the values used in existing demagnetization
models: In the original 3TM by Beaurepaire et al. [I], a
much smaller value of 8107 W/(m?K) is used, resulting
in a slower lattice response compared to our experiments.
In the M3TM [3], the value for Gep, is 4.05-10'® W /(m3K),
which differs from our result by more than a factor of
2. In addition, the heat capacities are different. In the
uT model [6], the same G, of 110 W/(m?K) is used
for majority and minority carriers, whereas the G, from
our ab initio calculations shows significant differences be-
tween majority and minority carriers.

APPENDIX B: THE INFLUENCE OF
NON-THERMAL ELECTRON AND PHONON
DISTRIBUTIONS

The TTM relies on the assumption that electrons and
phonons are each in a thermal state, which is not nec-
essary fulfilled shortly after laser excitation. For elec-
trons, in metals, thermalization is typically rather effi-
cient due to the large phase space for electron-electron
scattering. In the case of nickel, there is experimental
evidence for efficient electron-electron scattering [26]. In
addition, to test if our measured lattice dynamics are
influenced by non-thermal electrons, besides the experi-
ments with 2300 nm, we also performed experiments with
800 nm and 480 nm excitation wavelength and compared
the lattice dynamics. Figure [§(a) shows the time con-
stants of a single exponential fit to the lattice tempera-
ture for these three wavelengths and different excitation
densities. No dependence of the lattice dynamics on the
wavelength is observed. From this, we conclude that elec-
trons thermalize on timescales significantly faster than
the timescales of electron-phonon equilibration. Other-
wise, we would expect an influence of the photon energy
on the lattice dynamics, since different initial states are
excited and different electronic states have different life-
times for electron-phonon scattering. Hence, we conclude
that it is justified to assume a thermalized electron dis-
tribution in our models.

On the other hand, for phonons, the assumption of
a thermalized distribution is often more problematic
[30, 57]. We investigated the influence of non-thermal
phonon distributions on our observable, the MSD, using a
non-linear lattice model (NLM) [57]. The three different
phonon branches are treated as individual subsystems in
order to account for energy redistribution between them.
For this, we calculate the branch-projected phonon DOS
and Eliashberg functions, shown in the inset of [8[b). We
don’t take into account direct phonon-phonon coupling,
which means that the equilibration between the phonon
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Figure 8. Experimental and theoretical results regarding

electron and phonon thermalization. (a) Time constants
of electron-lattice equilibration for different excitation wave-
lengths, obtained by single-exponential fits of the experimen-
tal data. The grey dots are the same data as in the inset of
shown again for comparison. The error bars represent the
standard errors from the single exponential fits. (b) Com-
parison of two-temperature model (TTM) results with non-
thermal lattice model (NLM) results for two different fluences.
Experimental data for 2300 nm excitation wavelength are also
shown. The inset shows the Eliashberg function (solid lines,
sum of majority and minority Eliashberg function) and the
phonon DOS (dashed lines) projected onto the three phonon
branches.

branches is mediated by electron-phonon coupling only.
The comparison between TTM and NLM is displayed in
Fig. b) and shows only small differences between the
lattice temperatures predicted by the two models. In ad-
dition, a previously reported model predicts only minor
deviations of the electronic temperature evolution com-
pared to a TTM for nickel [30]. There are experimental
observations of phonon thermalization processes in nickel
[29], mostly observed in the range of 1-4 ps after laser ex-
citation. Since we don’t observe any significant MSD
changes during this period (see Figure 7 we conclude
that the effect of these phonon thermalization processes
on the MSD is small, and that the sub-picosecond dy-
namics that we observe correspond to electron-phonon
equilibration. Based on these theoretical and experimen-
tal results, we conclude that in the case of nickel and
for the purpose of describing energy flow between elec-
trons and the lattice, a thermalized phonon population
is a reasonable approximation.
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Figure 9. Atomistic spin dynamics (ASD) simulation results
for equilibrium and non-equilibrium conditions. (a) Compari-
son between experimentally measured equilibrium heat capac-
ity (black circles) and the simulated equilibrium heat capacity
(yellow line). The experimentally measured spin heat capac-
ity corresponds to the heat capacity of electrons and spins [31]
minus the electronic heat capacity from our DFT calculations.
(b) Comparison between the experimentally measured mag-
netization curve as a function of temperature from Ref. [72]
(black circles) to the simulation (yellow line). (c) Magnetiza-
tion dynamics from the ASD simulations for several fluences
of our experiments. (d) Energy content of the spin system as a
function of pump-probe delay for several fluences (solid lines).
For comparison, the dahsed lines show the energy content of
a hypothetical, thermalized spin system with the magnetiza-
tion dynamics from the ASD simulations (see Panel (c)). (e)
Experimentally measured lattice dynamics (black dots) and
ASD simulation results (solid lines) for different values of the
Gilbert damping parameter «. The absorbed energy density
is 540 # (f) Magnetization dynamics predicted by the ASD
simulations for different values of a (solid lines). The dashed
black line corresponds to the experimental magnetization dy-
namics for the same absorbed energy density of 540 # from

Ref. [22].



APPENDIX C: ASD SIMULATIONS

In the ASD simulations, the spin system is described
using a classical Heisenberg Hamiltonian:

H:—ZJijsi-sj—Zdzsj (6)

i<j

Here S; represents a unit vector describing the direction
of the local magnetic moment at site i. Each spin S;,
couples to its neighboring spins S; via the exchange con-
stant J;; = 2.986 - 10721 J. We use a simple cubic lattice
structure with a spin volume of V; = 10.94 A3. We tested
different lattice structures and found that this has no sig-
nificant effect on our results. To obtain the correct spin
energy from Equation 6] a correction factor of 1/3 is nec-
essary (see Equation [4). This accounts for the fact that
the spins are quantized in reality (s =~ 1/2 for nickel),
but described with the classical Heisenberg Hamiltonian
(s=00). The relationship between the exchange constant
Ji; and the Curie temperature 7, depends on the quan-
tum number s. For a simple cubic system with only near-
est neighbor interaction [73],

82 3]6]3

=) T ™

Consequently, to obtain a good description of both the
Curie temperature and the energy content of a spin sys-
tem with finite s, a factor of 5(57-25-1) (1 for s = ) needs to
be considered. The second term of Equation [6] describes
the on-site anisotropy with easy-axis along the z axis
and a constant anisotropy energy, d, = 5- 10724 J. The
ASD-simulations are performed by solving the stochastic-
Landau-Lifshitz-Gilbert equation (s-LLG) numerically
using the Nvidia CUDA C-API |74, [75].

2
{1+ 0%, 08 _ —(Si x Hy) —a(Si x (8i x Hy)).
vy ot

(3)
v = 1.76 - 10! is the gyromagnetic ratio and H; is the
effective field (see below). For the magnetic moment p
we use the literature value of 0.616 up [69], which con-
tains the spin as well as the (smaller) orbital contribu-
tion. The phenomenological Gilbert damping « deter-
mines the coupling strength of the spin system to the
electron system and thus the energy transfer rate be-
tween these two subsystems. A Langevin thermostat is
included, by adding a field-like stochastic term ¢; to the
effective field H; = {;(¢) — g—;"i. The added noise term

has white noise properties [76]:

(GO) =0 and (GO0 = 20k Tt 50/

9
The electron temperature Ty is therefore used to scale
the noise and has a direct impact on the spin dynamics
via the stochastic field {(¢) entering the s-LLG. The s-
LLG is solved for system sizes of several million spins.
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These large systems yield minimal boundary effects and
provide a large enough number of spins for calculating
macroscopic parameters. While showing excellent qual-
itative agreement with experiments, due to their clas-
sical character ASD simulations are typically unable to
quantitatively reproduce thermodynamic properties such
as the heat capacity or the temperature-dependent equi-
librium magnetization. To counteract this shortcoming,
we make use of a rescaled temperature model [47]. A
modified electron temperature Ty, based on T, and a
material dependent factor 5 = 2.322 is used:

8
Tel
Ty = To (22 10
(n) (10)

This correction allows us to reproduce experimentally
measured quantities such as the temperature-dependent
equilibrium magnetization curve and the heat capac-
ity (see Figure [0fa) and (b)). For the temperature-
dependent equilibrium magnetization (Figure [0[b)) we
obtain excellent agreement with experimental values.
The spin heat capacity (Figure [Jfa)) is overestimated
due to the classical nature of the spins in the ASD-
simulations.

The spin temperature in ASD simulations can be cal-
culated through the instantaneous spin configuration fol-
lowing Ref. [71]:

T — Hs <Zz S; x H2|2>

(11)

Here S; and H; represent the normalized spin variable
and effective field at the lattice site ¢. The spin tem-
perature in Eq. is defined as the ratio between the
entropy and energy of spin degrees of freedom, S; x H;
and S; - H;, respectively. Note that despite this defini-
tion of a spin temperature, the spin system is not always
in internal thermal equilibrium during the simulations.
The values for the electronic heat capacity, lattice heat
capacity and electron-phonon coupling are taken from
the DFT calculations described earlier. The laser pulse
is assumed to be Gaussian, with a FWHM of 80fs and
its peak intensity at ¢ = 0.

Figure [9fc) shows the ASD simulation results for the
magnetization dynamics as a function of pump-probe
delay for different absorbed energy densities and Fig-
ure El(d) shows the corresponding energy content of the
spin system. For comparison, the dashed lines show the
energy content of a hypothetical, thermalized spin sys-
tem with the magnetization dynamics resulting from the
simulations (Figure [9c)). The comparison directly re-
veals the non-thermal state of the spin system on short
time scales after excitation. Figure[0fe) and (f) show the
lattice and magnetization dynamics for different values of
the Gilbert damping parameter a alongside experimental
results.
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