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Abstract

This paper completes the classification problem which was proposed in the previous pa-
per [1] in which we attempted to characterize the minimal models and families obtained by
the tensor products and the simple current extensions of minimal models under the condition
that the characters of simple modules satisfy modular differential equations of third order,
and a mild condition on vertex operator algebras. In the previous work, several vertex opera-
tor algebras which are not the minimal models appeared. Five eleventh of them are identified
to well-known vertex operator algebras which are all vertex operator algebras related with
orbifold models of lattice vertex operator algebras. However, we were not able to deny the
existence of simple, rational vertex operator algebras of CFT and finite type with central
charges either 164/5 or 236/7 under the condition on which we worked in [1]. The char-
acterization of minimal models with at most two simple modules was achieved in the same
paper.

The numbers 164/5 and 236/7 were already appeared in the paper of Tuite and Van ([17])
in the different context. However, they were out of reach of our conclusion. Moreover, we
solve the conjecture, which was proposed by Hampapura and Mukhi [8], that the j-function
is expressed by characters of the minimal models.
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1 Introduction

In this paper we study a simple, rational vertex operator algebra V (simply VOA) of CFT
and finite (C2-cofinite) type, which has further properties that (a) the central charges is
either 164/5 or 236/7, (b) the weight one space is trivial, (c) characters of simple modules
over V are solutions of a monic modular linear differential equations (simply MLDE) of third
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order. In [1], we have shown that there are eleven rational numbers which can be central
charges of VOAs satisfying the conditions (b) and (c). Moreover, we have obtained the
exact expression of the MLDE for each central charge. Three of these numbers uniquely
correspond to central charges of the minimal models and their tensor product, respectively,
and six of them coincide with central charges of Z2-orbifold models of lattice VOAs and
their extensions (which include the moonshine VOA) ([1], [8], [17]). However, it was not
known if the remaining two central charges 164/5 and 236/7 have corresponding VOAs,
respectively. Our principal aim of this paper is to show that a simple, rational VOA of CFT
and finite type satisfying the conditions (a)–(c) does not exist. Combining this with the
partial classification obtained in [1], we complete a proof that any simple, rational VOA of
CFT and finite type, which satisfies (b) and (c) is isomorphic to one of the minimal models
with central charges 1/2 and −68/7 and the two-fold tensor product of the minimal model
with the central charge −22/5 if it is not a Z2-orbifold model of a lattice VOA and is not its
extensions.

Let V be a simple VOA with a central charge either 164/5 or 236/7, which satisfies the
condition (b) and (c). Then we can uniquely determine the MLDE in (c) as it was written
in [1]. Therefore, we can find indicial roots and then solutions of the MLDE which would
be the characters of simple V -modules. It is then well-known that the space of solutions of
an MLDE is invariant under the usual slash 0 action of the full modular group Γ1 = SL2(Z).
This is closely related to the modular invariance of the space of characters. Then we can
determine the square matrix of degree three, which represents the transformation S : H → H
(τ 7→ 1/τ) where τ ∈ H.

Once the S-matrix has been computed, one can obtain the quantum dimension of each
simple module by Lemma 4.2 and Theorem 5.1 of [4], and then the so-called global dimension
(which is the sum of square of quantum dimensions). In particular, one knows that the
quantum dimension qdimM for any simple V -module M is not less than 1. Proposition 4.5
of [4] now shows that the global dimension of V (global(V )) is simply written as global(V ) =
1/(S00)

2. In this paper we find that the value of S00 is smaller than 3. However, this
contradicts to global(V ) ≥ 3 as the number of simple modules is at least three , which is also
proved in this paper. Thus the theory of quantum and global dimensions developed in [4]
allows one to prove non-existence of VOAs which we study.

Warning. The reader may think that the classification of “unitary” modular tensor categories
with rank 3 proved in the section 2 of [18] implies the main results of this paper. However,
since our VOAs are not unitary, one cannot apply the their result to our problem.

This paper is organized as follows. In Section 2 we give a brief review of basics of VOAs.
The notion of vacuum-like vectors introduced in [12], which is used in Section 5, is also
explained here. The definitions and the properties of MLDEs, and the concept of vector-
valued modular forms are presented in Section 3. We recall briefly an important result on
the quantum dimensions and the global dimensions of VOAs in Section 4. The explicit
expressions of MLDE associated with central charges 164/5 and 236/7 are given in Section 5.
In Section 6 and 7 we compute the matrix elements of the-S-transformation on bases of the
spaces of the MLDEs which are associated with central charges 164/5 and 236/7, respectively,
and obtain the global dimensions. The main theorems (Theorem 8 and Theorem 10) are
proved in these sections.
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Since the explicit expressions of the MLDEs for the central charge 236/7 are quite com-
plicated, they are described in the first part of Appendix. The second part of Appendix is
devoted to proofs of two expressions of the j-function observed in [8] in terms of solutions of
the MLDEs (for c = 164/5 and 236/5).

Acknowledgments. The first author is partially supported by JSPS KAKENHI Grant
Number JP25800003. The second author is partially supported by Grant-in-Aid for Challeng-
ing Exploratory Research, Grant-in-Aid for Scientific Research (C) 17K04171, International
Center of Theoretical Physics, Italy, and Max-Planck institute for Mathematics, Germany.

2 Vertex operator algebras

In this section we give a brief introduction to the theory of vertex operator algebras (for
the complete definition see cf. [11] and [15] ). A vertex operator algebra (simply VOA) is
a Z-graded vector space V =

⊕
n∈Z Vn equipped with a linear map

V → EndC(V )[[z, z−1]]
(
a 7→ Y (a, z) =

∑
n∈Z

a(n)z
−n−1

)
.

The vector space V is required to have a so-called vacuum element 1 ∈ V0 and a Virasoro
element ω ∈ V2 satisfying a number of axioms. One of the axioms demands that Ln = ωn+1

(n ∈ Z) define a module of the Virasoro algebra over V with a central charge c ∈ C, i.e.

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
c δm+n,0, (1)

Another axiom asks that L0 is the grading operator. The non-negative integer of an ele-
ment v ∈ Vn is said to have an weight n which is denoted by wt(v). A VOA V is called of
CFT type when Vn is trivial for any n < 0 and V0 is one-dimensional with the basis {1}.

A weak module of a VOA V is a pair (M,Y ) of a vector space over the complex number field
and a linear map Y : V → EndC (M)[[z, z−1]] satisfying conditions required as V -modules
(see e.g. [11], [15] ). A weak V -module M is called a V -module if

(a) it is graded by C; M =
⊕

λ∈CMλ,
(b) for any complex number λ there exists a positive number N such that Mλ+n = 0 for any
n+N < 0,
(c) the endomorphism a(n) has weight wt(a) − n − 1, i.e., a(n)Mλ ⊂ Mλ+wt(a)−n−1 for any
homogeneous a ∈ V and n ∈ Z,
(d) the endomorphism L0 is the grading operator of M .

A module of V , which does not satisfy the condition (d), is called admissible. If a V -moduleM
is simple, the conditions (b) and (c) shows that there is a unique complex number λ such
that M =

⊕∞
n=0Mλ+n and Mλ ̸= 0. We call this λ the conformal weight of M . A VOA

is called rational when the number of simple module is finite and any admissible module is
completely reducible (see [5] and [20]).

A VOA V is called of finite type (or C2-cofinite) if the subspace of V , whose elements are
linear combinations of a(−2)b for all a, b ∈ V , has a finite codimension in V . It is known that
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if V is of finite type, then the number of simple V -modules is finite and the central charge
of V as well as conformal weights of simple modules are rational numbers ([2], [16]).

One of interesting simple, rational VOAs of CFT and finite type would be a series of the
minimal model V = L(cp,q, 0) which was studied intensively in [19](Theorem 4.2) by using
works of Feigin and Fuchs ([6], [7]). This VOA is the simple quotient of the Verma module
of the Virasoro algebra with central the charge cp,q = 1 − 6(p − q)2/pq for coprime positive
integers p and q. It is noteworthy that any simple V -module is isomorphic to an irreducible
highest weight module L(cp,q, hr,s) with the highest weight

hr,s =
(rq − sp)2 − (p− q)2

4pq

for 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ q − 1 so that the number of simple V -modules is equal
to (p− 1)(q − 1)/2 (see also [19]).

Let V be a VOA and M a weak V -module. An element v ∈ M is called vacuum-like
when Y (a, z)v ∈ M [[z]], i.e., Y (a, z)v has does not have negative exponents of z. It is known
in [12](Proposition 3.3) that v ∈ M is vacuum-like if and only if L−1v = 0. The following
proposition is proved in [12] (Proposition 3.4).

Proposition 1 ([12]). Let V be a vertex operator algebra and M a weak V -module. Then
HomV (V,M) is isomorphic to the space of vacuum-like elements of M .

3 Modular linear differential equations

In this section we give a short explanation of the concepts of vector-valued modular forms
and modular linear (ordinary) differential equations.

Let H be the complex upper-half plane. For a non-negative integer k and a holomorphic
function f on H, we define the slash action of γ =

(
a b
c d

)
∈ Γ1 = SL2(Z) on f by (f |kγ)(τ) =

(cτ +d)−kf(γ(τ)), where γ(τ) = (aτ + b)/(cτ +d). We simply write f |kγ instead of (f |kγ)(τ)
if this causes no confusion.

A vector-valued modular form (VVMF) of weight k is a column vector t(f1, f2, . . . , fn)
of holomorphic functions on H such that

(a) t(f1, f2, . . . , fn)
∣∣
k
γ = ρ(γ) t(f1, f2, . . . , fn) for any γ ∈ Γ1, where ρ is an n-dimensional

representation of Γ1 on GLn(C),
(b) the component fj has a Fourier expansion fj = qλj

∑∞
i=0 a

j
i q

i, where λj ∈ R and q = e2πiτ

(i =
√
−1, τ ∈ H).

Let

E2k(τ) = 1− 4k

B2k

∞∑
j=0

σ2k−1(j)q
j (k = 1, 2, . . . )

be the (normalized) Eisenstein series of weight 2k, where Bm is the mth Bernoulli number
and σm(n) is the division function. Let M∗(Γ1) =

⊕∞
k=1M2k(Γ1) be the graded space of

modular forms on Γ1 and let d : M∗(Γ1) → M∗+2(Γ1) be the Serre derivation defined by

d(f) = f ′ − k

12
E2(f) , f ′ = q

df

dq
=

1

2πi

df

dτ
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for any f ∈ Mk(Γ1). A monic modular linear differential equation (simply MLDE) of weight 0
is a linear ordinary differential equation

dn(f) +

n−1∑
j=0

Pjd
j(f) = 0 ,

where an unknown f is a holomorphic function on H and Pi is a holomorphic modular form
of weight 2(n− i). Then [14](Theorem 3.7 and Theorem 4.3) says:

Proposition 2. Let t(f1, f2, . . . , fn) be a column vector-valued modular form of weight 0
whose entries are linearly independent. If λ1 < λ2 < · · · < λn, where λj is the smallest
exponent of q of the Fourier expansion of fj, then {f1, f2, . . . , fn} is a basis of the space of
solutions of a modular linear differential equation of nth order if and only if

n(n− 1) = 12

n∑
j=1

λj . (2)

Remarks. (a) If all smallest exponents of q of the Fourier expansions of fj (1 ≤ j ≤ n)
satisfy λ1 < λ2 < · · · < λn , then vector-value function F = t(f1, f2, . . . , fn) is called strictly
normalized.
(b) If the set of entries of VVMF is linearly independent, then there exists an invertible
matrix A such that AF is strictly normalized. Moreover, the matrix A can be written as
a products of elementary matrices.
(c) We call (2) Mason’s equality.

Since any MLDE has a regular singularity only at q = 0 ([14]), one can use the method
of Frobenius to obtain solutions of MLDEs. The following lemma in [13] (Corollary 2.4) is
easily checked.

Lemma 3. Let λ1, λ2 and λ3 be mutually distinct rational numbers. Then there is a unique
monic modular linear differential equation of third order whose indicial roots are λ1, λ2

and λ3.

4 Quantum and global dimensions

In this short section we recall the definitions of quantum dimensions and global dimensions
and present a theorem and a proposition which are used in the following sections.

Let V be a VOA and M a simple V -module. The trace function on M is defined by

trM (v, τ) = trM o(v)qL0−c/24 (3)

for any homogeneous element v ∈ V , where o(v) = v(wt(v)−1) which is an endomorphism
on M that preserves any homogeneous space of M . It is proved in [20] (see also [5]) that
the series trM (v, τ) converges for any fixed v and is holomorphic on H if V is of finite type.
Since o(1) = idM , the character chM (τ) of M coincides with trM (1, τ).
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The slash action of Γ1 = SL2(Z) on the trace functions is defined by

(trM |kγ)(v, τ) = (cτ + d)−k trM (v, γ(τ)) for any γ =

(
a b
c c

)
∈ Γ1 ,

where k = wt(v). The modular invariance of the space of trace functions are proved in [20]
(Theorem 5.3.2).

Theorem 4. Let V be a simple, rational vertex operator algebra of CFT and finite type
and let M0, M1, . . . , Mn be the set of inequivalent simple V -modules. Let γ be an element
of SL2(Z). Then there exist complex numbers γij such that

trM i |γ(v, τ) =
n∑

j=0

γij trMj (v, τ) (4)

for all v ∈ V . Moreover, the complex numbers γij do not depend on v ∈ V .

There is a matrix S = (Sij) such that

trM i(v,−1/τ) = τwt(v)
n∑

j=0

Sij trMj (v, τ) (5)

for homogeneous v ∈ V . The matrix S ∈ GLn+1(C) is called the S-matrix associated with V
in the literature.

Let V be a VOA and M a simple V -module. Suppose that the characters chV (τ)
and chM (τ) are holomorphic functions on H. The quantum dimension of M (which is origi-
nally introduced in [3]) is defined by

qdimV M = lim
y→+0

chM (
√
−1y)

chV (
√
−1y)

, (6)

where y > 0 is a real number. Dong, Jiao and Xu have proved the following theorem
in [4](Lemma 4.2, Theorem 5.1).

Theorem 5. Let V be a simple, rational vertex operator algebra of CFT and finite type and
let M0, M1, . . . , Mn be the set of inequivalent simple V -modules, where M0 = V . Let λi be
a conformal weight of M i.

(a) Suppose that λi > 0 for all 1 ≤ i ≤ n. Then S00 ̸= 0 and qdimV M i = Si0/S00,
where S = (Sij) is the S-matrix associated with V .

(b) For any integer 0 ≤ i ≤ n, the quantum dimension of M i belongs to the set

{2 cos(π/n) |n ≥ 3} ∪ {a | 2 ≤ a < ∞} ,

where a is an algebraic number. In particular, we have qdimV M i ≥ 1.
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Suppose that a VOA V has only finitely many simple modules M0, M1, . . . , Mn, where
M0 = V , and that chM i(τ) are holomorphic functions on H. Then the global dimension of V
is defined by

global(V ) =
n∑

j=0

(qdimV M j )2 . (7)

It then follows from the very definition of the global dimension and Theorem 5 that global(V )
is not smaller than the number of simple V -modules.

Corollary. Let V be a VOA satisfying conditions as in Theorem 5. Then the global dimension
of V is not smaller than the number of simple V -modules.

In [4] (Proposition 4.5) they found a fairly simple formula of the global dimension.

Proposition 6 ([4]). Let V be a simple, rational vertex operator algebra of CFT and finite
type. Let

{
M0, M1, . . . , Mn

}
, where M0 = V , be the set of inequivalent simple V -modules.

If the conformal weight of M i for any i > 0 is positive, then we have global(V ) = 1/(S00)
2,

where S = (Sij) is the S-matrix associated with V .

5 Modular linear differential equations of third or-

der with the central charges 164/5 and 236/7

Let V be a simple VOA of CFT type. Suppose that V1 = 0 and characters of simple V -
modules are solution of an MLDE of third order. It was shown in [1] that the central charge
of V is an element of the set

{−68/7, 1/2, −44/5, 8, 16, 47/2, 24, 32, 164/5, 236/7, 40} . (8)

In [17] these numbers were found in the different context (cf. [8]).
It was verified that there exists at least one VOA whose central charge is an element of (8)

except 164/5 and 236/7. In this paper we show that there does not exist a simple, rational
VOA of CFT and finite type, whose central charge is either 164/5 or 236/7.

The explicit expressions of the MLDEs of third order with the central charges 164/5
and 236/7 are

f ′′′ − 1

2
E2f

′′ +
(1
2
E′

2 −
169

100
E4

)
f ′ +

1271

1080
E6 f = 0 (9)

and

f ′′′ − 1

2
E2f

′′ +
(1
2
E′

2 −
149

84
E4

)
f ′ +

93869

74088
E6 f = 0 , (10)

respectively. The explicit expressions of solutions of the MLDEs (9) and (10) are given in [1],
which are homogeneous polynomials of characters of simple modules of the minimal models
with the central charges c2,5 = −22/5 and c2,7 = −68/7, respectively.

Remark. In this paper by means of (2) and the S-transformations of (11) and (14) we will
give another proof that they are solutions of (9) and (10), respectively.
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Now suppose that there exists simple, rational VOA V which is of CFT and finite type,
whose central charge is either 164/5 or 236/7 and characters are solutions of an MLDE,
respectively. The explicit expressions of the S-transformations of the space of the solutions
of (9) and (10), which will be shown to equal to the S-transformation of the spaces of
characters of simple V -modules (up to similarity transformations) as shown in the proof of
Theorem 8, show global(V ) < 3 which implies that V is not of finite type and rational since
global(V ) ≥ 3 by Theorem 5 (b) as discussed in §§6–7.

Remark. If we drop the assumption that the spaces of characters are included in the spaces
of solutions of MLDEs (9) and (10), respectively, then there are examples of simple, rational
VOA V which is of CFT and finite type, whose central charge is either 164/5 or 236/7.
Let L (4/5, 0) be the minimal model with central charge 4/5. Then L (4/5, 0)⊗41 is a sim-
ple, rational VOA of CFT and finite type with the central charge 164/5. Let L (6/7, 0)
and L (−68/7, 0) be the minimal model with central charges 6/7 and 68/7, respectively.
Then L (6/7, 0)⊗62 ⊗ L (−68/7, 0)⊗2 is a simple, rational VOA of CFT and finite type with
the central charge 236/7.

6 Central charge 164/5

In this section we will show that there does not exist a simple, rational VOA V which is
of CFT and finite type, whose central charge is 164/5 and characters are solutions of the
MLDE (9).

Let V be a simple VOA of CFT and finite type with the central charge 164/5. Suppose
that characters of simple V -modules are solution of the MLDE (9). It is easily seen that the
set of the indicial roots of (9) is {−41/30, 5/6, 31/30}.

We first present a set of solutions f1, f2 and f3 (unique up a scalar factor) whose leading
exponents of Fourier expansions are indicial roots of the MLDE (9), which are written in
terms of homogeneous polynomials of the functions

g(q) = q−1/60
∞∏
n=0

1

(1− q5n+1) (1− q5n+4)
,

h(q) = q11/60
∞∏
n=0

1

(1− q5n+2) (1− q5n+3)
.

We now define the functions f1, f2 and f3, respectively, by

f1 = k1 (g, h) = q−41/30
(
1 + 90118q2 + 53459408q3 + · · ·

)
,

f2 = k2 (g, h) = 11271q−5/6
(
8 + 2915q + 266160q2 + · · ·

)
,

f3 = k1 (h,−g) = 5084q31/30
(
121 + 30008q + 2304726q2 + · · ·

)
,

(11)
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where k1 and k2 are homogeneous polynomials of degree 82 defined by

k1(g, h) = g12
(
g70 − 82g65h5 + 93029g60h10 + 46912692g55h15

+ 2556589686g50h20 + 28524397164g45h25 + 74276556202g40h30

+ 52919401756g35h35 + 23300865513g30h40 − 10586446246g25h45

+ 28710897349g20h50 − 18944773568g15h55 + 3063714996g10h60

− 109499192g5h65 + 615164h70
)
,

k2(g, h) = g11h11
(
10168g60 + 2983037g55h5 + 115307662g50h10

+ 958403905g45h15 + 1880475660g40h20 + 1074772442g35h25

+ 699519268g30h30 − 1074772442g25h35 + 1880475660g20h40

− 958403905g15h45 + 115307662g10h50 − 2983037g5h55 + 10168h60
)
.

These solutions (that will be proved later) are all polynomials (homogeneous of degree 82)
in the Rogers–Ramanujan modular functions g and h. More precisely,

f1 = g12h70P14(g
5/h5) , f2 = g11h71P12(g

5/h5) , f3 = g17h20P14(−g5/h5) ,

where

P14(t) = t14 − 82t13 + 93029t12 + 46912692t11 + 2556589686t10 + 28524397164t9

+ 74276556202t8 + 52919401756t7 + 23300865513t6 − 10586446246t5

+ 28710897349t4 − 18944773568t3 + 3063714996t2 − 109499192t+ 615164 ,

P12(t) = 10168t12 + 2983037t11 + 115307662t10 + 958403905t9 + 1880475660t8

+ 1074772442t7 + 699519268t6 − 1074772442t5 + 1880475660t4 − 958403905t3

+ 115307662t2 − 2983037t+ 10168 .

The functions h and g are characters of L(−22/5, 0) and its simple module L(−22/5,−1/5),
respectively. We will now see that fi is a solution of the MLDE (9) in the following.

We first show that the vector-valued function F = t(f1, f2, f3) is a VVMF. Since fi has
the Fourier expansion, obviously fi(τ + 1) is a scalar multiple of fi(τ) for each i. Therefore,
it suffices to prove that the vector space spanned by f1, f2 and f3 is invariant under the
transformation S : H → H (τ 7→ −1/τ).

It is well-known (cf. [10] (Proposition 6.3)) that the S-transformation of g and h are given
by (

g
h

)∣∣∣∣
0

S =

−
√(

5 +
√
5
)
/10

√(
5−

√
5
)
/10√(

5−
√
5)/10

) √(
5 +

√
5
)
/10

(
g
h

)
. (12)

Then direct computations give (such extensive numerical computation would be impossible
without a computer)f1

f2
f3

∣∣∣∣∣∣
0

S =

(√
5 + 5

)
/10 10

√
5

(
5−

√
5
)
/10

1/25
√
5 −1/

√
5 −1/25

√
5(

5−
√
5
)
/10 −10

√
5

(√
5 + 5

)
/10

f1
f2
f3

 (13)
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which shows that F = t(f1, f2, f3) is a VVMF. Since the leading exponents of Fourier series
of f1, f2 and f3 are −41/30, 5/6 and 31/30, respectively, and 12(−41/30+5/6+31/30) = 6,
it follows from Proposition 2 that the triple {f1, f2, f3} is a basis of the space of solutions
of an MLDE of third order. Then Lemma 3 shows the following proposition (for a different
proof see [1](pp.25–26)).

Proposition 7. The set {f1, f2, f3} given by (11) is a basis of the space of solutions of the
modular linear differential equation (9).

Theorem 8. Let V be a simple vertex operator algebra of CFT type whose central charge
is 164/5. Suppose that the character of any simple module of V is a solution of the modular
linear differential equation (9). Then V is not of finite type and rational.

Proof. Suppose that V is of finite type and rational. The key idea is showing that the
consequences of Theorem 5 and eq. (7) give a contradiction

We fist show that f1, f2 and f3 are characters (up to scalar multiples) of the VOA V .
The MLDE (9) has mutually different indicial roots which do not have integral differences.
Therefore, there is a unique solution (up to a scalar multiple) such that the leading expo-
nent of Fourier expansion is an indicial root. Any character is, by the assumption, a linear
combination of f1, f2 and f3 and the indicial roots of (13) do not have integral differences.
Since any character is a solution of (13), it is one of f1, f2 and f3 (up to a scalar multiple).
(Any character has the Fourier expansion qr

∑∞
n=0 q

n.) In particular, the conformal weight
of each simple V -module is one of {0, 11/5, 12/5}. It follows that chV = f1 and dimV1 = 0
as f1 = q−41/30(1+90118q2+O(q3)) by (11) and the leading exponents of Fourier expansions
of chV and f1 are −41/30 and leading coefficients are 1. Moreover, there are at least three
simple V -modules.

Secondly, we show that the conformal weights of simple V -modules except V are positive
(since this is assumed in Theorem 5). Since the conformal weight of a simple V -module is
non-negative, it suffices to check that any simple V -module M with the conformal weight 0
is isomorphic to V . Let M be a V -module. The character chM is a scalar multiple of f1
since chM is a solution of the MLDE (9) and the conformal weight of M is 0 (and then they
have the same leading power of Fourier expansions). It hence from the Fourier expansion (11)
follows that dimM0 ̸= 0 and dimM1 = 0, and therefore, the space of vacuum-like elements
of M is nontrivial since L−1M0 ⊂ M1 = 0. Then Proposition 1 shows that HomV (V,M) ̸= 0
so that V is isomorphic to M since M is simple. Since from the argument in the previous
paragraph, there are at least three simple V -modules. Hence the global dimension of V is
not smaller than 3 by Proposition 5 and the very definition of global dimensions, while it
follows from (5) and (13) that S00 =

(√
5 + 5

)
/10. Hence we have

global(V ) = 100/(5 +
√
5)2 = 5(3−

√
5)/2 = 1.90983 · · · < 2

by Proposition 7. Thus we have a contradiction.

7 Central charge c = 236/7

In this section we will show that there does not exist a simple, rational VOA V which is
of CFT and finite type, whose central charge is 236/7 and characters are solutions of the
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MLDE (10).
Let V be a simple VOA of CFT type with the central charge 236/7. Suppose that

characters of simple V -module are solutions of the MLDE (10). Since the set of indicial
roots of (10) is {−59/42, 37/42, 43/42} and the central charge of V is 236/7, as in the
arguments given in the proof of Theorem 8, the sets of conformal weights of simple V -modules
is {0, 16/7, 17/7}.

Let a1, a2 and a3 be homogeneous polynomials of degree 59 (for the explicit expres-
sions see Appendix A.1). Let x, y and z be the characters simple modules of the minimal
model L(c2,7, 0) (c2,7 = −68/7), whose conformal weights are 0, −2/7 and −3/7, respectively,
i.e.

x = q17/42
∏
n>0

n̸≡0,±1
(mod 7)

(1− qn)−1 , y = q5/42
∏
n>0

n̸≡0,±2
(mod 7)

(1− qn)−1 , z = q−1/42
∏
n>0

n̸≡0,±3
(mod 7)

(1− qn)−1 .

We now give solutions of (10) whose leading exponents of the Fourier expansions are
indicial roots. The explicit expressions of them are given by

g1 = a1 (x, y, z) = q−59/42
(
1 + 63366q2 + 46421200q3 + · · ·

)
,

g2 = a2(x, y, z) = 31093q37/42
(
23 + 8288q + 774410q2 + · · ·

)
,

g3 = a3(x, y, z) = 3422q43/42
(
248 + 67983q + 5611328q2 + · · ·

)
,

(14)

where a1, a2 and a3 are defined in Appendix A.1. (We will prove that these are in fact solu-
tions later.) It is known [9](Proposition 2.3) that the functions x, y and z have a homogeneous
algebraic relation y3z − z3x− x3y = 0 which yields

a2(x, y, z) = a1(−y, z,−x) and a3(x, y, z) = −a1(−x,−z, y) . (15)

We first show that the vector-valued function t(g1, g2, g3) is a VVMF. Obviously gi(τ+1)
is a scalar multiple of gi(τ) for each i. Therefore, it suffices to show that the vector space whose
basis is {g1, g2, g3} is invariant under the transformation S. It is well-known [10] (Proposition
6.3) that the transformations S of the functions x, y and z are given byx

y
z

∣∣∣∣∣∣
0

S =
2√
7

 cos (3π/14) − cos (π/14) sin (π/7)
− cos (π/14) − sin (π/7) cos (3π/14)
sin (π/7) cos (3π/14) cos (π/14)

x
y
z

 . (16)

The function g1|0S is a polynomial in x, y and z, which is generated by 93 monomials1 (see
Appendix A.2). Moreover, we find

g1|0 S = s1g2 + s2a2 + s3g3 , (17)

where s1 = 2 cos (3π/14) /
√
7, s2 = 2 cos (π/14) /

√
7 and s3 = 2 sin (π/7) /

√
7. Since the left-

hand side of (17) equals to G(x, y, z) = a1(s1x− s2y+ s3z,−s2x− s3y+ s1z, s3x+ s2y+ s1z)

1It follows from (16) that x|0S, y|0S and z|0S are expressed as polynomials of x, y and z. If x, y and z have
not had any algebraic relation, then g1|0S was written as linear combinations of 1824 monomials.
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by the very definition, it follows from (15) and (16) that a2(x, y, z)|0 S = G(−z,−x, y) and
a3(x, y z) = −G(−y, z,−x)|0S. Therefore, by (15) and (17) we haveg1

g2
g3

∣∣∣∣∣∣
0

S =
2√
7

 cos (3π/14) cos (π/14) sin (π/7)
cos (π/14) − sin (π/7) − cos (3π/14)
sin (π/7) − cos (3π/14) cos (π/14)

g1
g2
g3

 . (18)

Hence the column vector-valued function t(g1, g2, g3) is a VVMF.

Proposition 9. The set of functions {g1, g2, g3} defined by (14) is a basis of the space of
solutions of the modular linear differential equation (10).

Proof. Since t(g1, g2, g3) is a VVMF and the leading exponents of the Fourier expansions
of functions g1, g2 and g3 are −59/42, 37/42 and 43/42, respectively, we have 12(−59/42 +
37/42 + 43/42) = 6. Then Proposition 2 yields that {g1, g2, g3} is a basis of the space of
solutions of an MLDE of third order. Moreover, it follows from Lemma 3 that this MLDE
coincides with the MLDE (10).

Remark. Another poof of Proposition 9 is given in (ℓ) of [1]

Theorem 10. Let V be a simple vertex operator algebra of CFT type with the central
charge 236/7. Suppose that the characters of simple V -modules are solutions of the mod-
ular linear differential equation (10). Then V is not of finite type and rational.

Proof. Suppose that V is rational and of finite type. Since V is of CFT type and its central
charge is 236/7, the character of V coincides with g1. Because the S-transformation of g1 is
a linear combination of the characters of the simple modules of V by the modular invariance
property and (17), the arguments as in the proof of Theorem 8 show that there are at least 3
simple V -modules and that the conformal weights of simple V -modules are non-negative and
any simple V -module with conformal weight 0 is isomorphic to V . The very definition of the
global dimension and Proposition 5 show that global(V ) ≥ 3. However, the entry S00 of the
S-matrix is equal to 2 cos (3π/14) /

√
7 by (5) and (18). Hence it follows from Proposition 7

that

global(V ) =
7

4 cos2(3π/14)
= 2.86294... < 2.9 .

Thus we have a contradiction.

A Homogeneous polynomials appeared in the c =

236/7 modular linear differential equation

In this appendix we give the explicit expressions of polynomials which appear in §7 and give
the S-matrix.
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A.1 Expressions of polynomials a1, a2 and a3

The polynomials a1, a2 and a3 in x, y and z of degree 59 which appeared in §7 are explicitly
expressed as

a1(x, y, z)

= 2190849987347x58y + 2190849987347x56z3 + 8816184633328x53y2z4

+ 465452872955x51y8 + 17330415570670x51yz7 + 10705080924689x49z10

+ 20273356011456x46y2z11 + 97883562370x44y15 + 61661154366700x44yz14

+ 47658393772643x42z17 + 139841916769201x39y2z18 − 109424817575x37y22

+ 320520742923731x37yz21 + 217896152319363x35z24 + 361856157239137x32y2z25

+ 10067353726x30y29 + 470476510477120x30yz28 + 252772915072319x28z31

+ 223747642357998x25y2z32 − 215505583x23y36 + 149102376058101x23yz35

+ 52937745467620x21z38 + 20641842052772x18y2z39 + 715139x16y43

+ 5462274021285x16yz42 + 829805597999x14z45 + 80972731266x11y2z46

+ 3431399762x9yz49 + 42913178x7z52 + 64900x4y2z53 − 59x2yz56 + z59,

(19)

a2(x, y, z)

= −x59 + 882794444359x56y2z + 4543893054975x54yz4

+ 138258169436x52y7 + 3661098610557x52z7 + 10224524748288x49y2z8

+ 31490183598954x47yz11 + 6924887466x45y14 + 24043962951905x45z14

+ 80499190812167x42y2z15 + 228094024607248x40yz18 − 59881352148x38y21

+ 166226386774472x38z21 + 352186560279214x35y2z22 + 587928082399742x33yz25

+ 6892739546x31y28 + 354743600999784x31z28 + 417326748220400x28y2z29

+ 377551394875116x26yz32 − 182567122x24y35 + 165247049735260x24z35

+ 94762510467036x21y2z36 + 39200808461423x19yz39 + 848656x17y42

+ 9350127088939x17z42 + 1876091330673x14y2z43 + 216146813939x12yz46

+ 11583044197x10z49 + 219081278x7y2z50 + 715139x5yz53

(20)

13



and

a3(x, y, z)

= −1282552304527x56y3 − 5134394452787x54y2z3 − 6766778252144x52yz6

− 2914936103884x50z9 − 368294187889x49y10 + 6031840984522x47y2z10

+ 28126445594091x45yz13 + 21748959064557x43z16 − 144799582921x42y17

+ 61766535503281x40y2z17 + 150382341083241x38yz20 + 104928152458177x36z23

+ 51886767247x35y24 + 190254165627419x33y2z24 + 269302315887115x31yz27

+ 150722349577506x29z30 − 3132177486x28y31 + 147021943645516x26y2z31

+ 109111294527183x24yz34 + 41709068640197x22z37 + 42653165x21y38

+ 18683198910349x19y2z38 + 5796683914336x17yz41 + 1045910881484x15z44

− 65018x14y45 + 133937600144x12y2z45 + 8366006362x10yz48

+ 186810402x8z51 − 59x7y52 + 848656x5y2z52 − y59 .

(21)

A.2 S-transformation of a1(x, y, z)

Let c1 = 2 cos(3π/14)/
√
7, c2 = 2 cos(π/14)/

√
7 and c3 = 2 sin(π/7)/

√
7. Then the function

a1 (x, y, z) |0S is written in terms of x, y and z by

a1 (x, y, z) |0S

= c1(2190849987347x
58

y + 2190849987347x
56

z
3
+ 8816184633328x

53
y
2
z
4
+ 465452872955x

51
y
8

+ 17330415570670x
51

yz
7
+ 10705080924689x

49
z
10

+ 20273356011456x
46

y
2
z
11

+ 97883562370x
44

y
15

+ 61661154366700x
44

yz
14

+ 47658393772643x
42

z
17

+ 139841916769201x
39

y
2
z
18 − 109424817575x

37
y
22

+ 320520742923731x
37

yz
21

+ 217896152319363x
35

z
24

+ 361856157239137x
32

y
2
z
25

+ 10067353726x
30

y
29

+ 470476510477120x
30

yz
28

+ 252772915072319x
28

z
31

+ 223747642357998x
25

y
2
z
32 − 215505583x

23
y
36

+ 149102376058101x
23

yz
35

+ 52937745467620x
21

z
38

+ 20641842052772x
18

y
2
z
39

+ 715139x
16

y
43

+ 5462274021285x
16

yz
42

+ 829805597999x
14

z
45

+ 80972731266x
11

y
2
z
46

+ 3431399762x
9
yz

49

+ 42913178x
7
z
52

+ 64900x
4
y
2
z
53 − 59x

2
yz

56
+ z

59
)

+ c2(−x
59

+ 882794444359x
56

y
2
z + 4543893054975x

54
yz

4
+ 138258169436x

52
y
7

+ 3661098610557x
52

z
7
+ 10224524748288x

49
y
2
z
8
+ 31490183598954x

47
yz

11
+ 6924887466x

45
y
14

+ 24043962951905x
45

z
14

+ 80499190812167x
42

y
2
z
15

+ 228094024607248x
40

yz
18 − 59881352148x

38
y
21

+ 166226386774472x
38

z
21

+ 352186560279214x
35

y
2
z
22

+ 587928082399742x
33

yz
25

+ 6892739546x
31

y
28

+ 354743600999784x
31

z
28

+ 417326748220400x
28

y
2
z
29

+ 377551394875116x
26

yz
32 − 182567122x

24
y
35

+ 165247049735260x
24

z
35

+ 94762510467036x
21

y
2
z
36

+ 39200808461423x
19

yz
39

+ 848656x
17

y
42

+ 9350127088939x
17

z
42

+ 1876091330673x
14

y
2
z
43

+ 216146813939x
12

yz
46

+ 11583044197x
10

z
49

+ 219081278x
7
y
2
z
50

+ 715139x
5
yz

53
)

+ c3(−1282552304527x
56

y
3 − 5134394452787x

54
y
2
z
3 − 6766778252144x

52
yz

6 − 2914936103884x
50

z
9

− 368294187889x
49

y
10

+ 6031840984522x
47

y
2
z
10

+ 28126445594091x
45

yz
13

+ 21748959064557x
43

z
16

− 144799582921x
42

y
17

+ 61766535503281x
40

y
2
z
17

+ 150382341083241x
38

yz
20

+ 104928152458177x
36

z
23

+ 51886767247x
35

y
24

+ 190254165627419x
33

y
2
z
24

+ 269302315887115x
31

yz
27

+ 150722349577506x
29

z
30

− 3132177486x
28

y
31

+ 147021943645516x
26

y
2
z
31

+ 109111294527183x
24

yz
34

+ 41709068640197x
22

z
37

+ 42653165x
21

y
38

+ 18683198910349x
19

y
2
z
38

+ 5796683914336x
17

yz
41

+ 1045910881484x
15

z
44

− 65018x
14

y
45

+ 133937600144x
12

y
2
z
45

+ 8366006362x
10

yz
48

+ 186810402x
8
z
51

− 59x
7
y
52

+ 848656x
5
y
2
z
52 − y

59
) .

(22)
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B Expressions of the j-function in terms of solu-

tions of modular linear differential equations

Let j be the j-function. Then it is conjectured in (3.8) and Table 2 of [8] that

j = 1728E3
4/(E

3
4 − E2

6) = q−1 + 744 + 196884q +O(q2)

is expressed in terms of solutions of the MLDE (9), (10), i.e. the characters of simple modules
of L(−22/5, 0)⊗ L(−22/5, 0) and L(−68/7, 0).

Conjecture. We have

j − 744 = h2f1 − 50ghf2 + g2f3 = xg1 − yg2 + zg3 , (23)

respectively.

In [8] they checked these relations numerically using Fourier expansions. In this appendix
we give a rigorous proof of the formula (23). We first show the first equality of (23), which
we call eq. (23.1).

Theorem 11. We have j−744 = h2f1−50ghf2+g2f3. In particular, j−744 is a homogeneous
polynomial in g and h of degree 84.

Proof. The first three terms of the Fourier expansion of the right-hand side of (23.1) is
q−1+196884q+O(q2), which equals to the first three terms of the Fourier expansion j−744.
Therefore, j−744−(h2f1−50ghf2+g2f3) is holomorphic and zero at τ = +i∞. Since j−744 is
a modular function, it suffices to show that the right-hand side of (23.1) is a modular function.
It follows from (12) and (13) that(

g2f1 − 50hgf2 + h2f3
)
|0S

= g84 + 82g79h5 + 93029g74h10 − 508400g72h12 + 615164g70h14 − 46912692g69h15

+ 149151850g67h17 − 109499192g65h19 + 2556589686g64h20 − 5765383100g62h22

+ 3063714996g60h24 − 28524397164g59h25 + 47920195250g57h27 − 18944773568g55h29

+ 74276556202g54h30 − 94023783000g52h32 + 28710897349g50h34 − 52919401756g49h35

+ 53738622100g47h37 − 10586446246g45h39 + 23300865513g44h40 − 34975963400g42h42

+ 23300865513g40h44 + 10586446246g39h45 − 53738622100g37h47 + 52919401756g35h49

+ 28710897349g34h50 − 94023783000g32h52 + 74276556202g30h54 + 18944773568g29h55

− 47920195250g27h57 + 28524397164g25h59 + 3063714996g24h60 − 5765383100g22h62

+ 2556589686g20h64 + 109499192g19h65 − 149151850g17h67 + 46912692g15h69

+ 615164g14h70 − 508400g12h72 + 93029g10h74 − 82g5h79 + h84

= g2f1 − 50hgf2 + h2f3 .
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Secondly, we prove the second equality of (23), which we call eq. (23.2). As in the
proof of (23.1) the first three terms (starting q−1) of the Fourier expansions of both hand
sides coincide. Therefore, it suffices to show that the right-hand side of (23.2) is a modular
function since the difference between both is a holomorphic cusp form. It can be verified
by (16) and (18) that xg1 − yg2 + zg3 and its S-transformation are equal to the polynomial

2190849987348x59y + 2190849987347x57z3 − 2165346748886x56y3z

− 862102874434x54y2z4 + 327194703519x52y8 + 6902538707969x52yz7

+ 7790144820805x50z10 − 368294187889x49y10z − 10224524748288x49y3z8

− 5184986602976x47y2z11 + 90958674904x45y15 + 65743637008886x45yz14

+ 69407352837200x43z17 − 144799582921x42y17z − 80499190812167x42y3z15

− 26485572334766x40y2z18 − 49543465427x38y22 + 304676697232500x38yz21

+ 322824304777540x36z24 + 51886767247x35y24z − 352186560279214x35y3z22

− 35817759533186x33y2z25 + 3174614180x31y29 + 385035225364451x31yz28

+ 403495264649825x29z31 − 3132177486x28y31z − 417326748220400x28y3z29

− 6781808871602x26y2z32 − 32938461x24y36 + 92966620850024x24yz35

+ 94646814107817x22z38 + 42653165x21y38z − 94762510467036x21y3z36

+ 124232501698x19y2z39 − 133517x17y43 + 1908830846682x17yz42

+ 1875716479483x15z45 − 65018x14y45z − 1876091330673x14y3z43

− 1236482529x12y2z46 + 214361927x10yz49 + 229723580x8z52

− 59x7y52z − 219081278x7y3z50 + 198417x5y2z53

− 59x3yz56 + xz59 − y59z.

(24)

Therefore, we have proved:

Theorem 12. We have j − 744 = xg1 − yg2 + zg3. In particular, j − 744 is a homogeneous
polynomial in x, y and z of degree 60.
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