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A NOTE ON THE WEAK SPLITTING NUMBER

ALBERTO CAVALLO, CARLO COLLARI, AND ANTHONY CONWAY

ABSTRACT. The weak splitting number wsp(L) of a link L is the minimal number of

crossing changes needed to turn L into a split union of knots. We describe conditions

under which certain R-valued link invariants give lower bounds on wsp(L). This result

is used both to obtain new bounds on wsp(L) in terms of the multivariable signature and

to recover known lower bounds in terms of the τ and s-invariants. We also establish new

obstructions using link Floer homology and apply all these methods to compute wsp for

all but two of the 130 prime links with 9 or fewer crossings.

1. INTRODUCTION

Given a link L, the weak splitting number wsp(L) is the minimal number of crossing

changes needed to convert L into a completely split link, i.e. into a disjoint union of knots

contained in pairwise disjoint balls. This paper studies wsp(L) using a variety of link

invariants, including signatures and the J-function from link Floer homology.

The weak splitting number, which was first introduced by Adams [1], must not be

confused with the similarly defined splitting number sp(L); the definition of the latter

only allows crossing changes between distinct components, which we call mixed crossing

changes. While the splitting number has been intensively studied [2, 6, 7, 10, 12, 24, 19],

the weak splitting number has so far attracted less attention [1, 6, 9, 32]. Indeed, wsp(L)
is harder to compute than sp(L); one of the main reasons being that the isotopy type of

the components of L is not fixed under arbitrary crossing changes. We now review known

methods to study wsp and describe new ones, using prime links with 9 or fewer crossings

to gauge their efficiency.

A first estimate on wsp is provided by the linking numbers: the sum of their absolute

values is a lower bound. Apart from this linking bound, the multivariable Alexander poly-

nomial ∆L also gives rise to obstructions. Indeed, Borodzik, Friedl and Powell [6] proved

that if L is an ℓ-component link with ∆L 6= 0, then ℓ − 1 ≤ wsp(L), and if equality is

achieved, then ∆L must factor as

(1.1) ∆L(t1, . . . , tℓ) = ff ·

ℓ∏

i=1

pi(ti) ·

ℓ∏

i=1

(ti − 1)mi .

Another method to compute wsp relies on slice-torus link invariants [23, 21, 9]. These are

numerical concordance invariants that include Oszváth and Szabó’s τ -invariant [29, 8], and

a normalisation of Rasmussen’s s-invariant [31, 3]. More precisely, the first two authors
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observed in [9] that if ν is a slice-torus link invariant and L = K1 ∪ . . . ∪Kℓ, then

(1.2)

∣∣∣∣∣ν(L)−
ℓ∑

i=1

ν(Ki)

∣∣∣∣∣ ≤ wsp(L).

Together with the linking bound and Borodzik, Friedl and Powell’s Alexander obstruction,

the slice-torus bound in (1.2) allow us to determine the weak splitting number of 114 out

of the 130 prime links with 9 or fewer crossings; see Table 2.

In order to determine the remaining cases, we develop novel lower bounds and obstruc-

tions. Firstly, we observe that the multivariable signature σL and nullity ηL of Cimasoni-

Florens [13] can be leveraged to provide lower bounds on the weak splitting number.

Theorem 1.1. If L = K1 ∪ . . . ∪Kℓ is an oriented link and ω = (ω1, . . . , ωℓ) ∈ (S1)ℓ,
then the following inequality holds:
∣

∣

∣

∣

∣

σL(ω)−
ℓ

∑

i=1

σKi
(ωi)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ηL(ω)−
ℓ

∑

i=1

ηKi
(ωi)− ℓ+ 1

∣

∣

∣

∣

∣

+ 3
∑

i<j

|ℓk(Ki,Kj)| ≤ 4wsp(L).

While this signature bound has appeared in the (unpublished) PhD thesis of the third

named author [14], here we provide an alternative proof. To state the theorem on which this

alternative proof is based, and which is one of the main results of this paper, we introduce

some terminology. A self crossing change is a crossing change that involves only one

component. If a link is oriented, a positive crossing change is one that changes a negative

crossing into a positive crossing.

Theorem 1.2. Let I be anR-valued oriented link invariant. Suppose there exists a, b, b′ ∈ R

such that

(1.3) I(L)− I(L′) ∈ [a, b] or I(L)− I(L′) ∈ [−b′, b′]

depending on whether L and L′ are related by a positive self crossing change or a mixed

crossing change. If δ := (b − a)− b′ ≥ 0, then for each oriented link L = K1 ∪ . . . ∪Kℓ

(1.4)

∣∣∣∣∣I(L)− I

(
ℓ⊔

i=1

Ki

)∣∣∣∣∣+ δ
ℓ∑

i=1

|ℓk(Ki,Kj)| ≤ (b− a)wsp(L).

Theorem 1.2 thus provides a template to produce lower bounds on wsp. As applications,

we recover the slice-torus and signature bounds; see Corollary 3.3 for a third application.

Before returning to links with 9 or fewer crossings, we pause and compare the lower

bounds that we have obtained so far. One might expect the obstructions from link homol-

ogy theories to be more powerful than classical invariants. The next proposition shows

that this is not always the case (cf. Propositions 2.8 and 2.7, and Remark 2.9), answering a

question posed in [9, Remark 1.5].

Proposition 1.3. The linking bound, the slice-torus bound, and the signature bound are

independent. More precisely, for each of the above bounds there are infinitely many links

for which the given bound is sharper than the other two. Moreover, the difference between

the values of any two among the above-mentioned bounds can be arbitrarily high.

We now return to weak splitting numbers of links with 9 or fewer crossings. Using the

signature bound from Theorem 1.1, we are able to determine 6 of the missing values in Ta-

ble 2. The remainder of this article develops methods to investigate the 10 remaining cases.
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Inspired by [7, Theorem 7.7], we first develop new obstructions based on the J-function

from link Floer homology [17, 7]. The definition and properties of the J-function are

reviewed in Section 3. For the moment we only note that the J-function

JL : Z
ℓ −→ Z≥0

is an invariant of the ℓ-component oriented link L. To state our result we also need the

integer-valued knot concordance invariant ν+ introduced by Hom and Z. Wu [18]. In

fact, ν+(K) can be defined as the minimal m ∈ Z≥0 such that JK(m) = 0; see Sec-

tion 3 as well as [28, Definition 2.12 and Proposition 2.13].

Finally, given a splitting sequence for an oriented link L = K1 ∪ . . . ∪Kℓ, we use si
(resp. m+

i,j) to denote the number of self crossing changes performed on Ki (resp. the

number of positive mixed crossing changes involving both Ki and Kj).

Theorem 1.4. Let L = K1 ∪ . . . ∪Kℓ be an oriented link, and let {εi,j}i6=j ⊂ {0, 1}ℓ
2−ℓ

be a sequence of ℓ2−ℓ integers with εi,j+εj,i = 1. If JL(v1, . . . , vℓ) 6= 0 then, for some i,

(1.5) vi < ν+(Ki) + si +
∑

j 6=i

εi,jm
+
i,j .

This new obstruction still does not allow us to determine the missing values of Table 2.

Nevertheless, in Example 3.5 we describe an infinite family of links for which the J-

function determines wsp, whereas the linking and signature bounds are ineffective.

To conclude the computation of wsp for the links in Table 2, Section 4 uses homotopical

considerations as well as covering link calculus. Here, recall that for an ℓ-component

link L = K1 ∪ . . . ∪Kℓ with Ki unknotted, one can form the 2-fold cover p : S3 → S3

branched along Ki. The link L̃ = p−1(L \Ki) ⊂ S3 is called the covering link of L.

Proposition 1.5. Let L = K1 ∪ . . . ∪Kℓ be an ℓ-component link.

(1) If L can be split via k crossing changes that do not involve an unknotted compo-

nent Ki, then the corresponding covering link satisfies wsp(L̃) ≤ 2k.

(2) If L can be split via self crossing changes that do not involve K1, then L \K1 is

null-homotopic in the exterior of K1.

(3) If L has pairwise vanishing linking numbers and is not null-homotopic, then either

wsp(L) = sp(L) or 3 ≤ wsp(L) ≤ sp(L)− 1.

Combining Proposition 1.5 with the previously described methods, we are able to deter-

mine the weak splitting numbers of all but two of the prime links with 9 or fewer crossings.

All our lower bounds and obstructions failed to determine the weak splitting number for

the links L9a29 and L9a30 in Thistlethwaite’s link table.

Organisation. In Section 2, we establish Theorem 1.2 and Theorem 1.1. In Section 3, we

review the J-function and prove (a generalisation of) Theorem 1.4. In Section 4, we prove

the homotopical obstructions of Proposition 1.5, while Section 5 lists the weak splitting

numbers of all but two of the 130 links with 9 or fewer crossings.

2. LOWER BOUNDS

2.1. Linking numbers. This subsection shows that the linking numbers as well as the

number of “obstructive sublinks” provide a lower bound on the weak splitting number.
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Given a link L, a non-split sublink J ⊆ L is called obstructive if it has vanishing

linking matrix. A collection of sublinks J1, . . . , Jk ⊆ L is called an obstructive collection

if each Ji is obstructive, and if the Ji’s are pairwise disjoint (i.e. they do not have common

components). We use noc to denote the maximal number of elements among all obstructive

collections of sublinks of L.

The next result shows that linking numbers and the number of obstructive links pro-

vide lower bounds on the weak splitting number. The proof is identical to that of [10,

Lemma 2.1], with a small caveat: there exists links with an arbitrary number of compo-

nents, which have pairwise linking number 0, and wsp equal to 1.

Lemma 2.1. If a splitting sequence for an ℓ-component link L = K1 ∪ . . .∪Kℓ has s self

crossing changes and m mixed crossing changes, then
∑

i<j

|ℓk(Ki,Kj)| ≤ m and m ≡
∑

i<j

ℓk(Ki,Kj) mod 2.

Additionally, the linking numbers give a lower bound on the weak splitting number:

(2.1)
∑

i<j

|ℓk(Ki,Kj)|+ noc(L) ≤ wsp(L).

The following example shows how Lemma 2.1 can be applied in practice.

Example 2.2. The 3-component link L9a47 has wsp(L9a47) = 3. Indeed, the inspection

of a diagram shows that wsp(L9a47) ≤ 3. The equality follows from Lemma 2.1, since

we have
∑

i<j |ℓk(Ki,Kj)| = 2, and L9a47 contains the Whitehead link as a sublink.

We observe that linking numbers provide a condition for the equality sp(L) = wsp(L).

Remark 2.3. We argue that if N :=
∑

i<j ℓk(Ki,Kj) = wsp(L), then wsp(L) = sp(L).

We need only show that sp(L) ≤ wsp(L). Choose a minimal splitting sequence with s
self crossing changes and m mixed crossing changes. By Lemma 2.1 we have N ≤ m ≤
s+m = N . It follows that s = 0 and sp(L) ≤ m = wsp(L).

2.2. General Bounds. We prove Theorem 1.2: any R-valued oriented link invariant that

has a bounded behaviour with respect to crossing changes (recall (1.3) in the statement of

Theorem 1.2) provides a lower bound on the weak splitting number.

Proof of Theorem 1.2. Fix a minimal splitting sequence L = L(0), L(1), . . . , L(k). Denote

by s the number of self crossing changes in said splitting sequence, and denote by m the

number of mixed crossing changes. In particular, we have wsp(L) = k = s +m. Given

an oriented link J = J1 ∪ . . . ∪ Jℓ, we consider the difference

i(J) := I(J)− I
(⊔

Ji

)
,

and we wish to study the behaviour of i(L(j)) − i(L(j−1)). First, when L(j) is obtained

from L(j−1) by a self crossing change, we can apply (1.3) to deduce that

(2.2)

{
−(b− a) ≤ I(L(j))− I(L(j−1))− b ≤ 0 if the crossing is positive,

0 ≤ I(L(j))− I(L(j−1)) + b ≤ (b − a) if the crossing is negative.

For each r, useK
(r)
1 , . . . , K

(r)
ℓ to denote the components ofL(r). Consider the links ⊔rK

(j)
r

and ⊔rK
(j−1)
r obtained as the split unions of the components of L(j) and L(j−1), respec-

tively. These links differ by a self crossing change, which is of the same type as the crossing
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change performed to pass from L(j−1) to L(j). Thus, a second application of (1.3) gives

the following inequalities:

(2.3)

{
0 ≤ −I

(

⊔

r
K

(j)
r

)

+ I
(

⊔

r
K

(j−1)
r

)

+ b ≤ (b− a) if the crossing is positive,

−(b− a) ≤ −I
(

⊔

r
K

(j)
r

)

+ I
(

⊔

r
K

(j−1)
r

)

− b ≤ 0 if the crossing is negative.

Adding the inequalities in (2.2) to those in (2.3), we obtain (regardless of the type of the

crossing) the inequality

(2.4) − (b − a) ≤ i(L(j))− i(L(j−1)) ≤ (b− a).

Now, assume that the crossing change between L(j−1) and L(j) involves two different

components. A similar reasoning to the one above yields the following inequality:

(2.5) − b′ ≤ i(L(j))− i(L(j−1)) ≤ b′.

Recall that m (resp. s) denotes the number of mixed (resp. self) crossing changes in our

fixed splitting sequence for L. We have that for s indices j1, . . . , js Equation (2.5) holds,

while for the remaining m indices Equation (2.4) holds. Adding all these equations, and

taking into account that i(L(s+m)) = 0, we get

|i(L)| ≤ (b− a)s+ b′m = (b − a)(s+m) + (b′ − (b− a))m.

Now, since 0 ≤ (b− a)− b′ = δ, Lemma 2.1 implies that

−δm ≤ −δ
∑

i<j

|ℓk(Ki,Kj)|

and the result is an immediate consequence of the following computation:

|i(L)| ≤ (b − a)(s+m)− δm ≤ (b− a)wsp(L)− δ
∑

i<j

|ℓk(Ki,Kj)|. �

We can now recover [9, Theorem 1.4] from Theorem 1.2. In particular, it follows

from [9, Examples 2.1, 2.2, and 2.3] that the s, τ and sn-invariants (i.e. the sln-analogues

of s [25, 33]) all give rise to lower bounds for wsp. The reader is referred to [9] for the

definition and general properties of slice-torus link invariants.

Corollary 2.4 (Slice-torus bound). Let ν be a slice-torus link invariant. If L is an ℓ-
component oriented link, then

∣∣∣∣∣ν(L)−
ℓ∑

i=1

ν(Ki)

∣∣∣∣∣ ≤ wsp(L).

Proof. Slice-torus link invariants are known to satisfy the hypotheses of Theorem 1.2 with

a = 0 and b = b′ = 1; see [9, Proposition 2.9]. Since slice-torus link invariants are, by

definition, additive under disjoint unions, the corollary follows. �

Theorem 1.2 can be used to obtain a lower bound for wsp from (finite) families of

invariants which are uniformly bounded with respect to crossing changes, in the sense

of (2.6). We note that the bound obtained in the following proposition is stronger than the

bound obtained by applying naïvely Theorem 1.2 to the sum of the invariants.

Proposition 2.5. Let {I1, . . . , Ik} be a family of R-valued oriented link invariants. Sup-

pose there exists ∆, β ∈ R such that

(2.6)

k∑

j=1

|Ij(L)− Ij(L
′)| ≤ ∆ or

k∑

j=1

|Ij(L)− Ij(L
′)| ≤ β



6 ALBERTO CAVALLO, CARLO COLLARI, AND ANTHONY CONWAY

depending on whether L and L′ are related by a self crossing change or a mixed crossing

change. If δ := 2∆− β ≥ 0, then for each oriented link L = K1 ∪ . . . ∪Kℓ, we have

(2.7)

k∑

j=1

∣∣∣∣∣Ij(L)− Ij

(
ℓ⊔

i=1

Ki

)∣∣∣∣∣+ δ
∑

i<j

|ℓk(Ki,Kj)| ≤ 2∆wsp(L).

Proof. Fix ε = (ε1, . . . , εk) ∈ {±1}k, and consider the sum I(ε) =
∑k

j=1 εjIj . Us-

ing (2.6), a quick verification shows that I(ε) satisfies the hypothesis of Theorem 1.2

with −a = b = ∆ and b′ = β, for each choice of ε. Applying Theorem 1.2, we de-

duce that the following inequality holds for every ε and every L:

(2.8)

∣∣∣∣∣I(ε)(L)− I(ε)

(
ℓ⊔

i=1

Ki

)∣∣∣∣∣ + δ
∑

i<j

|ℓk(Ki,Kj)| ≤ 2∆wsp(L).

To conclude, it remains to arrange the position of the absolute values; compare (2.8)

with (2.7). To achieve this, fix an arbitrary link L = K1 ∪ . . . ∪ Kℓ, and choose any

sequence ε of signs so that

εj

(
Ij(L)− Ij

(
ℓ⊔

i=1

Ki

))
=

∣∣∣∣∣Ij(L)− Ij

(
ℓ⊔

i=1

Ki

)∣∣∣∣∣ , for all j ∈ {1, . . . , k}.

Since such a choice can be performed for each L, the proof of the proposition is concluded.

�

As an application of Proposition 2.5 we (re-)obtain the lower bounds on wsp that ap-

peared in the third author’s (unpublished) PhD thesis [14, Proposition 4.4.5].

We briefly recall the definition of the multivariable signature and nullity, referring

to [13] for details. A C-complex for an ordered link L = K1 ∪ . . . ∪Kℓ consists of a col-

lection F of Seifert surfaces F1, . . . , Fℓ for the components K1, . . . ,Kℓ that intersect only

along clasps. Given a C-complex and a sequence ε = (ε1, . . . , εℓ) of±1’s, there are 2ℓ gen-

eralized Seifert matrices Aε, which extend the usual Seifert matrix. Note that for all ε, we

have A−ε = (Aε)T . Using this fact, one can check that for any ω = (ω1, . . . , ωℓ) ∈ (S1)ℓ,
the following matrix is Hermitian:

H(ω) =
∑

ε

ℓ∏

i=1

(1− ωεi
i )Aε.

Since H(ω) vanishes as soon as one of the coordinates of ω is equal to 1, it is convenient

to restrict our attention to ω ∈ Tℓ
∗ := (S1 \ {1})ℓ. We use β0(F ) to denote the number of

connected components of a C-complex F .

Definition 2.6. The multivariable signature and nullity of an ordered link L at ω ∈ Tℓ
∗ are

σL(ω) := signH(ω); ηL(ω) := nullH(ω) + β0(F )− 1.

The multivariable signature and nullity are known not to depend on the choice of the

C-complex [13, Theorem 2.1]. Note that the signature is not a slice-torus invariant: even

though it satisfies the first three axioms of [9, Definition 2], it fails to satisfy the fourth.

Nonetheless, we can use Proposition 2.5 to sidestep this issue and to establish that σL

and ηL provide lower bounds on the weak splitting number.

Proof of Theorem 1.1. The invariants I1(L) = σL(ω) and I2(L) = ηL(ω) satisfy the

hypotheses of Proposition 2.5 with ∆ = 2 and b′ = 1; see [12, proof of Theorem 3.1], [4,
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Lemma 6.2], as well as [13, Section 5]. Furthermore, the multivariable signature and

nullity behave as follows under disjoint unions (cf. [13, Proposition 2.13]):

σ⊔
ℓ

i=1
Ki

(ω) =
∑

i

σKi
(ωi), η⊔ℓ

i=1
Ki

(ω) =
∑

i

ηKi
(ωi) + ℓ− 1.

By Proposition 2.5, the announced inequality is established. �

2.3. Comparing the slice-torus and the signature bounds. In this subsection we com-

pare the slice-torus bound and the signature bounds, and prove their independence.

t t t t ai

i-th clasp

(i+ 1)-th clasp

FIGURE 1. A diagram for the link Lt+1 (left), a C-complex bounding it

(centre), and the generator associated to the i-th clasp for i 6= 2t (right).

The boxes marked with t indicate the presence of |t| full twists equal to

those illustrated if t > 0, and their mirror if t < 0.

Proposition 2.7. There is an infinite family {Lt}t≥1 of links for which the slice-torus

bound is sharp, but for which the signature and the linking bounds are not. Furthermore,

the difference between the values provided for the links {Lt}t≥1 by any two among these

bounds increases linearly in t.

Proof. Consider the diagram representing the 2-bridge link Lt illustrated in Figure 1. It

can easily be seen that a self crossing change (on the unique crossing involving only one

component) turns Lt+1 into Lt. Thus, we deduce that wsp(Lt) ≤ t. Notice that the

linking number of Lt is zero, and therefore the linking bound from Lemma 2.1 is 1 (and is

independent of t).
We now use slice-torus link invariants to establish the equality wsp(Lt) = t. A quick

computation using [9, Theorem 1.3] shows that ν(Lt) ≥ t, for any slice-torus link invari-

ant ν. Since the components of Lt are unknots, it follows from Corollary 2.4 that

wsp(Lt) = ν(Lt) = t.

It remains to show that the signature bound cannot be used to determine wsp(Lt). The

generalised Seifert matrices corresponding to the C-complex Ft shown in Figure 1 are of

size rank ZH1(Ft) = 2t− 1. We deduce that

|σLt
(ω)|+ |ηLt

(ω)− 1| ≤ |σLt
(ω)|+ |ηLt

(ω)|+ 1 ≤ (2t− 1) + 1 = 2t.

Thus, the lower bound in Theorem 1.1 does not exceed ⌈t/2⌉, and therefore cannot be

sharp for t ≥ 2. This concludes the proof of the proposition. �

Next, we construct an infinite family of links for which the signature bound is stronger

than the slice-torus and linking bounds.

Proposition 2.8. There is an infinite family {L′
n} of links for which the signature bound

is sharper than the linking and the slice-torus bounds, and their difference grows linearly

with n.
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Proof. A brief inspection of the diagram representing the 3-component link L = L10a129,

see [11], shows that wsp(L) ≤ 3. Since L contains the Whitehead link as a sublink,

Lemma 2.1 implies that wsp(L) = 3. Consider the link L′
n obtained by connect-summing

1 n copies of L. This connected sum can be taken so that the linking number bound fails;

if we take the connected sum along two components each of which is part of a Whitehead

sublink in the corresponding copy of the L10a129, then the number of obstructive sublinks

does not increase (thus the linking bound is 2n + 1). Note however that the choice of the

component where the connected sum is performed is immaterial for the remainder of the

argument. For instance, regardless of this choice, we have wsp(L′
n) ≤ 3n.

By [13, Proposition 2.12], the mutivariable signature and nullity (as well as linking

numbers) are additive with respect to the connected sum. Therefore, it suffices to compute

the signature bound for L to obtain the bound for L′
n. Denote by σLT (ω) the Levine-

Tristram signature, then [13, Proposition 2.5] asserts that for any link J we have

(2.9) σJ (ω, . . . , ω) = σLT
J (ω) +

∑

i<k

ℓk(Ji, Jk).

Using the Seifert matrices for L10a29 provided by LinkInfo [11], we see that the signature

bound for L at ω = eπi/4 is 10/4. Using the aforementioned additivity argument, and since

the number of components increases by 2 at each connected sum, we get

10

4
n ≤ wsp(L′

n) ≤ 3n.

It remains to argue that the slice-torus bound is not greater than 10n/4. While slice-torus

invariants are not additive under connected sums, they are known to satisfy the following

sub-additivity property [9, Remark 2.8]:

ν(L1) + ν(L2)− 1 ≤ ν(L1#K1,K2
L2) ≤ ν(L1) + ν(L2).

On the other hand, since L is non-split and alternating, we have 2

(2.10) ν(L) =
−σ(L) + ℓ − 1

2
.

Therefore, we obtain ν(L) ∈ {0, 2} by [11]. Consequently, regardless of this choice, we

obtain ν(L′
n) ≤ nν(L) ≤ 2n. This concludes the proof of the proposition. �

We conclude this section by using the examples of Proposition 2.8 to provide examples

where the linking bound is stronger than the signature bound and the slice-torus bound.

Remark 2.9. As in Proposition 2.8, we consider the 3-component link L := L10a129. If,

instead of performing the connected sums along one of the components of the Whitehead

sublink of L (as we did in Proposition 2.8), one performs the connected sum along the

third component, then the resulting link L′
n contains as many disjoint obstructive sublinks

as connected summands. Thus, the linking bound gives 3n ≤ wsp(L′
n), and the equality

follows. The fact that the other two bounds cannot be sharp in this case (with an arbitrarily

high difference) follows from the proof of Proposition 2.8.

1For the definition of connected sums of links, see for instance [16, Section 4.6].
2Alternating diagrams are homogeneous [15], and thus the bound in [9, Theorem 1.3] is sharp for these

diagrams [20, Section 5 and Remark 6.3]. In particular, the value of all slice-torus invariants coincides for non-

split alternating links. As s(L) = −σ(L) for non-split alternating links, (2.10) follows from [9, Example 2.2].
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3. BOUNDS FROM HEEGAARD-FLOER HOMOLOGY

We prove Theorem 1.4, which provides lower bounds for wsp via link Floer homol-

ogy. First however, we briefly review the H-function of a link [17, 7], an invariant that is

extracted from the minus flavor CFL–(L) of link Floer homology [29, 31, 30].

Let F2 be the field with two elements. Given an ℓ-component link L, the complex

CFL–(L) is a complex of free F2[U1, . . . , Uℓ]-modules, endowed with an absolute Z-

grading d and a filtration for each component of L. The action of the variable Ui drops

the d-grading by 2, and each filtration level by 1. If we use ℓk(L) ∈ Qℓ to denote the

vector with ℓk(Ki, L \ Ki)/2 as its i-th entry, then the ℓ filtrations of CFL–(L) can be

re-interpreted as a unique filtration F indexed by an element of the lattice

H(L) = Zℓ + ℓk(L).

In fact, there is a filtered complexCFL–(D) for each Heegaard diagramD ofL, andCFL–(L)
is the filtered homotopy type, as a complex of F2[U1, . . . , Uℓ]-modules, of anyCFL–(D) [30].

As the actions of the Ui’s onCFL–(L) are all homotopic [30], the homology ofCFL–(L)
can be seen as an F2[U ]-module, where U acts as any of the Ui. It is also known that, for

each m ∈ H(L), the homology H∗(FmCFL–(L)) of the m-th filtration level decom-

poses into an F2[U ]-summand and an F2[U ]-torsion summand [26]. The H-function of L
at m ∈ H(L) is then defined as

HL(m) = min
{
d | rank F[U ]

(
H−2d

(
FmCFL–(L)

))
6= 0
}
.

This function was first introduced by Gorsky and Nemethi [17], see also [7]. It is known

that HL takes non-negative values [17, Proposition 3.10] and, as in [7], we work with the

following shifted version of HL.

Definition 3.1. The J-function of an ℓ-component link L is the function

JL : Z
ℓ −→ Z≥0 m 7→ HL(m+ ℓk(L)).

We use ei ∈ Zℓ to denote the i-th vector of the canonical basis. We collect the properties

of the J-function in the following proposition; proofs can be found in [7, Propositions 3.10

and 3.11, and Theorem 6.20].

Proposition 3.2. For an oriented link L, the J-function satisfies the following properties.

(1) For i = 1, . . . , ℓ, and v ∈ Zℓ, the function JL satisfies

JL(v) ≤ JL(v − ei) ≤ JL(v) + 1.

(2) Let L′ be obtained from L via a positive crossing change, and let v ∈ Zℓ.

(a) if the crossing change is a self crossing change on the i-th component, then

JL′(v + ei) ≤ JL(v) ≤ JL′(v);

(b) if the crossing change is mixed and involves the i-th and the j-th components

of L then, for each ∗ ∈ {i, j},

JL′(v) ≤ JL(v) ≤ JL′(v − e∗).

(3) If L = K1 ∪ . . . ∪Kn is a completely split link, then

JL(v1, . . . , vℓ) =

ℓ∑

i=1

JKi
(vi).

Using all three items of Proposition 3.2 and Theorem 1.2 (with a = −1, b = 0 and

b′ = 1), we obtain the following result.
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Corollary 3.3. For each oriented link L, we have the following:
∣∣∣∣∣JL(v1, . . . , vℓ)−

ℓ∑

i=1

JKi
(vi)

∣∣∣∣∣ ≤ wsp(L).

In order to prove Theorem 1.4 however, we need one more lemma.

Lemma 3.4. Assume an n-component link L can be split using wsp(L) = s+m crossing

changes with s self crossing changes and m mixed crossing changes. Then L can be

converted into the split union of its components in 2s+m crossing changes. Furthermore,

if the link L is oriented, then the 2s self crossing changes can be taken to be s positive

and s negative crossing changes.

Proof. Using wsp(L) crossing changes, one can turn L = K1∪ . . .∪Kn into an n compo-

nent split link K ′
1⊔ . . .⊔K ′

n for some knots K ′
1, . . . ,K

′
n. Let si be the number of crossing

changes needed to pass from Ki to K ′
i while splitting L. As s = s1 + . . . + sn and si is

greater or equal to the Gordian distance3 between Ki and K ′
i, the link K ′

1 ⊔ . . . ⊔K ′
n can

be converted into K1 ⊔ . . . ⊔Kn using s additional crossing changes. In the case the links

are oriented, then these last s self crossing changes can be taken to be of the opposite sign

with respect to the s self crossing changes performed on L. �

We now prove Theorem 1.4 from the introduction. First however, we recall some no-

tation. Given a splitting sequence for an oriented link L = K1 ∪ . . . ∪ Kℓ, we use si
(resp. m+

i,j) to denote the number of self crossing changes performed on Ki (resp. the

number of positive mixed crossing changes involving both Ki and Kj).

Proof of Theorem 1.4. We prove the contrapositive. Use Lemma 3.4 to convert L into the

split union of its components via 2s+m crossing changes, where exactly s of these 2s self

crossing changes are negative. Applying the second item of Proposition 3.2, we deduce

that

(3.1) JL(v) ≤ J⊔ℓ

i=1
Ki


v −

ℓ∑

i=1


si +

∑

j 6=i

εi,jm
+
i,j


 ei


 .

Recall from the introduction that if K is a knot and m ≥ ν+(K), then JK(m) = 0 [28,

Definition 2.12 and Proposition 2.13]. Combining this with the third item of Proposi-

tion 3.2, we see that the right hand side of (3.1) vanishes if no vi satisfies (1.5). The

assertion now follows since the J-function is non-negative. �

Example 3.5. We use Theorem 1.4 to show that the family Lt = K1
t ∪ K2

t of 2-bridge

links from Figure 1 has wsp(Lt) = t. Since the Lt are L-space links, their J–functions can

be recovered from the potential function [7, Corollary 3.32]. 4 Applying [7, Section 7.4],

the potential function of Lt is

∇Lt
(t1, t2) = (−1)t

∑

|i+ 1

2
|+|j+ 1

2
|≤t

(−1)i+jt
i+ 1

2

1 t
j+ 1

2

2 .

3This is the minimal number of crossing changes needed to pass from one given knot to another.

4Borodzik and Gorsky state this in terms of a symmetrized version ∆L(t1, . . . , tn) ∈ Z[t
± 1

2

1 , . . . , t
± 1

2
n ]

of the Alexander polynomial for which they additionally fix a sign [7, Subsection 2.1]. In other words, they are

working with the potential function ∇L(t1, . . . , tn). Furthermore [7, Equation (3.3)] implicitly makes use of [5,

Theorem 1.1] to obtain an equality, instead of an equality up to signs.
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If we set J̃Lt
(i, j) := JLt

(i, j)− JK1

t
(i)− JK2

t
(j), then applying [7, Corollary 3.32] and

rearranging the sums of the corresponding generating function yields

J̃Lt
(t1, t2) :=

∑

i,j

J̃Lt
(i, j)ti1t

j
2 =

t−1∑

j=0

t−j−1∑

i=0

(−1)i+j+t+1

(
2i∑

k=0

tk−i
1

)(
2j∑

h=0

th−j
2

)
.

It follows from the above equalities and a tedious computation that the bound provided

by Corollary 3.3 is at most ⌈t/2⌉; see also [22, Figure 4]. Using successively that Lt has

unknotted components (as well as J©(v) = 0 for v ≥ 0, equivalently ν+(©) = 0), and

the above computations, we obtain that for r = 0, . . . , t− 1

(3.2) J̃Lt
(r, t− 1− r) = JLt

(r, t− 1− r) = 1.

We already showed in Proposition 2.7 that wsp(L) ≤ t. By way of contradiction, assume

that wsp(L) ≤ t − 1, so that s1 + s2 +m+
1,2 ≤ t − 1. Since s1 ≤ t − 1, we apply (3.2)

with r = s1 to obtain JLt
(s1, t−1−s1) = 1. Since JLt

is non-increasing (by the first item

of Proposition 3.2), we deduce that JLt
(s1, s2 +m+

1,2) ≥ 1. As JLt
(s1, s2 +m+

1,2) 6= 0,

Theorem 1.4 applied to the sequence (ε1,2, ε2,1) = (0, 1) implies that either s1 < s1
or s2 +m+

1,2 < s2 +m+
1,2. This is a contradiction in both cases and thus wsp(Lt) = t.

4. HOMOTOPICAL OBSTRUCTIONS

4.1. Link homotopy. We show how the homotopy type of a link provides restrictions

on its weak splitting number. Here, recall that two links L and L′ are link-homotopic if

and only if they are related by a sequence of ambient isotopies and self crossing changes.

Furthermore, a link is nullhomotopic if it is link-homotopic to an unlink.

Proposition 4.1. If a link L has pairwise vanishing linking numbers and is not null-

homotopic, then either wsp(L) = sp(L) or 3 ≤ wsp(L) ≤ sp(L)− 1.

Proof. Write wsp(L) = s+m, so that L can be split using s self crossing changes and m
mixed crossing changes. If one can find such a sequence with s = 0, then there is a

minimal splitting sequence without self crossing changes. Thus sp(L) ≤ m = wsp(L),
which implies wsp(L) = sp(L). Otherwise, every weak splitting sequence must have

s > 0 and m even: indeed L has pairwise vanishing linking numbers. Since sp(L) must be

even and since m cannot be 0 (because L is not nullhomotopic), we immediately deduce

that wsp(L) = s+m ∈ {3, . . . , sp(L)− 1}, concluding the proof of the proposition. �

Since the Milnor invariants with non-repeating indices are invariant under link homo-

topy [27], Proposition 4.1 can easily be applied in practice.

Example 4.2. We show that the 3-component link L = L9a54 has wsp(L) = 3. Since L
has vanishing pairwise linking numbers, the linking obstruction is ineffective, and in fact

both the slice-torus bound and the signature bound give 2 ≤ wsp(L) ≤ 3.

Since L is known to have sp(L) = 4 [10], if we manage to show that L is not nullho-

motopic, then Proposition 4.1 will imply that wsp(L) = 3. As L can be obtained from the

Borromean rings J via a single self crossing change, we obtain µ123(L) = µ123(J) = 1
and thus L is not nullhomotopic. We conclude that wsp(L) = 3, as claimed.

The following lemma can be used to obstruct the existence of minimal weak splitting

sequences without mixed crossing changes.

Proposition 4.3. Assume that the link L can be completely split with only self crossing

changes not involving a fixed component, say K1. Then, L \ K1 is null-homotopic in the

complement of K1. In particular, each component of L \K1 is null-homotopic in S3 \K1.
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x y

FIGURE 2. A diagram of the link L7a3 (left), and a pair of generators

of the fundamental group of its trefoil component K1 (right).

FIGURE 3. A diagram of the link L7a3 (left), and a diagram for L̃ (right).

Proof. A self crossing change in L\K1 does not change its homotopy type in S3 \ K1. As

any knot in a 3-manifold that sits inside a 3-ball is null-homotopic, the result follows. �

4.2. Covering link calculus. We use covering link calculus to study wsp. Given an n-

component link L = K1 ∪ . . . ∪ Kn with Ki unknotted, one can form the 2-fold cover

p : S3 → S3 branched along Ki. The link L̃ = p−1(L \ Ki) is called the covering link

of L with respect to Ki. For a proof of the next result, we refer to [10, Section 3].

Proposition 4.4. Let L = K1 ∪ . . . ∪Kn be an n-component link with Ki unknotted. A

crossing change not involving Ki results in two crossing changes in the covering link. In

particular, if L can be split via k crossing changes not involving Ki, then wsp(L̃) ≤ 2k.

We show how Proposition 4.4 can be used in conjunction with Proposition 4.3: the

former obstructs the existence of self crossing sequences in knotted components, while the

latter obstructs the existence of self crossing changes in unknotted components.

Example 4.5. We claim that the link L = K1 ∪K2 = L7a3 in Figure 2 has wsp(L) = 2.

First, an inspection of the diagram shows that wsp(L) ≤ 2, and that ℓk(K1,K2) = 0.

Furthermore, all the techniques illustrated in Sections 2 and 3 imply that 1 ≤ wsp(L).
Assume, by contradiction, that wsp(L) = 1. Since L has vanishing linking numbers,

any minimal splitting sequence is realised by a single self crossing change. First, we show

that the self crossing change cannot occur within the trefoil component K1 of L. Denote

by L̃ the lift of K1 to the double cover of S3 branched along K2, see Figure 3. Since L̃ has

linking number ±4, Lemma 2.1 gives wsp(L̃) ≥ 4, contradicting Proposition 4.4.

It remains to show that L cannot be split by a self crossing change within its un-

knotted component K2. By Proposition 4.3, K2 must be trivial in π1(S
3 \ K1), which
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Link as in [11] θ Link as in [11] θ Link as in [11] θ

L9a52{1, 0} 3π/97 L9n14{0} 5π/19 L9n17{0} 59π/61
L9n24{1, 0} 2π/13 L9n28{0, 0} 2π/17

TABLE 1. The roots of unity ω = e2iθ used to compute the signature

bound of Theorem 1.1 for the entries marked with ⋆ in Table 2.

admits 〈x, y | yxy = xyx〉 as a Wirtinger presentation. Here, x and y are the genera-

tors depicted in Figure 2. With respect to these generators, K2 can be written as xy−1

(or x−1y depending on the orientation). If K2 were nullhomotopic then x = y, and

thus π1(S
3 \K1) = Z which is absurd since K1 is a trefoil. Therefore, wsp(L) = 2.

5. THE WEAK SPLITTING NUMBER OF SMALL LINKS

Table 2 below lists wsp(L) for prime links with 9 or fewer crossings. Its second column

indicates which of the previously described methods we use among the following:

(0) non-splitness: the link is non-split and has wsp(L) ≤ 1;

(1) the linking number bound from Lemma 2.1;

(2) the slice-torus or signature bound, for the values of ω 6= 1 used see Table 1; 5

(3) the Alexander polynomial obstructions from [6];

(4) the covering link calculus obstruction from Proposition 4.4;

(5) the homotopical considerations of Lemmas 4.1 and 4.3;

(6) the combination of covering link calculus and the fundamental group obstruction.
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name wsp method
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L8n4 4 (1)

L8n5 2 (1)

L8n6 4 (1)

L8n7 4 (1)

L8n8 4 (1)

name wsp method

L9a1 1 (0)

L9a2 1 (0)

L9a3 1 (0)

L9a4 2 (6)

L9a5 2 (1)

L9a6 2 (1)

L9a7 2 (1)
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L9a9 2 (4)

L9a10 2 (6)

L9a11 2 (1)

L9a12 2 (1)

L9a13 2 (1)

L9a14 2 (6)

L9a15 2 (1)

L9a16 2 (1)

L9a17 2 (6)

L9a18 2 (6)

L9a19 2 (1)

L9a20 2 (3)

L9a21 1 (0)

L9a22 2 (3)

L9a23 3 (1)

L9a24 2 (3)

L9a25 2 (3)

L9a26 2 (2)

L9a27 1 (0)

L9a28 3 (1)

L9a29 2/3 (2)

L9a30 2/3 (2)

L9a31 1 (0)

L9a32 3 (1)

L9a33 3 (1)

L9a34 2 (1)

L9a35 2 (3)

L9a36 3 (2)

L9a37 2 (1)

L9a38 1 (0)

L9a39 2 (1)

L9a40 2 (2)

L9a41 2 (1)

L9a42 2 (3)

L9a43 3 (1)

L9a44 3 (1)

L9a45 3 (1)

L9a46 2 (2)

L9a47 3 (3)

name wsp method

L9a48 4 (1)

L9a49 4 (1)

L9a50 3 (2)

L9a51 4 (1)

L9a52 3 (2)⋆

L9a53 2 (4)

L9a54 3 (2)&(5)

L9a55 4 (1)

L9n1 2 (1)

L9n2 2 (6)

L9n3 1 (0)

L9n4 2 (1)

L9n5 2 (2)

L9n6 1 (0)

L9n7 2 (1)

L9n8 1 (0)

L9n9 2 (1)
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L9n15 3 (1)

L9n16 3 (1)

L9n17 2 (2)⋆

L9n18 4 (1)

L9n19 4 (1)

L9n20 3 (1)

L9n21 3 (1)

L9n22 3 (1)

L9n23 3 (2)

L9n24 3 (2)⋆

L9n25 2 (3)

L9n26 3 (2)

L9n27 1 (0)

L9n28 3 (2)⋆
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