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According to the concept of typicality, an ensemble average can be accurately approximated by
an expectation value with respect to a single pure state drawn at random from a high-dimensional
Hilbert space. This random-vector approximation, or trace estimator, provides a powerful approach
to, e.g., thermodynamic quantities for systems with large Hilbert-space sizes, which usually cannot
be treated exactly, analytically or numerically. Here, we discuss the finite-size scaling of the accu-
racy of such trace estimators from two perspectives. First, we study the full probability distribution
of random-vector expectation values and, second, the full temperature dependence of the standard
deviation. With the help of numerical examples, we find pronounced Gaussian probability distribu-
tions and the expected decrease of the standard deviation with system size, at least above certain
system-specific temperatures. Below and in particular for temperatures smaller than the excitation
gap, simple rules are not available.

I. INTRODUCTION

Methods such as the finite-temperature Lanczos
method (FTLM) [1–7], that rest on trace estimators
[1, 8–16] and thus – in more modern phrases – on the
idea of typicality [17–20], approximate equilibrium ther-
modynamic observables with very high accuracy [2, 21].
In the canonical ensemble, the observable can be evalu-
ated either with respect to a single random vector | r 〉,

Or(T ) ≈
〈 r |O∼e

−βH∼ | r 〉
〈 r | e−βH∼ | r 〉

, (1)

or with respect to an average over R random vectors,

OFTLM(T ) ≈
∑R
r=1 〈 r |O∼e

−βH∼ | r 〉
∑R
r=1 〈 r | e

−βH∼ | r 〉
, (2)

where numerator and denominator are averaged with re-
spect to the same set of random vectors. The components
of | r 〉 with respect to an orthonormal basis are taken
from a Gaussian distribution with zero mean (Haar mea-
sure [22–24]), but in practice other distributions work as
well. T , β, and H∼ denote the temperature, inverse tem-

perature and the Hamiltonian, respectively.
In this work, we discuss the accuracy of Eqs. (1) and

(2), where we particularly focus on the dependence of
this accuracy on the system size or, to be more pre-
cise, the dimension of the effective Hilbert space spanned
by thermally occupied energy eigenstates. While it is
well established that the accuracy of both equations in-
creases with the square root of this dimension, we shed
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light on the size dependence from two less studied per-
spectives. First, we study the full probability distribu-
tion of random-vector expectation values, for the spe-
cific example of magnetic susceptibility and heat capac-
ity in quantum spin systems on a one-dimensional lattice.
At high temperatures, our numerical simulations unveil
that these distributions are remarkably well described by
simple Gaussian functions over several orders of magni-
tudes. Moreover, they clearly narrow with the inverse
square root of the Hilbert-space dimension towards a δ
function. Decreasing temperature at fixed system size,
we find the development of broader and asymmetric dis-
tributions. Increasing the system size at fixed temper-
ature, however, distributions become narrow and sym-
metric again. Thus, the mere knowledge of the standard
deviation turns out to be sufficient to describe the full
statistics of random-vector expectation values – at least
at not too low temperatures.

The second central perspective of our work is taken
by performing a systematic analysis of the scaling of the
standard deviation with the system size, over the entire
range of temperature and in various quantum spin models
including spin-1/2 and spin-1 Heisenberg chains, critical
spin-1/2 sawtooth chains, as well as cuboctahedra with
spins 3/2, 2, and 5/2. We show a monotonous decrease of
the standard deviation with increasing effective Hilbert-
space dimension, as long as temperature is high com-
pared to some system-specific low-energy scale. Below
this scale, the scaling can become unsystematic if only a
very few low-lying energy eigenstates contribute. How-
ever, when averaging according to Eq. (2) over a decent
number (∼ 100) of random vectors, one can still deter-
mine the thermodynamic average very accurately in all
examples considered by us. A quite interesting example
constitutes the critical spin-1/2 sawtooth chain, where a
single state drawn at random is enough to obtain this
average down to very low temperatures.

This paper is organized as follows. In Sec. II we briefly
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recapitulate models, methods, as well as typicality-based
estimators. In Sec. III we present our numerical examples
both for frustrated and unfrustrated spin systems. The
paper finally closes with a summary and discussion in
Sec. IV.

II. METHOD

In this article we study several spin systems at zero
magnetic field. They are of finite size and described by
the Heisenberg model,

H∼ =
∑

i<j

Jij~s∼i · ~s∼j , (3)

where the sum runs over ordered pairs of spins. Here and
in the following operators are marked by a tilde, i.e. ~s∼i
denotes the spin-vector operator at site i. Jij denotes
the exchange interaction between a spin at site i and a
spin at site j. With the sign convention in (3), Jij > 0
corresponds to antiferromagnetic interaction.

Numerator and denominator of (2), the latter is the
partition function, are evaluated using a Krylov-space
expansion, i.e. a spectral representation of the exponen-
tial in a Krylov space with | r 〉 as starting vector of
the Krylov-space generation, compare [1, 4]. One could
equally well employ Chebyshev polynomials [13, 25, 26]
or integrate the imaginary-time Schrödinger equation
with a Runge-Kutta method [27–29], the latter is used
later in this paper as well.

If the Hamiltonian H∼ possesses symmetries, they can

be used to block-structure the Hamiltonian matrix ac-
cording to the irreducible representations of the employed
symmetry groups [4, 5], which yields for the partition
function

ZFTLM(T ) ≈
Γ∑

γ=1

dim[H(γ)]

R

×
R∑

r=1

NL∑

n=1

e−βε
(r)
n |〈n(r) | r 〉|2 . (4)

H(γ) labels the subspace that belongs to the irreducible
representation γ, NL denotes the dimension of the Krylov
space, and |n(r) 〉 is the n-th eigenvector of H∼ in this

Krylov space grown from | r 〉. The energy eigenvalue is

ε
(r)
n . To perform the Lanczos diagonalization for larger

system sizes, we use the public code spinpack [30, 31].

In our numerical studies we evaluate the uncertainty
of a physical quantity by repeating its numerical eval-
uation NS times. For this statistical sample we define
the standard deviation of the observable in the following

way:

δ(O) =

√√√√ 1

NS

NS∑

r=1

[Om(T )]
2 −

[
1

NS

NS∑

r=1

Om(T )

]2

=

√
[Om(T )]

2 −
[
Om(T )

]2

. (5)

Om(T ) is either evaluated according to Eq. (1) (m=r) or
to Eq. (2) (m=FTLM), depending on whether the fluc-
tuations of approximations with respect to one random
vector or with respect to an average over R vectors shall
be investigated.

We consider two physical quantities, the zero-field sus-
ceptibility as well as the heat capacity. Both are eval-
uated as variances of magnetization and energy, respec-
tively, i.e.

χ(T ) =
(gµB)2

kBT

[〈
(S∼

z)2
〉
−

〈
S∼
z
〉2

]
, (6)

C(T ) =
kB

(kBT )2

[〈
H∼

2
〉
−

〈
H∼

〉2
]
. (7)

We compare our results with the well-established high-
temperature estimate

δ〈O∼〉 ' 〈O∼〉
α√
Zeff

, Zeff = tr
[
e
−β(H∼−E0)

]
. (8)

Here E0 denotes the ground-state energy. In general the
prefactor α depends on the specific system, its structure
and size, as well as on temperature [18, 19], but empiri-
cally often turns out to be a constant of order α ≈ 1 for
high enough temperatures, compare [2, 6, 21]. Rigorous
error bounds, see Refs. [19, 32], share the dependence on
1/
√
Zeff, but lead to a prefactor that can be substantially

larger than the empirical finding.

III. NUMERICAL RESULTS

We now present our numerical results. First, in the
following Sec. III A, the full probability distribution of
random-vector expectation values is discussed for shorter
spin chains, where this distribution can be easily obtained
by generating a large set of different random vectors. In
the remainder of Sec. III the size dependence of the stan-
dard deviation is investigated for longer spin chains of
spin s = 1/2 and s = 1, respectively, which are treated
by Lanczos methods. The interesting behavior of a quan-
tum critical delta chain is studied as well. Finally, we
discuss the dependence of the standard deviation on the
spin quantum number for a body of fixed size, the cuboc-
tahedron.
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A. Distribution of random-vector expectation
values for smaller antiferromagnetic spin-1/2 chains

As a first step, in order to judge the accuracy of the
single-state estimate in Eq. (1), it is instructive to study
its full probability distribution p, obtained by drawing
many [here O(104 − 106)] random vectors. To be more
precise, we evaluate the numerator of Eq. (1) for different
random states | r 〉, while its denominator is calculated
as the average over all | r 〉,

〈 r |O∼e
−βH∼ | r 〉

∑R
r=1 〈 r | e

−βH∼ | r 〉
. (9)

The advantage of using this equation, instead of Eq. (1),
is that the mean coincides with Eq. (2), the latter should
be used to correctly obtain the low-temperature average
in system of finite size [21]. However, at sufficiently high
temperatures or in sufficiently large systems, one might
equally well use Eq. (1), as we have checked.

The single results for Eq. (9) are then collected into
bins of appropriate width in order to form a “smooth”
distribution p. While one might expect that p will be
approximately symmetric around the respective thermo-
dynamic average, the width of the distribution indicates
how reliable a single random vector can approximate the
ensemble average.

In this Section, we study the probability distribution p
(in the following denoted as pχ and pC) for the quantities
χ(T )T/N and C(T )T 2/N , and exemplarily consider the
one-dimensional spin-1/2 Heisenberg model with antifer-
romagnetic nearest-neighbor coupling J > 0 and chain
length N . Note that, as discussed in the upcoming
Secs. III B - III E, details of the model can indeed have
an impact on the behavior of p in certain temperature
regimes. Note further, that we focus in this Section on
small to intermediate system sizes N ≤ 20, where p can
be easily obtained by generating a large set of different
random vectors and evolving these vectors in imaginary
time by, e.g., a simple Runge-Kutta scheme. We have
checked that the Runge-Kutta scheme employed in this
Section has practically no impact on p.

To begin with, in Fig. 1 (a), pχ is shown for differ-
ent chain lengths N = 12, . . . , 20 at infinite temperature
βJ = 0. For all values of N shown here, we find that
pχ is well described by a Gaussian distribution [33] over
several orders of magnitude. While the mean of these
Gaussians is found to accurately coincide with the ther-
modynamic average limT→∞ χ(T )T/N = 1/4 [34], we
moreover observe that the width of the Gaussians be-
comes significantly narrower upon increasing N . This
fact already visualizes that the accuracy of the estimate
in Eq. (1) improves for increasing Hilbert-space dimen-
sion. In particular, as shown in the inset of Fig. 1, the
standard deviation δ(χ) scales as δ(χ) ∝ 1/

√
d, where

d = 2N is the dimension of the Hilbert space. This is
in agreement with Eq. (8) for α ≈ 1.2 and Zeff = d at
β = 0. Note that since pχ is found to be a Gaussian, the
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Figure 1. (a) Probability distribution of the susceptibility
χ(T )T/N evaluated from independently drawn single states
according to Eq. (9). Data is shown for different system sizes
N = 12, . . . , 20 at infinite temperature βJ = 0. The dashed
lines indicate Gaussian fits to the data. The inset shows the
standard deviation δ(χ) versus N , which scales as δ(χ) ∝
1/
√
d with Hilbert-space dimension d = 2N . (b) Same data

as in (a) but now for the finite temperature βJ = 1.

width δ(χ) is sufficient to describe the whole distribution
(apart from the average).

To proceed, Fig. 1 (b) again shows the probability dis-
tribution pχ, but now for the finite temperature βJ = 1.
There are two important observations compared to the
previous case of βJ = 0. First, for small N = 12, one
clearly finds that pχ now takes on an asymmetric shape
and the tails are not described by a Gaussian anymore.
Importantly, however, upon increasing the system size N ,
pχ becomes narrower and eventually turns into a Gaus-
sian again. One may speculate about possible reasons for
the observed asymmetry: It might reflect an asymmetry
of the distribution, which is already present at β = 0
and small N , and then increases with increasing β; or it
might also stem from the boundedness (positivity) of the
observables, although the bounds are still far away for
the presented case of βJ = 1 in Fig. 1 (b). While this
asymmetry remains to be explored in more detail in fu-
ture work, it is expected that the Gaussian shape breaks
down in small dimensions of the effective Hilbert space
dimensions [33]. It is worth pointing out that, even for
very large dimensions, the very outer tails of the distri-
bution are expected to be of non-Gaussian nature [33].
Yet, these tails are hard to resolve in our numerical simu-
lations, since a huge number of samples would be needed.

As a second difference compared to βJ = 0, we find
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Figure 2. (a) Probability distribution of the susceptibility
χ(T )T/N for various temperatures 0 ≤ βJ ≤ 2 at the fixed
system size N = 12 obtained by ED (symbols). For compar-
ison, data obtained by Runge-Kutta at βJ = 2 is shown as
well (curve). (b) Same data as in (a), but now as a contour
plot.

that although pχ becomes narrower for larger N also at
βJ = 1, this scaling is now considerably slower as a func-
tion of dimension d (see inset of Fig. 1 (b)). This is
caused by the smaller effective Hilbert-space dimension
Zeff < d at βJ > 0. As a consequence, for a fixed value
of N , the single-state estimate in Eq. (1) becomes less
reliable at βJ = 1 compared to βJ = 0. However, let
us stress that accurate calculations are still possible at
T > 0 as long as N is sufficiently large. (Recall, that
N ≤ 20 was chosen to be able to generate a large set of
random vectors.)

In order to analyze the development of the probabil-
ity distribution with respect to temperature in more de-
tail, Fig. 2 (a) shows pχ for various values of βJ in the
range 0 ≤ βJ ≤ 2, for a fixed small system size N = 12.
Note that the qualitative behavior in principle is inde-
pendent of N , but better to visualize for small N with
a broader pχ. Starting from the high-temperature limit
limT→∞ χ(T )T/N = 1/4, we find that the maximum of
pχ gradually shifts towards smaller values upon decreas-
ing T .

This shift of the maximum is clearly visualized also in
Fig. 2 (b), which shows the same data, but in a different
style. Moreover, Fig. 2 (b) additionally highlights the
fact that the probability distribution pχ for a fixed (and
small) value of N becomes broader (and asymmetric) for
intermediate values of T . Note, that pχ might become
narrower again for smaller values of T , see also discussion
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Figure 3. Analogous data as in Fig. 1, but now for the heat
capacity C(T )T 2/N .
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Figure 4. Analogous data as in Fig. 2, but now for the heat
capacity C(T )T 2/N .

in Secs. III B - III C.

Eventually, in Fig. 3 and Fig. 4, we present analogous
results for the full probability distribution p, but now for
the heat capacity C(T )T 2/N . Overall, our findings for
pC are very similar compared to the previous discussion
of pχ. Namely, we find that at βJ = 0, pC is very well



5

described by Gaussians over several orders of magnitude.
Moreover, the standard deviation δ(C) again scales as

∝ 1/
√
d at β = 0. As shown in Fig. 3 (b) and also in

Fig. 4, the emerging asymmetry of the probability dis-
tribution at small N and finite T is found to be even
more pronounced for the heat capacity compared to the
previous results for χ(T ). Interestingly, we find that the
maximum of pC , on the contrary, displays only a minor
dependence on temperature (at least for the values of βJ
shown in Fig. 4 - naturally, it is expected to change at
lower temperatures and will to go to zero at temperature
T = 0).

B. Larger antiferromagnetic spin-1/2 chains

Using a Krylov-space expansion one can nowadays
reach large system sizes of N ∈ [40, 50] for spins s = 1/2,
see e.g. [35]. But since we also perform a statistical anal-
ysis we restrict calculations to N ≤ 36 spins.

Following the scaling behavior of {〈(S∼
z)2〉 − 〈S∼

z〉2} as

well as {〈H∼
2〉 − 〈H∼ 〉

2}, which is shown in Figs. 1 and 3,

one expects a very narrow distribution of both quantities
for N = 36 compared to e.g. N = 20 since the dimension
is 216 = 65536 times bigger for N = 36 which yields a
256 times narrower distribution. Such a distribution is
smaller than the linewidth in a plot.

Figure 5. Spin ring N = 36, s = 1/2: The light-blue curves
depict 100 different estimates of the susceptibility (a) as well
as of the heat capacity (b). The FTLM estimate for R = 100
is also presented.

That the distributions are narrow can be clearly seen
by eye inspection in Fig. 5 where the light blue curves
depict thermal expectation values according to Eq. (1).
For kBT > |J | they fall on top of each other and coincide

Figure 6. Spin rings, s = 1/2: Computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various
sizes N . The same color denotes the same system.

with the average over R = 100 realizations. Below this
temperature the distributions widen, which is magnified
by the fact that the real physical quantities susceptibil-
ity and heat capacity contain factors of 1/T and 1/T 2,
respectively.

Their standard deviation is provided in Fig. 6. Com-
ing from high temperatures, the universal behavior (8)
switches to a behavior that in general depends on system
(here chain) and size below a characteristic temperature,
here kBT ≈ |J |. Nevertheless, the qualitative expecta-
tion that the standard deviation shrinks with increasing
system size is met down to kBT ≈ 0.2|J |, below which no
definite statement about the dependence on system size
can be made. We conjecture that with growing N the
increasing density of low-lying states as well as the van-
ishing excitation gap between singlet ground state and
triplet first excited state influence the behavior at very
low temperatures strongly.

C. Antiferromagnetic spin-1 chains

In order to monitor an example where a vanishing ex-
citation gap cannot be expected, not even in the ther-
modynamic limit, we study spin-1 chains that show a
Haldane gap [36, 37], see Fig. 7. The scaling formula
(8) indeed suggests that for kBT / (0.4 . . . 0.5)|J | the
standard deviations of the larger system with N = 24
should exceed those of the smaller system with N = 20,
compare crossing curves of the estimator in Fig. 8. How-
ever, the actual simulations show that this is not the case.
The low-temperature fluctuations in the gap region are
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Figure 7. Spin ring N = 24, s = 1: The light-blue curves
depict 100 different estimates of the susceptibility (a) as well
as the heat capacity (b). The FTLM estimate for R = 100 is
also presented.

Figure 8. Spin rings, s = 1: Computed standard deviations
(dashed curves) of the susceptibility (a) and the heat capacity
(b) compared to the error estimate (solid curves) for various
sizes N . The same color denotes the same system.

smaller for the larger system, at least for the two inves-
tigated system sizes.

D. Critical Spin-1/2 delta chains

As the final one-dimensional example we investigate a
delta chain (also called sawtooth chain) in the quantum
critical region, i.e., thermally excited above the quan-
tum critical point (QCP) [38–40]. The QCP is met
when the ferromagnetic nearest-neighbor interaction J1

and the antiferromagnetic next-nearest neighbor inter-
action J2 between spins on adjacent odd sites assume
a ratio of |J2/J1| = 1/2. At the QCP the system fea-
tures a massive ground-state degeneracy due to multi-
magnon flat bands as well as a double-peak density of
states [21, 38, 39]. Moreover, the typical finite-size gap
is virtually not present at the QCP [38].

Figure 9. Delta chain s = 1/2, |J2/J1| = 0.5: heat capacity
for N = 32 (a) and standard deviation for N = 28 and N = 32
(b). The light-blue curves depict NS = 30 different estimates
of the heat capacity (there are indeed 30 curves in this plot,
which are indistinguishable by eye). Computed standard de-
viations (dashed curves) are compared to the error estimate
(solid curves). The same color denotes the same system.

Since the QCP does not depend on the size of the sys-
tem and the structure of the analytically known multi-
magnon flat band energy eigenstates does not either, we
do not expect to find large finite-size effects when in-
vestigating the standard deviation of observables, e.g. of
the heat capacity. It turns even out that by eye inspec-
tion no fluctuations are visible in Fig. 9 (a). The figure
shows NS = 30 thermal expectation values (3) that vir-
tually fall on top of each other. This means that a single
random vector provides the equilibrium thermodynamic
functions for virtually all temperatures. When evaluat-
ing the standard deviation, dashed curves in Fig. 9 (b),
it turns out that it is unusually small, even for very low
temperatures. The estimator (8) to which we compare
had to be scaled in this case which might have two rea-
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sons. One reason could be that the large ground state
degeneracy cannot be fully captured by the Krylov space
expansion and thus the evaluation of the estimator (8) by
means of Eq. (4) is inaccurate. The other reason could be
that the empirical finding of α ≈ 1 is not appropriate in
this special case of a quantum critical system. However,
the general rule that trace estimators are more accurate
in larger Hilbert spaces is also observed here. The stan-
dard deviation of the smaller delta chain with N = 28 is
a few times larger than for N = 32.

The result is an impressive example for what it means
that a quantum critical system does not possess any in-
trinsic scale in the quantum critical region [41, 42]. The
only available scale is temperature. This means in partic-
ular that the low-energy spectrum is dense and therefore
does not lead to any visible fluctuations of the estimated
observables.

E. Antiferromagnetic cuboctahedra with spins 3/2,
2, and 5/2

Figure 10. Cuboctahedron N = 12, s = 5/2: The light-blue
curves depict 100 different estimates of the susceptibility (a)
as well as the heat capacity (b). The FTLM estimate for R =
100 is also presented. The structure of the cuboctahedron is
displayed in (b).

Our last scaling analysis differs from the previous ex-
amples. The cuboctahedron is a finite-size body, that is
equivalent to a kagome lattice with N = 12 [43–45]. The
structure is shown in Fig. 10(b). Here, we vary the spin
quantum number, not the size of the system. The dimen-
sion of the respective Hilbert spaces grows considerably
which leads to the expected scaling (8) above tempera-
tures of kBT ≈ 1.5|J |. But the low-temperature behav-
ior, in particular of the heat capacity for temperatures

below the crossing of the estimators, eludes the expected
order of more accurate results, i.e. smaller fluctuations
for larger Hilbert-space dimension.

While the low-temperature behavior and the standard
deviation of the susceptibility are largely governed by the
energy gap between singlet ground state and triplet ex-
cited state, and this does not vary massively with the spin
quantum number, the heat capacity is subject to stronger
changes. When going from smaller to larger spin quan-
tum numbers the strongly frustrated spin system looses
some of its characteristic quantum properties while be-
coming more classical with increasing spin s. In partic-
ular, the low-lying singlet states below the first triplet
state which dominate the low-temperature heat capacity
move out of the gap for larger spin s [46, 47].

Figure 11. Cuboctahedron N = 12: Computed standard de-
viations (dashed curves) of the susceptibility (a) and the heat
capacity (b) compared to the error estimate (solid curves) for
various spin quantum numbers s. The same color denotes the
same system.

It may thus well be that the type of Hilbert space en-
largement, due to growing system size which leads to the
thermodynamic limit or growing spin quantum number
which leads to the classical limit, is important for the be-
havior of the estimators (1) and (2) at low temperatures.

IV. DISCUSSION AND CONCLUSIONS

To summarize, we have studied the finite-size scaling
of typicality-based trace estimators. In these approaches,
the trace over the high-dimensional Hilbert space is ap-
proximated by either (i) a single random state | r 〉 or
(ii) the average over a set (R� d) of random vectors. In
particular, we have focused on the evaluation of thermo-
dynamic observables such as the heat capacity and the
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magnetic susceptibility for various spin models of Heisen-
berg type. Here, the temperature dependence of these
quantities has been generated by means of a Krylov-space
expansion where the random states | r 〉 are used as a
starting vector for the expansion.

As a first step, we have studied the full probability dis-
tribution of expectation values evaluated with respect to
single random states. As an important result, we have
demonstrated that for sufficiently high temperatures and
large enough system sizes (i.e. sufficiently large effective
Hilbert-space dimension Zeff), the probability distribu-
tions are very well described by Gaussians [33]. In par-
ticular, for comparatively high temperatures, our numer-
ical analysis has confirmed that the standard deviation
of the probability distribution scales as δ(O) ∝ 1/

√
Zeff,

and that this width already describes the full distribu-
tion.

In contrast, for lower temperatures, we have shown
that (i) the probability distributions can become non-
Gaussian and (ii) the scaling of δ(O) can become more
complicated and generally depends on the specific model
and observable under consideration. While a larger
Hilbert-space dimension often leads to an improved accu-
racy of the random-state approach at low temperatures
as well, compare the investigation on kagome lattice an-
tiferromagnets of sizes N = 30 and N = 42 in [35], we
have also provided examples where this expectation can
break down for too small Zeff , compare also [48].

A remarkable example is provided by the spin-1/2 saw-
tooth chain with coupling-ratio |J2/J1| = 1/2. Due to
the (virtually) gapless dense low-energy spectrum at the
quantum critical point, we have found that statistical
fluctuations remain negligible throughout the entire tem-
perature range with only minor dependence on system
size (see also Ref. [49] for a similar finding in a spin-liquid
model).

In conclusion, we have demonstrated that typicality-
based estimators provide a convenient numerical tool in
order to accurately approximate thermodynamic observ-
ables for a wide range of temperatures and models. While
in some cases, even a single pure state is sufficient, the
accuracy of the results can always be improved by aver-
aging over a set of independently drawn states.
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[22] B. Collins and P. Śniady, “Integration with Respect to
the Haar Measure on Unitary, Orthogonal and Symplec-
tic Group,” Commun. Math. Phys. 264, 773 (2006).

[23] C. Bartsch and J. Gemmer, “Dynamical Typicality of
Quantum Expectation Values,” Phys. Rev. Lett. 102,
110403 (2009).

[24] P. Reimann, “Typical fast thermalization processes in
closed many-body systems,” Nature Communications 7,
10821 (2016).

[25] H. Tal-Ezer and R. Kosloff, “An accurate and efficient
scheme for propagating the time dependent Schrödinger
equation,” J. Chem. Phys. 81, 3967 (1984).

[26] V. V. Dobrovitski and H. De Raedt, “Efficient scheme
for numerical simulations of the spin-bath decoherence,”
Phys. Rev. E 67, 056702 (2003).

[27] R. Steinigeweg, J. Gemmer, and W. Brenig, “Spin-
current autocorrelations from single pure-state propaga-
tion,” Phys. Rev. Lett. 112, 120601 (2014).

[28] R. Steinigeweg, J. Gemmer, and W. Brenig, “Spin and
energy currents in integrable and nonintegrable spin- 1

2
chains: A typicality approach to real-time autocorrela-
tions,” Phys. Rev. B 91, 104404 (2015).

[29] T. A. Elsayed and B. V. Fine, “Regression Relation for
Pure Quantum States and Its Implications for Efficient
Computing,” Phys. Rev. Lett. 110, 070404 (2013).

[30] J. Schulenburg, spinpack 2.56 , Magdeburg University
(2017).

[31] J. Richter and J. Schulenburg, “The spin-1/2 J1-J2
Heisenberg antiferromagnet on the square lattice: Ex-
act diagonalization for N=40 spins,” Eur. Phys. J. B 73,
117 (2010).

[32] A. Hams and H. De Raedt, “Fast algorithm for finding
the eigenvalue distribution of very large matrices,” Phys.
Rev. E 62, 4365 (2000).

[33] P. Reimann and J. Gemmer, “Full expectation-value
statistics for randomly sampled pure states in high-
dimensional quantum systems,” Phys. Rev. E 99, 012126
(2019), arXiv:1901.05784.

[34] H.-J. Schmidt, J. Schnack, and M. Luban, “Heisen-
berg exchange parameters of molecular magnets from the

high-temperature susceptibility expansion,” Phys. Rev.
B 64, 224415 (2001).

[35] J. Schnack, J. Schulenburg, and J. Richter, “Magnetism
of the N = 42 kagome lattice antiferromagnet,” Phys.
Rev. B 98, 094423 (2018).

[36] F. D. M. Haldane, “Continuum dynamics of the 1-d
Heisenberg anti-ferromagnet - identification with the o(3)
non-linear sigma-model,” Phys. Lett. A 93, 464 (1983).

[37] F. D. M. Haldane, “Non-linear field-theory of large-
spin Heisenberg antiferromagnets - semi-classically quan-
tized solitons of the onedimensional easy-axis neel state,”
Phys. Rev. Lett. 50, 1153 (1983).

[38] V. Y. Krivnov, D. V. Dmitriev, S. Nishimoto, S.-L.
Drechsler, and J. Richter, “Delta chain with ferromag-
netic and antiferromagnetic interactions at the critical
point,” Phys. Rev. B 90, 014441 (2014).

[39] D. V. Dmitriev and V. Y. Krivnov, “Delta chain with
anisotropic ferromagnetic and antiferromagnetic interac-
tions,” Phys. Rev. B 92, 184422 (2015).

[40] A. Baniodeh, N. Magnani, Y. Lan, G. Buth, C. E. Anson,
J. Richter, M. Affronte, J. Schnack, and A. K. Powell,
“High spin cycles: topping the spin record for a single
molecule verging on quantum criticality,” npj Quantum
Materials 3, 10 (2018).

[41] T. Vojta, “Quantum phase transitions in electronic sys-
tems,” Ann. Phys. 9, 403 (2000).

[42] M. Vojta, “Quantum phase transitions,” Rep. Prog.
Phys. 66, 2069 (2003).

[43] I. Rousochatzakis, A. M. Läuchli, and F. Mila, “Highly
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Phys. Rev. B 77, 094420 (2008).

[44] A. Honecker and M. E. Zhitomirsky, “Magneto-thermal
properties of the spin-s Heisenberg antiferromagnet on
the cuboctahedron,” J. Phys.: Conf. Ser. 145, 012082
(4pp) (2009).

[45] H.-J. Schmidt, A. Hauser, A. Lohmann, and J. Richter,
“Interpolation between low and high temperatures of the
specific heat for spin systems,” Phys. Rev. E 95, 042110
(2017).

[46] R. Schmidt, J. Schnack, and J. Richter, “Frustration
effects in magnetic molecules,” J. Magn. Magn. Mater.
295, 164 (2005).

[47] J. Schnack and R. Schnalle, “Frustration effects in an-
tiferromagnetic molecules: the cuboctahedron,” Polyhe-
dron 28, 1620 (2009).

[48] K. Morita and T. Tohyama, “Finite-temperature prop-
erties of the Kitaev-Heisenberg models on kagome
and triangular lattices studied by improved finite-
temperature Lanczos methods,” ArXiv e-prints (2019),
arXiv:1911.09266 [cond-mat.str-el].

[49] I. Rousochatzakis, S. Kourtis, J. Knolle, R. Moessner,
and N. B. Perkins, “Quantum spin liquid at finite tem-
perature: Proximate dynamics and persistent typicality,”
Phys. Rev. B 100, 045117 (2019).

http://dx.doi.org/10.1103/PhysRevLett.108.240401
http://dx.doi.org/10.1103/PhysRevLett.108.240401
http://dx.doi.org/10.1103/PhysRevLett.111.010401
http://dx.doi.org/10.1103/PhysRevE.97.043308
http://dx.doi.org/10.1103/PhysRevE.97.043308
http://arxiv.org/abs/1911.08838
http://dx.doi.org/10.1007/s00220-006-1554-3
http://dx.doi.org/10.1103/PhysRevLett.102.110403
http://dx.doi.org/10.1103/PhysRevLett.102.110403
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/ 10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1103/PhysRevLett.112.120601
http://dx.doi.org/10.1103/PhysRevB.91.104404
http://dx.doi.org/ 10.1103/PhysRevLett.110.070404
http://www-e.uni-magdeburg.de/jschulen/spin/index.html
http://dx.doi.org/10.1140/epjb/e2009-00400-4
http://dx.doi.org/10.1140/epjb/e2009-00400-4
http://dx.doi.org/ 10.1103/PhysRevE.62.4365
http://dx.doi.org/ 10.1103/PhysRevE.62.4365
http://dx.doi.org/10.1103/PhysRevE.99.012126
http://dx.doi.org/10.1103/PhysRevE.99.012126
http://arxiv.org/abs/1901.05784
http://dx.doi.org/10.1103/PhysRevB.64.224415
http://dx.doi.org/10.1103/PhysRevB.64.224415
http://dx.doi.org/10.1103/PhysRevB.98.094423
http://dx.doi.org/10.1103/PhysRevB.98.094423
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevLett.50.1153
http://dx.doi.org/ 10.1103/PhysRevB.90.014441
http://dx.doi.org/ 10.1103/PhysRevB.92.184422
http://dx.doi.org/10.1038/s41535-018-0082-7
http://dx.doi.org/10.1038/s41535-018-0082-7
http://dx.doi.org/ 10.1002/1521-3889(200006)9:6<403::AID-ANDP403>3.0.CO;2-R
http://stacks.iop.org/0034-4885/66/i=12/a=R01
http://stacks.iop.org/0034-4885/66/i=12/a=R01
http://link.aps.org/abstract/PRB/v77/e094420
http://stacks.iop.org/1742-6596/145/012082
http://stacks.iop.org/1742-6596/145/012082
http://dx.doi.org/ 10.1103/PhysRevE.95.042110
http://dx.doi.org/ 10.1103/PhysRevE.95.042110
http://dx.doi.org/10.1016/j.jmmm.2005.01.009
http://dx.doi.org/10.1016/j.jmmm.2005.01.009
http://dx.doi.org/10.1016/j.poly.2008.10.017
http://dx.doi.org/10.1016/j.poly.2008.10.017
http://arxiv.org/abs/1911.09266
http://dx.doi.org/ 10.1103/PhysRevB.100.045117

