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ABSTRACT

In this thesis the spectrum of top partners in the minimal composite Higgs model with
fundamental fermionic representation is explored. It is shown that by using a recently
developed softened symmetry breaking mechanism for the global symmetry, top partner
masses above 1.5TeV for a realistic Higgs mass of 125GeV can be produced without
raising the symmetry breaking scale. For a maximally symmetric version of this model,
which has also just been proposed, top partner masses above 2TeV can be realized,
while simultaneously a significantly reduced fine-tuning of O(10) is achieved providing a
quantitative proof for the existence of a natural minimal composite Higgs model which
is not in tension with current observations. To carry out this analysis, the 4-dimensional
effective field theory of the softened symmetry breaking is reviewed and then embedded
into a 5-dimensional holographic theory through the AdS/CFT duality. Numerical scans
on the resulting particle spectrum and the tuning in the holographic dual are performed
including a detailed parameter study of the outcome. A theoretical review of the 4- and
5-dimensional picture as well as their maximally symmetric extensions is also provided.

ABSTRACT

Im Zuge dieser Arbeit wird das Spektrum von Top-Partner Massen im minimalen Compo-
site-Higgs-Modell mit Fermionen in der Fundamental-Darstellung untersucht. Es zeigt
sich, dass es über einen erst kürzlich entwickelten Mechanismus zur sanften globalen
Symmetrybrechung möglich ist, bei einer Higgs-Masse von 125GeV Top-Partner-Massen
von über 1.5TeV zu erzeugen ohne dabei die Skala der Symmetriebrechung anzuheben.
In einer Version dieses Models, welche maximale Symmetrie berücksichtigt, können, bei
gleichzeitig enorm verringerten Feintuning von O(10), Massen von über 2TeV erreicht
werden, was beweist, dass es möglich ist ein natürliches minimales Composite-Higgs-
Modell zu schaffen, welches nicht in Widerspruch zu aktuellen experimentellen Beobach-
tungen steht. Für diese Analyse wird ein bereits existierender qualitativer Ansatz in 4
Dimensionen mittels der AdS/CFT-Dualität in einer 5-dimensionalen holographischen
Theorie realisiert. Es werden numerische Scans des resultierenden Teilchen-Spektrums
sowie des Tunings in der 5-dimensionalen holographischen Theorie durchgeführt und die
Ergebnisse in einer detaillierten Parameter-Studie festgehalten. Zudem wird eine Zusam-
menfassung der 4- sowie der 5-dimensionalen Theorie inklusive ihrer maximal symmetri-
schen Erweiterungen bereitgestellt.
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1 INTRODUCTION

1 Introduction

The Standard Model (SM) has been and still is the best tested and most conclusive
description tool particle physicists have to explain the behavior of fundamental particles
on small scales. However, it is unable to give answers to many of the most pressing
physical questions of our time: How do neutrinos obtain their masses? [1–5], What is
Dark Matter? [6–11], Why does the Universe expand? [12–15] or How does gravitation
work on small scales? [16–18]. Even though the SM might not be wrong, it certainly is
incomplete.

Apart from these fundamental questions of particle physics there are also issues within
the SM regarding well established physical principles like Naturalness [19–21]. Two of
the most prominent unanswered questions in this context are the strong CP problem
[22] and the flavor puzzle [23]. These rather “esthetical” problems do not fundamentally
question the SM by experimental evidence, but they do give rise to doubts about its
validity. Therefore, physicists work on alternatives to the SM which do not incorporate
these problems in order to give a more “natural” explanation for our observations and,
thereby, even tackle the more fundamental questions by this approach.

The question addressed in this thesis reads: Why is the weak force of the SM by a
factor of 10 34 stronger than gravity? 1 This rather generic formulation is linked to what
physicists call the Hierarchy problem of the SM [24–27].

A hierarchy problem in general occurs when the expected bare value of a particles
property (like its coupling or mass) is vastly different from its effective value (which
was measured in an experiment) due to renormalization. From a physicists point of
view, such behavior is “unnatural” because it implies huge renormalization corrections
to cancel each other without having any physical reason to do so. The occurrence of
a hierarchy problem is unique to elementary scalars such that in the framework of the
SM it can only affect the Higgs boson. The quantum corrections of fermions and bosons
are proportional to their own masses such that their loop corrections are suppressed by
the size of their tree-level contribution. For both sectors this happens because in the
massless limit symmetries are restored, the chiral symmetry in the fermion sector and
gauge symmetry in the gauge sector. However, this does not apply for the Higgs boson.
At loop level it receives corrections from self interactions, gauge loops and fermion loops
(especially from the top quark) which are proportional to the cutoff �SMm2

H
/ ⇤2

SM of
the theory. If the SM is actually valid up to Planck scale ⇤SM . MPl = 1019GeV and
therefore ⇤SM � 1TeV, it can be concluded that �SMm2

H
� m2

H
and the Hierarchy

problem arises [28, 29].
In the past there have been many attempts to tackle this problem. Some of them like

original Technicolor (TC) theories [30–33] have already been ruled out by experiment,
others like Supersymmetry (SUSY) [34–37] are currently under great tension. One of the
most promising attempts for a long time have been Composite Higgs Models (CHMs).
In these models the Hierarchy problem is naturally solved by treating the SM as an

1The factor of 1034 yields the ratio between the energy of the weak and gravitational interaction
between two core protons at sufficiently small distances.
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Figure 1.1: Most recent data on the observed lower exclusion limits at 95% Confidence
Level (CL) of additional up-type (a) and down-type (b) Vector-Like Quarks (VLQs) as
a function of the Branching Ratios (BRs) of selected decay channels. The case of an
isospin doublet (T,B) is indicated by the yellow star in the left plot and the yellow cross
in the right plot, excluding masses below 1.37TeV. This value will be referenced as a
conservative approach to the top partner exclusion limit in the subsequent models. Taken
from [38].

effective theory with a cutoff at ⇤ ⇠ 1TeV. This is achieved by introducing an enhanced
global symmetry G of a strongly interacting sector, which is spontaneously broken to a
subgroup H at a scale f by the condensation of a new strong force. Like pions in Quantum
Chromodynamics (QCD), the Higgs boson emerges as a composite particle corresponding
to the Nambu-Goldstone Bosons (NGBs) of this Spontaneous Symmetry Breaking (SSB).
The SM Electroweak (EW) symmetry GEW = SU(2)L ⇥ U(1)Y ⇢ H is then broken via
the vacuum misalignment mechanism. Couplings to SM particles, which do not respect
the enhanced global symmetry, explicitly break G radiatively creating a potential for the
Higgs boson which is in fact a composite pseudo Nambu-Goldstone Boson (pNGB). With
a Higgs created at an O(1TeV) scale, the Hierarchy problem ceases to exist.

The Higgs boson as an essential ingredient for the famous mechanism of Electroweak
Symmetry Breaking (EWSB) was first proposed in 1964 [39–41]. After its discovery in
2012 [42] physicists at the Large Hardon Collider (LHC) made great effort to test its
internal structure. Explicitly, they searched for fermionic partners which are predicted
from CHMs to have a mass of a few TeV [38, 43]. Especially the Minimal Composite
Higgs Model (MCHM) - or MCHM5 to be more precise - which is studied throughout this
thesis, requires partner masses below 1TeV at a breaking scale around f ⇠ 800GeV in
order to keep the Higgs boson sufficiently light (see [44, 45] and the references therein).
The lack of experimental evidence as displayed in Figure 1.1 stimulated searches for
alternative realizations.

One possibility to which this analysis is dedicated to, is to raise the masses of the
fermionic partners (especially for the top quark) by softening the breaking of the en-

2



1 INTRODUCTION

hanced global symmetry with new vector-like fermions [46]. This promising novel mech-
anism has, so far, only been discussed in the framework of an effective 4D theory of the
aforementioned model. The unknown nature of the strong force, which causes the sym-
metry breaking, restricts the predictive power of the effective theory regarding certain
model parameters like the coupling constants and the Higgs mass. In this thesis, the
new approach is embedded into a 5-dimensional holographic theory through an approxi-
mate AdS/CFT duality, where AdS stands for an Anti-de-Sitter space and CFT denotes
a Conformal Field Theory of lower dimension. The 5D picture adds structure to the the-
ory improving the predictability of the model. Therefore, it facilitates a more detailed
study of the composite Higgs and the new vector-like particles, which will be carried out
hereinafter.

The rest of this thesis is structured as follows: Section 2 gives an overview of composite
Higgs theory, where also the statements of this introduction are revisited and explained.
Starting from a general theory of CHMs in Section 2.1, in Section 2.2 the Lagrangian
for the 4D model used in this thesis is derived. Moving on to Section 2.3, the general
properties of a 5D holographic view on CHMs are explained and the bridge towards the
4D model is built. The 5D implementation of the model as well as the Higgs potential
is derived in Section 2.4. Closing the theory part, Section 2.5 focusses on the fine-
tuning issues of this theory and proposes an extended symmetry, which might solve
these problems. The numerical analysis is carried out in Section 3. Section 3.1 is used as
a consistency check with former studies, which do not incorporate the novel symmetry
breaking mechanism, whereas Section 3.2 and Section 3.3 analyze the new model derived
in Section 2.4. In Section 3.4 the additional symmetry, which has been discussed in
Section 2.5, is added and the analysis is redone. Section 4 summarizes the results of this
analysis and gives an outlook on further topics to study.

3



2 Theory and General Setup

In this section at first the basic principles of Composite Higgs theories in general pro-
ceeding will be outlined with topics specific to this setup, taken from [46]. In a second
step this 4D setup is mapped onto a 5D compact warped spacetime using AdS/CFT du-
ality and methods are derived to calculate the Higgs mass along with the masses for the
previously mentioned fermionic partners with dependency on the new model parameters.
Eventually, ways to quantify the naturalness of this approach in terms of fine-tuning are
discussed. Throughout the Sections 2.1 and 2.2, the argumentation will mostly follow
the one of the 2015 review by G. Panico and A. Wulzer [47]. For 2.3 and 2.4 the 2009
lecture notes by R. Contino [48] accompanied with the 2015 paper by A. Carmona and
F. Goertz [45] will be used as guidance. Section 2.5 will seize on ideas from papers by
G. Panico et al. [49], C. Csáki et al. [50] and S. Blasi et al. [51].

2.1 The Higgs particle as a composite pNGB

2.1.1 An effective approach to the Hierarchy problem

In order to fully understand the motivation expounded in Section 1, the use of an Ef-
fective Field Theory (EFT) framework is advantageous. The lack of a fundamental and
consistent description of gravity within the SM inevitably leads to its breakdown at
the Planck scale MPl = 1019GeV when the SM-consistent concept of quantum gravity
becomes non-perturbative and non-renormalizable. At the latest at this scale new par-
ticles and interactions have to emerge, transforming the SM into an EFT with a cutoff
scale ⇤SM above which these “new physics” contributions have been integrated out. An
effective Lagrangian is then composed of infinitely many gauge and Lorentz invariant
operators of arbitrary dimension d and coefficients scaling with ⇠ ⇤4�d

SM . The operators
of dimension d  4 represent the renormalizable SM with all its accidential symmetries
(like Baryon and Lepton number conservation or custodial symmetry) which are use-
ful to explain observations like the smallness of neutrino masses or the metastability of
the proton. The non-renormalizable operators of dimension d > 4 which violate these
symmetries are suppressed by powers of the cutoff scale. If ⇤SM . MPl, the small sym-
metry violations observed in nature emerge automatically. If ⇤SM ⇠ 1TeV, higher order
operators have to be constrained to respect them.

Having set the EFT of the SM, the Hierarchy problem (or equivalently a violation of
the principle of Naturalness) occurs due to the single dimension d = 2 operator of the
SM, which represents the Higgs mass term

cH⇤
2
SMH†H (2.1.1)

scaling quadratically with ⇤SM. For a high cutoff scale, the dimensionless coupling con-
stant cH has to be unnaturally tiny in order to reproduce the observed Higgs mass. In
other words, if the effective calculation of the Higgs mass is split into a SM and a Beyond

4



2 THEORY AND GENERAL SETUP

Standard Model (BSM) term

m2
H =

Z ⇤SM

0
dE

dm2
H

dE
(E; ⇣full) +

Z 1

⇤SM

dE
dm2

H

dE
(E; ⇣full)

= �SMm2
H + �BSMm2

H , (2.1.2)

where the ⇣full are the true parameters of the unknown complete theory, it can be seen
that �SMm2

H
� m2

H
(as stated in Section 1) demands an extremely fine-tuned cancella-

tion coming from �BSMm2
H

. This is very unnatural because these two contributions are
theoretically independent.

CHMs solve this problem by considering the Higgs boson to be a bound state of a new
unknown strong force (like QCD). Therefore, these models set a new scale m⇤ ⇠ O(1TeV)
which is inversely proportional to the geometric size lH of the composite Higgs. Thus,
at E ⌧ l�1

H
, the spatial extension of the Higgs boson can not be resolved and the Higgs

along with the contributions dm2
H
/dE(E; ⇣full) to its mass behaves like in the SM. The

contributions flatten as E ⇠ l�1
H

due to the finiteness of the Higgs boson and become
strongly suppressed for energies above this scale. Therefore, m⇤ can be viewed as the
scale which cuts off the quadratical divergence from the Higgs and is labelled as the
confinement scale of the theory.

This setup enables the Higgs particle to obtain a mass consistent with its observed
range around mH = 125GeV by simultaneously making it insensitive to contributions
from any further particles above the TeV scale. Since one is usually interested in m⇤ being
at O(TeV) or higher, a small separation of scales g⇤ 2 (1, 4⇡) between the confinement
scale m⇤ and the scale of global symmetry breaking f is introduced

g⇤ =
m⇤
f
⌧ 4⇡. (2.1.3)

By construction this also means that the scale for new particles m⇤ emerges before the
actual strong coupling scale at ⇤ ⇠ 4⇡f is met. The factor g⇤ can thus be seen as
the coupling strength of this strongly coupled sector connecting the Vacuum Expectation
Value (VEV) f of the spontaneously broken global symmetry G to the confinement scale
m⇤.

For a loop induced Higgs potential with a coupling g⇤ > 1, a natural CHM would
require f ⇠ v. However, experimental bounds from Electroweak Precision Tests (EWPT)
and couplings of the Higgs demand f > v. This tension creates an inevitable fine-tuning
in all CHMs which will be discussed in Section 2.5.

2.1.2 General features of Composite Higgs theories

Ideas of intertwining TC theories with the common Higgs model reach back to the mid-
eighties [52–58]. Over the years many different CHMs evolved, all trying to tackle the
same problem (e.g. [59–65]; see [66] for an overview). Despite their huge variety there
are certain characteristics all of them have in common. CHMs are EFTs like the SM
which have to be replaced by a more fundamental theory above their cutoff scales. They
are usually split into two sectors (see Figure 2.1), a composite and an elementary one.

5



2.1 The Higgs particle as a composite pNGB

Elementary sectorComposite sector

Full Model

Figure 2.1: Structure of a general Composite Higgs Model.

Emerging from a higher scale ⇤UV � 1TeV, the composite sector initially respects
the full Goldstone symmetry group G. Like in QCD (or TC theories) this symmetry
is spontaneously broken into a subgroup H at a confinement scale m⇤. Different from
earlier attempts [19, 67] the Higgs boson emerges in a CHM as a NGB within the coset
G/H. Therefore, it is massless at tree level.

The elementary sector is weakly coupled and contains all SM particles except the
Higgs (and maybe the right-handed top quark tR). Its symmetry group is SU(2)L ⇥
U(1)Y ⌘ GEW ⇢ G which is gauged by the SM vector bosons. Due to the gauging of a
subgroup of G, the elementary SM gauge bosons couple to the composite sector forcing
it to also respect GEW (i.e. GEW ⇢ H) in order to get a viable theory. The elementary
sector in general does not respect the full symmetry G and breaks it explicitly through
fermionic and gauge interactions with the composite sector. The former are necessary
for the SM fermions to become massive due to the non-existing Yukawa-terms in the
elementary sector. The explicit breaking induces a light mass to the now pNGB Higgs
allowing for EWSB to take place. The question why a composite Higgs boson couples
in almost the same way to fermions and vector bosons as an elementary one (like in the
SM) is explained by the vacuum misalignment mechanism.

2.1.3 Vacuum Misalignment

Vacuum misalignment explains EWSB in CHMs and is best illustrated in a geometrical
sense (see Figure 2.2). To analyze the mechanism, one can start with a parametrization
of the symmetry group G of the composite sector. Due to its spontaneous breaking into
a subgroup H, it is sensible to choose a basis which can be divided into unbroken and
broken generators, h{T a}i = H and h{T̂ â}i = G/H, respectively, with a = 1, ..., dimH
and â = 1, ..., dimG/H.2 Thus, a generic vacuum ⌃0 of the composite sector can be

2Of course, the T ’s are the generators of the Lie algebras corresponding to the groups, but this will
be ignored here because it is of no importance for what follows.

6



2 THEORY AND GENERAL SETUP

Figure 2.2: The mechanism of vacuum misalignment with G = SO(3), H = SO(2) and
⌃0 = (0, 0, f)T .

defined, which is characterized by

T a
⌃0 = 0, T̂ â

⌃0 6= 0 (2.1.4)

8a, â, such that ⌃0?H � GEW. The NGBs as elements of the coset G/H can be defined
as transformations along the broken generators T̂ â

⌃(x) = ei✓â(x)T̂
â
⌃0, (2.1.5)

where four of the ✓â(x) are identified as the real components of the Higgs doublet.
Without explicit breaking of G, the NGB fields do not develop a potential and stay

massless. With a redefinition of fields ⌃! e�ih✓âiT̂ â
⌃ one can, therefore, always set the

VEV h✓i ⌘ (
P

â
h✓âi2)1/2 of the NGB fields to 0. With the explicit breaking of G the

now pNGBs develop a potential and the VEV cannot be rotated away any more. Thus,
h✓i induces EWSB by spontaneously breaking GEW ⇢ H to U(1)em. Geometrically, this
corresponds to the degree of misalignment of the vacuum with respect to ⌃0 parametrized
by the angle h✓i. The scale of EWSB v = f sin h✓i is then described by the projection
of ⌃ onto GEW with f = |⌃| being the breaking scale of G ! H. Throughout literature,
the parameter

⇠ =
v2

f2
= sin2 h✓i (2.1.6)

is used to describe the deviation of the CHM to the SM. For ⇠ ⇠ 1 the EWSB is maximal
and the CHM effectively describes an TC-like theory. Due to v ⇠ f this is excluded
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2.2 The Minimal Composite Higgs Model

general MCHM

m⇤

Figure 2.3: Symmetry breaking pattern of a general CHM setup (left) and explicitly
of the MCHM (right) with G = SO(5) ⇥ U(1)X , H = SO(4) and the EW symmetry
GEW = SU(2)L ⇥ U(1)Y .

by experimental constraints as mentioned in Section 2.1.1. For ⇠ ! 0 at fixed v the
composite sector is decoupled from the theory since f ! 1 and the SM is recovered.
Therefore, the interesting regime for CHMs is when ⇠ ⌧ 1 but not 0. Here, the vacuum
misalignment leads to a sizable separation of scales between v and f . The smallness of ⇠
introduces a small amount of fine-tuning which has to be accepted for now. Considering
current bounds on Electroweak Precision Operators (EWPOs) ⇠ . 0.1 is favored [68]
demanding f & 800GeV.

2.2 The Minimal Composite Higgs Model

Now, the specific model which will be used throughout the rest of this thesis, will be
introduced. For a more general approach to the subsequent discussion, the reader is
redirected towards the followed review [47].

Amongst various other symmetry group configurations (e.g. [69–73] ; see again [66]
for an overview) the MCHM, first introduced by K. Agashe, R. Contino and A. Pomarol
[74], is the minimal realization of a CHM featuring custodial symmetry. It resembles
a non-linear �-model of the coset SO(5)/SO(4) (see also [75]) and, as other theories
with SSB, its dynamics can be described by the Callan-Coleman-Wess-Zumino (CCWZ)
construction [76, 77]. The breaking pattern of the theory is visualized in Figure 2.3.
Note that an additional U(1)X symmetry is needed in order to obtain the right quantum
numbers for the SM fermions after breaking. However, it does not affect the subsequent
discussion and will be omitted for now.
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2 THEORY AND GENERAL SETUP

2.2.1 The Higgs of the SO(5)/SO(4) coset

The 10 generators of the fundamental 5 representation of SO(5) can be parametrized in
a decomposed way

T a

L,ij = �
i

2

"
1

2
"abc(�bi �

c

j � �bj�ci ) + (�ai �
4
j � �aj �4i )

#
, a = 1, 2, 3 (2.2.1)

T a

R,ij = �
i

2

"
1

2
"abc(�bi �

c

j � �bj�ci )� (�ai �
4
j � �aj �4i )

#
, a = 1, 2, 3 (2.2.2)

T̂ â

ij = �
ip
2


�âi �

5
j � �âj �5i

�
, â = 1, 2, 3, 4, (2.2.3)

normalized to their Cartan-Killing inner product tr(T↵T �) = �↵� . The 6 generators
T a

L
, T a

R
of SU(2)L and SU(2)R, respectively, generate (reduced to 4 ⇥ 4 matrices) the

fundamental 4 representation of the unbroken SO(4) subgroup. This is possible because
due to the isomorphism SO(4) ⇠= SU(2)L ⇥ SU(2)R, both groups possess the same
underlying algebra with the commutation relations [T a

L
, T b

R
] = 0, [T a

L
, T b

L
] = i"abcT c

L
and

[T a

R
, T b

R
] = i"abcT c

R
. The T̂ â denote the 4 broken generators of the left coset SO(5)/SO(4).

Using

⇥ =
1p
2

�
i�↵⇧

↵ + 2⇧
4
�
, ↵ = 1, 2, 3, (2.2.4)

with �↵ being the Pauli-matrices, a real vector ⇧ in the 4 of SO(4) can be rewritten into
a pseudo-real 2⇥ 2 matrix and thus into the (2,2) representation of SU(2)L ⇥ SU(2)R.
Identifying the SU(2)L with the weak SM group and the third generator T 3

R
of SU(2)R

with the hypercharge Y of U(1)Y , the SM Higgs doublet with hypercharge 1/2 is created
out of the real fields via

H =

✓
hu
hd

◆
=

1p
2

✓
⇧2 + i⇧1

⇧4 � i⇧3

◆
(2.2.5)

rewriting ⇥ = (Hc,H) with H
c = i�2H⇤. As can be seen, the 4 representation of a

real field decomposes under GEW into 4 = (2,2) ! 21/2 providing the right quantum
numbers for the SM Higgs.

For illustration, it is useful to switch to a toy model here, where symmetry breaking
is triggered by the VEV of a sigma field � rather than a vacuum condensate of the
composite sector as for realistic CHMs. Note that, although the fundamental mechanism
of SSB is vastly different, most of the calculations are indeed similar, such that the
presented �-model can be seen as an analogy to the real CHM which might provide a
more intuitive insight for the reader.

The general Lagrangian for a real scalar SO(5) fiveplet � reads

Ls =
1

2
@µ�

T@µ�+
g2⇤f

2

4
�

T
�� g2⇤

8
(�T

�)2, (2.2.6)
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2.2 The Minimal Composite Higgs Model

with f still being the breaking scale and g⇤ 2 (1, 4⇡) corresponding to the coupling of the
strong sector. Choosing a vacuum in agreement with the selection criteria of Eq. 2.1.4

�0 =

✓
0

f

◆
, (2.2.7)

the fiveplet can be parametrized as

�(x) = ei
p

2
f ⇧â(x)T̂ â

✓
0

f + �(x)

◆
= (f + �(x))

 
sin ⇧

f

⇧
⇧

cos ⇧
f

!
, (2.2.8)

with �(x) being the radial and ⇧â(x) ⌘ ⇧ the angular components of an S4 sphere
embedded in a 5-dimensional space (speaking in the geometrical picture of Figure 2.2).
The so-called Goldstone matrix

U [⇧] = ei
p
2

f ⇧â(x)T̂ â

=

 
4 � (1� cos ⇧

f
)⇧⇧T

⇧2 sin ⇧
f

⇧
⇧

� sin ⇧
f

⇧T

⇧ cos ⇧
f

!
, (2.2.9)

with⇧ =
p
⇧

T
⇧ is thereby at first sight a general element of the left-handed SO(5)/SO(4)

coset and can be derived for any G ! H spontaneous breaking. The Lagrangian in this
new parametrization reads

Ls =
1

2
@µ�@

µ� � (g⇤f)2

2
�2 � g2⇤f

2
�3 � g2⇤

8
�4

+
1

2

⇣
1 +

�

f

⌘2
"
f2

⇧2
sin2

⇧

f
@µ⇧

T@µ⇧+
f2

4⇧4

⇣⇧2

f2
� sin2

⇧

f

⌘
@µ⇧

2@µ⇧2

#
. (2.2.10)

As expected, Ls contains one massive resonance � with a mass m⇤ = g⇤f corresponding
to the confinement scale of the strong sector and four massless NGB fields ⇧â which can
be written in terms of the SM Higgs field of Eq. 2.2.5

⇧ =

0

BB@

⇧1

⇧2

⇧3

⇧4

1

CCA =
1p
2

0

BBB@

�i(hu � h†
u)

hu + hu†
i(hd � h†

d
)

hd + h†
d

1

CCCA
. (2.2.11)

Note here, that the aforementioned field ⌃ is equivalent to the field � where the resonance
� has been integrated out.

The Lagrangian is still invariant under SO(4) which can be seen by performing a
linear transformation of ⇧ or � along the unbroken generators of SO(5)

⇧! ei↵at
a
⇧ , �! ei↵aT

a
�, (2.2.12)

where ta are the generators of the fundamental 4 representation of SO(4). Due to the
spontaneous nature of the symmetry breaking, the Lagrangian is of course also invari-
ant by transformations along the broken generators, but this invariance (symmetry) is
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2 THEORY AND GENERAL SETUP

realized in a non-linear way

⇧! ⇧+⇧ cot
⇧

f
↵+

 
f

⇧
� cot

⇧

f

!
(↵T

⇧)
⇧

⇧
, �! �+ i↵âT̂

â
�. (2.2.13)

Although phenomenologically different, the mechanism of symmetry breaking in this
toy-model is analogous to the mechanism in a real CHM, to which is switched back, now.

2.2.2 Gauge couplings to the Higgs

EW interactions can be added to the theory by gauging the EW subgroup GEW of SO(4).
As mentioned earlier, the SU(2)L generators are identified with the SM ones using the
third generator of SU(2)R to generate the hypercharge U(1)Y . While the kinetic terms
of the gauge fields are implemented in the usual way

Lkin = �1

4
W a

µ⌫W
aµ⌫ � 1

4
Bµ⌫B

µ⌫ (2.2.14)

keeping the gauge self interactions SM-like at leading order in ⇠, the covariant derivative
of the � field becomes

Dµ� =
�
@µ � igW a

µT
a

L � ig0BµT
3
R

�
�, (2.2.15)

with g and g0 labelling the electroweak SM couplings. While ignoring the resonance terms
including � for the moment, the Lagrangian of Eq. 2.2.10 yields

Ls �
f2

2H2
sin2
p
2H

f
DµH

†Dµ
H +

f2

8H4

 
2
H2

f2
� sin2

p
2H

f

!
(@µH

2)2, (2.2.16)

with H =
p
H

†
H and

DµH =

✓
@µ � igW a

µ

�a

2
� ig0Bµ

2

◆
H. (2.2.17)

In unitary gauge the Higgs doublet can be rewritten in the usual way as

H =
1p
2

✓
0

ṽ + h(x)

◆
, (2.2.18)

with h(x) being the physical Higgs field and ṽ its VEV.3 The Lagrangian rewrites into
the simple form

Ls �
1

2
(@h)2 +

g2f2

4
sin2

✓
ṽ + h

f

◆✓
W+

µ W�µ +
1

2c2
W

ZµZ
µ

◆
, (2.2.19)

3Note that due to vacuum misalignment, the SM Higgs VEV v is in CHMs just the breaking scale of
the EW symmetry. It is connected to the Higgs VEV ṽ in CHMs via the breaking scale f as derived in
the following.
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2.2 The Minimal Composite Higgs Model

with the W± and Z already in their mass eigenstates and cW = cos ✓W = g/
p

g2 + g02

the cosine of the Weinberg angle. One can see from this equation that the W and Z
already have the right SM masses mW = cWmZ = 1

2gf sin ṽ

f
⌘ 1

2gv, thus leaving the
experimentally well tested ⇢ parameter

⇢ =
m2

W

c2
W
m2

Z

= 1 (2.2.20)

unaltered at tree level. This does not happen by accident but due to custodial protection
within the model. The appearance of the Higgs VEV ṽ breaks the SO(4) spontaneously
into the custodial symmetry SO(3)cust which is sufficient to generate the right ratio
between the W± and Z boson masses (see [78] for the general mechanism). The relation
between the scales for this model is given by

⇠ =
v2

f2
= sin2

ṽ

f
. (2.2.21)

By performing a Taylor expansion around h = 0 in the sine of the Lagrangian one
can derive deviations from the gauge boson to Higgs couplings

Ls �

1 + 2

p
1� ⇠h

v
+ (1� 2⇠)

h2

v2
� 4

3
⇠
p
1� ⇠h

3

v3
+ ...

�

·
✓
m2

WW+
µ W�µ +

1

2
m2

ZZµZ
µ

◆
, (2.2.22)

which yield for the one- and two-Higgs couplings

gMCHM
hV V

gSM
hV V

=
p
1� ⇠,

gMCHM
hhV V

gSM
hhV V

= 1� 2⇠. (2.2.23)

Unlike in the SM there is also an infinite set of higher order couplings present which is
expressed by d > 4 operators. The deviations in Eq. 2.2.23 as well as the higher order
terms in Eq. 2.2.22 vanish in the SM limit ⇠ ! 0 for fixed v.

2.2.3 Fermionic couplings to the Higgs

Adding SM fermions with realistic coupling strengths to CHMs is realized by a mechanism
called partial compositeness [79], which also solves the flavor puzzle (i.e. the question of
large hierarchies between the fermionic Yukawa couplings) in the SM.

Unlike in TC models [30, 67], the elementary fermions in CHMs are coupled linearly
to the composite sector

Lint =
�tL

⇤
dL� 5

2
UV

q̄LOL

F +
�tR

⇤
dR� 5

2
UV

t̄ROR

F + ... , (2.2.24)

with qL = (tL, bL)T , tR being usual SM fermions and OL,R

F
fermionic operators of the

composite sector with dim [OL,R

F
] = dL,R. As one can see, these interactions are generated
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2 THEORY AND GENERAL SETUP

Figure 2.4: Yukawa diagram for a partially composite top-quark mixing with its part-
ners. It is assumed here, that there are no ways for elementary fermions to interact
directly with the Higgs particle.

at a high scale ⇤UV such that, for following considerations, the full SO(5) theory has to
be taken into account. The couplings �tL,R evolve down to the confinement scale via

�tL,R(m⇤) ' �tL,R

✓
m⇤
⇤UV

◆
dL,R� 5

2

(2.2.25)

leading to the low energy Lagrangian

Lint = �tL q̄LOL

F + �tR t̄ROR

F + ... , (2.2.26)

where the �tL,R(m⇤) ⌘ �tL,R are redefined and the dimensional corrections in powers
of m⇤ absorbed into the fermionic operators. As mentioned earlier, this setup has two
advantages. Firstly, no hierarchy issue arises, since the �tL,R can be kept at O(1) with
dL,R & 5/2. Secondly, small deviations of the �’s for the different fermions at O(1)
level at ⇤UV scale can lead, due to different operator dimensions in Eq. 2.2.25, to great
discrepancies at EW scale, giving a natural explanation for the hierarchies among the
fermionic couplings.

Due to the linear couplings in Eq. 2.2.26 there will be mixing between the elementary
fields and composite resonances at scale m⇤. The resulting physical fermion fields will
thus be “partially composite”

|Phys.i
i
= cos ✓i |Elem.i

i
+ sin ✓i |Comp.i

i
, (2.2.27)

which explains the naming of the mechanism. Note that the composite states are excited
by the local gauge invariant operators OL,R

F
, each of which is expected to have at least one

resonance. Therefore, one can identify fermionic composite fields like Q and T̃ yielding

h0|OL

F |Qi 6= 0, h0|OR

F |T̃ i 6= 0, (2.2.28)

with each fermionic operator OL,R

F
for each family. These fields embed resonances with

quantum numbers identical to the SM fields, which are called partners to the respec-
tive SM particles. They are usually embedded in representations of the full group G,
have Dirac mass terms (i.e. they are vector-like, because both chiralities have the same
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2.2 The Minimal Composite Higgs Model

quantum numbers) and are charged under the QCD symmetry. The latter is necessary,
because otherwise the interaction terms with the SM fermions would break QCD which is
contradictory to the observation of an exact global (and local) SU(3)c symmetry realized
in nature. A possible mass Lagrangian for the top-top partner system would look like
[47]

Lt,L

Mass ' �m⇤Q̄Q��tLm⇤
g⇤

(q̄LQ+h.c.), Lt,R

Mass ' �m⇤
¯̃T T̃��tRm⇤

g⇤
(t̄RT̃+h.c.). (2.2.29)

As pictured in Figure 2.4, the top partners Q and T̃ also couple to the Higgs with coupling
strength g⇤. The general SM Yukawa coupling for the top-quark thus scales with

yt = g⇤ sin ✓tL sin ✓tR '
�tL�tR
g⇤

. (2.2.30)

Note that Eq. 2.2.29 is a simplicifaction, i.e. m⇤ should be seen as a scale and e.g.
contains Dirac and Yukawa terms of the composite resonances in the first two terms.
Furthermore, it is assumed here, that the SM fermions do not directly couple to the
Higgs field (i.e. that there are no Yukawa terms present for the elementary particles)
in order to prevent possible large Flavor Changing Neutral Currents (FCNCs). The full
fermionic Lagrangian and, therefore, the modified couplings and masses of the fermions
are not only dependent on the general model but also on the embedding of the fermions
within the model.

Nevertheless, one can see from this example that the masses of the SM fermions
highly depend on the couplings �f to their partners. The greater the coupling, i.e. the
more “composite” the physical SM fields are, the heavier are they. This also means, that
the fermions of the third family will have the greatest impact on the breaking of SO(5).
To simplify the calculations it thus makes sense from now on to consider the top quark
only, namely qL and tR, which give the leading contribution to the Higgs mass.

In SO(5) the most general top mass Lagrangian which can be written down yields
[45]

Lt

Mass = tr


�

X

r,r0=T,t

mr,r0 ̄r

L 
r

0
R � f

nX

i=1

X

r,r0=T,t

Y r,r
0

i
 ̄r

Lg
r,r

0

i
(⌃/f) r

0
R

� �tLf q̄L�L 
T

R � �tRf t̄R�R 
t

L

�
+ h.c., (2.2.31)

where  T and  t are the two vector-like resonances which contain the partners for qL
and tR. They have Dirac masses and possible mixings mr,r0 . The �L,R are matrices
which ensure that the SM fermions couple to their partners with the same SM quantum
numbers within the composite resonances, leaving the Lagrangian invariant under GEW.
Finally, the  ̄r

L
gr,r

0

i
(⌃/f) r

0
R

term describes all combinations which can be formed out
of the bilinear compounds of the resonances  ̄T

L
and  T

R
with non-trivial functions of

⌃ = fUI5, I = 1, ..., 5. These terms are invariant under SO(5) and depend on the
particular representation of this symmetry group. The Y r,r

0

i
correspond to the Yukawa

couplings of the strong sector.
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2 THEORY AND GENERAL SETUP

2.2.4 The MCHM5

Throughout this thesis, only the case where the fermions and their partners are embedded
in the fundamental 5 representation of SO(5) is considered [80]. This sub-model is
labelled MCHM5. Other possible representations are e.g. the spinorial 4, the 10 or the
14.

As mentioned earlier in this section, SO(5) as such does not have a representation
which decomposes with the right SU(2)L ⇥ U(1)Y charges 21/6, 12/3 and 1�1/3 under
GEW in order to form multiplets of the fermionic partners. Therefore one has to add
an additional charge U(1)X as pictured in Figure 2.3. Bosonic fields such as the Higgs
and the gauge bosons are neutral under U(1)X . Therefore, their dynamics, discussed in
Section 2.2.1 and 2.2.2, do not change. The U(1)X does affect fermion couplings because
it adds a new gauge field Xµ changing the hypercharge to Y = T 3

R
+X.4 For the MCHM5,

X = 2/3 can be chosen under which the fermionic composite multiplets are charged. The
decomposition from SO(5) to SO(4) to GEW ⌘ SU(2)L ⇥ U(1)Y yields

52/3 ! 42/3 � 12/3 ! 27/6 � 21/6 � 12/3, (2.2.32)

where the latter two can couple to the left- and right-handed up-type fermions of the SM.
To obtain 21/6 � 1�1/3 needed to couple to left- and right-handed down-type fermions
one would start with X = �1/3 instead.

A multiplet in the fundamental 5 representation of SO(5) in the basis of the genera-
tors in Eq. 2.2.1 and 2.2.2 can be constructed by summing over the eigenvectors of the
T 3
L,R

5 =
1p
2

0

BBBB@

q�� � q++

�i(q�� + q++)
q+� + q�+

i(q+� � q�+)
�i
p
2q00

1

CCCCA
, (2.2.33)

where the ± denote their eigenvalue/charge under SU(2)L,R (T 3
L,R

= ±1/2). The q00
remains uncharged. It can be seen, that the 5 consists of a bidoublet (2,2) and a singlet
(1,1) of SU(2)L ⇥ SU(2)R.

Following [45], the mass Lagrangian for the MCHM5 is designed as follows. Starting
with Eq. 2.2.31 one first decomposes, as pictured in Eq. 2.2.32, the general resonance
fields  T and  t, which are multiplets of the 52/3 of SO(5)⇥U(1)X into the 42/3�12/3

of SO(4)⇥ U(1)X by transformation with the Goldstone matrix U [⇧]

 T,t = U [⇧]

✓
QT,t

T̃ T,t

◆
, QT,t 2 42/3, T̃ T,t 2 12/3. (2.2.34)

Note that the U [⇧] is fully determined by the choice of the model (MCHM in this case).

4The resulting gauge fields as well as the breaking pattern will be discussed later when dealing with
the 5D theory.
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In unitary gauge, it yields

U [⇧] =

0

BBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 cos
⇣
ṽ+h

f

⌘
sin

⇣
ṽ+h

f

⌘

0 0 0 � sin
⇣
ṽ+h

f

⌘
cos

⇣
ṽ+h

f

⌘

1

CCCCCCA
, (2.2.35)

where ⇧ is defined as in Eq. 2.2.11 and H as in Eq. 2.2.18. For the MCHM5 the only
bilinear term (n = 1) of the resonance fields is

 ̄r

Lg
r,r

0

1  r
0

R =  ̄r

L

⌃⌃T

f2
 r

0
R =  ̄r

LUI5(UI5)
T r

0
R

=
⇣
Q̄r, ¯̃T r

⌘ ⇥
U †(UI5(UI5)

T )U
⇤✓Qr

0

T̃ r
0

◆
= ¯̃T rT̃ r

0
(2.2.36)

such that the Yukawa couplings of the composite fields can be absorbed into the masses
of the singlets m̃rr0 = mrr0 + f Y rr

0
1 .

The MCHM5 mass Lagrangian becomes

LMCHM5
M

=�
X

r,r0=T,t

⇣
mrr0Q̄r

LQ
r

0
R + m̃rr0

¯̃T r

LT̃
r

0
R

⌘
� �tLf(q̄L�L)I

⇣
UIiQ

T

R

i

+ UI5T̃
T

R

⌘
� �tRf(t̄R�R)I

⇣
UIiQ

t

L

i
+ UI5T̃

t

L

⌘
+ h.c. , (2.2.37)

where I = 1, ..., 5, i = 1, ..., 4. The QT and T̃ t, which have been introduced in order to
map this Lagrangian properly to the 5D theory elucidated in Section 2.3 and 2.4, are now
integrated out arriving at the low energy effective Lagrangian for the top mass mixing

LMCHM5
Mass =�mQQ̄LQR � m̃T

¯̃TLT̃R � ytLf(q̄L�L)I
�
aLUIiQ

i

R + bLUI5T̃R

�

� ytRf(t̄R�R)I
�
aRUIiQ

i

L + bRUI5T̃L

�
+ h.c. , (2.2.38)

where mQ ⌘ mtt, m̃T ⌘ m̃TT , T̃ ⌘ T̃ T and Q ⌘ Qt. By integrating out QT (T̃ t) a factor
aL = �mTt/mTT bL (bR = �(m̃Tt/m̃tt)⇤ aR) is introduced as well as a factor bL (aR)
for convenience by defining ytL = �tL/bL (ytR = �tR/aR) [44] (see Appendix A.1 for a
full derivation).

In order to define the exact form of the �L,R matrices, one conceives of the resonances
Q and T̃ to live in the same multiplet by setting T = t.5 Using Eq. 2.2.33, top partners

5If this had been done in the very beginning considering an additional term which can be found in
[45], one would have arrived at the very same Eq. 2.2.38. However, the analogy to the 5D picture, which
will be discussed in the following, would have been lost.
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(T,B)$ qL and T̃ $ tR can be identified within the resonances

✓
Q
T̃

◆
⌘ 1p

2

0

BBBB@

B �X5/3

�i(B +X5/3)
T +X2/3

i(T �X2/3)
�i
p
2T̃

1

CCCCA
, (2.2.39)

whereas (X5/3, X2/3) is another doublet belonging to the 27/6 in the GEW decomposition
of Eq. 2.2.34 (the subscripts denote their U(1)em charges). Therefore, the �L,R yield

�L =
1p
2

✓
0 0 1 �i 0
1 i 0 0 0

◆
, �R =

�
0 0 0 0 i

�
. (2.2.40)

2.2.5 Softened Goldstone symmetry breaking - the sMCHM5

Keeping the mass of the Higgs particle small requires the top partners in minimal models
to be light. The reason behind is the proportionality of the Higgs mass to the strength
of the Goldstone symmetry breaking parameters ytL,R [80–83]. As estimated before in
Eq. 2.2.30, the top Yukawa coupling in the MCHM5 [44, 45]

yt '

���b⇤LbRm⇤
Q
� a⇤

L
aRm̃⇤

T

���

2
p
2|aL||bR|f

sin ✓tL sin ✓tR '
ytLytRf

ml

⇠ y2f

ml

(2.2.41)

scales anti-proportionally to the mass of the lightest top partner ml = min {mQ, m̃T }.
The first equity just resembles Eq. 2.2.30, where one can assume the aL, bR as well
as the aR, bL parameters to be naturally of O(1) such that the first term reduces to
g⇤ ' max {mQ, m̃T }/f . For the second equity, the correlations sin ✓tL = |aL|ytLf/mQ

and sin ✓tR = |bR|ytRf/m̃T , which can be derived from diagonalization of the mass terms,
have been used. Moreover, in the last step a similar size for the right- and left-handed
mixings ytL ⇠ ytR ⌘ y has been assumed.

From Eq. 2.2.41 it is evident that for large top partner masses, one needs large left-
and right-handed top-top partner mixings in order to keep the SM top quark mt = ytv
sufficiently heavy. Since these mixings also encode the explicit symmetry breaking which
creates the Higgs mass, a variation of ytL and ytR will have an effect on the mH parameter
as well. The correlation between y and mH can be derived by looking at the characteristic
Higgs potential in the MCHM

V (h) = �↵s2
h
+ �s4

h
, s2

h
⌘ sin2

✓
ṽ + h

f

◆
(2.2.42)

which is derived explicitly later for the 5D theory with coefficients ↵,� > 0.6 The Higgs
mass corresponds to the second derivative of the potential at h = 0. Plugging in the

6The constraint ↵,� > 0 is necessary to form a SM-like Higgs potential and thereby trigger EWSB.
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2.2 The Minimal Composite Higgs Model

minimum condition at this point, ↵ = 2�⇠, with ⇠ defined in Eq. 2.2.21, one obtains

m2
H =

8�

f2
⇠(1� ⇠) / �

f2
⇠ (2.2.43)

up to leading order in ⇠. Performing a “spurion analysis” (which will be explained in more
detail later) to estimate the contributions to the Higgs potential, it becomes clear that �
scales with y4f4 (see again [44] for an explicit calculation). Substituting ⇠ = v2/f2 and
inserting Eq. 2.2.41 into Eq. 2.2.43, one obtains

mH / y2v ⇠ ml

f
mt. (2.2.44)

It is evident from this formula, that for a fixed top mass mt and breaking scale f , the
mass of the Higgs boson is proportional to the mass of the top partners. Therefore, a light
Higgs mass around 125GeV requires also the top partners to be light (⇠ 600GeV for
f ⇠ 800GeV and mt ⇠ 170GeV). Unfortunately, as already discussed in the beginning
(see Figure 1.1), light top partners are in tension with the exclusion limits from the
LHC. One possibility to circumvent this difficult situation is by changing the nature
of the breaking of the Goldstone symmetry as recently proposed by S. Blasi and F.
Goertz [46]. One can easily see from Eq. 2.2.38 that the mixing terms of the elementary
particles with their partners break SO(5) symmetry because the former do not fill up a
full 5 multiplet of SO(5). This can be changed by introducing new vector-like elementary
fermions, namely the two doublets v, w and the singlet s such that

 L =
1p
2

0

BBBB@

bL � wL1

�i(bL + wL1)
tL + wL2

i(tL � wL2)
�i
p
2sL

1

CCCCA
,  R =

1p
2

0

BBBB@

vR2 � wR1

�i(vR2 + wR1)
vR1 + wR2

i(vR1 � wR2)
�i
p
2tR

1

CCCCA
. (2.2.45)

The new mass mixing Lagrangian

LsMCHM5
Mass =�mQQ̄LQR � m̃T

¯̃TLT̃R � ytLf  ̄LI

�
aLUIiQ

i

R + bLUI5T̃R

�

� ytRf  ̄RI

�
aRUIiQ

i

L + bRUI5T̃L

�
+ h.c. (2.2.46)

is now invariant under SO(5). Meanwhile, the explicit breaking is shifted towards the
elementary sector only by the introduction of vector-like mass terms for the new particles

LsMCHM5
el =�mw(w̄LwR + w̄RwL)�mv(v̄LvR + v̄RvL)�ms(s̄LsR + s̄RsL)

� (m1s̄LtR +m2q̄LvR + h.c.). (2.2.47)

Note that in general vR and sL can mix with the SM fields because they have the same
quantum numbers. This is accounted for by the mass mixing parameters m1 and m2.7
It is evident that unlike in Eq. 2.2.38, the mixing terms between the SM fields and the

7However, for simplicity it is assumed m1 = m2 = 0 in the following.
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2 THEORY AND GENERAL SETUP

Figure 2.5: Sketch of an orbifold denoted by S1/Z2 which can be mapped to a line
segment [0,⇡R].

composite resonances in the mass Lagrangian in Eq. 2.2.46 emerging from the UV theory,
do not break the SO(5) global symmetry any longer. Instead, the symmetry breaking
scales now with the vector-like mass terms of Eq. 2.2.47, a mechanism usually referred
to as “soft” breaking. Since the breaking mechanism is changed, the proportionality
argument of Eq. 2.2.44 does not hold any longer. As one can see in detail below, it
becomes possible to raise the top partner masses while keeping the Higgs light without
raising the scale f . Taking ms,mv,mw ! 1 decouples the vector-like particles and
recovers the scenario displayed in the MCHM5.

2.3 The holographic dual in 5 dimensions

The Composite Higgs setup in 4 dimensions works fine in the low energy regime and even
calculations of form factors and the Higgs potential become possible by discretizing the
spectrum (so-called multisite-models; see e.g. [65]). However, a potential shortcoming
of Composite Higgs models in 4D is that the UV physics is fully parametrized by free
parameters which leads to a reduced predictability.

Another, at first sight completely different approach which contains more of the UV
structure are 5D holographic models on an AdS space. These are connected to the 4D
theory by the famous AdS/CFT duality, first realized by J. Maldacena [84] for symmetry
groups of large N , and give explicit, analytical results for the Higgs potential and other
observables. In order to embed the 4D sMCHM5 approach consistently into the 5D
framework which will used as the underlying theory for numerical scans later, it is useful
to look at general properties of these 5D models first and how they translate through
this duality.

2.3.1 Kaluza-Klein decomposition on a flat 5D spacetime

Let us start on a 5D Minkowski spacetime

ds2 = ⌘MNdxMdxN , (2.3.1)
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2.3 The holographic dual in 5 dimensions

with ⌘MN = (+,�,�,�,�) signature and M,N = µ, 5, where the µ describe the normal
4D Minkowski coordinates.8 The fifth dimension is compact and defined via the orbifold
S1/Z2 illustrated in Figure 2.5. Generally speaking, an orbifold is a circle S1 with radius
R where the opposite ends are identified with each other by a Z2 symmetry. This can
be expressed in terms of x5 by the mappings

x5 ! 2⇡R+ x5, x5 ! 2⇡R� x5. (2.3.2)

Only considering the unique physical points, a line segment of length L = ⇡R with
x5 2 [0, L] is obtained.

The action for a scalar particle �(x, x5) with mass m on this manifold would look
like

S� =
1

2

Z
d4x

Z
L

0
dx5

h
@M�(x, x

5)@M�(x, x5)�m2�2(x, x5)
i
. (2.3.3)

While trying to derive the equations of motion via the variational principle

�S� =

Z
d4x

Z
L

0
dx5

h
m2�(x, x5)� @M@M�(x, x5)

i
��+

Z
d4x

h
@5���

i
L

0
, (2.3.4)

it is clear that Boundary Conditions (BCs) on the fields for x5 2 {0, L} have to be
imposed such that the variation of the action also vanishes on these boundaries. The
BCs have to be constructed such that the second term in equation 2.3.4 disappears. The
easiest options which fulfill this constraint

�(x, x5 2 {0, L}) = 0, @5�(x, x
5 2 {0, L}) = 0 (2.3.5)

are the well-known Dirichlet and Neumann BCs. In fact, the Dirichlet BCs lead to hard
symmetry breaking because �� = 0 has to be imposed. However, they can be softened by
inducing mass terms M1,2 on the boundaries, deriving the needed conditions and taking
M1,2 ! 1 in the end. This will also break the symmetry, but in a smoother way. For
an explicit derivation the reader is referred to Section 2.3.4. Note, that these boundary
conditions correspond to 2 degrees of freedom for each 5D field which can be chosen
freely.

A 5D scalar theory can be mapped onto 4D by a technique introduced by Kaluza
[85] and Klein [86] in 1921 (1926). Due to the compactness of the fifth dimension it is
possible to decompose the scalar field by a Fourier series

�(x, x5) =
1X

n=0

�n(x)fn(x
5), (2.3.6)

where the fields fn form a complete orthonormal set of functions on [0, L] with orthonor-
malization conditions Z

L

0
dx5fm(x5)fn(x

5) = �mn. (2.3.7)

8From now on roman capital letters for 5D coordinates and small greek letters for coordinates in 4D
will be used.
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2 THEORY AND GENERAL SETUP

Table 2.1: Orthonormal basis {fn} for a single scalar KK theory on the interval [0, L]
for different choices of the BCs at x5 = 0 (columns) and x 5 = L (rows). The (+)/(�)
denote Neumann/Dirichlet BCs. Note that n 2 N0 for (+,+) and n 2 N for the other
combinations of BCs.

BCs (+, ⇤) (�, ⇤)

(⇤,+)
q

2��n0
L

cos
�
n⇡

L
x5
� q

2
L
sin

�
(n� 1

2)
⇡
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x5
�

(⇤,�)
q

2
L
cos

�
(n� 1

2)
⇡

L
x5
� q

2
L
sin

�
n⇡

L
x5
�

A convenient choice for this basis that solves the equations of motion is

fn(x
5) = An cos

�
wnx

5
�
+Bn sin

�
wnx

5
�
, (2.3.8)

with
f 00
n(x

5) = �w2
nfn(x

5). (2.3.9)

The parameters An, Bn and wn are fixed by Eq. 2.3.7 and the BCs which translate to
the fn fields like

f 0
n(x

5
i ) = 0 Neumann (+), fn(x

5
i ) = 0 Dirichlet (�), (2.3.10)

with x5
i
2 {0, L}. The 4 possible solutions are given in Table 2.1 where the (±) denote the

chosen BCs at x5 = 0 and x5 = L. Inserting Eq. 2.3.6 into S� and using the properties
of the fn one obtains
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d4x

X

n

h
@µ�n(x)@

µ�n(x)�m2�2n(x)
i
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2

Z
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2
n(x)

i
, (2.3.11)

where m2
n = m2 + w2

n.
As can be seen, the scalar theory of a 5D field �(x, x5) with mass m has been traded

for a 4D theory of infinitely many scalars �n(x) with increasing masses mn. These 4D
scalars �n are called Kaluza-Klein or KK-modes and the set of possible masses {mn} is
a KK-tower. Just considering the n = 0 state corresponds to a low energy theory at tree
level like the SM Lagrangian. Depending on the 5D fields, the higher order mass terms
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2.3 The holographic dual in 5 dimensions

n > 1 in the model considered below are either “unphysical” and thus can be gauged
away (as for the Higgs) or correspond to resonances of a strongly interacting 4D theory
(as for the fermion fields).

For a vanishing 5D mass m = 0 the mn are equidistantly distributed. It is evident
from Table 2.1 that there exists in this case a massless 4D state �0 called zero-mode only
for the (+,+) BCs. This will become very important in the following discussion.

2.3.2 Symmetry reduction on the branes

UV-brane IR-branebulk

Figure 2.6: Illustration of a compact AdS5 space with length L. The space on the
interval (0, L), called bulk, is 5-dimensional while the two planes, labelled as UV- and
IR-brane, represent 4D manifolds at the boundaries of the 5D space. The symmetry G
on the bulk is reduced on the boundaries to GEW on the UV-brane and to H on the
IR-brane, respectively.

As pictured in Figure 2.6 the boundaries of the 5D compact space are 4-dimensional man-
ifolds called branes.9 Even though the explicit labelling as UV- and IR-branes becomes
much more meaningful once going to a warped space-time, this notation is introduced
now for consistency reasons. The space in between, where the fields can propagate within
the fifth dimension, is called bulk.

Let us impose a gauge symmetry G on the bulk which comes with gauge fields AM =
AA

M
TA, where the 4D components AA

µ act like vector fields and the AA

5 like scalars under

9The naming is in analogy with models in string theory, which make extensive use of compact extra
dimensions.
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2 THEORY AND GENERAL SETUP

Lorentz transformation.10 These gauge fields are not only necessary in order to obtain
the SM gauge bosons, they can also be embedded in a way that they reduce the overall
symmetry on the boundaries. A general gauge transformation acts on AM like

AM ! A0
M =

i

g5
⌦DM⌦

† (2.3.12)

⌦(x, x5) = P exp
�
�ig5!A(x, x5)TA

�
, (2.3.13)

with DM = @M � ig5AM being the covariant derivative in presence of G, g5 the dimen-
sionful coupling (with mass dimension [g5] = �1/2) and P accounts for the path ordering
of the exponential term. A gauge transformation should not change the BCs of the gauge
fields. Therefore, the BCs of the gauge parameters !A must follow from the BCs of the
AA

M
. By assuming Neumann BCs for AA

µ

@5A
A0
µ |xi =

H
H

H
H

@5A
A

µ |xi � @5@µ!
A

|xi = �@µ@5!
A

|xi
!
= 0 (2.3.14)

) @5!
A

|xi = 0, (2.3.15)

with xi 2 {0, L} and similar for Dirichlet BCs one can see, that the gauge parameters
!A have to obey the same BCs as the AA

µ gauge fields. Repeating this calculation for the
AA

5 components it is evident, that in this case the BCs for the !A have to be opposite
to the BCs of AA

5 .11 This means, that the fifth component of the gauge fields AA

5 always
has BCs opposite to the BCs of the 4D components AA

µ .
A convenient choice for a set of BCs for the gauge fields is

Aa

µ(+,+), Aa

5(�,�) T a 2 H0

Aȧ

µ(�,+), Aȧ

5(+,�) T ȧ 2 H/H0 (2.3.16)

Aâ

µ(�,�), Aâ

5(+,+) T̂ â 2 G/H,

where H ⇢ G and H0 ⌘ GEW ⇢ H.12 At x5 = 0 only the gauge fields Aa
µ are non-

vanishing, reducing the global symmetry G to GEW on the UV-brane. At x5 = L, the
same happens due to the presence of the Aa

µ, Aȧ
µ leading to the effective symmetry H on

the IR-brane. Furthermore, one can see, that for low energies (n = 0) the overall gauge
symmetry reduces to GEW because only the Aa

µ(+,+) zero-modes are present together
with the zero-modes of Aâ

5(+,+).
Apart from the zero-modes Aa(0)

µ (x), Aâ(0)
5 (x5) which correspond to massless gauge

and scalar fields in the 4D, KK-towers of massive spin-1 fields AA(n)
µ (x) are remaining.

10The T
A are the generators of the symmetry group G. For SO(5) these will be the matrices defined

in Eq. 2.2.1, 2.2.2 and 2.2.3.
11Due to KK-decomposition and the compactness of the fifth dimension @

2
5!

A _ !
A can be assumed

in this calculation.
12

H0 ⌘ GEW and H0 ⇢ H are the same assumptions made for simplicity as in Section 2.1.3. A more
generic approach can be found in [48].
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2.3 The holographic dual in 5 dimensions

The modes of the Aa

5 and Aȧ

5 fields can be gauged away by an axial gauge transformation

⌦(x, x5) = P exp

✓
�ig5

Z
x
5

0
dyA5(x, y)

◆
, (2.3.17)

with !A(x, x5) =
R
x
5

0 dyAA

5 (x, y) yielding A5 = 0 for the corresponding AM . This is
effectively a Higgs-mechanism where level by level each A(n)

5 (x5) mode gets eaten by the
corresponding A(n)

µ (x) gauge boson mode. Unfortunately, this does not work for the Aâ

5

because of their zero-modes which spoil the BCs of the !â. However, by subtracting the
zero-mode for each field

⌦(x, x5) = P exp

✓
�ig5

Z
x
5

0
dyA5(x, y)

◆
exp

✓
ig5

x5p
L
Aâ(0)

5 (x)T̂ â

◆
(2.3.18)

an almost axial gauge with Aâ

5(x, x
5) = Aâ(0)

5 (x)/
p
L [62] constant in x5 can be achieved

using f (+,+)
0 = 1/

p
L from Table 2.1. The remaining Aâ(0)

5 (x) are physical massless 4D
fields at tree level. It is shown in the following, that one can actually identify four of
these zero-modes with the composite NGB Higgs of a spontaneously broken symmetry.

2.3.3 The holographic idea

How does the 5D model look like to a 4D observer on one of the branes? This is the most
important question to raise if one wants to truly understand the mapping between these
two models. To answer it, one can consider the partition function for the bulk fields
�(x, 0) ⌘ �0 at x5 = 0 [48]

Z =

Z
d�eiS[�]+iS0[�] =

Z
d�0e

iS0[�0]
Z

�0

d�eiS[�]

=

Z
d�0e

iS0[�0]+iSeff[�0], (2.3.19)

where S0 denotes the 5D action at x5 = 0. A 4D observer on the UV-brane would feel
the 5D action on the bulk and at x5 = L as a strong force defined by an effective action

iSeff[�0] ⌘ ln

Z

�0

d�eiS[�]
�

(2.3.20)

at x5 = 0. This picture allows to separate the total 5D action into an “elementary” sector
S0 which contains the degrees of freedom on the boundary x5 = 0 and a “composite” one,
Seff, incorporating the field dynamics on the bulk and on the boundary x5 = L as
illustrated in Figure 2.7. This is now in complete analogy to the CHMs discussed in
Section 2.1 and 2.2. The KK-modes on the UV-brane then correspond to the elementary
fields of a CHM and, turning around the argument (i.e. stating a 4D observer at x5=L),
the KK-modes on the IR-brane correspond to the composite fields. Moreover, staying
in this picture it can be argued, that the KK-modes of the 5D fields can now be seen
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2 THEORY AND GENERAL SETUP

as mass eigenstates of the mixing between fields of the composite and the elementary
sector. Therefore, the 5D approach automatically includes partial compositeness (see
Section 2.2.3).

UV-brane IR-branebulk

Composite 
Sector

Elementary 
Sector

Figure 2.7: The same picture as in Figure 2.6 with the explicit symmetries G = SO(5)⇥
U(1)X , H = SO(4) ⇥ U(1)X and GEW = SU(2)Y ⇥ U(1)Y . Also pictured are the two
sectors of the 4D CHM from a holographic 5D standpoint. The elementary sector can
be identified with the UV-brane while the composite sector is settled in the bulk and on
the IR-brane.

Explicitly, by setting G = SO(5)⇥ U(1)X which reduces to H = SO(4)⇥ U(1)X on
the boundary x5 = L, one can assume Seff to be locally invariant at least under H (i.e.
Seff[h(x)�0] = Seff[�0] for h 2 H).13 Starting from an axial gauge one can redefine the
fields �! ⌦̃� in the bulk with the transformation

⌦̃(x, x5) = exp

 
�ig5

Z
x
5

L

dyAâ

5(x, x
5)T̂ â

!
= exp

✓
�i g5p

L
(x5 � L)Aâ(0)

5 (x)T̂ â

◆

(2.3.21)
with Aâ

5(x, x
5) defined as in Eq. 2.3.18. As an effect of this redefinition, the zero-modes

of the A5 components of the gauge fields, which transform accordingly via Eq. 2.3.12,
13Again, this discussion can be set up to be more general but is reduced and thus simplified to the

case which is relevant for the further discussion.
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vanish everywhere except at x5 = 0.14 At this point, ⌦̃(x, 0) can be identified with a
non-local operator in almost axial gauge, the Wilson line towards the UV-brane

WUV(x) = exp

✓
ig5

Z
L

0
dx5A5(x, x

5)

◆
(2.3.22)

! exp
⇣
ig5
p
LAâ(0)

5 (x)T̂ â

⌘
⌘ exp (i✓(x)) , (2.3.23)

which is in this parametrization equivalent to the exponent of the zero-modes of the Aâ

5

(⌦(x, x5) is then called Wilson line transformation).15 Using this parametrization, the
redefinition induces a shift in the BCs of the bulk fields at x5 = 0

�0 ! �0
0 = ei✓(x)�0. (2.3.24)

If Seff should stay invariant under G, the Wilson line has to transform as a NGB field

e�i✓(x) ! e�i✓
0(x) = ge�i✓(x)h�1(✓(x), g), (2.3.25)

with g 2 G, h 2 H truly classifying it to be the 5D complement to the Goldstone matrix
in CHMs. With Seff being invariant under H

Seff
⇥
�0
0

⇤
! Seff

h
h(✓, g)ei✓g�1g�0

i
= Seff

⇥
h(✓, g)�0

0

⇤
= Seff

⇥
�0
0

⇤
(2.3.26)

it is evident, that the G symmetry of the composite sector at x5 = 0 is just non-linearly
realized. This corresponds to a SSB of SO(5)⇥ U(1)X ! SO(4)⇥ U(1)X releasing four
NGBs which become the composite Higgs of the model.

In order to reach full consistency with a viable theory of a composite Higgs model,
one has to ensure that the elementary sector is weakly coupled. The most convenient
way to do this is by warping the extra dimension.

2.3.4 Warped extra dimensions and AdS/CFT duality

The problem raised at the end of the previous section is related to the question, how one
can restrict the coupling to the elementary sector to the zero-modes of the introduced
gauge fields only. One possibility is to introduce large kinetic terms which make all non-
zero-modes very heavy because they raise the masses mn of the KK-towers. Therefore,
they would effectively decouple in the 4D holography. Another much more practical idea
is realized by introducing a warping factor to the metric

ds2 = e�2ky⌘µ⌫dx
µdx⌫ � dy2, (2.3.27)

14This redefinition is not a gauge transformation, because ⌦(x, 0) 6= 1, but on the bulk and at x
5 = L

it acts like one, thus leaving Seff invariant.
15The Wilson line transformation can be defined generally in both ways shifting the Higgs either to

the UV- or IR-brane. The resulting Wilson lines differ by a minus sign in the exponent.
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with y ⌘ x5 and curvature k > 0 making AdS5 metric non-trivial.16 A completely
equivalent metric which will be much more useful to the following discussion is

ds2 = a2(z)(⌘µ⌫dx
µdx⌫ � dz2), (2.3.28)

with a(z)=R/z and z being the radial AdS5 coordinate (for an explicit mapping between
these two metrics, see Appendix B.1). From here, it is evident that this metric is con-
formal, i.e. invariant under simultaneous rescaling z ! cz and xµ ! cxµ. Thus, a
rescaling of z corresponds to a change in energy in the 4D theory with z ! 0, E !1
and vice versa. If the interval of the z parameter is truncated, the conformality is of
course broken through the boundaries whose labelling becomes now much more mean-
ingful. Introducing a boundary on the left at z = R now corresponds to a UV-cutoff
⇤UV ⇠ 1/R of the CFT. Usually, this cutoff is chosen to be at the Planck scale such
that R ⇠ 1/MPl ⇠ 10�16TeV�1. A boundary on the right at z = R0 � R would then
correspond to an IR-cutoff at ⇤IR ⇠ 1/R0 or, as derived in the previous section, to a spon-
taneously broken CFT at low energies (see Figure 2.8 for an illustration; see also [60,
87]).17 Furthermore, an IR-brane introduces discrete KK-modes which become strongly
interacting after the breaking of conformality. Keeping in mind the analogy between z
and the energy scale of a 4D theory, this behavior corresponds to a QCD-like theory (like
a CHM) which produces bound states like composite fields or the composite Higgs at low
energies which could then induce EWSB as usual. In order to be consistent with the 4D
approach, one usually sets R0 ⇠ O

�
1TeV�1

�
.

Since the bulk of the AdS5 corresponds to a CFT in 4D, a local gauge symmetry G
induced on it will also be present as a global symmetry in the 4D approach. Vice versa,
the symmetry breaking in the MCHM must be mimicked by the 5D theory. As shown in
Section 2.3.2, symmetry breaking on 5D is induced by boundary conditions on the branes.
Looking back to Eq. 2.3.16 one can see, that the boundary conditions are already set
in a way, that the right symmetry breaking pattern in 4D is obtained. As mentioned in
Section 2.3.1, Dirichlet BCs break symmetries at a boundary and can also be used to
get rid of non-needed gauge fields. If a gauge field has (�) BCs on the UV-brane, its
KK-masses will scale with mn ⇠ 1/R and it will decouple from the low energy theory.
In order to break a symmetry in a specific way, one can introduce a “boundary Higgs”
with the right quantum numbers to realize the breaking pattern in the desired way and
then take its VEV to infinity. Starting, e.g., with fields Ra

µ of SU(2)R and Bµ of U(1)X
a boundary Higgs doublet in a (1,2)1/2 representation of SU(2)L⇥SU(2)R⇥U(1)X can
be introduced, which breaks SU(2)R ⇥ U(1)X ! U(1)Y as needed for the MCHM. The
same holds using a bidoublet (2,2)0 to break SO(5)⇥ U(1)X ! SO(4)⇥ U(1)X on the
IR-brane (see [89] for more information). The latter breaking will also induce the same
SSB pattern as in the 4D theory.

It can be concluded that fields which break the bulk gauge symmetry on the UV-
brane will not gauge the global 4D symmetry. Fields which leave the bulk symmetry

16The Minkowski metric used so far is the trivial AdS metric with k = 0.
17Note, that such warped extradimensional models solve the Hierarchy problem also without the need

of a Composite Higgs setup (see [88]). In these cases, the Higgs is assumed to be a scalar field in the
bulk rather than a pNGB of a spontaneously broken theory.
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UV-brane IR-branebulk

AdS5

Figure 2.8: Illustration of a warped AdS5 space following the metric of Eq. 2.3.28 with
boundaries at R and R0. Also displayed are the corresponding energy scales of the 4D
theory on the boundaries.

unbroken on the UV-brane because of (+) BCs will, however, lead to a weak gauging of
the global 4D symmetry, ensuring a weakly coupled elementary sector. This is realized by
their zero-modes corresponding to the weak gauge fields of the SM. The massive modes
of their KK-tower will again scale with mn ⇠ 1/R and effectively decouple.

In order to get a better overview of the AdS/CFT duality, the main points of the
preceding discussion are summarized in Table 2.2.

2.3.5 Boundary conditions of fermions in flat space

So far a lot of effort has been made to display the general duality between a 5D holo-
graphic theory on a warped AdS space and a 4D CHM. Before moving on and mapping
the sMCHM5 setup onto a 5D extra-dimensional theory, it is necessary to discuss one
additional thing: fermions. In the 4D approach it has been shown that the mixing of
elementary fermions with composite resonances explicitly breaks the global symmetry
G. Through this mechanism, the Higgs obtains a light mass as a pNGB of the theory.
In the holographic approach this mixing happens at the UV-brane, such that it can be
concluded that (�) BCs of the fermions at z = R are the source of the explicit breaking
in the 5D theory. In the sMCHM5 it was possible to soften this breaking by introducing
new massive vector-like elementary fields. This can also be done in the 5D theory. The
softening is now achieved by the introduction of mixing terms of the corresponding fields
on the UV-brane with their localized 4D chiral partners. This is needed to make the
vector-like fermions massive and will also shift the BCs away from Dirichlet conditions
which will be seen in the following. The masses of the zero-modes of the (partially com-
posite) fermion fields in the bulk, which correspond to the SM fields in the 4D theory,
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2 THEORY AND GENERAL SETUP

Table 2.2: Equivalent statements in terms of the AdS/CFT duality. Content taken
from [89].

AdS5 (S)CFT

Bulk of AdS CFT

Coordinate z along AdS Energy scale of CFT

Appearance of UV-brane at z = R CFT has UV-cutoff at ⇤ ⇠ 1/R

Appearance of IR-brane at z = R0 CFT has IR-cutoff at ⇤ ⇠ 1/R0

KK-modes on UV-brane elementary fields coupled to CFT

KK-modes on IR-brane composite fields of CFT

Fermion overlap with IR-brane partial composite fermions in CFT

gauge fields in the bulk CFT has global symmetry G

Bulk gauge symmetry broken on
UV-brane global symmetry not gauged

Bulk gauge symmetry unbroken on
UV-brane global symmetry weakly gauged

Bulk gauge symmetry broken on
IR-brane SSB of CFT at ⇤ ⇠ 1/R0

Higgs on IR-brane CFT confines at low energy produces
composite Higgs

originate from couplings with the Higgs boson on the IR-brane.
The action of a fermion field  in flat space yields

Sbulk
 =

Z
d4x

Z
L

0
dx5


i

2

�
 ̄@M�

M � @M  ̄�M 
�
�m  ̄ 

�
, (2.3.29)

with m being the mass of the field and �M the 5D gamma matrices

�M =
�
�µ, i�5

 
,

�
�M ,�N

 
= 2⌘MN , (2.3.30)

with �µ the usual 4D gamma matrices in a chiral basis (see Appendix B.2). Note that
the covariant terms in the derivative are neglected for simplicity. The bulk fermion can
be split into its left and right-handed chiral components

 =

✓
 L(x, x5)
 R(x, x5)

◆
⌘
✓
sL↵
 ̄↵̇

◆
,  ̄ = �

 
 †

R
(x, x5)

 †
L
(x, x5)

!
T

⌘ � ( ↵, s̄L↵̇) (2.3.31)

denoted in SUSY-notation (see also Appendix B.2).18 Plugging this into the action, one
18The sL will be identified as the left-handed singlet of the new vector-like fermions, later, and  

labels his chiral partner.
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obtains

Sbulk
 =

Z
d4x

Z
L

0
dx5


� is̄L�̄

µ@µsL � i �µ@µ ̄ +
1

2

⇣
 
 !
@5 sL � s̄L

 !
@5  ̄

⌘

+m ( sL + s̄L ̄)

�
, (2.3.32)

where
 !
@5 =

�!
@5 �

 �
@5 denotes the partial derivative of x5 in both directions. By varying

the action with respect to s̄L and  which comprise the two chiral degrees of freedom
the equations of motion yield

�i�̄µ@µsL � @5 ̄ +m  ̄ = 0 (2.3.33)
�i�µ@µ ̄ + @5sL +m sL = 0. (2.3.34)

This expression can be simplified even further by the performance of a KK-decomposition
for the fields

sL =
X

n

sn(x
5)�n(x),  ̄ =

X

n

fn(x
5) ̄n(x), (2.3.35)

where the {�n}, { ̄n} are the chiral bases for the left- and right-handed fields. Together
they form 4D Dirac spinors with masses mn being the mass eigenstates of the (partial)
composite fermions in the 4D theory. Therefore, they have to obey the Dirac equations

�i�̄µ@µ�n +mn ̄n = 0 (2.3.36)
�i�µ@µ ̄n +mn�n = 0 (2.3.37)

which simplifies the equations of motion drastically

s0
n +m sn �mnfn = 0 (2.3.38)
f 0
n �m sn +mnsn = 0. (2.3.39)

Because of the linear independence of the basis elements �n and  ̄n this has to be true
for every n. In fact, Eq. 2.3.38 and 2.3.39 can even be decoupled by recombination

s00
n + (m2

n �m2
 
)sn = 0 (2.3.40)

f 00
n + (m2

n �m2
 
)fn = 0, (2.3.41)

leaving two harmonic differential equations (see Appendix B.3 for the exact calculations).
Depending on the sign of m2

n�m2
 

the sn and fn can be written in terms of trigonometric
or hyperbolic functions. Sticking to kn ⌘ m2

n �m2
 
> 0 8n one obtains

sn(x
5) = An cos

�
knx

5
�
+Bn sin

�
knx

5
�

(2.3.42)
fn(x

5) = Cn cos
�
knx

5
�
+Dn sin

�
knx

5
�
. (2.3.43)
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In order to set the correct boundary conditions, one has to look at the boundary term of
the variation of the action

�Sbound
 =

1

2

Z
d4x

h
�s̄L ̄ � � ̄s̄L � � sL + �sL 

i
L

0

!
= 0. (2.3.44)

Since this term has to vanish, the most simple BCs which can be written down are
introduced which correspond to the Dirichlet conditions in Eq. 2.3.10 for sL or  ̄. The
solutions to the corresponding sn and fn are then equivalent to the ones in Table 2.1.
Note that only two of the four BCs can be chosen freely. The other two are fixed by Eq.
2.3.33 and 2.3.34

sL|x5i
= 0 ) @5 ̄|x5i

= +m  ̄|x5i
(2.3.45)

 ̄|x5i
= 0 ) @5sL|x5i

= �m sL|x5i
(2.3.46)

for x5
i
2 {0, L}. In the limit m ! 0, the boundary conditions between the two chiral

states are always opposite.
Generally speaking, the action of a particle on an AdS5 can be described by the sum

over the action in the bulk and on the boundaries

S = Sbulk
 + SUV

 + SIR
 (2.3.47)

where the latter two terms were not present in the previous discussion. Adding e.g. a
localized right-handed particle sR on the UV-brane, which interacts with the sL, changes
the UV action to

SUV
 =

Z
d4x


�isR�µ@µs̄R +

csp
L
(sRsL + s̄Ls̄R)

�

x5=0

, (2.3.48)

with cs being the dimensionless coupling constant and L the scale. The latter accounts
for the fact that sL has as a spinor of a 5D field has mass dimension [sL] = 2 and sR as
a localized 4D field has mass dimension [sR] = 3/2. Note that the UV action leaves the
equations of motions in the bulk unchanged. The decomposition of the sR looks like

s̄R =
X

n

En ̄n(x), (2.3.49)

with the En being constants in x5. Note that sR as a right-handed field has to be
expressed in the same chiral basis as  .

The sR field can be used to substitute the (�) BC on the UV-brane with a BC de-
pending on the coupling constant cs which can be associated with a vector-like mass
term. This will soften the symmetry breaking of G analogously to the 4D theory. How-
ever, finding the exact BC from the variational principle is rather difficult. Luckily, this
task can be simplified by the following mechanism: One first takes  ̄|0 = 0 to be the BC
on the UV-brane and pushes in a second step the localization of sR a factor of " away
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2.3 The holographic dual in 5 dimensions

from the brane. Leaving Eq. 2.3.34 unaltered, this " shift changes equation 2.3.33 in the
bulk and adds another one by variation of sR

�i�̄µ@µsL � @5 ̄ +m  ̄ +
csp
L
s̄R �

�
x5 � "

�
= 0 (2.3.50)

⇢
�i�µ@µs̄R +

csp
L
sL

�
�
�
x5 � "

�
= 0. (2.3.51)

Integrating Eq. 2.3.50 from 0 to " and taking the limit "! 0+, one is left with

 ̄|0+ =
csp
L
s̄R 6= 0 (2.3.52)

where the kinetic as well as the bulk mass term vanish due to the smoothness of the
antiderivative of sL and  ̄ with respect to x5. Repeating the same procedure with Eq.
2.3.51 yields

sL|0+ =

p
L

cs
i�µ@µs̄R. (2.3.53)

One can check that Eq. 2.3.52 and 2.3.53 which both depend on cs acutally provide valid
BCs at x5 = 0 for  ̄ and sL by inserting them into Eq. 2.3.44.19

What has just been shown, can be interpreted as a transformation. The vector-like
mass term with a free parameter cs resulting from an interaction of a bulk field sL with
a localized boundary field sR has been translated into a cs-dependent BC for sL. This
allows to retreat from Dirichlet BCs and soften the symmetry breaking. By decoupling
the s̄R setting cs !1, the Dirichlet BC is restored.

Having fixed the BCs, they can be used to determine the coefficients An �En of Eq.
2.3.42, 2.3.43, and 2.3.49 in order to obtain solutions for the KK-tower {mn} correspond-
ing to the mass eigenstates of the system. In terms of the x5 dependent KK-fields, the
BCs translate to

fn(0) = Cn =
csp
L
En (2.3.54)

sn(0) = An =

p
L

cs
mnEn =

mnL

c2s
Cn (2.3.55)

sn(L) = An cos(knL) +Bn sin(knL) = 0, (2.3.56)

where for the second equity in the second equation the relation 2.3.36 has been used.
The BC sL|L = 0 (and therefore also  ̄|L) is left unaltered. Since the two fields have been
decoupled at some point, which was useful to solve the differential equations, the infor-
mation about their relation has not been included yet. Therefore, the mixed equations
of motion 2.3.38 and 2.3.39 evaluated an x5 = 0 provide two additional constraints

knBn +m An �mnCn = 0 (2.3.57)
knDn �m Cn +mnAn = 0. (2.3.58)

19For more information on the general process, see [90].
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Setting m ! 0 (kn ! |mn|) for a pure simplification purpose, one is left to solve a
system of linear differential equations

0

BB@

cos(|mn|L) sin(|mn|L) 0 0
1 0 �mnL

c2s
0

0 |mn| �mn 0
mn 0 0 |mn|

1

CCA

0

BB@

An

Bn

Cn

Dn

1

CCA = 0, (2.3.59)

which is equivalent to solve

detMt = |mn|mn sin(|mn|L) + L

c2s
|mn|2mn cos(|mn|L) !

= 0. (2.3.60)

Apart from a zero-mode mn = 0, a spectrum for mn is obtained corresponding to the
solutions to the transcendent equation

|mn| = �c2s
L

tan(|mn|L). (2.3.61)

To calculate the coefficients An �En, one can take one of the possible solutions for mn,
insert it back into the Eq. 2.3.59 and rewrite the coefficients in terms of e.g. An. The
last coefficient is then fixed using one of the normalization conditions

Z
L

0
dy
�
fn(y)fm(y) + enem�(y)

�
= �mn (2.3.62)

or
Z

L

0
dysn(y)sm(y) = �mn. (2.3.63)

2.3.6 Fermion fields on a warped AdS5 space

Having seen this example on a flat Minkowski space, the reader is now familiar with the
general procedure. The next step will be a more elaborated case on a warped AdS space
which is also going to be considered for the setup relevant for the numerical analysis in
Section 2.4.

For this purpose,  ⌘  1 is relabelled and another 5D Dirac spinor

 2 =

✓
�↵
t̄R↵̇

◆
,  ̄2 = � (t↵R, �̄↵̇) , (2.3.64)

with KK-decompositions

� =
X

n

gn(z)�n(x), t̄R =
X

n

tn(z) ̄n(x) (2.3.65)

is added to the theory.20 Considering an AdS5 space with a metric displayed in Eq.
2.3.28, one arrives at the bulk action

Sbulk =
X

k=1,2

Z
d5x
p
G

⇢
i

2
EM

a ( ̄k�
aDM k �DM  ̄k�

a k)�mk ̄k k

�
, (2.3.66)

20The tR component will later be identified with the right-handed top quark.
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with
p
G = (det gMN )1/2 = a(z)5 the square-root of the metric determinant with gMN =

a(z)⌘MN and EM
a = a�1(z)�Ma the inverse 5D vielbein used in differential geometry to

correctly map the gamma matrices to the covariant derivative. The latter is generally
defined as Ea

M
⌘abEb

N
= gMN . The mk 2 {m ,m�} denote the bulk masses of the two

fields. Again, the gauge field contributions will be ignored, i.e. DM ⌘ @M . Inserting  1

and  2, Sbulk is rewritten in its spinor components

Sbulk =

Z
d5x

✓
R

z

◆4
� is̄L�̄

µ@µsL � i �µ@µ ̄ � i�̄�̄µ@µ�� itR�
µ@µt̄R

+
1

2
( 
 !
@5 sL � s̄L

 !
@5  ̄) +

1

2
(tR
 !
@5�� �̄

 !
@5 t̄R)

+
c 
z
( sL + s̄L ̄) +

c�
z
(tR�+ �̄t̄R)

�
, (2.3.67)

with ck = mkR being the dimensionless bulk masses. By variation of s̄L,  , �̄ and tR
the bulk equations of motion are obtained

�i�̄µ@µsL � @5 ̄ +
c + 2

z
 ̄ = 0 (2.3.68)

�i�µ@µ ̄ + @5sL +
c � 2

z
sL = 0 (2.3.69)

�i�̄µ@µ�� @5t̄R +
c� + 2

z
t̄R = 0 (2.3.70)

�i�µ@µt̄R + @5� +
c� � 2

z
� = 0, (2.3.71)

with

�Sbound =

Z
d4x

✓
R

z

◆4⇣
 ̄�s̄L � sL� + t̄R��̄� ��tR

⌘�R0

R

. (2.3.72)

Note, that here the four additional contributions to the boundary action are suppressed,
because they do not add more information to the system and vanish if the displayed four
do. Again, these four equations of motion are rewritten in terms of the KK-fields using
Eq. 2.3.36 and 2.3.37

s0
n +

c � 2

z
sn �mnfn = 0 f 0

n �
c + 2

z
fn +mnsn = 0 (2.3.73)

g0
n +

c� � 2

z
gn �mntn = 0 t0n �

c� + 2

z
tn +mngn = 0. (2.3.74)

As in the flat case, these equations can be decoupled (see also Appendix B.3) arriving at

f 00
n �

4

z
f 0
n +

✓
m2

n �
c2
 
� c � 6

z2

◆
fn = 0 (2.3.75)

and similar for the other fields. Performing some modifications, one can actually see, that
these differential equations equal Bessel equations and that solutions for the KK-fields
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can generally be expressed in terms of Bessel functions. However, for a better handling
these fields are defined in terms of sine- and cosine-like functions which are a combination
of these Bessel functions. They read [91]

Cc(z) ⌘
⇡

2
mnR

✓
z

R

◆
c+ 1

2⇣
Y
c� 1

2
(mnR)J

c+ 1
2
(mnz)� J

c� 1
2
(mnR)Y

c+ 1
2
(mnz)

⌘
(2.3.76)

Sc(z) ⌘
⇡

2
mnR

✓
z

R

◆
c+ 1

2⇣
J
c+ 1

2
(mnR)Y

c+ 1
2
(mnz)� Y

c+ 1
2
(mnR)J

c+ 1
2
(mnz)

⌘
, (2.3.77)

with J and Y being Bessel functions of the first and second kind. The most important
properties of these functions are Sc(R) = 0, Cc(R) = 1, S0

c(R) = mn and C 0
c(R) = 0,

which will become very useful in the following. The KK-modes in this basis yield

sn(z) =

✓
R

z

◆
c �2⇣

AnCc (z) +BnSc (z)
⌘

(2.3.78)

fn(z) =

✓
R

z

◆�c �2⇣
CnC�c (z) +DnS�c (z)

⌘
(2.3.79)

gn(z) =

✓
R

z

◆
c��2⇣

FnCc�(z) +GnSc�(z)
⌘

(2.3.80)

tn(z) =

✓
R

z

◆�c��2⇣
HnC�c�(z) + InS�c�(z)

⌘
. (2.3.81)

For a detailed derivation the reader is referred to Appendix B.4. From the mixed differ-
ential equations 2.3.73 and 2.3.74 evaluated at the UV-brane z = R, the 4 constraints

An = �Dn Bn = Cn Fn = �In Gn = Hn (2.3.82)

are obtained, whereas for the other four one again has to look at the modified boundary
conditions. This, however, will be delayed until the full sMCHM5 setup has been realized.

For now, it is interesting to investigate how SM candidates like the tR can be identified
in general . To do so, (�,�) BCs are chosen for its spinor partner (i.e. �|R,R0 = 0) which
leads to the conditions Fn = 0 and Sc�(R

0) = 0. The latter constraint is fulfilled initially
at m0 = 0, inducing a zero-mode for tn and not for the g0 = 0 (since Sc�(z)|mn=0

=
0 8z, c�). This is expected since tR now has (+,+) BCs. With C�c�(z)|mn=0

= 1 8z, c�
this zero-mode is then given by

t0(z) = H0

✓
R

z

◆�c��2

(2.3.83)

and can be identified with the tR SM particle of the 4D theory. If one had chosen (±,⌥)
BCs, there would not have been a zero-mode for either of the two spinors. The H0 can
be determined by canonical normalization

Z
R

0

R

dz

✓
R

z

◆5 z

R
H2

0

✓
R

z

◆�2c��4
!
= 1, (2.3.84)
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c� = 0.5c� = �0.5
0

fc fc�

Figure 2.9: Illustration of the behavior of the fc� (blue) and fc (green) for different
bulk mass parameters c� and c . Also displayed are the boundaries (brown) which
discriminate between UV- and IR-localized fermions for both cases. The range c�, c 2
[�0.5, 0.5] defines the region, where both, left- and right-handed fermion fields ar IR-
localized. For R = 10�16TeV�1 and R0 = O

�
1TeV�1

�
the fc , fc� parameters are of

O(1) in the presumed range.

where the first term is just the square root of the gamma matrix, the second denotes the
vielbein and the last one is t20. The solution is given by

H0 =

p
1 + 2c�

p
R
q�

R

R0
�1+2c� � 1

, (2.3.85)

which makes it possible to rewrite the zero mode for the tR in a more convenient way

t0(z) =
fc�p
R0

✓
z

R

◆2✓ z

R0

◆
c�

, (2.3.86)

with [81]

fc� ⌘
s

1 + 2c�

1�
�
R

R0
�1+2c�

. (2.3.87)

What can be seen from this equation and will generally be true for all fermions, is that
the localization of the fermions in the bulk is dependent on the parameter ck of their bulk
mass. Right-handed particles like the tR are localized near the UV-brane if c� < �1/2
and near the IR-brane for c� > �1/2. This can be made transparent by removing either
of the branes and see for which values of c� the zero-mode remains normalizable. After
removal of the IR-brane by taking R0 ! 1, H0 stays finite for c� < �1/2 and is thus
UV-localized. The opposite is true if the UV-brane is removed by taking R ! 0. For
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left-handed particles the same is true for c > 1/2 (UV) and c < 1/2 (IR). This becomes
evident by switching the boundary conditions and repeating the calculation.21

Since UV-localized fermions correspond to elementary (and therefore light) particles
in the 4D theory, which implies that they do not contribute much to the Higgs mass, the
bulk mass parameter range will be constraint to �1/2 < c < 1/2 for all fermions in the
following discussion. As can be seen from Figure 2.9, the fc� and fc parameters control
the localization of the fermions within the bulk defining their degree of compositeness
in the 4D analogon. Therefore, it makes sense to identify them with the mixing angles
sin ✓tR , sin ✓tL of the fermions with their partners.

2.4 The sMCHM5 setup on an AdS5 space

After discussing general features of extra-dimensional models along with AdS/CFT dual-
ity it is time to map the sMCHM5 in 4 dimensions onto an AdS5 setup with the previously
used metric

ds2 =

✓
R

z

◆2

(⌘µ⌫dx
µdx⌫ � dz2). (2.4.1)

Starting with the gauge sector, it is convenient to continue implementing the new vector-
like fermions and the top quark. Finally, the potential for a radiatively generated Higgs
boson, used to calculate the new fermionic contributions to the Higgs mass, is discussed.

2.4.1 Symmetry breaking via SM gauge fields

A bulk symmetry G = SO(5)⇥U(1)X is broken to GEW = SU(2)R ⇥U(1)Y on the UV-
brane and to H = SO(4)⇥U(1)X on the IR-brane. The breaking happens through BCs
of the corresponding gauge fields. Due to the isomorphism SO(4) ⇠= SU(2)L ⇥ SU(2)R,
the La

µ and Ra
µ, a = 1, 2, 3, will be denoted as the gauge fields of SU(2)L and SU(2)R,

respectively. The C â
µ, â = 1, 2, 3, 4, are the gauge fields of the coset SO(5)/SO(4) and Xµ

the one of the U(1)X symmetry. In order to break the symmetries in a correct manner,
the boundary conditions are chosen to be

La

µ(+,+) Rb

µ(�,+) Bµ(+,+) Z 0
µ(�,+) C â

µ(�,�) (2.4.2)

b = 1, 2, with generators as in Eq. 2.3.16.22 The Bµ and the Z 0
µ are linear combinations

of
Bµ = s�R

3
µ + c�Xµ Z 0

µ = c�R
3
µ � s�Xµ, (2.4.3)

with
c� =

g5q
g25 + g2

X

s� =
gXq

g25 + g2
X

, (2.4.4)

21The zero mode for the sL is similar and can be obtained by replacing c� with �c (especially
fc = f�c�).

22The same setup as in [45] is used here.
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2.4 The sMCHM5 setup on an AdS5 space

where the g5 and gX are the dimensionful couplings of the forces associated with the
SO(5) and U(1)X symmetries. The covariant derivative can, therefore, be written as

DM = @M�ig5T
a

LL
a

M�ig5T
b

RR
b

M�igY Y BM�i
gY
c�s�

(T 3
R�s2

�
Y )Z 0

M�ig5T̂
âC â

M , (2.4.5)

with gY = g5s� the reduced coupling strength of BM through mixing. As in the 4D
model Y = T 3

R
+X denotes the SM hypercharge.

It can be observed that at low energies only the zero-modes of the La
µ, Bµ and C â

5

are present, which can be identified with the SM W 1,2,3
µ and Bµ fields as well as the

complex Higgs doublet H. EWSB then happens like in the SM at scale v giving rise
to the massive W± and Z vector bosons, the massless Aµ photon field and the physical
Higgs boson h. Fixing 1/R ⇠ 1016TeV = MPl as a ⇤UV cut-off at the Planck scale
and keeping 1/R0 ⇠ O(1TeV), the parameters s�, g5 and ṽ as the VEV of the fourth
component of ⇧ are determined by the well-measured parameters ↵QED, sin2 ✓W and
mW . The remaining free parameter R0 sets the scale f of the CHM.

To see how these parameters are related, one can look at the Goldstone matrix which
has been identified with the Wilson line in Section 2.3.3. Using the vacuum choice of
Section 2.2.2, the 4D Goldstone matrix looks like

U †[⇧] = e�i

p
2

f ⇧â(x)T̂ â

= e�i

p
2

f (ṽ+h(x))T̂ 4̂

, (2.4.6)

with T 4̂ the broken generator defined in 2.2.3. Setting C â(0)
5 (x, z) = f â

h
(z)⇧â(x), this can

be compared to the Wilson line of Eq. 2.3.22 in almost axial gauge in warped space

WIR(x) = exp

 
�ig5

Z
R

0

R

dz C â(0)
5 (x, z)T̂ â

!
= exp

 
�ig5⇧â(x)T̂

â

Z
R

0

R

dz f â

h
(z)

!

= exp

 
�ig5(ṽ + h(x))T̂ 4̂

Z
R

0

R

dz f 4̂
h
(z)

!
!
= e�i

p
2

f (v+h(x))T̂ 4̂

(2.4.7)

identifying

f ⌘
"
g5p
2

Z
R

0

R

dz f 4̂
h
(z)

#�1

. (2.4.8)

In order to calculate f 4̂
h
(z) it is necessary to look at the action for the gauge bosons

in general, given by

SA = �1

4

Z
d5x
p
GgMRgNSFMNFRS , (2.4.9)

with FMN = @MAN � @NAM neglecting the self interactions.23 By performing a KK-
decomposition of the fields

Aµ(x, z) =
X

n

A(n)
µ (x)⇣n(z), A5(x, z) =

X

n

A(n)
5 (x)#n(z), (2.4.10)

23The A
A
M are as before the 5D gauge fields of SO(5) whose indices A = 1, ..., 10 are suppressed.
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the fifth dimension can be integrated out to obtain the equations of motion as well as
the required relations between the 5D base functions ⇣n and #n. The decomposed action
yields

SA =� 1

4

Z
d5x

R

z

h
Fµ⌫F

µ⌫ � 2F⌫5F
⌫
5

i

=� 1

4

X

n,m

Z
d5x

R

z

⇣
@µA

(n)
⌫ � @⌫A(n)

µ

⌘⇣
@µA(m)⌫ � @⌫A(m)µ

⌘
⇣n⇣m

+
1

2

X

n,m

Z
d5x

R

z

⇣
#n@µA

(n)
5 �A(n)

µ @5⇣n
⌘⇣
#m@

µA(m)
5 �A(m)µ@5⇣m

⌘

=� 1

4

X

n,m

Z
d4x

 Z
R

0

R

dz
R

z
⇣n⇣m

!
F (n)
µ⌫ F (m)µ⌫ (2.4.11)

+
1

2

X

n,m

Z
d4x

 Z
R

0

R

dz
�
�@5

�
R/z@5

�
⇣n
�
⇣m

!
A(n)

µ A(m)µ (2.4.12)

� 1

2

X

n,m

Z
d4x

 Z
R

0

R

dz
�
�@5(R/z#n)

�
⇣m

!
2@µA

(n)
5 A(m)µ (2.4.13)

+
1

2

X

n,m

Z
d4x

 Z
R

0

R

dz
R

z
#n#m

!
@µA

(n)
5 @µA(m)

5 (2.4.14)

+
1

2

X

n,m

Z
d4x


R

z

⇣
@5⇣n⇣mA(n)

µ + 2#n⇣mA(n)
5 @µ

⌘
A(m)µ

�
R

0

R

(2.4.15)

!
=
X

n

Z
d4x

✓
� 1

4
F (n)
µ⌫ F (n)µ⌫ +

1

2
m2

nA
(n)
µ A(n)µ �mn@µA

(n)
5 A(n)µ

+
1

2
@µA

(n)
5 @µA(n)

5

◆
, (2.4.16)

where the terms 2.4.12 and 2.4.13 have been partially integrated, resulting in the bound-
ary action term 2.4.15. This can be identified with a tower of 4D gauge field theories as
displayed in Eq. 2.4.16 given the following properties of the basis functions.24 The first
requirement from the Aµ kinetic term 2.4.11 is the usual orthonormalization requirement
for the ⇣n Z

R
0

R

dz
R

z
⇣n(z)⇣m(z) = �mn. (2.4.17)

The second requirement coming from the Aµ mass term 2.4.12

� z

R
@5

✓
R

z
@5

◆
⇣n = �@25⇣n +

1

z
@5⇣n = m2

n⇣n (2.4.18)

24These requirements can be also derived via the variational principle (see Appendix B.6) as for the
fermionic fields.
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provides the equation of motion for the ⇣n with the solutions

⇣n(z) = AnC(z) +BnS(z), (2.4.19)

where the C(z) and S(z) are the warped trigonometric functions defined in Eq. 2.3.76
and 2.3.77 with c = 1/2 (see Appendix B.5 for the derivation). It has been shown
in Section 2.3.2 that the Aµ and A5 components of AM are linked through the gauge
parameter ↵. Therefore, the ⇣n and #n are expected to be dependent on each other. In
order for the mode-mixing term 2.4.13 to look like 4D gauge fields the relation between
these modes takes its standard form

� z

R
@5

✓
R

z
#n

◆
= �@5#n +

1

z
#n = mn⇣n. (2.4.20)

Using equation 2.4.18 it can be seen that this is fulfilled for

#n(z) =
1

mn

@5⇣n(z). (2.4.21)

The orthonormalization requirement for the # in term 2.4.14
Z

R
0

R

dz
R

z
#n(z)#m(z) = �mn (2.4.22)

is then fulfilled automatically with the previous relations 2.4.17, 2.4.18 and 2.4.21.
The boundary action simply vanishes for (+) or (�) BCs conditions for the Aµ (also

fixing the BCs for A5). Imposing (+,+) BCs as for the unbroken La
µ and Bµ fields

induces (�,�) BCs for the La

5 and B5 fields. The KK-decomposition for e.g. La

M
then

looks like

La

µ(x, z) =
X

n

La(n)
µ (x)lan(z), La

5(x, z) =
X

n

La(n)
5 (x)

@5lan(z)

mn

, (2.4.23)

where all La(n)
5 modes can be gauged away due to the lack of a zero-mode (#0 = 0 in this

case). For the spontaneously broken generators C â

M
, the BCs are turned around. This

time the C â

5 acquire zero-modes which cannot be gauged away as discussed earlier and
which will be identified with the components of a 4D composite pNGB Higgs. In the
KK-decomposition

C â

µ(x, z) =
X

n

C â(n)
µ (x)cân(z), C â

5 (x, z) = f â

h
(z)⇧â(x) +

X

n

C â(n)
5 (x)

@5cân(z)

mn

(2.4.24)

these zero-modes C â(0)
5 (x, z) = f â

h
(z)⇧â(x) have been singled out. The f â

h
(z) components

can now be calculated via Eq. 2.4.20 with ⇣0 = 0

@5f
â

h
(z) =

1

z
f â

h
(z) ) f â

h
(z) = câ

h

z

R
, (2.4.25)
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where the câ
h

can be fixed by Eq. 2.4.22 yielding

câ
h
=

"Z
R

0

R

dz
z

R

#�1/2

=

p
2Rp

R02 �R2
. (2.4.26)

This makes it possible to derive the desired relation between the breaking scale f and R0

by inserting f 4̂
h
(z) into Eq. 2.4.8. In terms of the dimensionless coupling g⇤ = g5/

p
R

f ⌘ 2
p
R

g5
p
R02 �R2

⇡ 2

g⇤R0 (2.4.27)

is obtained, where R0 � R. The prior constant g⇤, which corresponds to the number of
colors

NCFT =
16⇡2

g2⇤
(2.4.28)

of the UV-theory in the 4D CFT, is thus fixed for a fixed scale f and AdS expansion
parameter R0. Since the AdS/CFT duality only holds for large NCFT, g⇤ has to be chosen
accordingly.

The next task is to match the coupling strengths of the SM to the g5 and gX of the
5D theory. As can be seen from the covariant derivative in Eq. 2.4.5, the elementary
fermions couple on the UV-brane with strength g5 to the W a

µ and with reduced strength
gY to the Bµ field. For a 4D observer on the IR-brane this coupling strength appears to
be suppressed by the length of the extra-dimension, e.g. g24D = g25D/L which is defined
in Eq. B.1.5 for a warped AdS5 space. Therefore, at leading order

g2 ⌘ g25
R ln R0

R

, g02 ⌘ g2
Y

R ln R0
R

(2.4.29)

can be identified as the SM gauge couplings.25 Making use of the SM relations g2 =
e2/ sin2 ✓W , g02 = e2/ cos2 ✓W and e2 = 4⇡↵QED, this of course also fixes g⇤ which means
that R0 and f are now in one-to-one correspondence. Fortunately, one can soften this
relation by introducing kinetic boundary terms for the SM gauge fields

SUV
A =

Z
d4x


�1

4
2R ln

R0

R
La

µ⌫L
aµ⌫ � 1

4
02R ln

R0

R
Bµ⌫B

µ⌫

�
, (2.4.30)

with ,0 being dimensionless parameters which alter the coupling strengths [45] (see
also [92]). To good approximation it can be concluded

g25 ⇡
e2

sin2 ✓W
R ln

R0

R
(1 + 2), g2Y ⇡

e2

cos2 ✓W
R ln

R0

R
(1 + 02) (2.4.31)

as well as
s2
�
=

g2
Y

g25
⇡ tan2 ✓W

1 + 02

1 + 2
. (2.4.32)

25See also [89] for a more quantitative approach.
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The Higgs VEV h⇧i = ṽ can be obtained as in the 4D theory through the breaking scale
f via Eq. 2.2.21

m2
W ⇡

v2g2

4
=

e2f2

4 sin2 ✓W
sin2

✓
ṽ

f

◆
, sin2

✓
ṽ

f

◆
⇡ 4 sin2 ✓W

e2
m2

W

f2
. (2.4.33)

The  and 0 do also alter the boundary conditions of the corresponding gauge fields and
thus the gauge contribution to the Higgs potential, which will be seen later.

2.4.2 Fermions in the 5D sMCHM5

It is convenient to introduce full SO(5)⇥U(1)X multiplets for the top quark and the new
vector-like f 5D fields in fundamental 52/3 representation. The embedding is the same
in Eq. 2.2.45, rotated into a basis where the T 3

R
and T 3

L
generators are diagonal.26 This

has the benefit that the fermions do not mix within the multiplet and can be achieved
by using the unitary matrix

A =
1p
2

0

BBBB@

1 �i 0 0 0
0 0 �i 1 0
0 0 i 1 0
�1 �i 0 0 0
0 0 0 0

p
2

1

CCCCA
(2.4.34)

transforming

T̃ ! T = A · T̃ · A†, T̃ 2 {T a

L, T
a

R, T̂
â} (2.4.35)

 ̃ !  = A ̃,  ̃ 2 { L, R}. (2.4.36)

The incomplete SO(5) multiplets in the 4D MCHM5 correspond in the 5D to different
BCs on the components of the multiplet, projecting out unwanted zero modes

MCHM5:  L =

0

@
wL[�,+]
qL[+,+]
sL[�,+]

1

A ,  R =

0

@
wR[�,+]
vR[�,+]
tR[+,+]

1

A . (2.4.37)

In fact, the BCs are chosen such that only the qL and tR have zero-modes which can be
identified with the SM particles. In the sMCHM5 the BCs become univeral

sMCHM5:  L =

0

@
wL[+,+]
qL[+,+]
sL[+,+]

1

A ,  R =

0

@
wR[+,+]
vR[+,+]
tR[+,+]

1

A . (2.4.38)

Here, the additional fields s, v and w which, so far, have not been observed in nature,
are uplifted via UV boundary masses. Like in Section 2.3.6, the fields are embedded into
5D Dirac spinors

 1 =

✓
 L

 ̄

◆
,  2 =

✓
�
 ̄R

◆
. (2.4.39)

26This can be done simultaneously because the operators commute [T 3
L, T

3
R] = 0.
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with the difference that each constituent of the spinors is now a full multiplet.27 The
action is the same as in Eq. 2.3.66, such that the solutions to the bulk equations of motion
are also equivalent to the ones in Eq. 2.3.78-2.3.81 for all  ̄i

L
,  i

R
pairs, i = 1, ..., 5. In

general, this statement does not hold since the presence of the Higgs would mix the
particles in the bulk. However, as derived in Section 2.3.3, one can remove the Higgs
from the bulk by performing a Wilson line transformation towards the IR-brane

⌦(x, z) = exp

✓
�ig5

Z
z

R

dz0C 4̂(0)
5 (x, z0)T̂ 4̂

◆
= exp

 
�i
p
2

f(z)
(ṽ + h(x))T̂ 4̂

!
, (2.4.40)

with

f(z) =
2
p
R

g5

p
R02 �R2

z2 �R2
=

(
2

g⇤R0 ⌘ f for z ! R0

1 for z ! R
. (2.4.41)

The IR-localized Higgs only imposes changes to the BCs of the fermions via interaction
terms at z = R0

SIR =

Z
d4x
p
�gIR

"
 ̄1

✓
C12 0
0 C12

◆
 2 +  ̄2

✓
C12 0
0 C12

◆
 1

#

z=R0

, (2.4.42)

where
p
�gIR = (R/R0)4 is the 4D squared metric determinant and C12 = diag(c1, c1, c1,

c1, c2) parametrizes the interaction terms between the left- and right-handed fermion
fields  = W †

IR(x) 
0 which have to be transformed by the Wilson line WIR(x) ⌘ ⌦(x,R0)

into the h-independent bulk fields. For c1 = c2 the Higgs effectively decouples. With the
KK-decompositions

 i

L =
X

n

tiL,n(z)�
i

n(x)  ̄i =
X

n

f i

n(z) ̄
i

n(x) (2.4.43)

�i =
X

n

gin(z)�
i

n(x)  ̄i

R =
X

n

tiR,n
(z) ̄i

n(x) (2.4.44)

i = 1, ..., 5, the new boundary conditions on the IR-brane yield

W †
IR(x)Gn(z)|R0 = +C12W

†
IR(x)TL,n(z)|R0 (2.4.45)

W †
IR(x)Fn(z)|R0 = �C12W

†
IR(x)TR,n(z)|R0 , (2.4.46)

where Gn(z) = (g1n(z), g
2
n(z), g

3
n(z), g

4
n(z), g

5
n(z))

T and equivalent for the other func-
tions.28 Note that the Wilson line WIR(x) equals the Goldstone matrix U [⇧] in Eq.
2.2.35 rotated by the unitary matrix A of Eq. 2.4.34.

Because of ⌦(x,R) = 1, the Wilson line transformation does not effect the UV-brane.
Therefore, the imposed BCs at z = R still read

f i

n|R = 0 for i = 3, 4 gin|R = 0 for i = 5 (2.4.47)
tiL,n|R = 0 for i 6= 3, 4 tiR,n|R = 0 for i 6= 5. (2.4.48)

27The resulting lack of localization parameters which leads to conflicts with experimental constraints
makes it unfavorable to embed  L and  R into a single spinor.

28For a derivation of the BCs for just one fermion pair, see Appendix C.2 in [90].
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This can be changed by introducing vector-like mass terms for the new 5D fermions via
interactions of the wL, vR, and sL with their chiral partners on the UV-brane. While the
wL and wR just mix at z = R, the vL doublet as well as the sR singlet have to be induced
as UV-localized 4D particles since they are not part of the multiplets. Therefore, the UV
action reads

SUV =

Z
d4x


� isR�

µ@µs̄R � iv̄L�̄
µ@µvL +

csp
R
(sRsL + s̄Ls̄R)

+
cvp
R
(vTRvL + v̄Lv̄

T

R) + cw(w
T

RwL + w̄Lw̄
T

R) + h.c.

�

z=R

, (2.4.49)

with cs, cv and cw being the dimensionless mass parameters of the new fermions. Note
that the first two interaction terms have to be scaled with R�1/2 because of the lower
mass dimension of the localized 4D particles ([sR] = [vL] = 3/2 and [sL] = [vR] = [wL] =
[wR] = 2). Including the new BCs which can be derived for each pair like in Section
2.3.5, the free parameters of the solutions in Eq. 2.3.78-2.3.81 for each pair read

A1,2
n = � 1

cw
F 1,2
n G1,2

n =
1

cw
B1,2

n

B3,4
n = 0 G3,4

n = �mnR

c2v
F 3,4
n (2.4.50)

A5
n =

mnR

c2s
B5

n F 5
n = 0,

with the relations to Ci
n, Di

n, H i
n and Iin given in Eq. 2.3.82. Using the BCs in Eq.

2.4.45 and 2.4.46, the system of linear equations consisting of the remaining parameters
B1,2,5

n , A3,4
n , F 1,2,3,4

n and G5
n can be solved for mn by looking at the roots of the matrix

determinant detMt = 0 as in Eq. 2.3.59 and 2.3.60. The lightest of these roots can be
identified with the top mass m0 ⌘ mt at h = 0.29 The subsequent mn, n � 1 represent
the masses of the top partners in the 4D model.

2.4.3 The Higgs Potential

Knowing how to obtain the masses for the top as well as its partners in the 5D model,
the final step of the analysis is to calculate the Higgs potential and, thereover, the mass
of the Higgs boson in the sMCHM5 model. In the extra-dimensional model, there is no
Higgs potential present at tree level. This effect also explains its light mass in these
models compared to the physical scale. The Higgs is introduced radiatively via the non-
local Wilson line operator. Thus, the potential can be approximated by a mechanism
first discovered by S. Coleman and E. Weinberg [93]. The so-called Coleman-Weinberg
potential for a KK-tower looks like

V (h) � Nr

2

1X

n=1

Z
d4p

(2⇡)4
ln
�
p2 +m2

n(h)
�
, (2.4.51)

29The b quark remains massless, because a multiplet containing bR has not been introduced, which
would allow for Yukawa terms after mixing with the Higgs on the IR-brane.
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with Nr corresponding to the degrees of freedom of the resonance (Nr = +3 for gauge
fields and Nr = �4 for fermion fields). The full expression can be rewritten (see e.g. [91,
94, 95]) in terms of a sum over different KK-towers

V (h) =
X

r

NrNc

(4⇡)2

Z 1

0
dp p3 ln ⇢r(�p2), (2.4.52)

with Nc the number of colors (Nc = 3 for quarks and Nc = 1 for all other particles) and
⇢r(�p2) being the spectral functions of the resonances with roots at m2

n;r(h). They can
be expressed through the coefficient matrices Mr of the gauge and fermion fields

⇢(m2
n;r(h)) =

detMr(h)

detMr(�ṽ)
!
= 0 8 n 2 N, (2.4.53)

where detMr(�ṽ) denotes the Higgs independent term over which is normalized. The
Coleman-Weinberg potential for this case yields

V (h) = Vg(h) +
X

f

Vf (h) ⇡ Vg(h) + Vt(h), (2.4.54)

where the top quark KK-tower is expected to have the dominant contribution such that
all other fermions can be neglected. The gauge potential is defined as

Vg(h) =
3

(4⇡)2

Z
dp p3

⇥
2 ln ⇢W (�p2) + ln ⇢Z(�p2)

⇤
. (2.4.55)

For the W± and Z bosons, the spectral functions look like

⇢W,Z(�p2) = 1 + fW,Z(�p2)s2h, (2.4.56)

with s2
h
⌘ sin2((ṽ + h)/f) and coefficients

fW (�p2) = ip

2

R0

R

1

S(R0)(C 0(R0)� ipR ln(R0/R)2S0(R0))
(2.4.57)

fZ(�p2) =
ip

2

R0

R

"
1

S(R0)(C 0(R0)� ipR ln(R0/R)2S0(R0))

+
s2
�

S(R0)(C 0(R0)� ipR ln(R0/R)02S0(R0))

#
, (2.4.58)

where ,0 are the kinetic boundary parameters of the gauge contribution and the
S(R0), C(R0) defined in Appendix B.5 are rewritten into functions of p (see Appendix B.6
for a full derivation of the gauge coefficients).30 In the sMCHM5 the top contribution
yields

Vt(h) = �
3

4⇡2

Z
dp p3 ln ⇢t(�p2), (2.4.59)

30Check also [96, 97] for more details.
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2.4 The sMCHM5 setup on an AdS5 space

Table 2.3: Overview of the properties between the 4D and the 5D sMCHM5 model,
which can be related to each other. The last two relations are evident from Eq. 2.2.38.
The c1, c2 couple between different (5D) Dirac spinors which is also the the purpose of
the aL, bR in the 4D which relate qL to Qt

R
and tR to T̃ T

L
. The C5 couples particles within

the same multiplet as for the aR, bL coupling qL to T̃ T

R
and tR to Qt

L
.Taken from [45] and

extended.

5D 4D

fermionic bulk fields partial composite fermionic mass
eigenstates

zero-modes of fermionic and bosonic
fields SM fermions and bosons

Length R0 of the interval breaking scale f

Higgs as the zero-mode of the fifth
component of a 5D gauge field

Higgs as composite pNGB of a SSB at
scale f

symmetry reduction via (�) BCs of the
gauge fields

symmetry reduction via partial gauging
the SO(5) fields

softening via changes in BCs on the
UV-brane

softening via completion of the SO(5)
multiplet

explicit symmetry breaking via
dynamical BCs

explicit symmetry breaking via
vector-like mass terms

Wilson line WIR(x) Goldstone matrix U [⇧]

KK-masses mn for n � 1 mQ, m̃T

fc ytLf/mQ ⇡ sin ✓tL

fc� ytRf/m̃T ⇡ sin ✓tR

fermion-mass mixings on the IR-brane
c1, c2

aL, bR

fixed Higgs couplings (via C5 mode) bL, aR

with

⇢t(�p2) = 1 + f2(�p2)s2h + f4(�p2)s4h. (2.4.60)

The f2,4(�p2) coefficients are quite complicated momentum/mass dependent functions
of the input parameters c , c�, c1, c2, cs, cv and cw. It is, however, possible to obtain
numerical solutions for the Higgs mass, which is just the second derivative of the potential
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evaluated at h = 0
@2V (h)

@h2

����
h=0

= m2
H . (2.4.61)

By approximation of V (h) and expanding around h = 0 up to linear order

V (h) ⇡ �↵s2
h
+ �s4

h
⇠= �µ2

H
†
H + �

⇣
H

†
H

⌘2
(2.4.62)

it is evident, that the Coleman Weinberg potential approximately takes the SM form of
the Higgs potential for appropriate values of ↵ and �. Furthermore, one can use the
observational constraints

mt ⇠ 150GeV,
@V (h)

@h

����
h=0

= 0 (2.4.63)

to fix two of the input parameters. By doing this, it is possible to figure out how the
presence of the new particles change the phase space for mH and the top partner masses.
All calculations will be performed numerically using expressions derived in Appendix
B.7.

At the end of the explications regarding these two theoretical concepts, the similarities
and identifications between the 4D and the 5D theory have been collected and displayed
in Table 2.3. This comparison might help the reader to obtain a better overview of the
recent discussion. The theoretical findings elaborated in this section will be essential for
the numerical scans performed in section 3.

2.5 Solutions to fine-tuning problems in CHMs

Before starting with the mostly numerical analysis of the sMCHM5, it is beneficial to look
back on the motivation of its implementation first. As stated in Section 1, CHMs aim
to solve the Hierarchy problem of the SM through a different view on the Higgs boson.
This, however, comes at the price of (modest) fine-tuning by misaligned vacuum states.
Due to the direct link between fine-tuning, naturalness and the Hierarchy problem, it is
very important for CHMs to keep this inevitable fine-tuning as low as possible in order to
be an attractive alternative to the SM.31 Therefore, it is necessary to ensure first that the
modifications to the MCHM5 do not worsen the fine-tuning by an unacceptable amount
before thinking of possibilities which might even cure it.

2.5.1 Fine-tuning in the sMCHM5

The Higgs potential for CHMs can in general be written as

V (h) = �↵s2
h
+ �s4

h
(2.5.1)

31Too strong fine-tuning reintroduces a naturalness problem and just shifts the Hierarchy problem
instead of solving it.
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2.5 Solutions to fine-tuning problems in CHMs

with ↵,� > 0 being the parameters which control EWSB and are dependent on the
specific input parameters as well as the structure of the model. The minimum condition
of the potential at h = 0 leads to a constraint for these two contributions

@V (h)

@h

����
h=0

= 0 ) ⇠ =
v2

f2
=

↵

2�
. (2.5.2)

As pointed out in Section 2.1.3, a separation between the EWSB scale v and the breaking
scale f quantified by the parameter ⇠ is necessary to keep CHMs within the current
experimental constraints. This separation can be achieved by introducing a minimal
fine-tuning on the ↵ and � parameters in order to yield Eq. 2.5.2. The amount of
fine-tuning needed, is expressed by the inverse of the ratio which shall be tuned

�min =
1

⇠
=

f2

v2
(2.5.3)

and present in all CHMs. Usually, a tuning of 10% corresponding to f ⇠ 800GeV is
sufficient for this purpose. However, in most CHMs it has been shown (explicitly in 5D
holographic approaches) that the fine-tuning is actually much larger (see e.g. [45, 49,
98]). Especially the MCHM5 suffers from an extended, so-called double-tuning [44, 99],
which arises due to a hierarchy of contributions in the Higgs potential, i.e. the s2

h
is the

leading term in the potential and the s4
h

term sub-leading. In order to obtain the desired
⇠ in the MCHM5 one must, therefore, first tune ↵ to be of the same order as � and in a
second step tune ↵ to be 2⇠�. In this sense, one has to tune twice.

To explain why the s4
h

term is actually sub-leading, it is useful to make a spurion
analysis of the Higgs potential. Spurions are purely mathematical objects like numbers
or matrices which are uplifted to physical fields transforming under the symmetries of
the theory. Depending on their explicit form, they encode the breaking mechanism of
the symmetry and thereby the mass of the Higgs particle as a pNGB of this breaking.
In the following, the �L,R matrices first encountered in Eq. 2.2.31 are used as spurions
which shall transform under SO(5). The trick of the analysis is to treat the spurions as
full multiplets, such that the Higgs potential must be SO(5) invariant under transforma-
tions including the spurions. This constraints the number of contributions consisting of
spurions and the Higgs fields one can build. After writing down all possible terms which
could appear in the potential, the definitions of the spurions given in Eq. 2.2.40 for the
MCHM5 are inserted, obtaining an estimate for Vt(h).

Starting with the spurions only, it can easily be seen that only combinations of spu-
rions can also transform under the remnant SM gauge group GEW, namely

(�L)IJ = (�⇤
L)
�

I
(�L)�J , (�R)IJ = (�⇤

R)I(�R)J , (2.5.4)

with � = 1, 2 and I, J = 1, ..., 5 the SO(5) indices. These �-spurions have the linear
transformation properties

�L,R ! g�L,Rg
†, g 2 SO(5). (2.5.5)
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The Higgs in CHMs is, as shown earlier, always encoded in the Goldstone matrix U [⇧],
defined in Eq. 2.2.9, which transforms non-linearly under SO(5) (see also Eq. 2.3.25)

U [⇧]! gU [⇧]h†(⇧, g), g 2 SO(5), h 2 SO(4). (2.5.6)

However, this can be changed by introducing the automorphism V defined by V TAV † =
±TA with + (�) for the unbroken (broken) generators T a (T â).32 Via V it is possible
to construct an operator which transforms linearly under SO(5)

⌃ ⌘ U †UV ! g⌃g†, g 2 SO(5). (2.5.7)

Larger �-spurion numbers correspond to higher orders in perturbation theory. Therefore,
the leading term for the MCHM5 will be given by insertions of only one �-spurion, which
leaves two terms at Leading-Order (LO) [51]

V LO
f

(h) = cL tr(⌃�L) + cR tr(⌃�R) = (2cR � cL)s
2
h
. (2.5.8)

This potential has only trivial minima, such that also the Next-to-Leading-Order (NLO)
s4
h

term has to be taken into account. In order to be significant in the potential, it has
to have a similar size than V LO

f
(h) leading to the aforementioned double-tuning.

For the MCHM5 the tuning can be estimated to [51]

�5 '
1

⇠
· 20

⇣g 
5

⌘2
, (2.5.9)

where the 4D fermionic and bosonic mass scales translate to g⇤ via g⇢ = g ⇡ 1.2024g⇤
[45].33 In order to fulfill constraints coming from the EWPOs

S ⇡ 6⇡⇠g�2
⇤ T = 0 U = 0, (2.5.10)

it is necessary to keep g⇤ & 3.6 making the tuning even larger for reasonable Higgs
masses.34 Taking mH = 105GeV and f ' 0.79ml, which is derived from the Higgs top
partner relation [44]

mH '
p
Nc

⇡

mlmt

f
(2.5.11)

at mt = 150GeV, the relation between the tuning and the top partner mass is given by

�5 ' 100 ·
⇣ ml

1TeV

⌘2
. (2.5.12)

In the sMCHM5, the double-tuning problem manifested in Eq. 2.5.8 is not resolved but
not worsened either. Therefore, it can be concluded that for these parameters at ⇠ ' 0.1

32
V is also called Higgs parity.

33For a more general overview on fine-tuning in CHMs, see [99].
34Ref [100] claims S|U=0

= 0.05 ± 0.09 and T|U=0
= 0.08 ± 0.07 at 95% CL, but since the analysis

performed above is quite limited, some non-negligible contributions to the T parameter could have been
ignored.
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2.5 Solutions to fine-tuning problems in CHMs

(i.e. f ⇠ 800GeV), the tuning in the novel sMCHM5 is similar to the tuning for the
MCHM5. This is a very encouraging result, because it means that the tuning is not likely
to increase much, if this model actually manages to achieve higher top partner masses
for a light Higgs. If the tuning had exploded, one could have just risen f in the MCHM5

and would have obtained a similar result with significantly less effort. The recalculation
of the EWPOs is beyond the scale of this thesis such that the parameter constraints for
the usual MCHM5 model are taken.

To compute the fine-tuning in the 5D holographic model, the Barbieri-Giudice mea-
sure [101]

�BG = max
xi

����
@ lnO
@ lnxi

���� = max
xi

����
xi
O
@O
@xi

���� (2.5.13)

is used, with O being an observable which is dependent on the model parameters xi
(xi 2 {⇠, c , c�, c1, c2, cs, cv, cw,2,02} for the sMCHM5). Note that this measure is
always meant to be a lower bound for the actual fine-tuning since it can only account for
the effects which influence the chosen operator. A common choice for O is the mass of
the Z boson m2

Z
which is at leading order related to the Higgs via

m2
Z(h) =

g2v(h)2

4 cos2 ✓W
=

g2f2

4 cos2 ✓W
s2
h
) �Z

BG = max
xi

����
xi
s2
h

@s2
h

@xi

���� , (2.5.14)

where the following h denotes the background value of the Higgs field. Since it is much
easier to work with the Higgs potential, this equation will again be rewritten, starting
with an expansion of the derivative of the potential around ⇠ (see Appendix B.7 for
similar calculations)

@V (s2
h
)

@s2
h

=

�
�
�
�
�

��@V (s2
h
)

@s2
h

����
s
2
h=⇠

+ (s2
h
� ⇠)

@2V (s2
h
)

(@s2
h
)2

����
s
2
h=⇠

+ O
�
s4
h

�

= (s2
h
� ⇠) f2

4⇠(1� ⇠)m
2
H + O

�
s4
h

�
(2.5.15)

such that
@s2

h

@xi
=

4⇠(1� ⇠)
f2m2

H

@2V (h)

@xi@s2h
. (2.5.16)

Evaluating the fine-tuning by variation of the minimum yields

�Z

BG = max
xi

����
4xi(1� s2

h
)

f2m2
H

@

@xi

✓
@V (s2

h
)

@s2
h

◆����
s
2
h=⇠

(2.5.17)

for this analysis.35 Another possible observable is the Higgs mass m2
H

, from which the
fine-tuning measure

�H

BG = max
xi

����
xi
m2

H

@m2
H

@xi

����
h=0

= max
xi

����
xi
m2

H

@

@xi

✓
@2V (h)

@h2

◆����
h=0

(2.5.18)

is obtained. For the subsequent analysis both values will be derived taking the higher
one as the proper fine-tuning measure for each point in the analysis.

35One could have also started with the W mass m
2
W (h) and would arrive at the same result.
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2.5.2 The maximally symmetric sMCHM5

In a second step, it is reasonable to think about ways to use the sMCHM5 in order to
actually reduce fine-tuning. One promising approach which can easily be included into
this model is the concept of maximal symmetry [50, 102]. The idea of this approach is to
start with an enhanced chiral symmetry for the fermions SO(5)L⇥SO(5)R. This higher
symmetry is then broken into a remaining, so-called maximal symmetry SO(5)0, which
does not contain the Goldstone shift symmetry any more and thus creates a potential
for the Higgs.

To achieve this, this concept also requires complete 5 multiplets of SO(5)L,R in the
sector of composite resonances. The maximal symmetry group SO(5)0 is defined via the
previously introduced automorphism V , being the subgroup of SO(5)L ⇥ SO(5)R that
satisfies

gLV g†
R
= V, gL 2 SO(5)L, gR 2 SO(5)R. (2.5.19)

The spurions as well as the Goldstone operator transform under this new symmetry as

�L ! gR�Lg
†
R
, �R ! gL�Rg

†
L
, ⌃! gL⌃g

†
R
. (2.5.20)

If one requires SO(5)0 to be the global symmetry of the model, the first possible invariant
combination of operators, which correspond to the leading contribution of the potential,
yields [51]

V LO
f

(h) = cLR tr(⌃�L⌃
†�R) = 2cLRs

2
h
c2
h
= �↵fs

2
h
+ �fs

4
h
. (2.5.21)

Evidently, the maximally symmetric approach avoids double-tuning because the neces-
sary structure for a non-trivial minimum of the potential is already given at leading
order. Indeed, the tuning is estimated to be [50]

�MS
5 ' 1

⇠
� 2. (2.5.22)

Using the same quantities as for Eq. 2.5.12, the relation between the tuning and the
mass of the lightest top partner yields

�MS
5 ' 10 ·

⇣ ml

1TeV

⌘2
(2.5.23)

which is roughly a factor of 10 lower than in the (s)MCHM5.
Unfortunately, by just looking at the fermionic potential, the contributions are not

only similar but equal ↵f = �f , which results in ⇠ = 0.5, a value well excluded by EWPTs
[68]. To cure this problem, one usually reintroduces some amount of fine-tuning to let
the gauge contribution ↵g shift the potential to the desired ⇠. This means that the ↵
contributions, which are of similar order have to cancel sufficiently, in order to obtain
⇠ = (↵g + ↵f )/(2�f ) ⇠ 0.1.

A combination with the sMCHM5 has been (qualitatively) shown to actually solve
this problem without an additional fine-tuning, because it can break trigonometric parity,
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2.5 Solutions to fine-tuning problems in CHMs

which is the underlying reason for the equal contributions, while preserving the structure
of the potential in the maximally symmetric setup.36 The implementation of maximal
symmetry into the sMCHM5 is simple but not trivial. If one would e.g. naively set
mQ ⌘ �m̃T , aL = bL and aR = bR (corresponding to c1 = �c2 in the 5D model),
the w contribution would introduce a single s2

h
term at leading order (see [51] for a full

derivation) which maximally breaks the trigonometric parity and reintroduces double-
tuning. This contribution can be avoided by requiring that the chiral wL, wR components
in Eq. 2.4.38 to have different chiral partners denoted as w̃R and w̃L accompanied with
a Z2 symmetry (see below). For a derivation in 4D, the reader is referred to the original
paper [51]. In 5D, one first has to set c1 = �c2 as a fixed constraint for the model.
Secondly, the wL and wR have to be coupled to brane localized fields, denoted as w̃R and
w̃L, on the UV-brane. This alters the UV action to be

SUV =

Z
d4x


� isR�

µ@µs̄R � iv̄L�̄
µ@µvL � iw̃T

R�
µ@µ ¯̃wT

R � i ¯̃wL�̄
µ@µw̃L

+
csp
R
(sRsL + s̄Ls̄R) +

cvp
R
(vTRvL + v̄Lv̄

T

R)

+
cwRp
R
(wT

Rw̃L + ¯̃wLw̄
T

R) +
cwLp
R
(w̃T

RwL + w̄L
¯̃wT

R) + h.c.

�

z=R

, (2.5.24)

with cwL , cwR as new free dimensionless parameters of the model. By doing this, of
course also the BCs on the UV-brane for the first two pairs are changed, now yielding

A1,2
n =

mnR

c2wL

B1,2
n G1,2

n = �mnR

c2wR

F 1,2
n . (2.5.25)

Additionally, a Z2 symmetry is introduced, under which the  1 and the right-handed
UV-localized fields have negative and the  2 along with the left-handed UV-localized
fields have positive parity. This forbids unwanted trigonometric parity breaking terms if
it is imposed everywhere, except on the IR-brane, where the symmetry is broken in order
to give mass to the SM fermions. The fine-tuning for the soft maximally symmetric model
is expected to be described by Eq. 2.5.22 because it follows the same argumentation as
for the simple maximally symmetric case. Moreover, since it is not necessary to raise
f ⇠ 800GeV in order to obtain higher top partner masses, one can even assume the
tuning in the maximally symmetric sMCHM5 to be constant �sMS

5 ' 8 over large mass
range of ml. For regions above ml & 2TeV this argumentation does not hold any longer
because the vector-like masses are pushed towards more tuned regions in the parameter
space. From here on, quadratic growth in the tuning starts again as described by equation
2.5.23 (see [51] for a more detailed discussion).

36Trigonometric parity is a discrete symmetry, which leaves the system invariant under the exchange
sh $ �ch. It arises from the Higgs parity V .
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3 Analysis and Discussion

The necessary background knowledge as well as the theoretical setup have been laid out
paving the way for a numerical analysis of the model properties. Particular emphasis
will be laid on the question, if the sMCHM5 is able to produce heavy top partners while
keeping the Higgs light. Moreover, fine-tuning studies will be performed for each case.

At first, the general features of this analysis will be explained starting from the
MCHM5, where the new fermions are effectively decoupled. As a next step, in the
spirit of the original paper [46], only the sR will be included, investigating how the
model changes if the cs parameter is varied. Eventually, the full sMCHM5 setup with
all parameters in play will be tested. Here, focus will also be laid on the question how
natural these new parameters are. In a final step, the model will be transformed in order
to respect maximal symmetry. This provides an opportunity to test if the fine-tuning
can be further reduced while obtaining similar results for the relation of the Higgs to the
top partners.

In the following analysis, if not stated otherwise, f ⌘ 800GeV, R ⌘ 10�16TeV�1

and mt ⌘ 150GeV are fixed. The R0, g⇤ and s� parameters will then arise naturally from
the Eq. 2.4.8, 2.4.31 and 2.4.32, depending only on the brane kinetic terms , 0. For
 = 0 = 0 they yield R0 ⇡ 0.625TeV�1, g⇤ ⇡ 4 and s2

�
⇡ 0.287. Furthermore, the VEV

of EWSB v = 246.2GeV, the fine-structure constant ↵QED = 1/128 as well as the sine
squared of the Weinberg angle sin2 ✓W = 0.223, remain constant throughout the analysis
[103].

3.1 General features of the analysis - The MCHM5

The MCHM5 can be considered as a special case of the sMCHM5 with all localized
fermions on the UV-brane decoupled. This is achieved by taking cs, cv, cw ! 1 in the
UV BCs of Eq. 2.4.50 which will effectively recover the original BCs for all fermions
in the MCHM5 as stated in Eq. 2.4.37. The remaining parameters are c , c�, c1 and
c2, two of which can be fixed by the constraints in Eq. 2.4.63. The parameter space
is scanned over the remaining two free parameters in the range c , c� 2 [�0.5, 0.5] and
c1, c2 2 [�1.4, 1.4], respectively. Note that if not stated otherwise, these ranges are used
as a default.37

The relation between the Higgs mass and the lightest of the top partner states in the
MCHM5 model is displayed in Figure 3.1. For this purpose, parameter scans have been
carried out varying both, the bulk mass parameters c , c� and the brane mass terms c1,
c2, combining the results in the end. This procedure has been chosen due to degenerate
solutions, because varying different parameters eases the access to different regions of the
parameter space in the plot shown.

37The reasoning for the range of the fermionic bulk mass parameters c and c� has been displayed
in the end of Section 2.3.6. The boundaries for the IR-coupling terms c1 and c2 have been chosen
somewhat more arbitrary, although, higher values would correspond to higher Yukawa couplings and
therefore higher Higgs masses, which is contrary to the aim of keeping the Higgs light.
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Figure 3.1: Shown is the mass of the lightest top partner state in dependence of the
Higgs mass for c , c� 2 [�0.5, 0.5], c1, c2 2 [�1.4, 1.4] and  = 0 = 0 in the MCHM5.
While scanning over c , c�, the other two parameters where fixed by the constraints
placed in Eq. 2.4.63 and vice versa. The grey band denotes a variation of ±10% around
a Higgs mass of mH(f) = 105GeV. The fine-tuning �BG for each valid point is color-
coded.

It can be seen that the lack of sufficiently high top partner masses in the region of
a valid Higgs mass indicated by the grey band restates the initial problem. Moreover, it
is beneficial at this point, to discuss other features of the plot which will remain while
going to the sMCHM5 model.

Firstly, one might wonder about the general form of the plot. From Eq. 2.2.44 at
fixed mt and f , an almost linear relation between mH and ml is expected. However, it
can happen that the lightest top partner has actually different quantum numbers than
the top quark itself, such that it cannot mix with it. In consequence, its lightness does
not help to reduce the Higgs mass at constant mt, which explains the parameter points
with smaller ml at fixed mH .

The bounds on the Higgs mass are dependent on the top quark mass, which in turn
is dependent on the f and f� corresponding to the mixing strengths sin ✓tL , sin ✓tR with
the top partners in the 4D model. Therefore, the range for possible mH is dictated by
the chosen range for the c , c� (see also Figure 2.9). In principle, this range can be
enlarged by allowing for brane kinetic terms (especially with 2 6= 0) because they alter
the coupling strength g⇤ in 5D as well as in 4D and thus the relation between the masses.
Of course, the fixed top mass mt trivially also provides a lower bound for the top partner
mass ml.

Also displayed in Figure 3.1 is the fine-tuning for each valid point. As expected, the
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Figure 3.2: Correlation between the bulk mass parameters c and c� in the MCHM5

for the same data set as in Figure 3.1, plotted against the lightest top partner mass ml

for Higgs masses above (green color-bar) and below (pink color-bar) mH(f) = 105GeV.

fine-tuning increases for lower Higgs masses. Most of the points within the grey band
yield a tuning between 20 and 200, which is consistent with the expectations stated in
Eq. 2.5.9 and 2.5.12.

As can be seen from Figure 2.9 and Table 2.3, the more IR-localized the fermions are
(c ! �0.5 and c� ! 0.5), the greater are the amplitudes of the top quark fc ,c� and,
thus, the mixing sin ✓tL,tR of the top with its partners in the 4D model. For a fixed mt,
Eq. 2.2.41 can be used in order to explain the trend towards lower top partner masses
for more IR-localized fields in Figure 3.2, where the same set of data points as in Figure
3.1 has been plotted, now with respect to c , c� and ml. By looking at the first equity
in this equation, one can see that for a fixed top mass at higher sin ✓tL,tR the presumed
O(1) couplings have to be adjusted because the overall mass scale of the top partners in
the model has been fixed, too. Since the aL, bR parameters correspond to the strength of
the mixings c1, c2 on the IR-brane in the 5D model, it makes sense that in order to keep
the mt fixed one has to adjust the IR-coupling if the fields become more IR-localized.
From the second equity in Eq. 2.2.41 it is evident that an increase in ytL,R would only
lead to an increase in ml such that the sin ✓tL,tR would not change much. Therefore, the
only feasible way to enlarge sin ✓tL,tR is to reduce ml which is also observed in Figure
3.2. Note, that Eq. 2.2.41 is still an approximation which, e.g., does not account for
cancellations due to accidentally tuned aL, bR. Therefore, in Figure 3.2 one can also
observe points which do not follow the trend explained above. One can also see here
that small Higgs masses, indicated by the pink points, also demand an IR-localization of
at least one of the chiral bulk fermions. From a theoretical point of view, this is clear
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Figure 3.3: Correlation between the bulk brane mixing parameters c1 and c2 in the
MCHM5 for the same data set as in Figure 3.1. The fine-tuning of each point is indicated
by different shades of blue.

because the Higgs mass scales with the mass of the top partner.
In order to investigate the parameter space for the brane mixing terms, the correla-

tions between the c1 and c2 parameter for this data set has been displayed in Figure 3.3.
The lack of data points for c1 ⇠ c2 can be explained best by looking at the top mass

m2
t ⇡

⇠(c1 � c2)2f2
c 
f2
c�

2R02
✓
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f2
c 

f
2
�c�
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f2
c�

f
2
�c 
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where the Bessel functions within ⇢(m2
0;t(ṽ)) ⌘ ⇢(m2

t ) have been approximated up to
linear order in mn (see Appendix B.4) and every term beyond s2

h
has been neglected. It

can be easily seen, that the difference between the two input parameters has to overcome
a certain limit such that a top mass of 150GeV can be generated and that mt ! 0 for
c1 ! c2 and vice versa, when the Higgs effectively decouples. Figure 3.3 also suggests
that the fine-tuning is reduced for points where c1 ⇡ �c2. This is sensible because these
points describe a maximally symmetric MCHM5 scenario as pointed out in Section 2.5.2.

Before going to the sMCHM5 it is interesting to study other possibilities to enhance
the top partner masses in order to compare them with the new approach. Naively, there
are two possible ways to achieve this: increasing f and varying g⇤. Both are displayed
in Figure 3.4. In the upper two plots, where f has been varied, it is evident, that a
higher value of f leads to higher masses of the top partner states. This follows from Eq.
2.2.44. Also evident form Eq. 2.5.3 is that increasing f increases the inevitable tuning of
the model, as can be seen in the upper right plot. Varying g⇤ (by varying the ’s) does
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Figure 3.4: Shown is the distribution of mH and ml in the MCHM5 while varying
certain parameters within the usual bounds. In the upper two plots, the breaking scale f
has been varied in the range between 0.6TeV and 3TeV at  = 0 = 0. In the lower two
plots, varying g⇤ between 4 and 10 has been achieved by a variation of 2,02 2 [0, 5.25]
at f = 800GeV. In both cases the varied parameters have been color-coded on the left
side where the fine-tuning for each of the two cases is displayed on the right side.

raise top partner masses but only for very high Higgs masses (which are cut off in the
plot) and at the price of a much higher tuning for large g⇤. Therefore, this possibility is
not useful in order to obtain large ml for a light Higgs. In principle one could think of
values g⇤ < 4 by setting ,0 < 0. However, this approach has two major flaws. Firstly,
smaller g⇤ are in conflict with EWPOs as stated in Section 2.5.1. Secondly, the negative
2 parameter can lead to an unstable potential V (h) which makes it hard to trust these
points.

3.2 Adding a vector-like singlet - The sMCHM5 toy model

Before looking at the full sMCHM5, it is useful to first only couple one of the new vector-
like fermions to the MCHM5 in order to explore which changes such particles induce.
The singlet s seems to be a sensible choice for this purpose. While sL is already included
in the bulk fermionic multiplet  L, the sR is introduced as a localized 4D fermion living
on the UV-brane. Starting from the full model, in this case only the cv and cw are taken
to infinity, while keeping the cs, which controls the singlet mass, finite.

As also described in the original paper [46], by simply looking at the approximated
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Figure 3.5: Displayed is the lightest top partner state in dependence of the Higgs mass
for c , c� 2 [�0.5, 0.5], c1, c2 2 [�1.4, 1.4], cs 2 [10�10, 1] and  = 0 = 0 in the MCHM5

with an additional vector-like singlet s. The grey band denotes a variation of ±10%
around a Higgs mass of mH(f) = 105GeV. The fine-tuning �BG for each valid point is
color-coded.

top mass
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which has been derived in the same way as in the simple MCHM5 case, it can be observed
that the cs lowers mt because it adds a non-negative term in the denominator. Therefore,
the top partners should be even lighter as in the MCHM5, which is, by looking at Figure
3.5, certainly a perfectly good argument, why the overall maximum of the top partner
mass does not increase. Fortunately, the mechanism also decreases the Higgs mass in a
stronger way, such that for a light Higgs points with a larger top partner mass ml remain.
The reason for this is that the new fermion fundamentally changes the Higgs potential
such that the previous estimates are no longer valid. This change allows for higher top
partner masses even for a light Higgs. Moreover, Figure 3.5 also displays that one of the
three proposed particles is apparently already sufficient to raise the masses of the top
partners in the critical region to an acceptable amount.38 The fine-tuning, as estimated
in Eq. 2.5.12, does not change too much for higher values of ml.

But what actually happens to the different parameters with the introduction of s?
To investigate this, it is useful to look at Figure 3.6, where the c parameter is plotted

38Note that the s particle itself cannot be the lightest state, because this would violate the EW
minimum constraint (see [46] for a more elaborated explanation).
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Figure 3.6: Correlation between the bulk mass c and the cs parameter in the sMCHM5

toy model for the same data set as in Figure 3.5 plotted against the lightest top partner
mass ml for Higgs masses above (green color-bar) and below (pink color-bar) mH(f) =
105GeV.

against cs. Unlike for the c�, where the full displayed region would be populated, the
allowed region for c shrinks with decreasing singlet mass cs. The reason for this is the
fixed top mass. As displayed in Eq. 3.2.1, it is necessary to keep the new term in the
denominator small in order to fulfill this constraint. Keeping c2 ⇠ O(1), this is satisfied
for (R/R0)1�2c� ⌧ c2s, which means that smaller masses for vector-like fermions push
the localization of the left-handed bulk fermion towards the UV-brane. Note that the
same would have happened for the right-handed bulk fermions, if a new 5D field to the
right-handed multiplet had been introduced.39 However, it is also evident from Figure
3.6, that, while constraining the parameter space for the bulk mass fermions, smaller cs
also cure the demand for an IR-localized c in order to keep the Higgs light. For less
IR-localized c the top partners are, thus, allowed to be heavier as in the MCHM5 case
for the same Higgs mass. On the other hand, the color gradient in the pink dots shows
clearly, that smaller cs lead to higher top partner masses for a light Higgs.

Unfortunately, the toy model has one major drawback. As evident from Figure 3.7
very small s masses are generally needed for a sufficient ml to arise. Obviously, a value
of cs ⇠ 10�10 is not desirable if one wants to cure the naturalness problem of the SM
by switching to a “better” theory. Despite the fact that there are indeed very few points
which yield ml > 1.5GeV with a “moderately small” cs ⇠ 10�5, they all have (as ex-
pected) quite a large tuning of �BG > 250 similar to the MCHM5. Therefore, it will be

39In fact, for the full model in Section 3.3 the same behavior between the c� parameter and cv of the
vR fermion can be observed.
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Figure 3.7: Same plot as in Figure 3.5 where the cs parameter is color-coded for each
valid point in the sMCHM5 toy model. A smaller cs corresponds to a smaller mass for
the new vector-like s fermion.

interesting to see if setting up the full model cures this problem of the toy model and if
brane kinetic terms help to broaden the parameter space.

3.3 Filling up the multiplet - The complete sMCHM5

Finally, the whole sMCHM5 is taken into account. Differently from Section 3.2, now all
vector-like fermions have a finite mass. This changes the estimation of the top mass to
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where the cw parameter first enters in the subdominant terms of this expansion. As
explained earlier, the cw does enter in the leading contribution of the Higgs potential.
It is evident from Figure 3.8a that the two additional cv and cw, which have also been
varied over several scales, are not sufficient to raise the top partner mass that easily. In
fact, one sees the same behavior as in Figure 3.5 for the cs parameter alone. The only
difference here is that it is now in general possible to populate more states. If one takes a
closer look, there are indeed very few points at top partner masses above & 2TeV which
are not too far from the grey band of viable Higgs masses. These points suggest that this
desired region is actually accessible. However, as transparent from the figure, it involves
an extended amount of fine-tuning to reach it.

An easier way at this stage is to vary g⇤, which has been done in Figure 3.8b. As
before, the strength of the localized kinetic terms for the gauge fields have been varied
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(a) Scatter plot for  = 0 = 0 where the fine-tuning �BG for each valid point is color-coded.
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(b) Scatter plot for ,0 2 [0, 5.25] corresponding to g⇤ 2 [4, 10], which is color-coded for each
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Figure 3.8: The lightest top partner state in dependence of the Higgs mass for c , c� 2
[�0.5, 0.5], c1, c2 2 [�1.4, 1.4] and cs, cv, cw 2 [10�10, 1] in the full sMCHM5. The grey
band denotes a variation of ±10% around a Higgs mass of mH(f) = 105GeV.
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Figure 3.9: In all plots the top mass mt is plotted against the Higgs mass mH in the
maximally symmetric sMCHM5. For the upper two plots, the new vector like fermions
have been decoupled and besides ,0 2 [0, 5.25] only the bulk fermion masses c , c� 2
[�0.5, 0.5] are varied. In the lower two plots, also cs, cv, cwR , cwL 2 [10�10, 1] have been
varied. In both scenarios, the lightest top partner masses ml (left) as well as the 5D
coupling strength g⇤ (right) have been color-coded. The grey band in all plots denotes
a variation of ±10% around a Higgs mass of mH(f) = 105GeV, whereas the red line
refers to a fixed top mass at mt = 150GeV.

in order to achieve a 5D coupling strength g⇤ between 4 and 10. It can be seen here
that the region within the grey band can be populated easily up to top partner masses
of . 3TeV and has points up to . 2TeV, which (as has been checked) do not suffer
from a significantly enhanced fine-tuning compared to points of lower top partner mass.
However, all points above 2TeV in this region are strongly tuned which is reasonable
because they have a high 5D coupling strength of g⇤ & 7 which corresponds to critical
values of NCFT . 3.40 The latter is problematic with regard to the validity of the theory.

3.4 A new symmetry - The maximally symmetric sMCHM5

It has been discussed in Section 2.5 and shown in Section 3.3 that the sMCHM5 does not
solve the double-tuning issue of the MCHM5. Therefore, a combination of this theory
with the concept of maximal symmetry has been suggested and theoretically derived in
Section 2.5.2. The quantitative results of a 5D implementation will be discussed in the
following.

40Critical in the sense, that for low NCFT the theory becomes non-perturbative and AdS/CFT duality
is lost.
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Figure 3.10: Displayed is the lightest top partner state in dependence of the Higgs
mass for c 2 [�0.5, 0.5], cs, cv, cwR , cwL 2 [10�10, 1] and  = 0 = 0 in the maximally
symmetric sMCHM5. The grey band denotes a variation of ±10% around a Higgs mass of
mH(f) = 105GeV. The fine-tuning �BG for each valid point is color-coded. Points with
cs, cv, cwR , cwL > 0.1 are indicated in orange referring to the situation in the maximally
symmetric MCHM5. The tuning of all orange points is (as expected) of O(10).

To get an idea of the theoretical power of this approach, it is useful to look at the
accessible regime of the top quark within the model. This is on the one hand important,
because a fixed top quark mass restricts the degrees of freedom for the other free param-
eters. On the other hand, it serves as a consistency check for the approach. In Figure
3.9 two possibilities are displayed. The lower plots refers to the maximally symmetric
model with soft breaking, where the parameters cs, cv, cwR and cwL are freely varied. In
the upper plots, these parameters were taken to infinity, effectively decoupling the new
vector-like fermions from the theory. These plots show the MCHM5 where c1 = �c2 has
been assumed.41

In the upper two plots one can see that for fixed g⇤ and mH , according to Eq. 2.5.11
the top mass mt is antiproportional to its partner mass ml. The range of the bulk mass
parameters c and c� (which correspond to the top-top partner mixings sin ✓tL,R in the
4D) then determines the range for the mt and ml. Higher g⇤ in general correspond to a
higher scale for all masses. The Higgs mass range for a fixed top mass at mt = 150GeV
is resembled by the overlap of the valid points with the red line. Performing a parameter
scan one would expect in this case only a vertical line of valid points around mH '
165TeV in the mH -ml plot. In order to broaden the parameter space towards the grey
band of valid Higgs masses in the maximally symmetric MCHM5 one would need to raise

41Again, as expected, the MCHM5 with this constraint serves as a special case of the theory.
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Figure 3.11: A picture detail of Figure 3.10 is displayed, color-coding each of the 7
input parameters of the model as well as the fine-tuning �BG. c� and c1 are fixed by
the observational constraints of Eq. 2.4.63. The last plot displays the minimum of the
new mass parameters for each point, where it should be noted, that the range for the
min{cs, cv, cwR , cwL} within this sector has not been fixed externally.
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3 ANALYSIS AND DISCUSSION

f which will also raise the tuning.
Another possibility to obtain valid Higgs masses which is explored in the lower two

plots of Figure 3.9 is to consider a maximally symmetric sMCHM5. Here one can see that
the previous constraints are significantly weakened and the regime of valid Higgs masses
can be populated without the need of raising the breaking scale. It can also be observed
that the grey band of the Higgs mass region for a fixed top mass is accessible for g⇤ ⇠ 4,
which means that one might be able to get sufficient results without introducing gauge
kinetic terms.

The result of these considerations can be seen in Figure 3.10. Here, apart from the
new fermionic mass parameters, only the left-handed bulk mass parameter c has been
varied, which significantly lowers the phase space of the valid points. However, one can
clearly see a branch of points emerging at 2TeV . ml . 2.5TeV proving the existence of
heavy top partner states for a light Higgs mass within the model. In principle, the height
of this branch can be varied by introducing brane kinetic gauge terms or by adjusting
f . Also indicated in orange are points of cs, cv, cwR , cwL > 0.1 so high, that the initial
maximally symmetric MCHM5 is restored. As can be easily seen, all points match the
expectations discussed above which means that the results on mH from the maximally
MCHM5 alone are in great tension with the current bounds on the Higgs mass from the
LHC. Adjusting f or g⇤ as can be seen in Figure 3.4 for the “normal” MCHM5 does not
cure this issue.

The characteristics of points within the important region around the physical Higgs
mass with regard to their input parameters as well as their tuning have been exploited in
Figure 3.11. Here, a few aspects should be mentioned. Firstly, both bulk mass parameters
c and c� are not as IR-localized as one would have assumed in the regular case. This
is achieved due to softened breaking and has already been discussed in Section 3.2. The
brane mass terms c1 and c2 = �c1 are of O(1) which is favored by naturalness arguments.
In contrast to the conventional sMCHM5, points can be found, where all new fermionic
mass parameters cs, cv, cwR and cwL are above 10�4. Nevertheless, one can also see
that it is essential for a light Higgs that none of the new fermions decouples completely
from the theory (i.e. cs, cv, cwR , cwL < 1). Scaled with R these numbers correspond to
dimensionful masses of orders between the Planck scale MPl ⇠ 1019GeV and the scale
of a Grand Unified Theory (GUT) around MGUT ⇠ 1015GeV at the UV-brane, which
are both desirable energies for a UV-cutoff as explained in Section 1. The tuning �BG of
these points at O(10) is consistent with the estimation in Eq. 2.5.22 and thus significantly
lower than in the sMCHM5.
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4 Conclusion and Outlook

In this thesis, the question has been raised, if it is possible to obtain top partner masses
for the experimentally observed Higgs mass around mh = 125GeV above the current
exclusion limits of 1.37TeV in CHMs without raising the breaking scale f . The latter
requirement has been linked to the request of finding a solution featuring a minimal
amount of fine-tuning.

For this purpose it has been exclusively focussed on the quark content of the MCHM5.
Other possible implementations, like changing the representation of the quark multiplets
to a sizable 14 [99], including a realistic lepton sector [45] or moving to a non-minimal
coset [66] have been discussed elsewhere. Within this framework, two explicit models
have been considered. The first model, called sMCHM5 [46], introduces new vector-like
fermions which break the global symmetry in a “softer” way. The second combines this
idea with a maximally symmetric approach [51]. In order to quantitatively study these
theories, 5D holographic implementations have been derived for both in Section 2.

In Section 3 parameter studies of these models have been performed. First, in Section
3.1 the results of the already studied MCHM5 model [45] have been reproduced and
shown to be consistent with prior analyses. In a second step in Section 3.2, a toy model
containing only one of the three vector-like fermions has been analyzed. Here, it has
been shown that the mass for the top partners can already increase moderately while
keeping the Higgs light. Considering the full model in Section 3.3, it has been possible
to raise the top partner masses to almost 2TeV without gauge kinetic terms, including
such terms (making the 5D model more flexible such as to reproduce a more general
Composite Higgs setup) allows for masses above 2.5TeV at the price of an enhanced
tuning.

Studying a maximally symmetric version of the sMCHM5 has been shown to solve
these issue. It has been possible in this setup to obtain top partner masses above 2TeV
around the observed Higgs mass, which have a fine-tuning of O(10) and fundamental
(5D) vector-like fermion masses in a natural spectrum around the GUT-scale. Therefore,
it has been proven that especially the maximally symmetric sMCHM5 can provide a
natural environment to produce heavy top partner masses in a regime, which is just
about to be tested by the High Luminosity LHC (HL-LHC) [104] or the Future Circular
Collider (FCC) [105].

Certainly, this is not the end of the line and more analyses could be performed to
further scrutinize the scenario. Especially estimates for EWPOs as well as constraints
from hadronic and leptonic decay channels and FCNCs are left for future work. Moreover,
it would be interesting to see, if it is possible to distinguish this model from others in an
experiment. Studies on changes in the cross-section for Higgs+jet as well as double Higgs
production [106–109] are currently ongoing. Perspectively, it might be even possible to
include this approach into CHMs with higher symmetries to be able to study other yet
unsolved problems like the origin of dark matter or neutrino masses.
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Appendix

A Calculations in 4D

A.1 Integrating out QT
and T̃ t

Starting with the sMCHM5 mass Lagrangian

LMCHM5
Mass =�

X

r,r0=T,t

⇣
mrr0Q̄r

LQ
r

0
R + m̃rr0

¯̃T r

LT̃
r

0
R

⌘
� �tLf(q̄L�L)I

⇣
UIiQ

T

R

i

+ UI5T̃
T

R

⌘
� �tRf(t̄R�R)I

⇣
UIiQ

t

L

i
+ UI5T̃

t

L

⌘
+ h.c., (A.1.1)

where I = 1, ..., 5, i = 1, ..., 4, the QT and T̃ t are integrated out at zero momentum. This
can be done as follows: First one takes the derivative of the action with respect to Q̄T

L

and QT

R
where the kinetic can be ignored contributions. This gives the relations to the

Qt

L,R
fields

QT

R = �mTt

mTT

Qt

R, Q̄T

L = �mtT

mTT

Q̄t

L �
�tLf

mTT

(q̄L�L)IUIi (A.1.2)

which can be inserted back into the Lagrangian. This yields
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where the mTtmtT /mTT term can be neglected because it is assumed that the non-
diagonal masses are subleading. The procedure for T̃ t is equivalent, yielding

LMCHM5
Mass � �

✓
m̃TT �

m̃⇤
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m̃⇤
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R � �tRf(t̄R�R)IUI5

✓
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Tt

m̃⇤
tt

T̃ T

L

◆
. (A.1.4)

Neglecting again the subleading term and redefining �tL = bLytL (�tR = aRytR) one
arrives at

LMCHM5
Mass =�mt

QQ̄LQ
t

R � m̃T

¯̃T T

L T̃ T

R � ytLf(q̄L�L)I
�
aLUIiQ

t

R

i
+ bLUI5T̃

T

R

�

� ytRf(t̄R�R)I
�
aRUIiQ

t

L

i
+ bRUI5T̃

T

L

�
+ h.c. , (A.1.5)

with aL = �mTt/mTT bL (bR = �m̃⇤
Tt
/m̃⇤

ttaR).

B Calculations in 5D

B.1 Mapping between an exponentially suppressed and a conformally

flat 5D metric

The exponentially suppressed metric is given by

ds2 = e�2ky⌘µ⌫dx
µdx⌫ � dy2, (B.1.1)
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with L the length of the interval, k > 0 the warping factor and y 2 [0, L]. The square
root of the metric determinant equals

p
Gexp = exp(�4ky). Setting

z ⌘ eky

k
, R ⌘ 1

k
, (B.1.2)

one can rewrite Eq. B.1.1 using dy = R

z
dz into its conformally flat form

ds2 =

✓
R

z

◆2

(⌘µ⌫dx
µdx⌫ � dz2), (B.1.3)

with a metric determinant square root of
p
Gconf = (R/z)5. Looking at the integration

boundaries
Z

L

0
dy

p
Gexp =

Z
L

0
dye�4ky !

=

Z
R

0

R

dz

✓
R

z

◆5

=

Z
R

0

R

dz
p
Gconf (B.1.4)

one can further identify

L ⌘ R ln
R0

R
, (B.1.5)

which can be used to relate the 4D and 5D couplings. See [110] for a more detailed
discussion.

B.2 Dirac matrices in 5D and supersymmetric notation

The 5D gamma matrices on an AdS5 with signature (+,�,�,�,�) are given by

�M = {�µ, i�5} (B.2.1)

µ = 0, 1, 2, 3, with �µ, �5 being the 4D gamma matrices in reverse Weyl representation

�µ =

✓
0 �µ

�̄µ 0

◆
, �5 =

✓
2 0
0 � 2

◆
, (B.2.2)

where �̄µ = ⌘µ⌫�⌫ . The �µ are the Pauli matrices

�0 = � 2, �1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, �3 =

✓
1 0
0 �1

◆
. (B.2.3)

In this basis a 5D Dirac spinor can be written as

 =

✓
 L

 R

◆
=

✓
�↵
 ↵̇

◆
, (B.2.4)

with  L,R = 1
2( 4 ± �5) . The ↵ and ↵̇ denote supersymmetric indices which obey the

following relations

�↵ = i�2
↵�
�� ,  ̄↵̇ =

�
�i�2

�↵̇�̇
 ̄
�̇
,

�
�†�

↵
= �̄↵̇,

�
 ̄†�↵̇ =  ↵. (B.2.5)
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Therefore, the Dirac adjoint in terms of these spinors yields

 ̄ =
⇣
 †

L
, †

R

⌘
�0 = �

⇣�
 ̄†�↵̇,

�
�†�

↵

⌘
= � ( ↵, �̄↵̇) . (B.2.6)

The symmetric Lorentz invariants from this notation are

� = �↵ ↵ =  ↵�↵ =  � (B.2.7)
�̄ ̄ = �̄↵̇ ̄

↵̇ =  ̄↵̇�̄
↵̇ =  ̄�̄. (B.2.8)

B.3 Decoupling of mixed equations

In the flat case the two mixed equations can simply be decoupled

s0
n +m sn �mnfn = 0 (B.3.1)
f 0
n �m fn +mnsn = 0 (B.3.2)

by taking the derivative of one equation and inserting the equations into each other
multiple times. One arrives at

(B.3.1)0 = s00
n +m s

0
n �mnf

0
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= s00
n +m s

0
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✓
m 

mn

(s0
n +m sn)�mnsn

◆

= s00
n + (m2

n �m2
 
)s2n = 0 (B.3.3)

and similar for fn. The warped case is methodically equivalent with the addition, that
one also has to consider other z-dependent quantities in the equations

s0
n +

c � 2

z
sn �mnfn = 0 (B.3.4)

f 0
n �

c + 2

z
fn +mnsn = 0. (B.3.5)

For sn this means
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= s00
n �

4

z
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+ c � 6

z2
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sn = 0. (B.3.6)

The result for fn is given in Eq. 2.3.75. The solution is equivalent for the tn and fn.
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B.4 Bessel equations and warped trigonometric functions

Starting with

s00
n �

4

z
s0
n +

✓
m2

n �
c2
 
+ c � 6

z2

◆
sn = 0, (B.4.1)

it is useful to first redefine sn ⌘ z5/2s̃n. Plugging this into equation B.4.1 and deviding
by z1/2

z2s̃00
n + zs̃0

n +

 
m2

nz
2 �

✓
c +

1

2

◆2
!
s̃n = 0 (B.4.2)

is obtained which corresponds to the Bessel equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 � ⌫2)y = 0, (B.4.3)

with y ⌘ s̃n, x ⌘ mnz and ⌫ = c + 1/2. For f̃n the same differential equation with
⌫ = 1/2 � c are derived. Solutions to this differential equation will therefore be a
combination of Bessel functions of the first and second kind

y = AJ⌫(x) +BY⌫(x), (B.4.4)

with definitions

J⌫(x) =
1X

k=0

(�1)k
�
x

2

�
⌫+2k

k!�(⌫ + k + 1)
and Y⌫(x) =

J⌫(x) cos(⌫⇡)� J�⌫(x)

sin(⌫⇡)
. (B.4.5)

For this case, this means that the solutions of sn and fn can be written as

sn(z) = z
5
2

⇣
ÃnJc + 1

2
(mnz) + B̃nYc + 1

2
(mnz)

⌘
(B.4.6)

fn(z) = z
5
2

⇣
C̃nJ 1

2�c 
(mnz) + D̃nY 1

2�c 
(mnz)

⌘
. (B.4.7)

Since it is easier in the calculations to deal with functions which behave like sine and
cosine functions, the mode basis will be redefined into

sn(z) =

✓
R

z

◆
c �2⇣

AnCc (z) +BnSc (z)
⌘

(B.4.8)

fn(z) =
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, (B.4.9)

with
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and the relations

Ãn = mnR
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Using J 0
⌫(x) = J⌫�1(x)� ⌫/xJ⌫(x) and Y 0

⌫(x) = Y⌫�1(x)� ⌫/xY⌫(x) their derivative
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S0
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can also be obtained quite easily. They are also called warped sine and cosine functions
because they show a similar behavior to the normal ones in the UV, i.e. Sc(R) = 0,
Cc(R) = 1, S0

c(R) = mn and C 0
c(R) = 0.

Since it is more useful for calculations of the Higgs potential to work with the momen-
tum instead of the mass, the formulas for these functions can be rewritten using mn = ip.
Doing this, one needs to make use of the modified Bessel functions which translate to
the normal ones as

I⌫(x) = i⌫J⌫(ix) and K⌫(x) =
⇡

2

I�⌫(x)� I⌫(x)

sin(⌫⇡)
(B.4.18)

with similar derivation rules I 0
⌫(x) = I⌫�1(x) � ⌫/xI⌫(x) and K 0

⌫(x) = �K⌫�1(x) �
⌫/xK⌫(x). The warped trigonometric functions and their derivatives in terms of the
momentum read
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. (B.4.22)

For mnR⌧ 1 and mnz ⌧ 1 small, the trigonometric functions can be approximated up
to linear oder in mn

Cc(z) = 1 + O
�
m2

n

�
Sc(z) = mnR

�
z

R

�2c+1 � 1

2c+ 1
+ O

�
m3
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�
. (B.4.23)
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B.5 The warped equations of motion for gauge fields

Deriving the solutions for the ⇣n is very similar to the procedure in Section B.4. Starting
with

⇣ 00
n �

1

z
⇣ 0
n +m2

n⇣n = 0 (B.5.1)

one can again redefine ⇣n = z⇣̃n and multiply with z yielding

z2⇣ 00
n + z⇣ 0

n + (m2
n � 1)⇣n = 0. (B.5.2)

This again is the Bessel equations with ⌫ = 1 which has solutions expressed in terms of
the warped trigonometric functions defined in Eq. 2.3.77 and 2.3.76

⇣n(z) = AnC(z) +BnS(z) (B.5.3)

with
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⌘
. (B.5.5)

The functions #n can be defined accordingly

#n(z) =
1
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0(z) +BnS

0(z)) (B.5.6)

with
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S0(z) ⌘ S0
1
2
(z) =

⇡

2
m2

nz
⇣
J1(mnR)Y0(mnz)� Y1(mnR)J0(mnz)

⌘
. (B.5.8)

B.6 Spectral functions of the gauge towers

In order to derive the spectral functions for the gauge towers one can proceed in a similar
way as for the fermion towers in Section 2.4.2. Starting from a KK-decomposition of the
gauge fields given in general by Eq. 2.4.10

La

µ(x, z) =
X

n

lan(z, h)A
(n)
µ (x) Rb

µ(x, z) =
X

n

rbn(z, h)A
(n)
µ (x)

Bµ(x, z) =
X

n

bn(z, h)A
(n)
µ (x) Z 0

µ(x, z) =
X

n

z0
n(z, h)A

(n)
µ (x) (B.6.1)

C â

µ(x, z) =
X

n

cân(z, h)A
(n)
µ (x), (B.6.2)

it is first noticed that if one wants to solve the bulk equations of motion, the ⇣An (which
are labelled according to the 5D fields) will usually dependent on the VEV h ⌘

⌦
hâ
↵
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of the Higgs. This additional feature has been dropped in the previous discussion for a
reason which will become clear in a moment. Rewriting Eq. 2.4.16

SA =
X

n

Z
d4x

✓
� 1

4
F (n)
µ⌫ F (n)µ⌫ +

1

2

⇣
@µA

(n)
5 �mnA

(n)
µ

⌘2◆
, (B.6.3)

one can see, that the A(n)
5 which belong to the Higgs cannot be gauged away leaving

it present in the bulk. This will make it in general very complicated to solve for the
equations of motion since h mixes Dirichlet and Neumann modes. Fortunately, it is
possible, as in the fermionic case, to get rid of h in the entire bulk via the Wilson line
transformation ⌦(x, z) of 2.4.40 which makes all A(n)

5 (x) vanish for z 6= R0. This reduces
the 4D KK-action to

SA =
X

n

Z
d4x

✓
� 1

4
F (n)
µ⌫ F (n)µ⌫ +

1

2
m2

nA
(n)
µ A(n)µ

◆
(B.6.4)

which results in the usual Proca equation of motions

@µF
(n)µ⌫ +m2

nA
(n)⌫ = 0 (B.6.5)

for massive 4D gauge fields. This in hindsight justifies the requirement in Eq. 2.4.18
making it now the actual equation of motion for the ⇣An in absence of the h. Therefore,
one can derive from Eq. B.5.3

⇣An (z, 0) = FA

n C(z) +GA

nS(z) (B.6.6)

the full equations of motions for the base functions via

⇣An (z, h)T
A = ⌦†(x, z)⇣Bn (z, 0)TB⌦(x, z). (B.6.7)

where it will be summed over A and B. Since the TA together with 5 are a basis for
the mass eigenstates for the gauge fields of SO(5)⇥ U(1)X they can be used to identify
the ⇣An (z, h) within this equation.42 For this purpose it is also beneficial to rewrite the
bn and z0

n in terms of the unmixed base functions

r3n(z, h) = s�bn(z, h) + c�z
0
n(z, h) (B.6.8)

xn(z, h) = c�bn(z, h)� s�z
0
n(z, h) (B.6.9)

of R3
µ and Xµ with generators T 3

R
and 5.

One can translate the imposed BCs for the fields

La

µ(+,+) Rb

µ(�,+) Bµ(+,+) Z 0
µ(�,+) C â

µ(�,�) (B.6.10)

into BCs for the z-dependent KK-functions yielding

@5l
a

n(z, h)|R = @5bn(z, h)|R = rbn(z, h)|R = z0
n(z, h)|R = cân(z, h)|R = 0

@5l
a

n(z, h)|R0 = @5bn(z, h)|R0 = @5r
b

n(z, h)|R0 = @5z
0
n(z, h)|R0 = cân(z, h)|R0 = 0. (B.6.11)

42Actually, the basis of the mass eigenstates consists of 5, T̂ â and T
a
L ± T

a
R.
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Because of ⌦(x,R) = 1 one obtaines ⇣An (R, h) = ⇣An (R, 0) leaving the boundary condition
unchanged by the Wilson line transformation on the UV-brane. Using B.6.6 the relations
Gl,a

n = F r,b
n = Gb

n = F z
0

n = F c,â = 0 are obtained as the first 11 constraints. Introducing
brane kinetic terms for the SM gauge fields on the UV
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µ⌫

�
(B.6.12)

alters some of the conditions. This can again be done by pushing the brane kinetic term
" away from the UV-brane. Requiring the A(n)

µ still to fulfill the Proca equations of
motion, one has to alter the free equations of motion for the KK-functions lan and bn in
order to cancel the extra contribution. This can be achieved by

�@5@5lan +
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z
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1 + 2R ln
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◆
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and equivalent for the bn with 0. Assuming lan to be smooth, one can, by integrating
from 0 to " and taking "! 0+

@5l
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n|R+
= �2m2

nR ln
R0

R
lan|R+

(B.6.14)

derive the mass dependent BCs in the gauge sector. Therefore, the BC for lan at z = R
is changed to the one in Eq. B.6.14 proceeding in the same way for bn. This changes
the relations of the corresponding parameters to Gl,a

n = �2mnR ln(R0/R)F l,a
n and Gb

n =
�02mnR ln(R0/R)F b

n , respectively. The corresponding free base functions now yield
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cân(z, 0) = F c,âS(z). (B.6.15)

Inserting these functions into Eq. B.6.7 the ⇣An (z, h) are obtained. An evaluation at
z = R0 with respect to their BCs yields a system of linear differential equations which
can be solved for the remaining 11 parameters F l,a, Gr,a, F b, Gz

0 and F c,â. Using the
corresponding parameter matrix Mg one can determine the spectral functions of ⇢(m2

n(h))
by looking at
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with the definition

K(0)(R0) ⌘ S(R0)
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, (B.6.17)
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where the Wronskian relation

S0(z)C(z)� C 0(z)S(z) = mn

z

R
(B.6.18)

has been used to simplify the expression. The first root term can be identified with the
spectral function for the Z and the second with the function for the W±

⇢W,Z(m
2
n) = 1 + fW,Z(m

2
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with form factors
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B.7 Numerical Calculation of the Higgs potential

Due to the quite lengthy expression of the spectral function for fermionic KK-towers (here
for the top quark), it is beneficial for computational implementation to work in terms of
the 10 ⇥ 10 matrix Mt. For an easier calculation the derivations will be performed in
terms of s2

h
⌘ sin2((ṽ + h)/f) with s20 = ⇠ = v2/f2 . The potential and its derivative
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