Magnetism and interface properties
of epitaxial Fe films on high-mobility
GaAs/Al, ,-Ga, 6sAs(001) two-dimensional

electron gas heterostructures

Cite as: Appl. Phys. Lett. 82,1072 (2003); https://doi.org/10.1063/1.1542934
Submitted: 05 August 2002 . Accepted: 11 December 2002 . Published Online: 10 February 2003

B. Roldan Cuenya, M. Doi, W. Keune, S. Hoch, D. Reuter, A. Wieck, T. Schmitte, and H. Zabel

AT f

L k]

i J

N r4 0

View Online Export Citation

ARTICLES YOU MAY BE INTERESTED IN

The design and verification of MuMax3
AIP Advances 4, 107133 (2014); https://doi.org/10.1063/1.4899186

(7))
-
()
e
ajd
()
—d
(7))
R
7))
=)
L
al
©
9
a
Q.
<

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
Applied Physics Letters 88, 182509 (2006); https://doi.org/10.1063/1.2199473

Properties of Fe single-crystal films grown on (100)GaAs by molecular-beam epitaxy
Journal of Applied Physics 61, 2596 (1987); https://doi.org/10.1063/1.337886

Lock-in Amplifiers
up to 600 MHz

Appl. Phys. Lett. 82, 1072 (2003); https://doi.org/10.1063/1.1542934 82,1072

© 2003 American Institute of Physics.



https://images.scitation.org/redirect.spark?MID=176720&plid=1086294&setID=378288&channelID=0&CID=358612&banID=519897914&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=aaa086372f9ee665edf0e430668794a2c108e2bc&location=
https://doi.org/10.1063/1.1542934
https://doi.org/10.1063/1.1542934
https://aip.scitation.org/author/Cuenya%2C+B+Roldan
https://aip.scitation.org/author/Doi%2C+M
https://aip.scitation.org/author/Keune%2C+W
https://aip.scitation.org/author/Hoch%2C+S
https://aip.scitation.org/author/Reuter%2C+D
https://aip.scitation.org/author/Wieck%2C+A
https://aip.scitation.org/author/Schmitte%2C+T
https://aip.scitation.org/author/Zabel%2C+H
https://doi.org/10.1063/1.1542934
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1542934
https://aip.scitation.org/doi/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://aip.scitation.org/doi/10.1063/1.2199473
https://doi.org/10.1063/1.2199473
https://aip.scitation.org/doi/10.1063/1.337886
https://doi.org/10.1063/1.337886

APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 7 17 FEBRUARY 2003

Magnetism and interface properties of epitaxial Fe films on high-mobility
GaAs/Al, 35Gag g5As (001) two-dimensional electron gas heterostructures

B. Roldan Cuenya,® M. Doi,”) and W. Keune®
Angewandte Physik, Gerhard-Mercator-Universita-47048 Duisburg, Germany

S. Hoch, D. Reuter, and A. Wieck
Angewandte Festkperphysik, Ruhr-UniversitaBochum, D-44780 Bochum, Germany

T. Schmitte and H. Zabel
Experimentalphysik/Festkperphysik, Ruhr-UniversitaBBochum, D-44780 Bochum, Germany

(Received 5 August 2002; accepted 11 December 002

An optimized heterostructure design and an optimized surface sputter-cleaning procedure allow the
growth of high-quality epitaxial R@01) thin films at T,<~50°C on selectively doped
GaAs/Al 3:Ga gsAS heterostructures, while retaining the high quality transport property of the
two-dimensional electron gas. Magneto-optic Kerr effect measurements and model calculations
indicate a dominant uniaxial in-plane anisotra@asy axis alon§j110], hard axis along1—10])

and small coercivity~15 O8. Interface sensitive’Fe Mtssbauer measurements prove the absence

of both magnetic “dead layers” and “half-magnetization” phasgsmpared to pure Feand
provide evidence for intermixing within a few monolayers, retaining, however, a metallic Fe state
and high Fe magnetic moments at the interface.2@3 American Institute of Physics.

[DOI: 10.1063/1.1542934

Ferromagnetic metalFM)/semiconductoSC) hetero-  this surface cleaning process usually destroys the 2DEG. We
structures are of considerable current interest due to theattribute the damage to the 2DEG to the intensive Ar sput-
potential use in future magnetoelectronics devicdsx-  tering at rather high temperatures. We also suspect that pos-
amples are the suggestéalit not yet realizedspin devices sibly the whole GaAs:Si cap layéonly 5 nm thick is re-
that are based on injection of spin polarized electrons fronmoved during this surface cleaning process resulting in an
the FM layer into the two-dimensional electron d@8®EG)  exposed A ;:Ga, gsAS layer which reacts with oxygen from
SC heterostructureFe on GaAs is one of the model systemsthe air.
for the epitaxial growth of a FM on a S€° The absence of Besides changing the surface-cleaning process param-
a magnetic dead layer at the interface between Fe grown baters(see latey, we prepared heterostructur@égpe 2 with a
molecular beam epitaxyMBE) at a substrate temperature considerably thickef30 nm) GaAs cap layer to reduce the
Ts<~50°C and the Ga-terminated Ga@81) (bulk) crys-  danger of exposing the Al containing layer. Only the topmost
tal surface has been directly measured by interface-sensitive nm of the GaAs cap layer was Si doped to avoid parallel
*’Fe conversion-electron \sbauer spectroscop§EMS),"®  conduction in this layer. Otherwise the composition of the
in agreement with previous magnetometric restiftSurther,  type-2 heterostructures was the same as that of type 1. The
the recently observed injection of spin polarized electrongype-2 heterostructureSubstrateswere removed from the
from epitaxial F€00D) films into GaA$001)-based light semiconductor MBE system and exposed to air. They were
emitting diode$"*?implies the presence of FM high-moment ¢jeaned by 2-propanol prior to being loaded into a MBE
interface layers in these systems. . system for metal fimgbase pressure 010 ** mbar). A

An issue of paramount importance is to ensure a propegentle cleaning procedure was used for type-2 substrates: Ar
function of the 2DEG after growth and lithographic treat- sputtering for 15 min at only 500 eVcurrent density 1

ment of the Fe film. One of f[he standard proce_dures of Clean,&A/cmZ) at perpendicular incidence was employed to reduce
ing the surface of commercial Ga®@®1) wafers in ultrahigh  yhe sputter yield and the crystal damage. Also the tempera-
vacuum prior to Fe deposition is intensive sputtering at ely e quring sputtering was lowered to 450 °C to minimize the
evated temperature~500-600°C with low-energy Ar  aq 555 After sputtering extensive annealing at 500 °C for 12

(0 7-10,13 :
ions! y and rs],ubsequent annealmc?. For . ;t?]ndarch was performed. After this treatment no surface impurities
GaAs/AkGa _As heterostructureglenoted type lwith the o6 etected by Auger electron spectroscopy, and the ob-

typical layer sequence GaAs:Si (5 nm)é&Gaﬂ-lﬁaAS:Si served reflection high-energy electron diffractiGRHEED)
(60 72)/ Ab-35Ga°-59/A‘GS(60 nm&/ GaA7é600 ngg/ AlAS (f5'4 pattern[Fig. 1(a)] showed streaky fundamental reflections of
nm)/[GaAs (5 nm)/GaAs (50 nn}o/ GaAs (001)  wafer, the clean GaA®01) surface. However, only very faint indi-

cations of half-integer reflections from the pseudo<@)
dpresent address: Department of Chemical Engineering, University of Calisyrface reconstructioﬁéo of the Ga-terminated surface are
fornia at Santa Barbara, Santa Barbara, CA 93106. visible in Fig. Xa), indicating that surface ordering is not yet

YPresent address: Department of Materials Science and Engineerin%,
Nagoya University, Nagoya 464-8603, Japan. omplet_e. _
9Electronic mail: keune@uni-duisburg.de Fe film growth on this substrate surface was performed
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isotropy and an in-plane fourfold anisotropy. The uniaxial
‘ anisotropy has hard axesat;=90° and 270°, i.e., along the
L4

(a)

[1—10] direction of the substrate, and easy axes a[ddg),

in agreement with earlier repoft® about Fe films on bulk
GaAg001), but at variance with thEl —10] easy-axis direc-
tion reported in Ref. 8. The fourfold hard axes are observed
at ¢4=0°, 90°, 180°, and 270°, i.e., along-1-10],
GaAs-HEMT(001) [1-10], etc., and easy direction alofig—10], [100], etc.,

as expected for bulk bcc Fe. The origin of the fourfold an-
isotropy is the crystalline cubic anisotropy of bcc Fe, while
the uniaxial anisotropy is due to interface anisotrdpy.

In order to describe the measured remandrag 2), we
assume a coherent in-plane rotation of the magnetization
vector. The total magnetic energy is given by the sum of the
Zeeman energy, the cubic and the uniaxial anisotropy energy:

E(¢,H)=— uoMsH cos ¢ — d) + (K1/4)sin(2¢)

Fe(40 ML)/GaAs-HEMT(001)

FIG. 1. RHEED patterns along tH&10] azimuthal direction of the clean

GaAs/Al 3:Ga, As(001)-high electron mobility transistdHEMT) sub- +Ky Sin2(¢_ du)- 1)
strate surfacda), covered by 4 ML F&O01) (b), and 40 ML F¢€001) (c). . )
(Electron energy: 9 keV ¢, ¢y, and ¢ are the angles between the coordinate axis

and the magnetization vectddg, the applied fieldH, and
] . . the uniaxial easy axis, respectively, all oriented in the film
by f'fsgﬂepos'“”g 7.2 A5 monolayers(ML)] of 95% en-  plane. The magnetization-versus-field curve is a trajectory on
£|70hed Fe isotope, followed by 70 A of natural E\?gth 2% the energy surfacE(¢,H) starting at the maximum applied

Fe abundange at a deposition pressure2x 10" mbar  fig|q (with M and H aligned, and ¢ traveling through
e_md a deposition rate of 0.03 A/s or 1.26 _ML/mm. The Feg |ocal minimum on the energy surface upon decreasing
film was coated by 40 A of Sn for protection. The growth H. From the values¢(H=0) on this trajectory the
temperature was nominally at RT; howeveg,actually rose  remanence of the hysteresis loop can be calculatadhe
to ~40-50°C during deposition, as measured by a thermogcy 5| simulation a small field value &f=10 Oe prior to
couple at the sample holder surface. After deposition of 4je|q reversal was chosen rather thdre0.) The magnetiza-
ML Fe and above, spotty fundamental reflections in thejon cyrves for different in-plane angles, were simulated
RHEED patterngFigs. 1b) and Xc)] develop which indi- ging this model. From each simulation the angle
cate both, epitaxial growth of bcc—@91) (with thselénl-Aplane at a small field H=10 Oe) is recorded, and the low-field
[100] axes of F€001) and GaAs00D) a“g”leodm’ “and  magnetizationM;, is calculated according td,(10 Oe)
rather thr_ee—_dmensmnﬂlslan@ growth of Fe.™ =M, co§ (10 Oe)- ¢y]. The resulting function M,

_ Longitudinal magneto-opug Kerr effe(;MOKE) hystgr— =M, (), normalized toMy, is compared to the experi-
esis curves were measured situat RT with different in-  enta) data. The full-drawn line in Fig. 2 is the result of the
plane rotauqnal angleg, between the in-plane applied field simulation, where the following magnetic paramet@s ex-

H and the in-plane crystallographic axes of the substratg,cied from superconducting quantum interference device
(Fig. 2, insets A small.coercwe fieldH., of 15+5 Oe is magnetometry and Ferromagnetic resonafé®IR) mea-
measured for all directiongy, . The ¢ dependence of the g,rements on epitaxial FE7 A)/GaAs (001)™° were used:
magnetic remanenc@ig. 2, full squaresindicates the su- M.=1.67x10f A/m, K,=3.3x10* Jn?, K,=1.8xX10*
perposition of an in-plane twofolduniaxia) magnetic an- Jin?, and ¢, = 45° {=angle betweefil—10] (hard axis of
Ky) and[100] (easy axis ofK;)}. Our experimental and
simulated data are in good agreeméiy. 2). Moreover, the

10 FMR parameter&; andK used here are in fair agreement
= 08 with the corresponding MOKE parametédsenoted(‘fff and
° o Kﬁ“) of high-quality epitaxial F®©01) on bulk GaA$001)
D 0.6 obtained from Fig. 3 in Ref. 9 far.=53.7 ML (or 77 A Fe:
g ¢ -~ KST=3.7x 10* Jin? andK&=1.6x 10* J/n?.
g 04973 0 The predominant signaB3%) of the >’Fe CEM spec-
q,M 5“ trum should originate from the burietlFe interface layer
021 *T"; T I L T (7.2 A), and only 17% from the natural Fe overlay@p A).
h [kOel Thus, the Fe/GaAs interface signal is selectively enhanced in
0 45 90 135 180 225 270 315 360 this sample. The observed spectruifig. 3 was least-
o, [°] squares fitted in terms of two Zeeman-split subspectra. The

first Zeeman sextetwhich experimentally contributes to
FIG. 2. MOKE results for Fe (70Aj/Fe (7.2A)/GaAs/ 2504 of the total spectral areahows sharp Lorentzian lines,

Al 3Ga 6AS(001)-HEMT. The squares denote the measured values of th : - -
Kerr rotation angle at remanenc@¢™ normalized todi at saturation. The a magnetic hyperfinén) field (Byy) of (33.10£0.04) T, and

full-drawn line is the result of a model calculation. The insets show some&l isgmer shif(chemical Shifﬁlé of (_0-002":0-_004 mm/s
typical Kerr hysteresis loops fap,=90°, 180°, and 333°, as indicated. ~ (relative to bulk bcc Fe at RTin accordance with the spec-
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FIG. 4. Longitudinal resistanc®,,, at 1.3 K as a function of the applied
field, B=puoH, of a GaAs/A) 3:Ga ¢sAs-HEMT heterostructure after re-
moval of the deposited Fe film.

FIG. 3. Room-temperature debauer(CEM) spectra and corresponding
hyperfine-field  distribution P(B,) of Fe (70A)PFe (7.2A)/
GaAs/Al 3Ga gsAS(001)-HEMT.

at low filling factors. The electron density without illumina-

. 1 _2 oy
tral parameters of pure bulk bcc Fe. The second Zeemafion was 2.0% 10" cm™?, and a mobility of 90 rffV's was
asymmetric lines, and hence, was fitted by a distribution offined for a reference heterostructutgpe 2 that was not
hf fields, P(By), including a linear correlation dB; ands. ~ Subjected to the surface cleaning procedure and had no Fe
A small positive average isomer shifs) of +0.19 mm/s  film deppsned. This implies that the optimized heterostruc-
(corresponding to a small decrease of thelectron density ~turé design and surface cleaning procedure used here allow a
at the®’Fe nucleus relative to pure bcc)Fgas obtained for ~ Sufficient surface preparation for the growth of magnetic-
the second sextet indicating a metallic Fe state. This valugead-layer free epitaxial Fe films, while maintaining the in-
and the hf field distributionP(By) characterize the inter- tegrity of the high-quality 2DEG.
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