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Abstract

This paper completes the classification problem which was proposed in the previous pa-
per [1] in which we attempted to characterize the minimal models and families obtained by
the tensor products and the simple current extensions of minimal models under the condition
that the characters of simple modules satisfy modular differential equations of third order,
and a mild condition on vertex operator algebras. In the previous work, several vertex opera-
tor algebras which are not the minimal models appeared. Five eleventh of them are identified
to well-known vertex operator algebras which are all vertex operator algebras related with
orbifold models of lattice vertex operator algebras. However, we were not able to deny the
existence of simple, rational vertex operator algebras of CFT and finite type with central
charges either 164/5 or 236/7 under the condition on which we worked in [1]. The char-
acterization of minimal models with at most two simple modules was achieved in the same
paper.

The numbers 164/5 and 236/7 were already appeared in the paper of Tuite and Van ([17])
in the different context. However, they were out of reach of our conclusion. Moreover, we
solve the conjecture, which was proposed by Hampapura and Mukhi [8], that the j-function
is expressed by characters of the minimal models.
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1 Introduction

In this paper we study a simple, rational vertex operator algebra V' (simply VOA) of CFT
and finite (Cy-cofinite) type, which has further properties that (a) the central charges is
either 164/5 or 236/7, (b) the weight one space is trivial, (c) characters of simple modules
over V are solutions of a monic modular linear differential equations (simply MLDE) of third



order. In [1], we have shown that there are eleven rational numbers which can be central
charges of VOAs satisfying the conditions (b) and (c¢). Moreover, we have obtained the
exact expression of the MLDE for each central charge. Three of these numbers uniquely
correspond to central charges of the minimal models and their tensor product, respectively,
and six of them coincide with central charges of Zs-orbifold models of lattice VOAs and
their extensions (which include the moonshine VOA) ([1], [8], [17]). However, it was not
known if the remaining two central charges 164/5 and 236/7 have corresponding VOAs,
respectively. Our principal aim of this paper is to show that a simple, rational VOA of CFT
and finite type satisfying the conditions (a)—(c) does not exist. Combining this with the
partial classification obtained in [1], we complete a proof that any simple, rational VOA of
CFT and finite type, which satisfies (b) and (c) is isomorphic to one of the minimal models
with central charges 1/2 and —68/7 and the two-fold tensor product of the minimal model
with the central charge —22/5 if it is not a Zs-orbifold model of a lattice VOA and is not its
extensions.

Let V be a simple VOA with a central charge either 164/5 or 236/7, which satisfies the
condition (b) and (c). Then we can uniquely determine the MLDE in (c) as it was written
in [1]. Therefore, we can find indicial roots and then solutions of the MLDE which would
be the characters of simple V-modules. It is then well-known that the space of solutions of
an MLDE is invariant under the usual slash 0 action of the full modular group I'y = SLo(Z).
This is closely related to the modular invariance of the space of characters. Then we can
determine the square matrix of degree three, which represents the transformation .S : H — H
(1 + 1/7) where 7 € H.

Once the S-matrix has been computed, one can obtain the quantum dimension of each
simple module by Lemma 4.2 and Theorem 5.1 of [4], and then the so-called global dimension
(which is the sum of square of quantum dimensions). In particular, one knows that the
quantum dimension qdim M for any simple V-module M is not less than 1. Proposition 4.5
of [4] now shows that the global dimension of V' (global(V)) is simply written as global(V') =
1/(So0)?. In this paper we find that the value of Spo is smaller than 3. However, this
contradicts to global(V') > 3 as the number of simple modules is at least three , which is also
proved in this paper. Thus the theory of quantum and global dimensions developed in [4]
allows one to prove non-existence of VOAs which we study.

Warning. The reader may think that the classification of “unitary” modular tensor categories
with rank 3 proved in the section 2 of [18] implies the main results of this paper. However,
since our VOAs are not unitary, one cannot apply the their result to our problem.

This paper is organized as follows. In Section 2 we give a brief review of basics of VOAs.
The notion of vacuum-like vectors introduced in [12], which is used in Section 5, is also
explained here. The definitions and the properties of MLDESs, and the concept of vector-
valued modular forms are presented in Section 3. We recall briefly an important result on
the quantum dimensions and the global dimensions of VOAs in Section 4. The explicit
expressions of MLDE associated with central charges 164/5 and 236/7 are given in Section 5.
In Section 6 and 7 we compute the matrix elements of the-S-transformation on bases of the
spaces of the MLDESs which are associated with central charges 164/5 and 236/7, respectively,
and obtain the global dimensions. The main theorems (Theorem 8 and Theorem 10) are
proved in these sections.



Since the explicit expressions of the MLDEs for the central charge 236/7 are quite com-
plicated, they are described in the first part of Appendix. The second part of Appendix is
devoted to proofs of two expressions of the j-function observed in [8] in terms of solutions of
the MLDEs (for ¢ = 164/5 and 236/5).
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ing Exploratory Research, Grant-in-Aid for Scientific Research (C) 17K04171, International
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2 Vertex operator algebras

In this section we give a brief introduction to the theory of vertex operator algebras (for
the complete definition see cf. [11] and [15] ). A vertex operator algebra (simply VOA) is
a Z-graded vector space V = @, ., Vi, equipped with a linear map

V — Endc(V)[[z, 271 (aY(a,2) = Z a(n)zf”*l ).
neZ

The vector space V is required to have a so-called vacuum element 1 € V{) and a Virasoro
element w € V5 satisfying a number of axioms. One of the axioms demands that L, = wy+1
(n € Z) define a module of the Virasoro algebra over V' with a central charge ¢ € C, i.e.
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m° —m
[Lin, Lyp] = (m —n)Lpin +

12 65m+n,0a (1)

Another axiom asks that Lg is the grading operator. The non-negative integer of an ele-
ment v € V,, is said to have an weight n which is denoted by wt(v). A VOA V is called of
CFT type when V,, is trivial for any n < 0 and Vj is one-dimensional with the basis {1}.

A weak module of a VOA V is a pair (M, Y") of a vector space over the complex number field
and a linear map Y : V — Endc (M)[[z, 271]] satisfying conditions required as V-modules
(see e.g. [11], [15]). A weak V-module M is called a V-module if
(a) it is graded by C; M = @, .c My,

(b) for any complex number A there exists a positive number N such that My, = 0 for any
n+ N <0,

(c) the endomorphism a,) has weight wt(a) —n — 1, i.e., a@)Myx C My iyi(q)—n—1 for any
homogeneous a € V and n € Z,

(d) the endomorphism Ly is the grading operator of M.

A module of V', which does not satisfy the condition (d), is called admissible. If a V-module M
is simple, the conditions (b) and (c) shows that there is a unique complex number A such
that M = @,2, M4+, and My # 0. We call this X the conformal weight of M. A VOA
is called rational when the number of simple module is finite and any admissible module is
completely reducible (see [5] and [20]).

A VOA V is called of finite type (or Co-cofinite) if the subspace of V', whose elements are
linear combinations of a(_y)b for all a, b € V, has a finite codimension in V. It is known that



if V is of finite type, then the number of simple V-modules is finite and the central charge
of V' as well as conformal weights of simple modules are rational numbers ([2], [16]).

One of interesting simple, rational VOAs of CF'T and finite type would be a series of the
minimal model V' = L(¢, 4,0) which was studied intensively in [19](Theorem 4.2) by using
works of Feigin and Fuchs ([6], [7]). This VOA is the simple quotient of the Verma module
of the Virasoro algebra with central the charge ¢,, =1 —6(p — q)?/pq for coprime positive
integers p and ¢. It is noteworthy that any simple V-module is isomorphic to an irreducible
highest weight module L(cp 4, hr,s) with the highest weight

(rq—sp)* —(p—q)*

h =
T,8 4pq

for 1 <r <p—-—1and 1 < s < ¢g—1 so that the number of simple V-modules is equal
to (p—1)(¢ — 1)/2 (see also [19]).

Let V be a VOA and M a weak V-module. An element v € M is called vacuum-like
when Y (a, z)v € M[[z]], i.e., Y(a, z)v has does not have negative exponents of z. It is known
in [12](Proposition 3.3) that v € M is vacuum-like if and only if L_;v = 0. The following
proposition is proved in [12] (Proposition 3.4).

Proposition 1 ([12]). Let V' be a vertex operator algebra and M a weak V-module. Then
Homy (V, M) is isomorphic to the space of vacuum-like elements of M.

3 Modular linear differential equations

In this section we give a short explanation of the concepts of vector-valued modular forms
and modular linear (ordinary) differential equations.

Let H be the complex upper-half plane. For a non-negative integer k and a holomorphic
function f on H, we define the slash action of v = (2Y) € I't = SLa2(Z) on f by (f|x7)(7) =
(et +d)~F f(y(7)), where v(7) = (aT +b)/(cT +d). We simply write f|y instead of (f|x7y)(7)
if this causes no confusion.

A wector-valued modular form (VVMF) of weight k is a column vector t(f1, fo, ..., fn)
of holomorphic functions on H such that
(@) Y(f1, fo, .-, fn)}ky =p(v)(f1, fo, ..., fn) for any v € 'y, where p is an n-dimensional

representation of I'y on GL,,(C),

(b) the component f; has a Fourier expansion f; = gy Yoo al q*, where Aj € Rand g = e2miT
(it=+-1, 7 €H).
Let

Fop(t) = 1 — — ‘ ou—1(j)¢? (k=1,2,...)

be the (normalized) Eisenstein series of weight 2k, where B,, is the mth Bernoulli number
and op,(n) is the division function. Let M, (I'1) = @52 Mok(I'1) be the graded space of
modular forms on I'y and let 9 : M, (T'1) — M,12(I'1) be the Serre derivation defined by

k df 1 df

O(f) = f/—EEQ(f)7 f/ = qdfq—%a



for any f € My(I'1). A monic modular linear differential equation (simply MLDE) of weight 0
is a linear ordinary differential equation

n—1
)+ Y _PRI(f) =0,
j=0

where an unknown f is a holomorphic function on H and P; is a holomorphic modular form
of weight 2(n — ). Then [14](Theorem 3.7 and Theorem 4.3) says:

Proposition 2. Let '(f1, fa, ..., fa) be a column vector-valued modular form of weight 0
whose entries are linearly independent. If A1 < Ao < --- < A,, where Aj is the smallest
exponent of q of the Fourier expansion of fj, then {fi, fa, ..., fu} is a basis of the space of

solutions of a modular linear differential equation of nth order if and only if

n

n(n—1) = 12) ;. (2)

J=1

Remarks. (a) If all smallest exponents of g of the Fourier expansions of f; (1 < j < n)
satisfy A\; < Ao < -+ < A, , then vector-value function F = *(f1, fo, ..., fn) is called strictly
normalized.

(b) If the set of entries of VVMF is linearly independent, then there exists an invertible
matrix A such that AF is strictly normalized. Moreover, the matrix A can be written as
a products of elementary matrices.

(c) We call (2) Mason’s equality.

Since any MLDE has a regular singularity only at ¢ = 0 ([14]), one can use the method
of Frobenius to obtain solutions of MLDEs. The following lemma in [13] (Corollary 2.4) is
easily checked.

Lemma 3. Let A\, Ao and A3 be mutually distinct rational numbers. Then there is a unique
monic modular linear differential equation of third order whose indicial roots are Ay, Ao
and A3.

4 Quantum and global dimensions

In this short section we recall the definitions of quantum dimensions and global dimensions
and present a theorem and a proposition which are used in the following sections.
Let V be a VOA and M a simple V-module. The trace function on M is defined by

tras(v,7) = trag o(v)gro /% (3)

for any homogeneous element v € V, where o(v) = v(y(y)—1) Which is an endomorphism
on M that preserves any homogeneous space of M. It is proved in [20] (see also [5]) that
the series trys (v, 7) converges for any fixed v and is holomorphic on H if V' is of finite type.
Since o(1) = idyy, the character chps(7) of M coincides with trps (1, 7).



The slash action of 'y = SL9(Z) on the trace functions is defined by

(2 4)(0,7) = (er ) Ftnas (o9 () forany o = (% V) e,

where k = wt(v). The modular invariance of the space of trace functions are proved in [20]
(Theorem 5.3.2).

Theorem 4. Let V' be a simple, rational vertex operator algebra of CFT and finite type
and let MO, MY, ... M™ be the set of inequivalent simple V-modules. Let v be an element
of SLy(Z). Then there exist complex numbers v;; such that

trap |y (v, 7) Z%] trap (v, 7) (4)

for allv € V.. Moreover, the complex numbers ;; do not depend on v € V.

There is a matrix S = (S;;) such that
trysi(v, —1/7) = 7% Z Sijtra (v, 7) (5)

for homogeneous v € V. The matrix S € GL,1(C) is called the S-matriz associated with V'
in the literature.

Let V be a VOA and M a simple V-module. Suppose that the characters chy (1)
and chys(7) are holomorphic functions on H. The quantum dimension of M (which is origi-
nally introduced in [3]) is defined by

har (v —
qdimy M = lim chy(V—1y) 1y)
y—+0 Chv(\/ y)

where y > 0 is a real number. Dong, Jiao and Xu have proved the following theorem
n [4](Lemma 4.2, Theorem 5.1).

(6)

Theorem 5. Let V' be a simple, rational vertex operator algebra of CFT and finite type and
let MO, MY, ..., M™ be the set of inequivalent simple V -modules, where M° = V. Let \; be
a conformal wezght of M*.

(a) Suppose that \; > 0 for all 1 < i < n. Then Soo # 0 and qdimy M* = S;y/Soo,
where S = (S;;) is the S-matriz associated with V.

(b) For any integer 0 < i < n, the quantum dimension of M belongs to the set
{2cos(m/n)|n>3}U{a|2<a< oo},

where a is an algebraic number. In particular, we have qdimy M* > 1.



Suppose that a VOA V has only finitely many simple modules M%, M?!, ..., M™, where
M° =V, and that ch,:(7) are holomorphic functions on H. Then the global dimension of V
is defined by

global(V) = ) “(qdimy M7 )?. (7)
§=0
It then follows from the very definition of the global dimension and Theorem 5 that global(V)
is not smaller than the number of simple V-modules.

Corollary. LetV be a VOA satisfying conditions as in Theorem 5. Then the global dimension
of V' is not smaller than the number of simple V-modules.

In [4] (Proposition 4.5) they found a fairly simple formula of the global dimension.

Proposition 6 ([4]). Let V be a simple, rational vertex operator algebra of CFT and finite
type. Let {MO, MY M”}, where M =V, be the set of inequivalent simple V-modules.
If the conformal weight of M* for any i > 0 is positive, then we have global(V') = 1/(Sy0)?,
where S = (S;;) is the S-matriz associated with V.

5 Modular linear differential equations of third or-
der with the central charges 164/5 and 236/7

Let V be a simple VOA of CFT type. Suppose that V3 = 0 and characters of simple V-
modules are solution of an MLDE of third order. It was shown in [1] that the central charge
of V' is an element of the set

{—68/7, 1/2, —44/5, 8, 16,47/2, 24, 32, 164/5, 236/7, 40} . (8)

In [17] these numbers were found in the different context (cf. [8]).

It was verified that there exists at least one VOA whose central charge is an element of (8)
except 164/5 and 236/7. In this paper we show that there does not exist a simple, rational
VOA of CFT and finite type, whose central charge is either 164/5 or 236/7.

The explicit expressions of the MLDEs of third order with the central charges 164/5

and 236/7 are
1 1 169 1271
m_ g, (fE’——E>’ U B =0 9
f 22f+22 1004f+10806f 9)

and 149 93869
' 09 o 1
84 4)f + T oS = 0 (10)

respectively. The explicit expressions of solutions of the MLDEs (9) and (10) are given in [1],
which are homogeneous polynomials of characters of simple modules of the minimal models
with the central charges co 5 = —22/5 and co 7 = —68/7, respectively.

1 1
f/// o §E2f”—|- (iEé —

Remark. In this paper by means of (2) and the S-transformations of (11) and (14) we will
give another proof that they are solutions of (9) and (10), respectively.



Now suppose that there exists simple, rational VOA V which is of CFT and finite type,
whose central charge is either 164/5 or 236/7 and characters are solutions of an MLDE,
respectively. The explicit expressions of the S-transformations of the space of the solutions
of (9) and (10), which will be shown to equal to the S-transformation of the spaces of
characters of simple V-modules (up to similarity transformations) as shown in the proof of
Theorem 8, show global(V') < 3 which implies that V' is not of finite type and rational since
global(V') > 3 by Theorem 5 (b) as discussed in §56-7.

Remark. If we drop the assumption that the spaces of characters are included in the spaces
of solutions of MLDEs (9) and (10), respectively, then there are examples of simple, rational
VOA V which is of CFT and finite type, whose central charge is either 164/5 or 236/7.
Let L (4/5,0) be the minimal model with central charge 4/5. Then L (4/5,0)%* is a sim-
ple, rational VOA of CFT and finite type with the central charge 164/5. Let L (6/7,0)
and L (—68/7,0) be the minimal model with central charges 6/7 and 68/7, respectively.
Then L (6/7,0)%%? ® L (—68/7,0)%? is a simple, rational VOA of CFT and finite type with
the central charge 236/7.

6 Central charge 164/5

In this section we will show that there does not exist a simple, rational VOA V which is
of CFT and finite type, whose central charge is 164/5 and characters are solutions of the
MLDE (9).

Let V be a simple VOA of CFT and finite type with the central charge 164/5. Suppose
that characters of simple V-modules are solution of the MLDE (9). It is easily seen that the
set of the indicial roots of (9) is {—41/30, 5/6, 31/30}.

We first present a set of solutions fi, fo and f3 (unique up a scalar factor) whose leading
exponents of Fourier expansions are indicial roots of the MLDE (9), which are written in
terms of homogeneous polynomials of the functions

ad 1
9(q) :q_l/GOH Bl Bntdy
L (L=t (1 =gt

i 1
h(q):qn/GOH 5nt2 5n+3)
L (L= ) (1 =g ?)

We now define the functions fi, fo and f3, respectively, by
fi = ki(g.h) = ¢ /30 (14 90118¢° + 53459408¢° + - - ) |

fo = ka(g,h) = 11271¢7%/% (8 + 2915¢ + 266160¢> + - - - ) , (11)
fs = ki (h,—g) = 5084¢>/3 (121 4 30008¢ + 2304726¢> + - - ) ,



where k1 and ks are homogeneous polynomials of degree 82 defined by

k1(g,h) = ' (g7 — 82¢%°h° + 93020¢%°h'" + 469126929 h'?
+ 25565896869°"h*" + 285243971649 h*® + 742765562029 h*°
+ 52919401756¢°°h* + 23300865513¢°°h*" — 10586446246¢%° h*®
+ 28710897349g*°h™ — 18944773568¢'°h°° + 30637149969'°h%°
—109499192¢°h% + 615164h™),
ka(g, h) = g''h' (10168¢%° + 2983037¢°°h° + 1153076629 h'"
+ 958403905¢*° 1 '® + 18804756609 ' 1h*° + 1074772442 h*°
+ 699519268910 — 10747724429 1% + 18804756609°° h*°
— 9584039059 °h*° + 1153076629 °h™° — 2983037¢°h"° + 101681 .

These solutions (that will be proved later) are all polynomials (homogeneous of degree 82)
in the Rogers—Ramanujan modular functions g and h. More precisely,

fi = g2hOPu(g®/R°), fo = ¢" R Pia(gP/hP), f3 = g TR Piy(—g° k%),
where

Pi(t) = 1 — 8213 + 93029¢'% + 46912692t + 2556589686t + 28524397164t°
+ 74276556202t% 4 52919401756t + 23300865513t% — 105864462461°
+ 28710897349t — 18944773568t + 3063714996t> — 109499192 + 615164,
Pyo(t) = 10168t'2 + 2983037t + 115307662t1° 4+ 958403905t + 1880475660t
+ 1074772442t7 4+ 699519268t° — 1074772442t% 4 1880475660t* — 958403905¢°
+ 115307662t> — 2983037t 4 10168 .

The functions h and g are characters of L(—22/5,0) and its simple module L(—22/5,—1/5),
respectively. We will now see that f; is a solution of the MLDE (9) in the following.

We first show that the vector-valued function F = !(f1, fo, f3) is a VVMF. Since f; has
the Fourier expansion, obviously f;(7 + 1) is a scalar multiple of f;(7) for each i. Therefore,
it suffices to prove that the vector space spanned by fi, fo and f3 is invariant under the
transformation S : H — H (7 — —1/7).

It is well-known (cf. [10] (Proposition 6.3)) that the S-transformation of g and h are given

by
<g) ~\/(5+v5) /10 \/(5-/5) /10 <g> |
)l VE-vE)/10) /(54 V5) /10) \P
Then direct computations give (such extensive numerical computation would be impossible
without a computer)

fi (V5+5)/10 10v5 (5—+5)/10\ [fi
f2ll S= 1/25v5  —1/v/5  —1/25V5 fo (13)
f3/) 1o (5—+v5) /10 —10v5 (V5+5)/10) \f3

(12)

9



which shows that F = (f1, f2, f3) is a VVMF. Since the leading exponents of Fourier series
of fi, f2 and f3 are —41/30, 5/6 and 31/30, respectively, and 12(—41/30+5/6 4+ 31/30) = 6,
it follows from Proposition 2 that the triple {f1, fa, f3} is a basis of the space of solutions
of an MLDE of third order. Then Lemma 3 shows the following proposition (for a different
proof see [1](pp.25-26)).

Proposition 7. The set {f1, f2, f3} given by (11) is a basis of the space of solutions of the
modular linear differential equation (9).

Theorem 8. Let V be a simple vertex operator algebra of CFT type whose central charge
is 164/5. Suppose that the character of any simple module of V' is a solution of the modular
linear differential equation (9). Then V is not of finite type and rational.

Proof. Suppose that V is of finite type and rational. The key idea is showing that the
consequences of Theorem 5 and eq. (7) give a contradiction

We fist show that fi, fo and f3 are characters (up to scalar multiples) of the VOA V.
The MLDE (9) has mutually different indicial roots which do not have integral differences.
Therefore, there is a unique solution (up to a scalar multiple) such that the leading expo-
nent of Fourier expansion is an indicial root. Any character is, by the assumption, a linear
combination of f1, fo and f3 and the indicial roots of (13) do not have integral differences.
Since any character is a solution of (13), it is one of fi, fo and f3 (up to a scalar multiple).
(Any character has the Fourier expansion ¢" Y >~ ,¢".) In particular, the conformal weight
of each simple V-module is one of {0, 11/5, 12/5}. It follows that chy = f; and dimV; =0
as f1 = ¢~ */39(14+90118¢% + O(¢?)) by (11) and the leading exponents of Fourier expansions
of chy and f; are —41/30 and leading coefficients are 1. Moreover, there are at least three
simple V-modules.

Secondly, we show that the conformal weights of simple V-modules except V are positive
(since this is assumed in Theorem 5). Since the conformal weight of a simple V-module is
non-negative, it suffices to check that any simple V-module M with the conformal weight 0
is isomorphic to V. Let M be a V-module. The character chys is a scalar multiple of f;
since chjy is a solution of the MLDE (9) and the conformal weight of M is 0 (and then they
have the same leading power of Fourier expansions). It hence from the Fourier expansion (11)
follows that dim My # 0 and dim M; = 0, and therefore, the space of vacuum-like elements
of M is nontrivial since L_1My C M; = 0. Then Proposition 1 shows that Homy (V, M) # 0
so that V is isomorphic to M since M is simple. Since from the argument in the previous
paragraph, there are at least three simple V-modules. Hence the global dimension of V is
not smaller than 3 by Proposition 5 and the very definition of global dimensions, while it
follows from (5) and (13) that Soo = (v/5 + 5) /10. Hence we have

global(V)) = 100/(5 + v5)? = 5(3 — v/5)/2 = 1.90983--- < 2

by Proposition 7. Thus we have a contradiction. O

7 Central charge ¢ = 236/7

In this section we will show that there does not exist a simple, rational VOA V which is
of CFT and finite type, whose central charge is 236/7 and characters are solutions of the

10



MLDE (10).

Let V be a simple VOA of CFT type with the central charge 236/7. Suppose that
characters of simple V-module are solutions of the MLDE (10). Since the set of indicial
roots of (10) is {—59/42, 37/42, 43/42} and the central charge of V is 236/7, as in the
arguments given in the proof of Theorem 8, the sets of conformal weights of simple V-modules
is {0, 16/7, 17/7}.

Let a1, az and a3 be homogeneous polynomials of degree 59 (for the explicit expres-
sions see Appendix A.1). Let z, y and z be the characters simple modules of the minimal
model L(cg7,0) (c2,7 = —68/7), whose conformal weights are 0, —2/7 and —3/7, respectively,

ie.
T = q17/42 H (1 _qn)—l Ly = q5/42 H (1 _qn)—l 2= q—1/42 H (1 _qn)—l )
n>0 n>0 n>0
n#0,+1 n#£0,+2 n#0,+3
(mod 7) (mod 7) (mod 7)

We now give solutions of (10) whose leading exponents of the Fourier expansions are
indicial roots. The explicit expressions of them are given by
g = a1 (z,y,2) = q %2 (1 + 6336642 4 46421200¢> + - - ) ,
g2 = as(z,y,2) = 31093¢>7/4? (23 4 8288¢ + 774410¢* + - --) , (14)
g3 = az(x,y,2) = 3422¢"3/1% (248 + 67983¢ + 5611328¢> + - -+ ) ,
where a1, az and ag are defined in Appendix A.1. (We will prove that these are in fact solu-

tions later.) It is known [9](Proposition 2.3) that the functions z, y and z have a homogeneous
algebraic relation g3z — 232 — 23y = 0 which yields

ag(x,y,z) = al(_y7zv _x) and ag(l‘,y,Z) = —al(—l’, —z,y). (15)

We first show that the vector-valued function (g1, go, g3) is a VVMF. Obviously g;(7+1)
is a scalar multiple of g;(7) for each i. Therefore, it suffices to show that the vector space whose
basis is {g1, g2, g3} is invariant under the transformation S. It is well-known [10] (Proposition
6.3) that the transformations S of the functions x, y and z are given by

x o [ cos (3w/14) —cos(n/14) sin(7/7) x
yl|| S = VAl cos (m/14) —sin(n/7) cos(37/14) vyl . (16)
z) |, sin (7/7) cos (3w/14)  cos(mw/14) z

The function g1]oS is a polynomial in x, y and z, which is generated by 93 monomials! (see
Appendix A.2). Moreover, we find

91]0 S = 5192 + s2a2 + 5393, (17)

where s; = 2cos (37/14) /\/7, s3 = 2cos (n/14) /v/7 and s3 = 2sin (7/7) /v/7. Since the left-
hand side of (17) equals to G(z,y, z) = a1(s12 — Soy + S32, —S2& — S3y + S12, S3T + Soy + $12)

Tt follows from (16) that x|oS, y|oS and z|oS are expressed as polynomials of z, y and 2. If z, y and z have
not had any algebraic relation, then g;|oS was written as linear combinations of 1824 monomials.
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by the very definition, it follows from (15) and (16) that as(z, v, 2)|, S = G(—z, —,y) and
as(z, y z) = —G(—y, z, —x)|oS. Therefore, by (15) and (17) we have

g1 cos (3w/14)  cos(m/14) sin (7/7) g1
gl S = 7 cos(m/14)  —sin(w/7) —cos(3w/14) 92 | - (18)
93/ |, sin(w/7) —cos(37/14)  cos(mw/14) g3

Hence the column vector-valued function (g, go, g3) is a VVMF.

Proposition 9. The set of functions {g1, g2, g3} defined by (14) is a basis of the space of
solutions of the modular linear differential equation (10).

Proof. Since (g1, g2, g3) is a VVMF and the leading exponents of the Fourier expansions
of functions g1, g2 and g3 are —59/42, 37/42 and 43/42, respectively, we have 12(—59/42 +
37/42 + 43/42) = 6. Then Proposition 2 yields that {g1, g2, g3} is a basis of the space of
solutions of an MLDE of third order. Moreover, it follows from Lemma 3 that this MLDE
coincides with the MLDE (10). O

Remark. Another poof of Proposition 9 is given in (¢) of [1]

Theorem 10. Let V' be a simple vertex operator algebra of CFT type with the central
charge 236/7. Suppose that the characters of simple V-modules are solutions of the mod-
ular linear differential equation (10). Then V is not of finite type and rational.

Proof. Suppose that V' is rational and of finite type. Since V is of CFT type and its central
charge is 236/7, the character of V' coincides with g;. Because the S-transformation of g; is
a linear combination of the characters of the simple modules of V' by the modular invariance
property and (17), the arguments as in the proof of Theorem 8 show that there are at least 3
simple V-modules and that the conformal weights of simple V-modules are non-negative and
any simple V-module with conformal weight 0 is isomorphic to V. The very definition of the
global dimension and Proposition 5 show that global(V') > 3. However, the entry Sy of the
S-matrix is equal to 2cos (37/14) /v/7 by (5) and (18). Hence it follows from Proposition 7

that
7

- 4 cos?(3m/14)

Thus we have a contradiction. O

global(V') = 2.86294... < 2.9.

A Homogeneous polynomials appeared in the c =
236/7 modular linear differential equation

In this appendix we give the explicit expressions of polynomials which appear in §7 and give
the S-matrix.
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A.1 Expressions of polynomials a;, as and ag

The polynomials a1, a2 and as in x, y and z of degree 59 which appeared in §7 are explicitly
expressed as

a1(r,y, z)

= 2190849987347x8y + 21908499873472°5 23 + 8816184633328273y%2*
+ 4654528729552° 4% + 173304155706702% y27 + 10705080924689249 210
+2027335601145620y? 21! + 9788356237024 y'° + 616611543667002 4y 24
+ 47658393772643x 42217 4 13984191676920123%% 218 — 109424817575237y22
+ 3205207429237312%7y 22" 4 2178961523193632%° 224 + 36185615723913722422%5 (19)
+ 1006735372620y + 470476510477120230y 228 + 2527729150723192:28 23!
+ 223747642357998227¢% 232 — 215505583x23y3¢ + 149102376058101223y 2%
+ 529377454676202% %% + 206418420527722 8y 2% + 71513926y
+ 5462274021285x1%y2%? + 8298055979994 2%° + 8097273126621 ¢/% 240
+ 34313997622y 2% + 4291317827 252 + 6490024y 253 — 5922y =0 + 259,

az(z,y, 2)
= —2% 4 8827944443592°%¢ 2 + 4543893054975z 1y 2*

+ 1382581694362°%y” + 36610986105572°227 + 10224524748288x4%¢% 2%
+ 3149018359895424 7y 21t + 69248874662y + 2404396295190524° 21
+ 80499190812167x42y% 21 + 22809402460724820y 218 — 5988135214823
+ 166226386774472238 22! 4 35218656027921423%y2 2*? 4 587928082399742233y2%  (20)
+ 6892739546231 4/?8 4 354743600999784231 228 + 417326748220400228y2 2%
+ 377551394875116226y 232 — 182567122224y + 16524704973526022* 2%
+ 9476251046703622 %235 + 392008084614232 %23 + 8486562 y*2
+ 9350127088939217 242 4 1876091330673z 4y 2*3 + 2161468139392y 246
+ 1158304419721024 4 2190812782742 2°0 4 7151392°y 2"

13



and

as (ZE, Y, Z)
—12825523045272:°043
— 29149361038842°°2"

— 5134394452787254% 23

— 67667782521442:°%y 25

— 3682941878892 y10 + 60318409845222:47¢% 210
+ 281264455940912%°y 213 + 21748959064557x43 216 —

144799582921 242417

+ 617665355032812:40y2 217 + 1503823410832412%%y 2% 4 104928152458177236223

+518867672472% ! + 19025416562741927%y? 22! + 2693023158871152% y2*"

+ 1507223495775062:2° 23 — 3132177486281 + 1470219436455162%02 23

(21)

+109111294527183x24 234 4 417090686401972222%7 + 4265316522138
+ 186831989103492:'94/%23% + 5796683914336x' Ty2*! + 1045910881484 244
— 65018zMy*® + 1339376001442 %y 2*° + 836600636220y 2*®

+ 1868104022825 —

5927 y°2 + 8486562 %272

A.2 S-transformation of a,(z,y, 2)

Let ¢; = 2cos(37/14)/\/7, ca = 2cos(n/14)/+/7 and c3 =

1(x, y, 2) oS is written in terms of x, y and z by

a1 (@, y, 2) oS

= ¢1(21908499873472°8
+ 17330415570670x°"
+ 61661154366700z*

+ 3205207429237312° T y22! + 2178961523193632°° 224

+ 4704765104771202°0y 2

23 35

+ 149102376058101x
+ 5462274021285z 024
+ 4291317827 2°2
+ ea(—a”?

+ 3661098610557

+ 882794444359
52 7

+ 24043962951905z4° 214

+ 1662263867744722°8 221

+ 3547436009997842°1 228

+ 165247049735260224 235

+ 9350127088939z 7 242

+ 219081278z y22°°

+ c3(—12825523045272°%3

— 3682941878892 10

— 144799582921242 417

+ 5188676724725y %4

— 3132177486228 y°!

+ 4265316522138

— 65018z 14y*°

7,52

— 59Ty 5 2 52

+ 8486562 "y~ =

y + 2190849987347«
yz7 + 10705080924689x " 2

4 + 47658393772643x

28 | 2527729150723192
+ 52037745467620x
2 4+ 829805597999z

+ 6490012 2%3 —

56 2

27 +10224524748288a
+ 80499190812167x
+ 35218656027921423% 2 222
+ 417326748220400228y2 229
+ 94762510467036x
+ 1876091330673z
+ 7151392y
— 51343944527872°442% 23
+ 60318409845223%7 2 210
+ 61766535503281x
+ 190254165627419x
+ 1470219436455162
+ 18683198910349z1%y2 238

+133937600144212y2 245

56 _3
49 10

42 17
z

28 31
z
21 _38
z

14 45
z

59z2y256 + 2° )

yiz + 45438930549752°
49 2 8

42215

21236
14243

53)

40 2 17
33 2 24
26 2 31

10 48

+ 8366006362x

59
-y7).

14

+ 80972731266x

-y

z” + 8816184633328x
+ 20273356011456x
+ 139841916769201x
+ 361856157239137x
+ 223747642357998x

+ 20641842052772x

1

4yz* + 1382581694362
y22% + 31490183598954x
+ 228094024607248z%

+ 5879280823997422°>
+ 37755139487511612
+ 39200808461423z19

+ 2161468139392

— 6766778252144x°2
+ 281264455940912%% 213
+ 1503823410832412°8 220
+ 269302315887115a° y227 4 150722349577506x
+109111294527183224y 254 + 41709068640197x
+ 5796683914336z y2*!

59

2sin(7/7)/v/7. Then the function

53,2 4

y22? 4 4654528729552°1 48

46 2 11 44 15

+ 978835623702 "y

39 2 18 37 22

— 109424817575x

32 2 20 30 29

+ 10067353726x

25 2 32 23 36

— 215505583

18 2 39 16 43

+ 715139z

1246 49

+ 34313997622 Yz

527

47 11 45 14

+ 6924887466«

- 5988135214896381/21

31 28

yz
+ 6892739546z
24 430

(22)

— 182567122z
17,42

6 3
yz
+ 848656«

6 4 1158304419720 24°

6 _ 29149361038842°02°

43 16
z

yz
+ 21748959064557x
+1049281524581772°% 223
29 30

z
22 37

z
+10459108814842 15 244
8 _51

+ 1868104022" 2



B Expressions of the j-function in terms of solu-
tions of modular linear differential equations
Let j be the j-function. Then it is conjectured in (3.8) and Table 2 of [8] that

j = 1728F3/(E} — E2) = ¢ ' + 744 4 1968844 + O(¢?)
is expressed in terms of solutions of the MLDE (9), (10), i.e. the characters of simple modules
of L(—22/5,0) ® L(—22/5,0) and L(—68/7,0).

Conjecture. We have
j—744 = K f1 — 50ghfo + g% f3 = xg1 — yga + 293, (23)

respectively.

In [8] they checked these relations numerically using Fourier expansions. In this appendix
we give a rigorous proof of the formula (23). We first show the first equality of (23), which
we call eq. (23.1).

Theorem 11. We have j—744 = h? f1—50gh fa+g¢° f3. In particular, j—744 is a homogeneous
polynomial in g and h of degree 84.

Proof. The first three terms of the Fourier expansion of the right-hand side of (23.1) is
g1 +196884q + O(q?), which equals to the first three terms of the Fourier expansion j — 744.
Therefore, j—744—(h? f{—50gh fo+g f3) is holomorphic and zero at T = +ioco. Since j—744 is
a modular function, it suffices to show that the right-hand side of (23.1) is a modular function.
It follows from (12) and (13) that

(9°f1r = 50hg fo + B f3) oS

= ¢® 4+ 829™h% + 930299710 — 50840097 1'% + 61516497 hM — 46912692957 n1°

+ 14915185097 h'" — 109499192¢%°h'? + 25565896869° h*° — 57653831009 1>

+ 3063714996 h** — 28524397164¢°7h*® + 4792019525097 h*" — 189447735684 h*
+ 7427655620297 h* — 940237830009°%h** + 28710897349¢°°h* — 5201940175697 h°
+ 53738622100g*"h3" — 1058644624647 3 4 2330086551394 h0 — 349759634004*>h*?
+ 233008655139 + 105864462469°?1h*® — 537386221009°"h*™ + 5291940175647 h**
+ 28710897349g**h™ — 94023783000¢°2h°% + 7427655620290 h°* + 18944773568¢%°h°
— 4792019525097 h°7 + 285243971649°°h% + 3063714996¢°*h° — 57653831009°% 1%
+ 25565896869°°h%* + 1094991929 1% — 1491518509 h°T + 46912692¢'7 A%

+ 615164¢™h™ — 508400¢2h™ + 93029¢°h™ — 82¢°h™ + K®!

= g°fi — 50hgfs + h*fs.
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Secondly, we prove the second equality of (23), which we call eq. (23.2). As in the
proof of (23.1) the first three terms (starting ¢~1) of the Fourier expansions of both hand
sides coincide. Therefore, it suffices to show that the right-hand side of (23.2) is a modular
function since the difference between both is a holomorphic cusp form. It can be verified
by (16) and (18) that xg; — yg2 + zg3 and its S-transformation are equal to the polynomial

21908499873482°%y + 21908499873472°7 23 — 21653467488862°%y> =
— 862102874434x54y%2* + 3271947035192°%y8 + 69025387079692°%y ="
+ 7790144820805250210 — 368294187889x4%910 2 — 10224524748288x4%3 2%
— 518498660297624 %2 + 9095867490424y + 657436370088862 7y 214
+ 694073528372002%3 217 — 144799582921 4%y 7z — 80499190812167x42y> 217
— 264855723347662 0221 — 4954346542723 y?% + 304676697232500238y 22!
+ 322824304777540230 224 4 5188676724 723%y%4 2 — 35218656027921423%y3 %2
— 35817759533186233y%2%5 + 3174614180319 + 3850352253644514:31y 228
+ 40349526464982522% 231 — 3132177486228y 2 — 4173267482204002%y3 2%
— 6781808871602x:20y%2%? — 3293846122440 + 929666208500242:%4y 23>
+ 946468141078172%2 238 + 4265316522138 2 — 94762510467036221 43230
+ 1242325016982 742237 — 1335172 7y*? + 1908830846682 7y 242
+ 1875716479483z1° 2% — 650182 4y*° 2 — 1876091330673 x4y 2*3
— 1236482529222 216 4+ 214361927x10yz49 + 22972358025 252

— 5927472z — 219081278272 20 4 198417592253
— 5923 Yz 36 4250 — y59z.

(24)

Therefore, we have proved:

Theorem 12. We have j — 744 = xg1 — ygs + 2g3. In particular, j — 744 is a homogeneous
polynomial in x, y and z of degree 60.
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