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Abstract

Low-Scale New Physics in Dark Sectors
In this thesis we investigate two particular examples of phenomena that require
introducing new physics beyond the standard model, namely the baryon asymmetry
of the universe and dark matter. As the corresponding newly introduced fields or
particles have eluded detection so far, they are usually associated with so-called dark
sectors. Our focus throughout this work is on low-scale realizations of mechanisms
explaining these phenomena, with low scale either referring to a comparison to the
standard scenarios of the mechanisms, or the mass scales of the fields or particles
involved. One well-established mechanism to explain the baryon asymmetry of the
universe is leptogenesis. We study the possibility to realize low-scale leptogenesis in
both the scotogenic and the singlet scalar assisted model by employing analytical and
semi-analytical methods, with a focus on understanding the important ingredients.
Our parameter scans show that we are able to recreate the baryon asymmetry in the
universe via leptogenesis for right-handed neutrino masses of as low as ∼ 10TeV in
the scotogenic model, while for singlet scalar assisted leptogenesis we can even reach
scales below 1TeV. Importantly, both of these results are achieved without a strong
degeneracy of right-handed neutrino masses. In our study of dark matter, we first
analyze and compare the LHC signatures of two benchmark models given by the two
Higgs doublet model with an additional scalar or pseudoscalar. To do so, we study
their tt̄, mono-Z and mono-h signatures and derive limits from current experimental
searches at the LHC. Furthermore, we also look at the reach of the mono-Z channel for
future LHC upgrades and comment on the possibility to distinguish between the two
models in case of a signal detection. Finally, we analyze a possibility to explain dark
matter without using the standard particle dark matter picture via (pseudo)scalar and
vector dark matter from non-minimal curvature couplings. With the misalignment and
stochastic scenario, we investigate two different options how the dark matter could
be created during the period of inflation. In the misalignment scenario we find that
the parameter space substantially opens up due to the non-minimal coupling, whereas
in the stochastic scenario any non-minimal coupling is tightly constrained for the
mechanism to work while not violating isocurvature constraints. We conclude this
thesis with a recapitulation of our main results and an outlook to further research.
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Zusammenfassung

Neue Physik in Dunklen Sektoren an Niedrigen Skalen
In dieser Dissertation widmen wir uns zwei Beispielen von Phänomenen die Physik
jenseits des Standardmodells benötigen, nämlich der Baryonen Asymmetrie des Univer-
sums und dunkler Materie. Da die zugehörigen neu eingeführten Felder und Teilchen
bisher nicht detektiert werden konnten, werden sie als Teil sogenannter dunkler Sek-
toren angesehen. Für diese Arbeit fokussieren wir uns auf niederskalige Versionen
der Mechanismen die diese Phänomene erklären können. Dabei drückt der Begriff
niederskalig entweder einen Vergleich zum Standardszenario des Mechanismus aus oder
bezieht sich auf die Größe der involvierten Massenskala. Eine etablierte Möglichkeit die
Baryonen Asymmetrie im Universum zu erklären ist Leptogenese und wir untersuchen
die Möglichkeit eine niederskalige Variante hiervon im Scotogenen Modell und im Mod-
ell mit einem zusätzlichen skalaren Singulett zu realisieren. Dabei arbeiten wir sowohl
mit analytischen als auch semi-analytischen Methoden um ein Verständnis der zentralen
Mechanismen von Leptogenese in beiden Modellen zu erhalten. Die durchgeführten
Untersuchungen der Parameterräume zeigen, dass es möglich ist mittels Leptogenese die
Baryonen Asymmetrie im Universum zu erklären mit rechtshändigen Neutrinomassen
von nur ∼10TeV im Scotogenen Modell und sogar unter 1TeV im Modell mit einem
zusätzlichen skalaren Singulett. Dabei ist es wichtig festzuhalten, dass für keines dieser
Ergebnisse eine starke Degeneriertheit der rechtshändigen Neutrinomassen angenom-
men werden musste. Für unsere Untersuchung von dunkler Materie analysieren und
vergleichen wir zunächst die LHC Signaturen von zwei Referenzmodellen - Modelle
mit zwei Higgs Dubletten und entweder einem weiteren Skalar oder einem weiteren
Pseudoskalar. Wir untersuchen die Signaturen ihrer tt̄, mono-Z und mono-h Kanäle
und leiten daraus Einschränkungen ab mit Hilfe der aktuellen experimentellen Suchen
am LHC. Des Weiteren schauen wir uns den Einfluss von zukünftigen Aufrüstungen des
LHCs im mono-Z Kanal an, als auch die Möglichkeit die beiden Modelle anhand ihrer
Signaturen zu unterscheiden falls ein Signal gefunden wird. Als letztes untersuchen wir
die Möglichkeit dunkle Materie nicht im üblichen teilchenphysikalischen Rahmen zu
erklären, sondern mittels nicht-minimaler Kopplungen von (Pseudo)Skalar- oder Vek-
torfeldern an die Gravitation. Dabei analysieren wir sowohl das Fehlausrichtungs- als
auch das Stochastische-Szenario, welche die Erschaffung der dunklen Materie während
der Phase der Inflation erklären können. Im Fehlausrichtungs-Szenario zeigt sich,
dass der Teil des Parameterraums durch die nicht-minimale Kopplung deutlich größer
wird der die korrekte Menge an dunkler Materie vorhersagen kann und gleichzeitig
die Einschränkungen durch die Nichtbeobachtung unkorrelierter Dichteschwankungen
nicht verletzt. Im Gegensatz dazu ist im Stochastischen Szenario aufgrund der selben
Restriktionen eine nicht-minimale Kopplung an die Gravitation stark eingeschränkt.
Abschließend heben wir nochmals die wichtigsten Erkenntnisse dieser Arbeit hervor
und geben einen Ausblick auf mögliche zukünftig interessante Forschungsgebiete.
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Chapter 1

Introduction

Nullius in verba
(Take nobody’s word for it)

- Motto of the Royal Society [1]

The field of astroparticle physics nowadays rests mainly on two pillars. On the one hand,
there is the standard model of particle physics (SM) with its SU(3)×SU(2)×U(1) gauge
structure, providing a very precise description of sub-atomic interactions of particles. On
the other hand, we have the standard model of cosmology (ΛCDM), accurately describing
the evolution of the universe since the Big Bang and being closely intertwined with the
description of gravity by means of general relativity (GR). Although both theories work
extraordinarily well in their respective contexts, like for example for measurements at the
Large Hadron Collider (LHC) [2, 3] or of the cosmic microwave background (CMB) [4],
they lack explanations for several well-observed phenomena. Among the most outstanding
of these phenomena are arguably dark matter (DM) [4, 5], dark energy (DE) [6, 7] and
the matter–anti-matter–asymmetry or baryon asymmetry of the universe (BAU) [8–10].
While the ΛCDM provides an effective description of DM and DE in terms of their
influence on the evolution of the universe, it does not (and is not meant to) address the
question what the fundamental constituents of these two phenomena are. At the same
time these problems are also not addressed in the SM, as there are no fundamental fields
that can constitute DM and DE. Thus, our understanding of the microscopic appears
to be incomplete. For the BAU the general picture is similar: like for DM and DE, the
ΛCDM only covers its effect but not its origin, and even though the SM is in general able
to explain a matter–anti-matter–asymmetry, the size of the BAU is much larger than
could be explained by it [11].
Besides these unexplained experimental observations, there is also the underlying

problem that the SM, describing three of the four fundamental forces1, and GR, providing
a description of gravity as the fourth force, are within the standard framework completely
separated. This issue is usually addressed by theories of quantum-gravity. However,
already from an effective point of view, combining the SM and GR can have far reaching
consequences by potentially introducing couplings between fields and gravity.

1The three forces described by the SM are of course the strong, weak and electromagnetic force.
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1. Introduction

As the SM aims at explaining the fundamental interactions of all particles, it needs to
be extended by new fields and interactions to accommodate for effects like DM or the
generation of the BAU. Searches for these new fields and interactions have been ongoing
since the shortcomings of the SM have first become obvious, be it through more and more
precise measurements of the known contents of the SM, at for example the LHC [2, 3], or
searches for the unknown, in experiments like Xenon [12, 13]. It is from these experiments
that we know that any potential new field may at most interact weakly with the SM to
not have already left a trace in the measurements. Thus, the new physics we are searching
for is “dark” to our current experiments and therefore often referred to as being part of a
“dark sector”. Furthermore, the term also nicely fits as an umbrella term for candidates of
DM or DE, where the “dark” in their names again refers to their elusiveness.
With these new fields or particles, there is likely also a new mass or energy scale

introduced into the SM, which by itself only contains the vacuum expectation value (vev)
of the SM Higgs field as a scale that has a value of the order of ∼200GeV. Either directly,
by an explicit (effective) mass parameter or vev, or indirectly, by the size of a coupling
that can, for example by a Higgs mechanism, be linked to a mass parameter. A natural
comparison for these new scales is their relation to the SM Higgs vev as the only scale
present in the SM, thereby splitting the new physics scenarios into high and low scale
ones. Besides this in a sense absolute scale of new physics, it is also possible to compare
different new physics scenarios among themselves and sort them in this way into high and
low scale ones. This relative comparison is most often done for phenomena that allow
for several explanations at vastly different scales. In both cases, low-scale new physics is
particularly interesting because it is either in experimental reach in terms of the necessary
energy to access these scales, or at least easier reachable. However, even low-scale new
physics can be difficult to access experimentally due to the possibly high precision that
might be necessary to find potentially tiny couplings.

These general considerations lay the groundwork for this thesis, in which we investigate
new physics scenarios that aim at explaining the BAU or DM at (relative or absolute) low
scales. To do so, we will work our way from the largest scales of new physics considered in
this thesis of above 10TeV, down to the smallest scales in the sub-eV regime. In Ch. 2
and Ch. 3 we discuss two different new physics scenarios that make it possible to explain
the BAU via low-scale leptogenesis. Although the idea to create a baryon asymmetry via
a lepton asymmetry, called leptogenesis, has been well studied, the standard leptogenesis
scenario requires very high scales that are far out of reach for experiments. Therefore, it
would be of interest to find a version of leptogenesis that works at low scales so that it
can potentially be verified “by an appeal to facts determined by experiment” as described
by the Royal Society in the explanation of their motto Nullius in verba [1]. In Ch. 2, we
will do so by studying low-scale leptogenesis in the scotogenic neutrino mass model, which
provides besides a radiative mechanism to explain the small (active) neutrino masses also a
potential DM candidate. Our study of the scotogenic model will include both the scenario
of two as well as three right-handed neutrinos (RHNs) and focus on exact analytical results
whenever possible. Afterwards in Ch. 3, we study in the same spirit singlet scalar assisted
leptogenesis, for which we will develop a semi-analytical understanding. While both of
these models are at low scales for leptogenesis scenarios, they are still above the scale of
the SM, by introducing new mass scales of at least ∼10TeV for the scotogenic model and
of the order of ∼1TeV (or above) for the singlet scalar model. After our investigation of
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the BAU, we will switch to looking at models dedicated to DM and continue by slightly
decreasing the energy scale of interest to ∼500GeV in Ch. 4. At and around this scale,
we will compare the LHC signatures of two benchmark models, given by the two Higgs
doublet model (2HDM) with an additional scalar (2HDM+S) and the 2HDM with an
additional pseudoscalar (2HDM+PS). In Ch. 5, we will then look at possible non-minimal
gravitational couplings of scalar and vector fields with very low mass scales in the sub
eV, how they might constitute DM and in which way these models are accessible by
experiments, before finally concluding in Ch. 6.
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Chapter 2

Leptogenesis in the
Scotogenic Model

One of the problems of the SM is that it can not account for the observed excess of
baryons over anti-baryons in the universe [11], which is usually referred to as the BAU.
Therefore, the observation of the BAU “provides . . . one of the few observational proofs
of physics beyond the SM” [11] (BSM physics). This asymmetry is usually captured by
the baryon-to-photon ratio ηobsB ≈ 6.1 · 10−10 [8–10], representing the ratio of the excess
number density of baryons to the one of photons, and can be precisely determined from
CMB and big bang nucleosythesis (BBN) data [10]. But before jumping right into how
the baryon-to-photon ratio can be explained via leptogenesis in the scotogenic model,
let us first have a brief look at how and why leptogenesis became of general interest to
study. We remark that the results presented in this chapter are based on work published
as Ref. [14], especially from Sec. 2.2 onward.

2.1 The Baryon Asymmetry and Leptogenesis

Historically, the journey to understand the BAU started with major discoveries in cosmology
like the expansion of the universe [15] and the detection of the CMB [16, 17], together
with the development of the big bang model [18, 19]. Thanks to these discoveries, it was
understood that the universe was hot in its early stages [20, 21] and therefore annihilation
and pair creation processes that control the abundance of particles and anti-particles
must have been in equilibrium. However, this equilibrium implies that both matter and
anti-matter were abundant in the early universe and the asymmetry we now observe is
the leftover after most of the matter and anti-matter annihilated into radiation, when the
universe got too cold for pair creation to keep the balance.

With the discoveries of charge conjugation (C) violation and charge and parity conjuga-
tion (CP) violation [22, 23], the possibility opened up that the universe was not initially
in an asymmetric state but dynamically ended up in one, driven by C and CP violating
processes. This dynamic generation of the BAU is called baryogenesis, as it could explain
the origin of the (leftover) baryons in the universe we observe today.
In general, the necessary conditions for baryogenesis, or a non-zero baryon-to-photon
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2. Leptogenesis in the Scotogenic Model

ratio, when starting from a symmetric universe, are given by the Sakharov conditions [24]:

• B violation

• C and CP violation

• deviation from thermal equilibrium

where B stands for baryon number, which is the number of baryons minus the number
of anti-baryons in the universe. These conditions to create the BAU can be intuitively
understood. First, without B violation, a universe that started out with B = 0 is not able
to generate any baryon asymmetry (B 6= 0), so especially not the BAU. Second, without
C and CP violation, any asymmetry created by a process would be canceled by the C or
CP conjugated process creating the same amount of asymmetry but with the opposite
sign. Third, for a process in thermal equilibrium, the rate of the process is by definition
identical to the rate of its inverse, thus making it impossible for any process to generate a
baryon asymmetry.

Among the different possibilities to realize baryogenesis in BSM models, leptogenesis [25]
is a very attractive option, since it allows (in its standard formulation) for a simultaneous
explanation of the BAU and the small neutrino masses. The name is derived from the
fact that in leptogenesis the asymmetry is first created in the lepton sector through CP
violating decays of new heavy leptons, before it gets converted into a baryon asymmetry
by means of SU(2)-sphalerons that naturally occur in the SM. For the explanation of the
small neutrino masses, standard leptogenesis employs the type-I seesaw mechanism [26–30],
including at least one heavy RHN for each non-zero (light) active neutrino mass. In this
way, the RHNs can create the lepton asymmetry through their possibly CP violating
decays as well as serving as the heavy partners to the active neutrinos to explain their
small masses.
One important drawback of standard leptogenesis is that to create a sufficient baryon

asymmetry the RHNs have to be very heavy, with necessary RHN masses above approxi-
mately 109 GeV [31–34]. Even though this scale can be lowered by up to three orders of
magnitude down to 106 GeV by using flavor effects [35–38], it is still far out of reach for any
direct tests at colliders. Furthermore, introducing a new very large scale into the theory
via the RHN sector leads to significant loop corrections to the Higgs mass parameter of
the SM, requiring a fine-tuning of the parameters of the model which one might refer to
as a hierarchy problem [39, 40]. Finally, if there exist lepton number violating processes
at low energies, high-scale leptogenesis may be ruled out altogether because the processes
can potentially wash out any created lepton asymmetry necessary for leptogenesis [41–43].
Therefore, as described in Ch. 1, it is of interest to find a low-scale version of leptogenesis
that can be realized at scales accessible by future colliders and other experiments or, at
least, to gain an understanding of which conditions force leptogenesis to take place at
high scales. This will be our guiding question in both this chapter on leptogenesis in the
scotogenic model as well as in the following chapter on singlet scalar assisted leptogenesis.
To achieve leptogenesis at low scales, there exist popular approaches like resonant

leptogenesis [44, 45] and the Akhmedov-Rubakov-Smirnov mechanism of RHN oscilla-
tions [46]. However, both of these approaches require a (more or less strong) degeneracy
in the RHN mass spectrum, which is an additional assumption we do not want to rely on.
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2.2 The Scotogenic Model

Therefore, we will focus on hierarchical RHN mass spectra for our analysis, keeping in
mind that in general assuming some degeneracy of the RHN masses makes it easier to
realize leptogenesis.

2.2 The Scotogenic Model

The scotogenic model of radiative neutrino masses [47] is arguably the simplest model of
neutrino masses generated by quantum corrections, being a minimal extension of the SM in
which the neutrino masses arise from one-loop (radiative) Feynman diagrams. In addition
to these naturally small neutrino masses due to the loop suppression, the model also links
their generation to the physics of DM by providing two viable dark matter candidates
(a fermionic or a bosonic one, depending on the mass spectrum) that are involved in the
radiative loop1.

Explicitly, the SM is extended by a second Higgs-doublet η and at least two RHNs Ni

that constitute a “dark sector”. All of these new particles transform odd under an exact Z2

symmetry, which serves a twofold purpose. The Z2 symmetry stabilizes the lightest Z2-odd
particle, making it a viable DM candidate if it is electrically neutral, and also prevents the
new doublet η from getting a vev, thereby ensuring that the neutrino masses are zero at
tree level. This leaves us with an important choice, namely whether we want the lightest
RHN N1 [48–50] or the lightest neutral component of the scalar doublet η [51–59] to be
DM, as in principle both is possible. If N1 is the DM, the relic density depends on the
Yukawa couplings related to N1, while in the case of η DM the relevant couplings will
appear in the scalar and gauge interactions. Analyzing the option of N1 being the DM,
one finds that for the scenario to work one needs large Yukawa couplings, which in turn
leads to an efficient washout of the lepton asymmetry [48, 60]. Thus, leptogenesis and
the correct DM relic density can not be realized simultaneously if a hierarchical mass
spectrum of the RHNs is assumed. Moreover, the necessary large Yukawa couplings can
easily lead to a violation of the bounds on lepton flavor violation [61–63]. Therefore, we
assume the DM to be part of the scalar doublet η and we will see that in this case both
leptogenesis and the correct DM relic density can be realized simultaneously.

In terms of the Lagrangian of the model, the interactions of the new fields are described
by

LN,η = −hαi `αL η̃ Ni +
1

2
MiNi(N

c)i + h.c. , (2.1)

with the Yukawa couplings hαi, the SM lepton doublets `αL ≡ (ναL, αL)T (α = e, µ, τ), the
conjugate new scalar doublet η̃ ≡ iσ2η

∗ and the Majorana masses Mi of the RHNs Ni.
As discussed in Sec. 2.1, we will assume a hierarchical mass spectrum that is of the form

Mi+1 & 3Mi , M1 � mη , (2.2)

wheremη represents the masses of the particles in the new scalar doublet before electroweak
symmetry breaking. The first term of the interaction Lagrangian, Eq. (2.1), also shows

1From this link between neutrino mass generation and dark matter physics the model also got its name
as the word scotos is Greek and means “dark”.
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2. Leptogenesis in the Scotogenic Model

that a vev (〈η〉 6= 0) would break the Z2 symmetry, as stated above. This means that, in
contrast to the standard type-I seesaw scenario, there is no Dirac mass term generated
due to electroweak symmetry breaking. The scalar sector of the model includes the SM
Higgs doublet H as well as the inert doublet η and is described by the potential

V (H, η) = µ2H†H +m2
ηη
†η +

λ1

2
(H†H)2 +

λ2

2
(η†η)2

+ λ3(H†H)(η†η) + λ4(H†η)(η†H)

+
λ5

2

[
(H†η)(H†η) + (η†H)(η†H)

]
,

(2.3)

where all λi can be chosen as real valued without loss of generality. For λ5 this is the case
after a possible phase has been absorbed by a field redefinition and the reality of all λi
implies that the potential is CP conserving.

After electroweak symmetry breaking, the physical scalar states are given by H =
(0, (v + h)/

√
2)T and η = (η+, (ηR + iηI)/

√
2)T with their corresponding masses

m2
h = λ1v

2 ,

m2
η± = m2

η +
v2

2
λ3 ,

m2
ηR

= m2
η +

v2

2
(λ3 + λ4 + λ5) ,

m2
ηI

= m2
η +

v2

2
(λ3 + λ4 − λ5) ,

(2.4)

where the SM Higgs doublet vev v = 246GeV appears. As we want the DM to belong
to the new scalar doublet η, we have to ensure that one of its neutral components is
the lightest state. This can be done by assuming λ4 ± λ5 < 0 and λ5 > 0, since under
this assumption both the real scalar ηR and the real pseudoscalar ηI are lighter than the
charged scalar η±. Together with our assumption on the mass hierarchy in Eq. (2.2),
this guarantees that ηI is the lightest new state and therefore the DM candidate. This
constellation of η DM in the scotogenic model has been well studied and it has been found
that for the mass range [51–59]

534GeV ≤ mηI . 20TeV , (2.5)

the correct relic abundance can be achieved, while all constraints are evaded by adjusting
the scalar couplings accordingly. As for our analysis of leptogenesis the only relevant
scalar coupling turns out to be λ5, whereas the relic density and the other constraints
depend on combinations of the scalar couplings [51–59], we can keep the full parametric
freedom for λ5 by always adjusting the other scalar couplings such that their combined
value does not change.

With the fields and couplings as defined above, the mass matrix of the active neutrinos
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2.2 The Scotogenic Model

can be determined to be [60, 64]2

(Mν)αβ =
∑
i

Mih
∗
αih
∗
βi

32π2

[
m2
ηR

m2
ηR
−M2

i

ln

(
m2
ηR

M2
i

)
−

m2
ηI

m2
ηI
−M2

i

ln

(
m2
ηI

M2
i

)]
. (2.6)

From Eq. (2.4), we can see that m2
ηR
−m2

ηI
= v2λ5 and thus we have m2

ηR
= m2

ηI
in the

limit of λ5 → 0. This in turn means that the active neutrino masses, as given by Eq. (2.6),
vanish and a global U(1) lepton number symmetry emerges. Therefore, small values of λ5

are technically natural in the sense of ’t Hooft [65].
Moreover, it is convenient to introduce an adapted Casas-Ibarra (CI) parametrization [66]

for the Yukawa matrix h. To do so, we rewrite Eq. (2.6) in matrix form as

Mν = h∗Λ−1h† , (2.7)

where we introduced the diagonal matrix Λ with entries

Λi :=
2π2

λ5
ξi

2Mi

v2
(2.8)

and

ξi :=

(
1

8

M2
i

m2
ηR
−m2

ηI

[
m2
ηR

m2
ηR
−M2

i

ln

(
m2
ηR

M2
i

)
−

m2
ηI

m2
ηI
−M2

i

ln

(
m2
ηI

M2
i

)])−1

. (2.9)

This definition is especially handy, since the parameters ξi are of order one in most of
the parameter space of interest. Furthermore, for a better comparability of our results to
the standard type-I seesaw case, we split the definition of Λi (cf. Eq. (2.8)) into the part
that appears also in the type-I seesaw, 2Mi/v

2, and a part which is characteristic of the
scotogenic model, (2π2/λ5) ξi. Following the notation of [66], we can use the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) leptonic mixing matrix U [67, 68] to diagonalize the
in general complex symmetric mass matrixMν via DMν = UMνU

T . In this way, the
Yukawa couplings can be rewritten as3

hαi =
(
U D√Mν

R†D√Λ

)
αi
, (2.10)

where the arbitrary complex matrix R satisfies RRT = 1. Therefore, with the help of
the CI parametrization, we can split the Yukawa couplings into experimentally measured
quantities like the PMNS matrix U , parameters related to the low mass scale of active
neutrinos represented byMν , the parametric freedom included in R and the high energy
quantities encoded in Λ. Moreover, by using this parametrization, we also automatically
ensure to always be compatible with the measured data on active neutrinos.
The scotogenic model has been intensively studied in the literature and it was quickly

2Whether or not there appears a complex conjugation with the Yukawa couplings depends on which
part of the Lagrangian, Eq. (2.1), is used to define the Yukawa couplings and which is “hidden” in
the hermitian conjugate (h.c.) part. Sometimes this change of definition is also reflected by using the
variable y for the Yukawa couplings instead of h.

3In the notation of [66], the matrix D√Λ refers to the diagonal matrix with entries
√

Λi.
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2. Leptogenesis in the Scotogenic Model

realized that, in addition to an explanation of SM neutrino masses and DM, the model can
also be used to explain the BAU via leptogenesis [60]. This led to more detailed studies
of leptogenesis in the scotogenic model as for example presented in [69–73]. However,
some of these studies (cf. [69–71]) focus on particular parameter points for which they
perform a numerical analysis, thereby only covering a small part of the available parameter
space. Others restrict themselves to the case of two RHNs (cf. [72]), which suppresses
some interesting phenomenology, as we will see in our analysis. In addition, [69–72]
use a resonant enhancement of the CP asymmetry, which we want to avoid as detailed
in Sec. 2.1. The analysis of [73] has a more general perspective on two Higgs doublet
models and provides a couple of analytical estimates, but does not numerically solve the
corresponding set of Boltzmann equations or provide fully analytical expressions. For a
more comprehensive study of the existing literature on radiative neutrino mass models in
general and the scotogenic model in particular, see [74].
To extend the knowledge gained by the previous studies, the aim of our analysis is to

gain an analytical understanding of leptogenesis in the scotogenic model and to flesh out
the interplay between different parameters necessary to achieve a sufficiently large baryon
asymmetry. Whenever needed, we will extend the analytical analysis with numerical
simulations, so that the full parameter space is accessible.

2.3 Ingredients for Leptogenesis

With the scotogenic model now at hand, we can detail how leptogenesis can work in
principle and how it fulfills the Sakharov conditions that are necessary for any kind of
baryogenesis, as laid out in Sec. 2.1.

In the thermal bath of the early universe, there are inverse decays (η+`→ N1) and decays
(N1 → η + `) of RHNs, cf. Eq. (2.1), that create and destroy those particles, resulting in a
thermal equilibrium in which the particles are Maxwell-Boltzmann distributed (cf. App. A
and Eq. (A.2)). The process of inverse decays is specific to finite temperature quantum
field theories (QFTs) (thermal baths) and can not happen in the standard zero temperature
QFT, since the phase space would be zero at zero temperature. As the universe cools over
time, at some point the energy in the thermal bath is not high enough any more to create
a sufficient amount of RHNs to keep the equilibrium, leading to the RHNs dropping out
of thermal equilibrium. This happens around M1 ≈ T , when the thermal energy (≈ T )
in the leptons and scalars becomes smaller than the rest mass M1 of the RHN. From
then on, the decay of the RHNs will be the dominant process, which can be C and CP
violating, by decaying dominantly into leptons instead of anti-leptons. Any such generated
L (or B − L) asymmetry will be automatically converted to a baryon asymmetry by the
SU(2)-sphalerons4 present in the SM and which are B violating. Therefore, all Sakharov
conditions are fulfilled.
To facilitate an analytical treatment and to get the parameter relations as clear as

possible, we restrict our analysis to the most important physical effects. They are the
decay and inverse decay of the lightest RHN N1 in combination with the corresponding
∆L = 2 washout processes, which are the processes that change the lepton number L

4Sphalerons are non-perturbative processes in the SM that conserve B − L but violate B + L and are
related to the non-trivial vacuum structure of the SM, cf. e.g. [75] for details.
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2.3 Ingredients for Leptogenesis

by two units and thereby washout (decrease) the generated baryon asymmetry. The
contributions of decays and inverse decays of N2 and N3 to the final baryon asymmetry are
negligible as we will see, due to strong washout effects mediated by either the N1 or the
N2 and N3 themselves. This also holds true for any initial B − L asymmetry, so that the
model is insensitive to this initial condition. Note that we refer to the B − L asymmetry
here, because B − L is conserved in the SM, whereas B is not. Additionally, there is
a one-to-one correspondence between the B − L and the B asymmetry, which makes
B −L a very useful quantity for calculational purposes. Focusing on the above mentioned
processes means that we neglect possible corrections from ∆L = 1 scatterings [76, 77],
thermal corrections [33, 78], flavor effects [79, 80] and quantum kinetic effects [81, 82].

Let us gather now all the relations necessary to describe leptogenesis in the scotogenic
model, with our notation and conventions being based on [34, 80]. As a simplification of
our analysis, we can revert to [34] for some of the analytical relations, since the underlying
Boltzmann equations for our model turn out to be identical (cf. Sec. 2.5.2). Like for
standard leptogenesis, where the role of the second Higgs doublet η is covered by the SM
Higgs doublet, one important distinction is between the weak and strong washout regime,
so how strongly the processes that create the B − L asymmetry destroy it again through
their inverse counterparts. These different regimes can be characterized by the value of
the decay parameter that specifies the strength of the washout and is given by

K1 :=
Γ1

H(z1 = 1)
, (2.11)

where typically one distinguishes between the weak washout regime for K1 . 1 and the
strong washout regime for K1 & 4, with a transition region in between (cf. [34]). Here, Γ1

is the decay width of N1, H is the Hubble parameter and z1 := M1/T , with photon bath
temperature T , is a convenient measure of time. Since the RHNs drop out of thermal
equilibrium aroundM1 ≈ T , as mentioned above, the most important time for leptogenesis
is normally around z1 ≈ 1. For masses above the electroweak scale, M1 > v = 246GeV,
leptogenesis thus occurs during radiation domination. During this cosmological era, the
Hubble parameter can be expressed as, cf. Eq. (A.10),

H =

√
8π3g∗

90

T 2

MPl
= H(z1 = 1)

1

z2
1

. (2.12)

By calculating the decays Ni → `αLη and Ni → `αLη
∗, see Fig. 2.1 for relevant Feynman

diagrams, we find for the CP asymmetry parameter ε

εiα =
1

8π(h†h)ii

∑
j 6=i

[
f

(
M2
j

M2
i

,
m2
η

M2
i

)
Im
[
h∗αihαj(h

†h)ij

]

− M2
i

M2
j −M2

i

(
1−

m2
η

M2
i

)2

Im[h∗αihαjHij ]

]
,

(2.13)

which is linked to the generated lepton asymmetry as it describes the decay of the RHNs.
Here, the function f stems from the interference of the tree-level diagram with the one-loop
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2. Leptogenesis in the Scotogenic Model

Ni

`αL

η

Ni

η

`αLη∗

`βL

Nj Ni

η

`αL`βL

η∗

Nj

Figure 2.1.: Feynman diagrams for the decay Ni → lαLη that lead to a CP asymmetry in
the scotogenic model, with the tree-level diagram to the left, vertex correction
in the middle and self-energy contribution to the right.

vertex correction and is given by

f(rji, ηi) :=
√
rji

[
1 +

(1− 2ηi + rji)

(1− ηi)2
ln

(
rji − η2

i

1− 2ηi + rji

)]
, (2.14)

with rji := M2
j /M

2
i and ηi := m2

η/M
2
i . In the limit of mη = 0 this reduces to the

well-known result [83]

f(rji, 0) =
√
rji

[
1 + (1 + rji) ln

(
rji

rji + 1

)]
. (2.15)

In the same way, the self-energy contributions are found to be

Hij := (h†h)ij
Mj

Mi
+ (h†h)∗ij . (2.16)

The expressions simplify when flavor effects are neglected, since in this case it is possible
to sum over the final state flavor α, which makes the second term of Hij drop out in the
expression for εiα as it does not lead to an imaginary part (cf. Eq. (2.13)). The more
compact expression for the CP asymmetry parameter then reads

εi =
1

8π(h†h)ii

∑
j 6=i

Im
[
(h†h)2

ij

] 1
√
rji

F (rji, ηi) , (2.17)

where we defined

F (rji, ηi) :=
√
rji

[
f(rji, ηi)−

√
rji

rji − 1
(1− ηi)2

]
. (2.18)

Note that for a hierarchical mass spectrum as in our case (rji, ηi � 1), F (·) can be well
approximated by F (rji, ηi) ≈ −3/2. Additionally, for the decay width Γ1, which is relevant
for the decay parameter K1, we find

Γ1 =
M1

8π

(
h†h
)

11
(1− η1)2 . (2.19)

As can be seen from the above expressions, the expression h†h is important for leptoge-
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mass2

m2
1

m2
2

m2
3

∆m2
21

∆m2
32 > 0

(a) Normal ordering

mass2

m2
3

m2
1

m2
2

∆m2
21

∆m2
32 < 0

(b) Inverted ordering

Figure 2.2.: Possible orderings of active neutrino masses allowed by experimental data. The
sign of ∆m2

21 is known due to interactions of solar neutrinos with matter [8].

nesis and therefore worth to look at in more detail. From Eq. (2.10), which was derived
by using the CI parametrization, we find(

h†h
)
ij

=
√

ΛiΛj

(
RDMνR

†
)
ij
. (2.20)

Thus, the parametric dependence nicely splits into m̃ := RDMνR
†, which only depends on

the masses of the active neutrinos through DMν
:= diag(m1,m2,m3) and the (complex)

CI parameters, and Λi that includes the other parameters like Mi and λ5. Note that
the matrix h†h does not depend on the PMNS matrix U , which implies that the CP -
violating phases in the PMNS matrix are not the ones that are driving leptogenesis5.
Furthermore, this implies that the values of neutrino mixing angles are irrelevant for
unflavored leptogenesis.

With all of the formulas above, we can now derive analytical expressions for leptogenesis
in the scotogenic model. As we will see, there is a significant difference between the
scotogenic model with two and three RHNs, so we will treat those cases separately.

2.4 Leptogenesis with Two Right-Handed Neutrinos

For the case of two RHNs, we have one massless active neutrino while the other two obtain
a mass and we distinguish as usual between normal ordering (NO) and inverted ordering
(IO), see Fig. 2.2. The active neutrino mass matrices are then given by

5This can change when flavor effects are taken into account. Then the contribution from h∗αihαj does
not drop out of the CP asymmetry parameters εiα anymore (cf. Eq. (2.13)) and they depend on the
CP -violating phases in the PMNS matrix.
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2. Leptogenesis in the Scotogenic Model

DNO
Mν

= diag

(
0,
√

∆m2
21,
√

∆m2
31

)
,

DIO
Mν

= diag

(√
−∆m2

31,
√

∆m2
21 −∆m2

31, 0

)
,

(2.21)

with ∆m2
ij := m2

i −m2
j . To avoid writing nearly identical equations twice, we will use

the notation mh for the heaviest active neutrino and ml for the lightest (massive) active
neutrino from now on. The matrix R (cf. Eq. (2.10)) is for two RHNs determined by
one complex rotation parameter z = zR + izI (cf. [84] for the explicit form of R), where
zR ∈ [0, 2π) and zI ∈ R.
Using the active neutrino mass matrix and the CI parametrization we can explicitly

calculate the CP asymmetry ε1 (cf. Eq. (2.17)) and maximize it over all possible values of
z. Taking the approximation F (rji, ηi) ≈ −3/2 for a hierarchical mass spectrum, we find
an upper bound on the CP asymmetry of

|ε1| .
3π

4λ5v2
ξ2 (mh −ml)M1 , (2.22)

which is essentially the Davidson-Ibarra (DI) bound [31]. The difference is the additional
factor of (2π2/λ5) ξ2, which already appeared in Eq. (2.8) and is specific to the scotogenic
model. Furthermore, the factor of mh −ml implies that for the two RHNs case the CP
asymmetry can be larger for NO than for IO.
In addition to the CP asymmetry ε1, we need for the determination of the baryon-

to-photon ratio ηB also the conversion factor C ≈ 0.01 [34], which takes into account
sphaleron conversion of the lepton into a baryon asymmetry as well as the evolution of
the photon density after the production of the lepton asymmetry (related to the entropy
generation during that time), and the efficiency factor κ1, which represents the effect of
the washout through inverse processes. As the efficiency factor κ1 describes the influence
of the washout, it is in general a function of the decay parameter K1. Taking all of these
factors together, the final baryon-to-photon ratio is given by [34]

ηB = −Cε1κ1 . (2.23)

In our case, we get for the decay parameter

K1 =
2π2

λ5
ξ1

√
45

64π5g∗

MPl

v2
m̃11(1− η1)2 , (2.24)

and for the parameter values 0 ≤ λ5 ≤ 4π and 3mη ≤M1 (or η1 ≤ 1/9), it has a minimum
of Kmin

1 ≈ 10, while being significantly larger (K1 ∼ 103 and above) in most parts of the
parameter space. This means that we are always in the strong washout regime (cf. Sec. 2.3),
enabling us to assume N1-dominated leptogenesis and neglect washout through scattering
effects. For these large values of K1, the in general only numerically known relation
between the efficiency factor and the decay parameter can be approximated by [34]

κ1(K1) ≈ 1

1.2K1 [lnK1]0.8
. (2.25)
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Putting all the pieces together, we can give a fully analytical expression of the baryon-
to-photon ratio in the scotogenic model with two RHNs

ηB = C

√
16π3g∗
1.22 · 45

M1

MPl

ξ2

ξ1

F (r21, η1)

(1− η1)2

1

[lnK1]0.8
·(

m2
h −m2

l

)
sin(2zR) sinh(2zI)

[−(mh −ml) cos(2zR) + (mh +ml) cosh(2zI)]2
,

(2.26)

where K1 inside the logarithm is again given by the expression in Eq. (2.24). With this
complete formula for ηB , we can now check whether it behaves as one might naively expect
with regard to λ5. Simply judging by the expression for the CP asymmetry, cf. Eq. (2.22),
one might naively expect that λ5 is important for leptogenesis and the smaller λ5 is, the
larger the generated baryon asymmetry can be. However, both of these expectations
turn out not to be true for the two RHNs case. From the complete formula for ηB,
Eq. (2.26), we find that it depends only logarithmically on λ5 (through K1), which means
that the value of λ5 has little impact on the generated baryon asymmetry. Furthermore,
as K1 ∼ 1/λ5 (cf. Eq. (2.24)), the baryon-to-photon ratio ηB actually decreases with
decreasing λ5, making the perturbative limit λ5 = 4π the optimal choice for a large baryon
asymmetry.
For determining the minimal mass scale at which leptogenesis can be realized in the

scotogenic model with two RHNs, we can start from Eq. (2.26), use the optimal value of
λ5 = 4π and maximize over the CI parameters zR and zI . With the observed values for
the neutrino masses (cf. [8]) and ηobsB ≈ 6.1 · 10−10, the only variable left is the mass of
the lightest RHN M1 and we find for its lower limit (depending on the active neutrino
mass ordering)

MNO
1,min ∼ 1010 GeV and M IO

1,min ∼ 1012 GeV . (2.27)

These lower limits are essentially identical to the ones of standard leptogenesis in the strong
washout regime (K1 & 4). This can be intuitively understood, as the main difference
of the scotogenic model and standard scenario is the different Yukawa couplings hαi
(cf. Eq. (2.10)), however the baryon-to-photon ratio scales (up to logarithmic corrections)
like ηB ∼ ε1/K1 ∼ Im

[
(h†h)2

]
/(h†h)2 and thus all multiplicative prefactors of h†h, like

λ5, cancel. We conjecture this to be a generic feature of radiative neutrino mass models
in which the active neutrino mass matrix is only modified by multiplicative factors. On
the other hand, the whole argument relies on the fact that we are in the strong washout
regime, which can depend on the mass of the lightest active neutrino and λ5, as we will
see in the next section in which we analyze the scotogenic model with three RHNs.

2.5 Leptogenesis with Three Right-Handed Neutrinos

With the introduction of a third RHN, we significantly open up our accessible parameter
space, as the CI parametrization now includes three complex free parameters instead of
one, as well as that the lightest active neutrino can now be massive and therefore have a
mass below the value suggested by the smallest measured active neutrino mass square
difference (cf. Fig. 2.2). Explicitly, the CI parametrization is now given by the product
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2. Leptogenesis in the Scotogenic Model

of three complex rotation matrices R(z23), R(z13), and R(z12) (cf. [84]) and the lightest
active neutrino can be in principal arbitrarily light. This has important consequences
for the decay parameter K1 (cf. Eq. (2.24)), as in the relevant parameter space we have
(2π2/λ5) ξ1 & 1 and from an explicit calculation we find m̃11 =

(
RDMνR

†)
11
≥ ml. Thus,

plugging in the numerical values, we can determine a lower limit for the decay parameter
of

K1 & 103
(ml

eV

)
(1− η1)2 . (2.28)

So for the hierarchical RHN mass spectrum we assume, we are necessarily in the strong
washout regime as long as ml & 10−3 eV. In this regime, the three RHNs case behaves
identically to the two RHNs NO case or standard leptogenesis and we find a lower limit on
the lightest RHN mass of Mmin

1 ∼ 1010 GeV. The only difference is that for three RHNs
the distinction between NO and IO disappears, as the mass difference of the heaviest and
lightest (massive) active neutrino is (nearly) independent of the ordering.

One aspect that becomes relevant once we leave the strong washout regime is the
question of the initial N1 abundance. In the case of strong washout the inverse decay
processes that create the N1 abundance are strong enough during the evolution of the
universe to create a thermal initial abundance before the period relevant to leptogenesis
begins (cf. Fig. 2.3). On the other hand, in the weak washout regime this is not the case
anymore and one has to rely on other processes that help to establish a thermal initial
abundance and then freeze out before the onset of leptogenesis. One example for such
other processes that could help are gauge interactions mediated by a heavy Z ′ vector
boson (cf. [85] and references therein). Thus, the standard choices for leptogenesis are
to either assume a thermal or a vanishing initial abundance, so whether there are other
processes than the inverse decays to create the thermal N1 abundance or not. In the
following, we will assume having a thermal initial abundance independent of the washout
regime we are in, since the generated baryon asymmetry is always larger in this scenario
and we want to investigate how low of a lightest RHN mass M1 we can reach while still
being able to explain the BAU. We will see that this choice is only relevant once we resort
to the weak washout regime and ∆L = 2 washout processes become important.

Aiming as a next and independent step for a DI-type bound, so an upper bound on
solely the CP asymmetry, we can use the full expression of the CP asymmetry ε1 to find
that it does not depend on z23. Furthermore, from an explicit parameter scan, we find
that the optimal values of the CI parameters for NO are z12 = 0 and z13R = ±z13I , with
the relative sign of z13I determining the overall sign of the CP asymmetry. In the same
way and for IO, we get on the other hand z12R = π/2, z12I = 0 and z13R = π/2 ± z13I .
Very similar to the two RHNs case, we find with the above determined CI parameters
then a DI-type bound of

|ε1| .
3π

4λ5v2
ξ3 (mh −ml)M1 , (2.29)

independent of the ordering and again including the additional factor of (2π2/λ5)ξ3, which
already appeared in the active neutrino mass matrix Eq. (2.8) and is specific to the
scotogenic model.
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10−3 10−2 10−1 100 101 102 103

K1

10−4
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κ
1

thermal initial abundance

vanishing initial abundance

Figure 2.3.: Dependence of the efficiency κ1 on the decay parameter K1 as determined
by [34] for the two options of a thermal initial abundance (red) and a vanishing
initial abundance (blue) neglecting scattering effects. Note that for strong
washout (K1 & 4) both curves are essentially identical as discussed in Sec. 2.5.

As an analytical solution including ∆L = 2 washout is hard to come by, we will split
our analysis of leptogenesis in the scotogenic model with three RHNs into two parts. First,
we will analytically solve the case where the ∆L = 2 washout is negligible and derive an
estimate of when it becomes relevant. Second, we will use a full numerical analysis to
confirm our results from the analytical calculation and also to extend them into the region
where ∆L = 2 washout is important.

2.5.1 Analytical Insights

To gain analytical insights into the scotogenic model with three RHNs in the case of
negligible ∆L = 2 washout, we can not derive a full analytic expression for the baryon-to-
photon ratio ηB anymore and then maximize it (like we did in the two RHN scenario),
because the analytic expression of the efficiency factor κ1, Eq. (2.25), only holds in the
strong washout regime. However, we can use that κ1 is numerically known independent
of the washout regime as a function of K1, which will be very important for our new
optimization strategy.
For optimizing the baryon-to-photon ratio ηB = −Cε1κ1 independent of the washout

regime, we can use the freedom of the scalar coupling λ5, together with the fact that there
is a one-to-one correspondence between λ5 and the decay parameter K1 (cf. Eq. (2.24)).
Assuming all parameters except for λ5 to be fixed, the optimization of ηB reduces to
determining the optimal value of λ5, which we will call λ5, opt. As there is a one-to-one
correspondence between λ5 and K1 this can also be seen as an optimization in K1. To
make this optimization explicit, we have to express the CP asymmetry ε1, or its λ5

dependence, in terms of K1. Since we have ε1 ∼ 1/λ5 (cf. Eq. (2.29), which also holds
in the non-optimized case) and K1 ∼ 1/λ5 (cf. Eq. (2.24)), we can conclude ε1 ∼ K1

(in terms of λ5) and thus ηB ∼ κ1(K1)K1, where we do not have to worry about the
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2. Leptogenesis in the Scotogenic Model

precise prefactor at the moment. Hence, to maximize the baryon-to-photon ratio ηB, λ5

(or correspondingly K1) has to be chosen such that κ1(K1)K1 becomes maximal. Using
the numerical results for κ1(K1) from [34] which are shown in Fig. 2.3, we find that the
optimal value for thermal as well as for vanishing initial N1 abundance are very similar
and K1, opt ≈ 3 suits both cases well. This value for K1 corresponds to κ1, opt ≈ 0.15 and
thus leaves only ε1 to be optimized over the CI parameters.

For the optimization of ε1, we use λ5, opt in the expression for ε1 by recasting Eq. (2.24)
as λ5, opt(K1, opt) before maximizing over the CI parameters. It turns out that the optimal
CI parameters here are identical to the ones determined in the context of the DI-type
bound, which are discussed above Eq. (2.29), with additionally z13I having an optimal
value of z13I ≈

√
ml/ (2mh). One important realization to find this result is that we

need z13I � 1 to get a small decay parameter K1, which depends on z13I through m̃11

(cf. Eq. (2.24)), in addition to having a large CP asymmetry ε1 at the same time. The
same logic also enables us to intuitively understand why z12 = 0 (up to shifts of π/2
for IO) is optimal. For the CP asymmetry ε1 the contribution from z12 is sub-dominant
compared to the one of z13, while any non-zero value of z12 would still increase the decay
parameter K1 in a non-negligible way.
Using the optimal values for the CI parameters, we can now determine a compact

expression for the optimal value of λ5, which is given by

λ5, opt ≈ 4π ξ1

( ml

10−3 eV

)
(1− η1)2 . (2.30)

With η1 � 1 for a hierarchical mass spectrum and ξ1 ∼ 1, we rediscover our optimal
solution for the strong washout regime, which we are in for ml > 10−3 eV, of λ5, opt = 4π
(cf. Sec. 2.4). Larger values for λ5 might be desirable from an optimization point of view,
but are not allowed as they would violate perturbativity.
For small active neutrino masses of ml < 10−3 eV that enable us to reach regions

below the strong washout regime, we get in combination with the experimental data from
neutrino oscillation measurements of mh & 5 · 10−2 eV [8] that ml � mh. Thus, we find
for the upper limit of the baryon-to-photon ratio

ηB . 3 · 10−21

(
M1

GeV

)
ξ3

ξ1

mh

ml
(2.31)

and therefore for the lower limit on the mass M1

Mmin
1 ≈ ξ1

ξ3

ml

mh
2 · 1011 GeV . (2.32)

This formula holds for ml < 10−3 eV down to masses of the lightest active neutrino for
which ∆L = 2 washout becomes important. As stated in Sec. 2.5, for ml > 10−3 eV we
are in the strong washout regime which leads to a limit of Mmin

1 ∼ 1010 GeV.
Most notably, Eq. (2.32) clearly shows the importance of the mass of the lightest active

neutrino and that it is possible to reach the correct BAU with smaller RHN masses than
in standard leptogenesis. The reason why this is feasible is because the new parameter
of the scotogenic model λ5 enables us to tune the N1 decay parameter to its sweet
spot, K1 → K1, opt ≈ 3, independently of the other parameters in the model. However,
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2.5 Leptogenesis with Three Right-Handed Neutrinos

this optimization method only works for ml < 10−3 eV, since λ5 has to stay within its
perturbative limits. Additionally, it also increases the ∆L = 2 washout [73], which becomes
important for even lower lightest active neutrino masses. One last aspect we need to keep
in mind is that making λ5 smaller also increases the time it takes the RHNs N1 to decay
(cf. Eqs. (2.19, 2.20)). This will become important for the determination of an absolute
lower limit on M1, since the generation of the lepton asymmetry by the N1 decays has to
be finished before the SU(2)-sphalerons drop out of equilibrium, as the lepton asymmetry
could otherwise not be converted into a baryon asymmetry.

Let us now turn to ∆L = 2 washout processes and derive an estimate for when they
become important. These processes are mediated by the RHNs and change the lepton
number by two units, as their name suggests. In our case, the ∆L = 2 processes are
`η ↔ ¯̀η∗ and `` ↔ η∗η∗ and involve the new scalar doublet η. To judge the strength
of their contribution to the washout, we need to compute Γ∆L=2/(Hz1), so their rate in
comparison to Hz1 (cf. discussion of the Boltzmann equations in Sec. 2.5.2). This can be
done by taking the averaged matrix element squared from [34] and taking into account
the modified CI parametrization of the Yukawa couplings as given by Eq. (2.10). Doing
so, we find in similarity to [34] and [73]

∆W =
Γ∆L=2

H z1
=

36
√

5MPl√
πg`
√
g∗v4

1

z2
1

1

λ2
5

M1m
2
ξ , (2.33)

where we for simplicity assumed η1 = m2
η/M

2
1 ≈ 0 and g` = 2 represents the number of

internal degrees of freedom (dofs) per active neutrino ναL or per charged lepton αL. The
effective mass parameter mξ is given by

m2
ξ :=

∑
i, j

ξiξj Re
[
(RDMνR

†)2
ij

]
≈ 4ξ2

1m
2
l + ξ2

2m
2
h2

+ ξ2
3m

2
h ,

(2.34)

where the last line uses the previously determined optimal CI parameters. Our result for
∆W is identical to the one in [34]6, with the exception of an additional factor (2π2/λ5)2

which is specific to the scotogenic model, and a slightly modified definition of the effective
mass mξ.

As a last step of preparation, we need to address the question how the additional
washout due to ∆L = 2 processes, ∆W , influences the efficiency parameter κ1 of the whole
evolution. To do so, we need to extract more knowledge from our optimal decay parameter
K1, opt ≈ 3. As shown and numerically determined in [34], the decay parameter K1 does
not only quantify the efficiency κ1 of the process, but also the time zB from which on close
to no additional asymmetry is generated and the asymmetry is predominantly washed
out. For our optimal value of K1, opt ≈ 3, this translates into zB(K1 ≈ 3) ≈ 3.5. Another
aspect which is helpful to us, is that one can assume for our case that the ∆L = 2 washout
becomes relevant at z∆W � 1 [34]. In this case of z∆W & zB, the washout contributions

6Note that in [34] the value v = 174GeV is used whereas we use for the Higgs vev v = 246GeV.
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can be separated and the total efficiency is given by [34]

κtot1 = κ1 e
−

∫∞
zB

dz∆W
. (2.35)

This integral can be explicitly solved and by using Eq. (2.30) for λ5 and Eq. (2.32) for M1

we get ∫ ∞
zB

dz∆W ≈ 9
√

5MPl · 105 GeV

7π
5
2 gl
√
g∗v4

eV2

mlmh

1

ξ1ξ3
m2
ξ . (2.36)

To determine a value for ml below which the ∆L = 2 washout processes become
important, we need to fix a numerical limit for the integral above which we call them
important. In the following, we will do so when their influence on κtot1 is larger than 10%,
corresponding to

∫∞
zB

dz∆W > 0.1. Using ξi ∼ 1 as usual, we find that ∆L = 2 washout
processes become important below

ml . 10−6 eV . (2.37)

Thus, our analytic result for the minimal RHN massM1 to create the BAU via leptogenesis
in Eq. (2.32) is valid in the range 10−6 eV . ml . 10−3 eV. We will verify this result in the
next section with a numerical analysis and see that the validity of Eq. (2.32) even holds
down to ml . 10−7 eV. The reason is that in our derivation of the condition Eq. (2.37),
we assumed the rigid relation of Eq. (2.30) between λ5 and ml, which is too restrictive
below ml ∼ 10−6 eV to achieve the optimal baryon-to-photon ratio ηB.

2.5.2 Numerical Insights

To verify and extend our results of Sec. 2.5.1, we perform a numerical analysis of leptogenesis
in the scotogenic model with three RHNs. To do so, we work with the Boltzmann equations
for N1-dominated leptogenesis, where we include the effect of the ∆L = 2 washout. A
motivation of the Boltzmann equations together with the definitions of (and additional
information on) the parameters we will be using throughout this section can be found in
App. B.

Specifying Eqs. (B.57, B.54) to N1 dominated leptogenesis with ∆L = 2 washout, we
find

dNN1

dz1
= −D1(NN1 −N eq

N1
) (2.38a)

dNB−L
dz1

= −ε1D1(NN1 −N eq
N1

)−W totNB−L , (2.38b)
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with the z1-dependent quantities

D1 = K1 z1
K1(z1)

K2(z1)
, (2.39a)

W tot = W1 + ∆W , (2.39b)

W1 =
1

4
K1 z

3
1 K1(z1) , (2.39c)

N eq
N1

=
z2

1

2
K2(z1) . (2.39d)

For ε1 and K1 see Sec. 2.3, Ki(z1) are the modified Bessel functions of the second kind and
the contribution from ∆L = 2 washout is included through ∆W as given by Eq. (2.33).
From the final B − L asymmetry Nf

B−L that is determined by the above Boltzmann
equations, we can deduce the resulting baryon-to-photon ratio as ηB = CNf

B−L. This is
the same relation as Eq. (2.23), only that we directly find Nf

B−L = −ε1κ1 from solving the
Boltzmann equations. Being more precise than in the context of Eq. (2.23), the conversion
factor C can be split into the sphaleron conversion factor Csph and an entropy generation
part as

C =
3

4
Csph

g0
∗
g∗
≈ 0.0088 , (2.40)

with Csph = 8/23 for two Higgs doublet models, g∗ = 116 for three RHNs and g0
∗ = 43/11.

As we assumed for the Boltzmann equations that the η particles follow their equilibrium
number density (cf. Eq. (B.18)), one might worry that they need to be modified due to
the asymmetry induced by N1 decays in the η-η̄-sector. However, ηη ↔ HH interactions
can effectively washout this asymmetry as long as they are strong enough (cf. [86]), which
depends on the value of λ5 (cf. Eq. (2.3)). For λ5 & 10−4, which will turn out to be the
relevant parameter range for us, this is the case.

The free parameters in our system of Boltzmann equations, Eq. (2.38), are the masses
mη, M1, M2, M3 and ml, the scalar couplings λ3, λ4 and λ5 in addition to the generally
complex CI parameters z12, z13 and z23. The masses of the other two active neutrinos
are then fixed by the measured mass squared differences from neutrino oscillations in
combination with the choice of an ordering (NO or IO), while mη, together with the
scalar couplings, determines the scalar masses via Eq. (2.4). Although this might seem
like a large number of free parameters, we can fix most of them due to the analytical
insights we gained and the hierarchical mass spectrum we are considering. Since we
have N1 dominated leptogenesis in a hierarchical mass spectrum, the masses of M2 and
M3 only have a minor influence on leptogenesis and to be hierarchical we explicitly set
M2 = 100.5M1 and M3 = 101M1. Furthermore, the mass of the lightest scalar mηI has to
fulfill Eq. (2.5) for it to be able to constitute DM, while we also want mη � M1 to be
in the hierarchical regime. In this mass region, we can find from the formula for scalar
masses, Eq. (2.4), that for scalar couplings of order one, mη is the dominant contribution.
Thus, we choose mη = 550GeV, which ensures to stay in the range of Eq. (2.5) while
being as hierarchical as possible. The scalar couplings then have only a small influence on
the scalar masses and can be set to λ3 = 1 and λ4 = −1. On the other hand, λ5 is very
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Figure 2.4.: Results for the baryon-to-photon ratio ηB maximized over λ5 ∈ [10−6, 4π]
shown as contours for the parameter scan in the ml–M1–plane, with mη =
550GeV, λ3 = 1, λ4 = −1, M2 = 100.5M1, M3 = 101M1, z12 = 0, z13R =√
ml/ (2mh) = z13I , z23 = 0 and for NO. The red line highlights the minimal

values of M1 necessary to achieve the BAU, ηobsB ≈ 6.1 · 10−10, whereas the
black dashed line shows the analytical result of Eq. (2.31) with ξ1/ξ3 ≈ 1.2
that is valid for ml & 10−6 eV (cf. Eq. (2.37)). The orange star denotes the
last point on the red curve at which the baryon asymmetry is generated before
the SU(2)-sphalerons fall out of equilibrium, so the smallest possible M1.

important for the process of leptogenesis and will therefore be a free parameter in our
scan. As we are interested in the lowest possible M1 to achieve leptogenesis and know
from our analytical investigation that ml has a large influence on the generated baryon
asymmetry, these two parameters will span our parameter plane.
The only parameters not accounted for in the above discussion are the CI parameters.

For them, however, we found in Sec. 2.5.1 optimal values that are valid down to at least
ml ∼ 10−6 eV. Therefore, we will in a first step assume that these optimal values hold for
our entire parameter space and in a second step then explicitly check that this assumption
is true for several points in the ml–M1–plane that produce the correct baryon asymmetry.
Thus, the explicit check in the second step also validates our analytical results of Sec. 2.5.1
on the CI parameters.
Numerically solving the Boltzmann equations, Eq. (2.38), and optimizing over λ5, we

find for the maximally possible baryon-to-photon ratio the results depicted in Fig. 2.4. The
numerical results show very clearly the importance of the smallest active neutrino mass ml

for leptogenesis, as well as the fact that our analytical expressions, Eqs. (2.31, 2.32), are
able to accurately describe the upper limit on the baryon asymmetry, or, correspondingly,

22



2.5 Leptogenesis with Three Right-Handed Neutrinos

the lower limit on the lightest RHN mass M1 for 10−6 eV . ml . 10−3 eV. Note that, as
Fig. 2.4 shows the maximally possible ηB, any parameter point with ηB > ηobsB (above
the red line) is also viable to achieve the BAU, since a lower baryon asymmetry can
always be realized by choosing other than the optimal values for λ5 and the CI parameters.
Furthermore, as commented on in Sec. 2.5, there is no significant difference between NO
and IO for the three RHNs case, so our results do not depend on the choice of the ordering.

With the numerical results at hand we can also determine an approximate formula for
the maximally possible baryon-to-photon ratio in the region where ∆L = 2 washout is
important, for which we find by fitting

ηB . 1.6 · 10−14

(
ml

eV

)−0.19( M1

GeV

)0.58

. (2.41)

This can be compared to Eq. (2.31) for the region with a negligible influence of ∆L = 2
washout. As both the exponents of ml and M1 are closer to zero in the region with
∆L = 2 washout, we observe that both variables have a comparably smaller influence on
leptogenesis. This is reflected in Fig. 2.4 by a bigger spacing between the contours in the
left part of the plot, where ∆L = 2 washout is important, compared to the right part.
To verify our analysis of λ5 and the optimal CI parameters for ml & 10−6 eV and to

justify our assumption that the optimal CI parameters do not change for smaller values
of ml, we choose specific points in the ml–M1–plane that correctly reproduce ηobsB and
perform a complete scan over all CI parameters and λ5 for them. These scans do not
point out a possibility to significantly improve ηB by varying the CI parameters or λ5,
thus verifying our analytical analysis and justifying the assumption on the optimal CI
parameters. In the region where ∆L = 2 washout is important, the scans point out that
small improvements in ηB are possible, however, these improvements are not bigger than
the systematic uncertainties of our simplified approach in which we focus on the most
important effects (cf. the corresponding discussion in Sec. 2.3).
To gain a deeper understanding of the parameter dependencies, we depict in Fig. 2.5

the dependence of the decay parameter K1 and the scalar coupling λ5 on the RHN mass
M1 and lightest active neutrino mass ml to get the correct baryon-to-photon ratio ηB in
the optimal case (cf. red line in Fig. 2.4). We can see from Fig. 2.5 the clear transition
between the regime in which ∆L = 2 washout is negligible to when they become important
as a kink in the decay parameter K1. For negligible ∆L = 2 washout, the optimal decay
parameter has a constant value of K1 ≈ 1.5, whereas otherwise we need to resort to the
weak washout regime K1 . 1. The reason that the constant value of K1 ≈ 1.5 differs
from K1,opt ≈ 3, as used in the analytical calculation of Sec. 2.5.1, is that K1,opt ≈ 3
enables us to get a reasonably accurate expression for ηB both for thermal and vanishing
initial N1 abundance. In addition, we can from the right plot of Fig. 2.5 also see the “less
rigid relation” between λ5 and ml mentioned at the end of Sec. 2.5.1. While λ5 follows a
linear relation with ml down to approximately ml ≈ 10−6 eV, it deviates from this relation
for smaller active neutrino masses when ∆L = 2 washout becomes important, enabling
the baryon-to-photon ratio ηB to be well approximated by the analytical expression of
Eq. (2.31) even down to ml ∼ 10−7 eV.

As apparent from Fig. 2.5, especially for small values of M1 and ml we also need small
values of λ5 to realize leptogenesis. Therefore, we need to check whether these small values
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Figure 2.5.: Dependence of the optimal decay parameter K1 and scalar coupling λ5 on
the RHN mass M1 and lightest active neutrino mass ml to achieve ηobsB with
the smallest RHN mass M1 possible (cf. red line in Fig. 2.4). The underlying
scan with the specification of all parameters can be found in Fig. 2.4.

of λ5 are compatible with the limits from direct detection experiments due to inelastic
scattering. This process is governed by the value of λ5, since it defines the mass splitting
between mηR and mηI (cf. Eqs. (2.4)), thereby determining how efficiently ηR/I can scatter
off a nucleus via Z boson exchange. With the expression for the limit of direct detection
via inelastic scattering from [71] and the experimental data from Xenon100 [87], we find a
limit of λ5 & 3 · 10−6. Since this is smaller than the lowest value of λ5 & 5 · 10−5 appearing
in Fig. 2.5, we are not restricted due to this bound from direct detection experiments.
In addition to demonstrating the crucial influence of the lightest active neutrino mass

ml on the baryon-to-photon ratio ηB as well as the very good agreement between our
analytical and numerical results, Fig. 2.4 also shows that even in the regime in which
∆L = 2 washout is important, the minimal necessary RHN mass Mmin

1 still decreases with
ml, which might come as a surprise. Although an analytical understanding of the region
in which ∆L = 2 washout is important (below ml . 10−7 eV) is hard to come by, we can
at least get an intuition for why Mmin

1 still decreases with ml and determine an absolute
lower bound on Mmin

1 . To do so, the relevant aspect is that small active neutrino masses
are achieved in our model by a suppression of the N1 Yukawa couplings. This implies that
on the other hand also the N1 decay width decreases (cf. Eq. (2.19)) and therefore its
lifetime increases. The later decay of the RHNs N1 thus leads to a partial circumvention
of the ∆L = 2 washout, which enables Mmin

1 to further decreases with ml.
However, there is a limit to how much the N1 decay can be delayed, because for

leptogenesis to work the generated lepton asymmetry has to be converted into a baryon
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asymmetry by SU(2)-sphaleron processes. As the SU(2)-sphalerons drop out of equilibrium
around Tsph ≈ 130GeV [88], any later injection of lepton asymmetry by N1 decays would
remain solely in the lepton sector. Thus, we demand that the generation of the baryon
asymmetry ends before zB, sph = M1/Tsph. Solving the Boltzmann equations several times
for different but small ml, with the corresponding optimal value of λ5 ∼ 10−4, to determine
the relation of zB and ml, we find approximately zB ≈ 3.0 · 10−5(ml/eV)−0.56 and a fit
to the small ml region of Fig. 2.4 provides Mmin

1 ≈ 4.6 · 107 (ml/eV)0.30 GeV. Combining
both fits with the constraint zB < zB, sph, we get in a first step ml & 2 · 10−12 eV and
finally

Mmin
1 ∼ 104 GeV . (2.42)

This is main result of this chapter, since it demonstrates that within the scotogenic model
with three RHNs it is possible to realize leptogenesis for masses of the lightest RHN as
low as M1 ∼ 10TeV.

One example for a complete set of parameters making this possible can be found in the
description of Fig. 2.4 or our corresponding discussion above. Noticeably, creating the
BAU via leptogenesis with a small mass of the lightest RHN N1 requires an extremely
light lightest active neutrino with a mass of ∼10−12 eV. To get an impression of how the
Yukawa matrix looks like for this case, we can determine it via the CI parametrization,
cf. Eq. (2.10). To do so, we also need the PMNS matrix for which we use the best-fit
PDG16 values [8] and set the Majorana phases to zero. In this way, we explicitly find

h =

1 · 10−8 + 2 · 10−9 i 8 · 10−4 + 0 · i −4 · 10−4 + 7 · 10−4 i
1 · 10−9 − 6 · 10−9 i 9 · 10−4 + 7 · 10−5 i 4 · 10−3 + 3 · 10−15 i
1 · 10−8 − 6 · 10−9 i −7 · 10−4 + 8 · 10−5 i 4 · 10−3 + 1 · 10−13 i

 . (2.43)

Since the above Yukawa matrix looks perfectly natural7 we conclude that no particular
tuning of parameters seems necessary to generate the BAU. The physical assumption
which is represented by this Yukawa matrix is that the N1 Yukawa couplings must be
suppressed compared to those of the N2,3 neutrinos, which we touched on in our discussion
of the optimal CI parameters in Sec. 2.5.1. Essentially, this ties back to the Sakharov
conditions we discussed in Sec. 2.1, as the small values of h1α � 1 ensure that the N1

decays occur sufficiently out-of-equilibrium, while a sufficiently large CP-asymmetry is
achieved by sizable h2/3α. Qualitatively similar observations can also be found in Ref. [52].
Compared to the charged-lepton Yukawa matrix, the hierarchies among the different

entries of our neutrino Yukawa matrix in Eq. (2.43) are not much larger and the small
absolute values can be seen as technically natural due to the global U(1) symmetry which
emerges as h→ 0. As the running of the Yukawa couplings is proportional to the Yukawa
couplings themselves, the small absolute values are also stable against quantum corrections.
Furthermore, we note that the optimization of the CI parameters is rather a technical
trick than a fine-tuning of model parameters, as it should only be considered fine-tuning if
the corresponding physical quantities like the Yukawa couplings show signs of fine-tuning.
The necessary small masses of the lightest active neutrino for low-scale leptogenesis

7The smallness of some of the imaginary parts is due to our choice of z23 = 0 and not necessary for
successful leptogenesis.
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(ml ∼ 10−12 eV) are an interesting aspect of the model that makes this region of parameter
space accessible to experiments, both earth bound and astrophysical. For example the
tritium beta decay experiment KATRIN [89] is performing (cf. [90]) a direct measurement
of the mass of the electron neutrino, m2

νe
:=
∑

i |Uei|2m2
i . If their future measurements

find evidence for a lightest active neutrino mass close to its design sensitivity, ml ∼ 0.2 eV,
this would falsify low-scale leptogenesis in the scotogenic model. On the other hand,
astrophysical measurements like for example power spectrum data from galaxy surveys
can be used to determine (an upper limit of) the sum of neutrino masses [91]. If any sum
of neutrino masses above the minimal possible value determined from neutrino oscillation
measurements (for NO or IO) is detected, this would imply ml � 10−12 eV and therefore
also falsify low-scale leptogenesis in the scotogenic model.

2.6 Summary

In our above analysis of leptogenesis in the scotogenic model, which is the simplest model
of radiative neutrino masses and also offers a candidate for DM, we demonstrated that it
allows for the accommodation of low-scale leptogenesis in a hierarchical mass spectrum.
To do so, we distinguished between the cases of two and three RHNs and derived in both
cases a DI-type bound for the CP asymmetry. For two RHNs, we showed that leptogenesis
inevitably occurs in the strong washout regime and consequently this scenario behaves
similarly to standard leptogenesis in the type-I seesaw model. We argued that this follows
from the fact that all new prefactors in the scotogenic model essentially cancel. Thus, for
a normal ordering of SM neutrino masses (NO), the lightest RHN must have a mass of at
least Mmin

1 ∼ 1010 GeV, while for inverted ordering (IO), it must have a mass of at least
Mmin

1 ∼ 1012 GeV.
For three RHNs, the difference between normal and inverted hierarchy is negligible,

as only the mass difference between the heaviest and lightest active neutrino matters,
and the weak washout regime becomes accessible. We found that the minimal mass of
the lightest RHN to realize the BAU strongly depends on the mass of the lightest active
neutrino ml. For ml & 10−7 ...−6 eV, the effect of ∆L = 2 washout is negligible and Mmin

1

is directly proportional to ml, whereas for smaller values of ml the ∆L = 2 washout
becomes important. Even in this regime, Mmin

1 can still be lowered by delaying the decay
of the N1 RHNs through suppressed N1 Yukawa couplings. Due to the delay, the lepton
asymmetry is generated later in time and therefore part of the washout is circumvented.
However, this mechanism is limited by the fact that leptogenesis has to be completed
before the SU(2)-sphalerons drop out of equilibrium, as they convert the generated lepton
into a baryon asymmetry. Thus, we finally got an absolute lower limit on the mass of
the lightest RHN of Mmin

1 ∼ 104 GeV. Comparing this to the lower limit from standard
leptogenesis of Mmin

1 ∼ 109 GeV, we can conclude that the scotogenic model allows for
leptogenesis significantly closer to experimentally accessible scales than the standard
scenario. It is important to note that we used a hierarchical mass spectrum, so the lower
scale of leptogenesis is not related to any kind of mass degeneracy.

An additional interesting aspect of our scenario is that successful low-scale leptogenesis
for M1 ∼ 104 GeV requires very small masses of the lightest active neutrino of around
ml ∼ 10−12 eV. This makes the intriguing scenario of low-scale leptogenesis in the
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scotogenic model accessible to next generation experiments that aim at measuring the
absolute neutrino mass scale. As the sensitivities of these experiments are of the order
of ml ∼ 10−2 ...−1 eV, any measurement of the lightest active neutrino mass that is not
compatible with zero would falsify low-scale leptogenesis in the scotogenic model.
In our analysis we focused on the most important effects for the generation – and the

washout – of a lepton asymmetry: decays and inverse decays of RHNs as well as ∆L = 2
washout processes. Therefore, we were able to perform most of our calculations analytically
and gain insights into how the different parameters are intertwined. For future work, it
will be interesting to refine the results of our analysis by incorporating several effects
that were neglected in this paper. This includes mainly flavor effects and a more careful
treatment of possible kinematic effects in the regime of large η masses, mη ∼M1. Such a
refined analysis might disclose the remaining optimization potential to further lower the
bound on M1 by a factor of ∼ 1 to ∼ 10, similar to standard leptogenesis. The central
finding of our analysis should however be unchanged: It is possible to realize low-scale
leptogenesis in the scotogenic model of radiative neutrino masses without any degeneracy
in the mass spectrum of the RHNs. As we will see in the next chapter, the scotogenic
model is not the only model that permits such a realization of low-scale leptogenesis.
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Chapter 3

Singlet Scalar Assisted
Leptogenesis

In our investigation of models that allow for a low-scale explanation of the BAU, we
found in the last chapter that the scotogenic model of radiative neutrino masses is able
to accommodate low-scale leptogenesis even without a nearly degenerate mass spectrum.
In this chapter, we will direct our attention to another model which does provide the
possibility of low-scale leptogenesis. Instead of extending the Higgs sector by a new (dark)
Higgs doublet like in the scotogenic model, we will add a real scalar singlet to it and
therefore analyze low-scale leptogenesis assisted by a real scalar singlet. Note that the
results displayed in this chapter are based on work published as Ref. [92].
The challenge to explain the BAU and the attractiveness to use leptogenesis to do so,

which are both laid out in Sec. 2.1, remain for the singlet scalar assisted model the same
as for the scotogenic model. Thus, we will be guided by the same principles also in this
chapter: the experimental inaccessibility of high-scale leptogenesis drives us to look for
options to realize the same mechanism at substantially lower scales, while we still do not
want to rely on a nearly degenerate mass spectrum of the RHNs to do so.

In general, adding a scalar to the Higgs sector allows for leptogenesis to happen at
significantly lower scales [93, 94] and we will demonstrate that in the simplest case of
a real scalar singlet the BAU can be generated via leptogenesis even for RHN masses
below the TeV scale. It turns out that even though the extension of the Higgs sector is
simpler than in the scotogenic model of Ch. 2, the situation is analytically less accessible
and we will need to rely more on numerical and semi-analytical analyses. Nevertheless,
our analyses will equally well enable us to identify viable parameter regions that can be
probed in on-going and future experiments.

The existence of an additional real scalar singlet is well motivated and appears oftentimes
in more fundamental models. If the scalar S is stable, it represents for example a viable
and simple DM candidate [95–98]. Alternatively, S can be identified with the inflaton
field that drives inflation in the early universe [99–102] (see also Ref. [103]). Furthermore,
it is possible to associate the field S with the dynamics of electroweak (EW) symmetry
breaking. In particular, the EW phase transition can be turned into a strong first-order
one [104–109], which has received a lot of attention in the literature. Similarly, in models in
which the SM Higgs potential originates from a spontaneously broken approximate global
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symmetry, the field S might correspond to a pseudo-Nambu-Goldstone boson (pNGB).
In Ref. [110], it was shown that it is possible to connect low-scale leptogenesis to EW
symmetry breaking and Goldstone-Higgs models, by coupling such a pNGB singlet to
RHNs. From a theoretical standpoint, the singlet S can allow to ensure the absolute
stability of the EW vacuum, as opposed to the meta-stability of the EW vacuum in
the SM [111, 112]. Finally, the real scalar singlet extension of the SM represents an
important experimental benchmark scenario for new physics searches at present and future
colliders [113–119].

Despite this broad spectrum of theories in which an additional real scalar appears, it is
sufficient for our purposes to view the field S as a low-energy effective description of some
unknown ultraviolet (UV)-complete model. Thus, our analysis is not specific to a single
model, but applies to all UV-complete models that are described by the same low-energy
effective Lagrangian (cf. Eq. (3.3)). As we will see, the reason that adding a real scalar
singlet to the model changes the picture of leptogenesis is due to its allowed coupling to
the RHNs L ⊃ SNN . This operator is renormalizable and trivially invariant under all
SM gauge symmetries. Since it breaks the accidental global lepton number symmetry of
the SM in the same way as the RHN Majorana mass term, we will assume that both of
these couplings are present in our model. The only additionally allowed couplings of the
real scalar singlet with the SM are through the Higgs potential, as all others are forbidden
by gauge invariance.
Similarly to Ch. 2, we will focus on the most important aspects and neglect possible

corrections to our calculation from thermal corrections, flavor effects and quantum kinetic
effects (cf. Sec. 2.3). Furthermore, we can consider the minimal case of two RHNs N1, 2 and
one real scalar S, to simplify the analysis while still capturing all relevant effects. At tree
level, the presence of a light scalar S then leads to a new N2 decay channel, N2 → N1S,
which causes the N2 number density to depart more strongly from its would-be value
in thermal equilibrium. At the same time, the new N2 decay channel also increases the
amount of CP violation in N2 decays at loop level. Together, these two effects enhance the
efficiency of leptogenesis, such that the BAU can be successfully generated in N2 decays
for RHN masses even below the TeV scale. The general principle behind this mechanism
has been described for the first time by Le Dall and Ritz [94].1

For our analysis, we build upon and extend this earlier work in two main ways. First, we
perform a systematic scan of parameter space that allows us to determine the dependence
of the final asymmetry on the choice of parameter values in the neutrino sector. Explicitly,
we derive a semi-analytical fit function, allowing us to reproduce the exact numerical
result with high precision (cf. Eqs. (3.23, 3.24)). Second, we ensure that our parameter
values are consistent with the experimental data on neutrino oscillations by employing a
CI parametrization [66], as also done in Ch. 2.

3.1 Couplings and Masses in the Real Singlet Scalar Model

For the real singlet scalar model we want to analyze, we have to take into account that
the new field S can in principle have a non-zero vev. This is different to the additional

1The first discussion of N2-dominated leptogenesis in the standard (type-I seesaw) leptogenesis scenario
can be found in Ref. [120].
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3.1 Couplings and Masses in the Real Singlet Scalar Model

Higgs doublet η in the scotogenic model, since there a vev was prohibited by the imposed
Z2 symmetry (cf. Ch. 2). Thus, the relevant quantities for leptogenesis can be different to
the Lagrangian parameters above the scalar phase transition where all vevs are still zero.
As we will focus on low-scale leptogenesis scenarios, the energy scale at which leptogenesis
happens is going to be close to the EW phase transition2 and therefore we will assume that
leptogenesis happens between the temperature at which the singlet scalar field obtains its
vev TS and the temperature of the EW phase transition Tew. Since we do not want these
different processes to directly affect each other, we have to ensure TS � Tew.

Denoting the quantities for temperatures above TS with a tilde, we get for the Lagrangian
the standard type-I seesaw terms augmented by the interactions of the real scalar S̃

−L ⊃
[
h̃αi `αÑiH +

1

2

(
M̃ij + α̃ijS̃

)
ÑiÑj + h.c.

]
+ V

(
H, S̃

)
, (3.1)

where i, j = 1, 2 enumerates the RHNs and α = e, µ, τ the flavors. The fields H =(
H+, H0

)T and `α = (να, αL)T correspond to the SM Higgs doublet and the three SM
left-handed charged lepton doublets, respectively. We denote the usual RHN-lepton-Higgs
Yukawa matrix by h̃, M̃ is the matrix of high scale RHN masses whose dynamical origin
is left unspecified for the purposes of this work and α̃ characterizes the strength of the
novel singlet-RHN Yukawa interactions.

The scalar potential V
(
H, S̃

)
can be separated into two parts, namely the part Veven con-

taining all terms that are even with regard to S̃ and the part Vodd with all correspondingly
odd terms. Explicitly, we have V

(
H, S̃

)
= Veven + Vodd, with

Veven
(
H, S̃

)
= m̃2

H |H|2 +
1

2
m̃2
S S̃

2 + λH |H|4 +
1

2
λSH S̃

2 |H|2 +
1

4
λS S̃

4 ,

Vodd
(
H, S̃

)
= c̃S S̃ + µ̃SH S̃ |H|2 +

1

3
µ̃S S̃

3 .

(3.2)

It will turn out that the overall shape of the scalar potential is not crucial to successfully
realize leptogenesis, with the exception of the trilinear coupling between the scalar and
two SM Higgs fields. This trilinear coupling can in general appear from two different
terms in the potential for the period of leptogenesis. Either due to the µ̃SH S̃ |H|2 term
that is present already at high temperatures, or from the quartic term 1

2 λSH S̃
2 |H|2 after

the scalar gets a vev (cf. Eq. (3.2) and definition of the shifted scalar above Eq. (3.3)).
The second option leads to a trilinear coupling even if there is a Z2 symmetry S̃ → −S̃.
For the rest of our analysis we will assume this Z2 symmetry at high energies, since it
decreases the number of free parameters in the scalar potential while not restricting the
generality of our results. Thus, all terms of Vodd are not present in our scalar potential.
As only the value of the trilinear coupling during the time of leptogenesis is relevant for
our analysis, we are indifferent to how this value was generated from a potential at higher
temperatures. However, since the coupling of the scalar to the RHNs explicitly breaks this
Z2 symmetry, it can only be an approximate symmetry of our theory. On the other hand,
this also provides us with some intuition regarding the size of the corresponding couplings
α̃, as small values of α̃ are hence technically natural in the sense of ’t Hooft [65].

2Strictly speaking the EW phase transition is a cross-over with a critical temperature of Tc ≈ 159GeV [88].
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N2

`α

HS

N1

H N2

H

`αN1

S

N2

Figure 3.1.: Feynman diagrams for the decay N2 → `αH that are mediated by the singlet
scalar S and thereby enhance the CP asymmetry. The vertex correction to
the left relies on the trilinear coupling µS |H|2 together with the additional
α12 SN1N2 interaction of the singlet scalar that is also crucial for the self-
energy contribution to the right.

After the scalar phase transition at TS , which breaks the Z2 symmetry, we assume that
the scalar obtains a non-zero vev vS . We thus define the shifted scalar S by S̃ → vS + S
and also diagonalize the RHN mass matrix for our calculations. This transforms the high
temperature Lagrangian of Eq. (3.1) into the relevant one for leptogenesis

−L ⊃
[
hαi `αNiH +

1

2
(δijMj + αij S)NiNj + h.c.

]
+ V (H,S) , (3.3)

where we dropped all tildes to indicate that it is valid after the scalar phase transition. As
described before, the relevant part for leptogenesis of the scalar potential is the trilinear
coupling

V (H,S) ⊃ µS |H|2 , (3.4)

where we suppressed the indices of the coupling strength µSH to simplify the notation.
Note that the scalar S will only be able to modify the dynamics of leptogenesis if the
diagonalization of the RHN mass matrix does not simultaneously also diagonalize α. If it
would, the interactions of S with the RHNs would not induce any CP violation, because
the off-diagonal coupling α12 would be zero. Diagrammatically, this can be seen from the
Feynman diagrams shown in Fig. 3.1 that depict the additional possibilities to generate a
CP asymmetry in the real singlet scalar model via the trilinear coupling and interactions
parameterized by α. The standard diagrams to generate a CP asymmetry can be found
from Fig. 2.1 by replacing the scotogenic model specific Higgs doublet η by the SM Higgs
doublet H.

To connect the parameters of leptogenesis to the quantities that can be determined
from current experiments, we have to keep in mind that the vev of the scalar vS can
receive corrections during the EW phase transition. This would make another shift of the
scalar necessary, which implicitly defines the low-energy scalar s via S → v0

S − vS + s,
in combination with another diagonalization of the RHN mass matrix. However, these
corrections to vS during the EW phase transition are related to αij and therefore small in
our scenario, so we can safely neglect them for the analysis of leptogenesis. Nevertheless
using a zero to indicate low-energy quantities valid today, we get after EW symmetry
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breaking the low-energy Lagrangian of

−L ⊃
[
h0
αi√
2
ναN

0
i h+

1

2

(
δijM

0
j + α0

ij s
)
N0
i N

0
j + h.c.

]
+ V (h, s) , (3.5)

where h denotes the physical SM Higgs boson with a mass of 125GeV.

Similarly to what we did for the scotogenic model in Ch. 2, we can, by starting from
the Lagrangian of Eq. (3.5), find a description of the active neutrino mass matrix mν and
finally use a CI parametrization to express the Yukawa couplings h0 in terms of measured
quantities and free variables. The first step is, following along the lines of the type-I
seesaw mechanism [26–30], to block-diagonalize the full neutrino mass matrix implicit in
the Lagrangian of Eq. (3.5). In this way, we find the standard type-I seesaw formula

mν = −mDD
−1
N mT

D , (3.6)

where mD = h0/
√

2 vew is the active neutrino Dirac mass matrix and the diagonal RHN
mass matrix is denoted by DN = diag

(
M0

1 ,M
0
2

)
. This mass matrix for the active neutrinos

mν can be diagonalized in general by a matrix U via Dν = UT mν U , where U is the
PMNS matrix [67, 68] if one is in the charged lepton flavor basis. Reshuffling terms and
introducing the CI parametrization [66] through the 3 × 2 matrix R then allows us to
express the Yukawa couplings as

h0

√
2

=
i

vew
U∗D1/2

ν RD
1/2
N . (3.7)

As in Sec. 2.4, the CI parametrization depends on one complex rotation angle z and
satisfies RTR = 1.

Since we will neglect flavor effects, the important quantity for leptogenesis is going to
be h†h ≈ h0†h0 (cf. Ch. 2), which in this case is given by

h0†h0

2
=

1

v2
ew
D

1/2
N R†DνRD

1/2
N (3.8)

and independent of the PMNS matrix. The right-hand side of Eq. (3.8) depends on the
experimentally measurable quantities vew = 246GeV together with the active neutrino
mass squared differences ∆m2

sol and ∆m2
atm, for which we will take the values from the

NuFIT global-fit analysis of [121]. In addition, it also depends on the RHN masses
M0

1 ≈M1 and M0
2 ≈M2 as well as the CI parameter z, which we will treat as free input

parameters.

3.2 CP Asymmetry Generation

The origin of the CP asymmetry in the real singlet scalar model are the CP violating
decays of the RHNs Ni → `αH and Ni → `†αH†, where the amount of CP violation is
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quantified by the CP asymmetry parameter (cf. (B.51))

εi =

∑
α

[
Γ(Ni → `αH)− Γ(Ni → `†αH†)

]∑
α

[
Γ(Ni → `αH) + Γ(Ni → `†αH†)

] . (3.9)

This can for the standard type-I seesaw case be explicitly calculated to be [83]

ε0
i =

1

8π (h†h)ii

∑
j 6=i

Im
[(
h†h
)2

ji

]
F
(
Mj

Mi

)
, (3.10)

where the loop function F(·) is defined by

F(x) = x

[
1 +

(
1 + x2

)
ln

(
x2

x2 + 1

)
− 1

x2 − 1

]
. (3.11)

For the real scalar singlet model we have in addition to the standard CP violating
diagrams leading to Eq. (3.10) also the diagrams depicted in Fig. 3.1 that account for the
contribution of the scalar singlet. However, this extra contribution does not influence the
CP asymmetry from N1 decays because the decay N1 → N2S is kinematically forbidden3.
For ε2 on the other hand, we get further vertex (v) and self-energy (s) contributions as
displayed in Fig. 3.1. Thus we can write the total CP asymmetry parameters as

ε1 = ε0
1 ε2 = ε0

2 + εv2 + εs2 (3.12)

and the additional terms have been determined by Ref. [94] to be

8π
(
h†h
)

22
εv2 = Im

[(
h†h
)

12
β2 α21

]
Fv

21, R + Im
[(
h†h
)

12
β2 α

∗
21

]
Fv

21, L , (3.13a)

8π
(
h†h
)

22
εs2 = Im

[(
h†h
)

12
α21 α11

]
F s

211, RR + Im
[(
h†h
)

12
α∗21 α11

]
F s

211, RL

+ Im
[(
h†h
)

12
α21 α

∗
11

]
F s

211, LR + Im
[(
h†h
)

12
α∗21 α

∗
11

]
F s

211, LL ,

(3.13b)

where β2 := µ/M2 comes from the dimensionful parameter µ of the trilinear coupling in
the scalar potential (cf. Eq. (3.4)). In App. C we provide the full expressions for the loop
functions of Eq. (3.13). The appearing indices R and L denote whether the scalar field S
interacts with left-chiral or right-chiral RHN spinor fields.
From the additional CP asymmetries given by Eq. (3.13) we can see the importance

of the off-diagonal coupling α12 between the RHNs and the singlet, which we already
touched on in our discussion of Fig. 3.1. Only if this coupling is non-vanishing can the
CP asymmetry ε2 be enhanced due to the presence of the additional real scalar singlet.
Another important aspect is that the singlet scalar is in a sense secluded from the N1

sector as the decay N1 → N2S is kinematically forbidden for low energies. This implies

3In general, CP violation is linked to the imaginary part of the Feynman diagram and can therefore be
calculated via the optical theorem (cf. e.g. [122]) or Cutkosky’s cutting rules. They imply that for a
CP asymmetry to be generated one needs a loop diagram in which the particles in the loop can go
on-shell, which is not the case for the N1 decay.
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Figure 3.2.: Comparison of the absolute value of the CP asymmetry ε2 in dependence
on the heavy RHN mass M2 in comparison to the approximations of the
different contributions given by Eqs. (3.14, 3.15). For the comparison we
choose αij = 10−3, µ = 1TeV, z = −π/4 + i and mS �M2. The solid lines
represent the exact result, whereas the dashed lines show the approximations
and the dot-dashed lines depict the sum of the approximations. The orange
lines correspond to the approximation of εv2, the pink lines to εs2 and the
brown lines to ε0

2.

that the asymmetry generated in the N2 sector is not necessarily counteracted by an
enhanced washout in the N1 sector, as it would be in the standard leptogenesis scenario
(cf. discussion on N1 dominated leptogenesis in Ch. 2).

The expressions for εv2 and εs2 of Eq. (3.13) simplify significantly for a hierarchical RHN
mass spectrum. Thus, in the case of M2 �M1, one obtains for a DI-type bound [94] with
mS being the mass of the new scalar

|εv2| .
|µα21|
8πM2

√
M1

M2

(
1− m2

S

M2
2

)
,

|εs2| .
|α21 α11|

16π

√
M1

M2

(
1− m2

S

M2
2

)2

.

(3.14)

Furthermore, we can in the hierarchical regime similarly approximate Eq. (3.10) by a
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DI-type bound, for which we find in the case of two RHNs (cf. [94]4)

∣∣ε0
2

∣∣ . ∑
αmνα

8πvew2
M2

M2
1

M2
2

log

(
M2

2

M2
1

)
, (3.15)

with the active neutrino masses mνα . In Fig. 3.2, we show how the exact expressions
for |ε2| of Eq. (3.12), with Eqs. (3.10, 3.13), compare to the DI-type bounds given by
Eqs. (3.14, 3.15). As can be seen from Fig. 3.2, the CP asymmetry is larger for smaller
differences between M1 and M2. Furthermore, the additional contributions due to the
singlet scalar are significant for masses of N2 below ∼106 GeV and can lead to a substantial
enhancement of the CP asymmetry. Especially, the new vertex contribution εv2 becomes
important for very small masses of N2 since it scales with 1/M2 (cf. Eq. (3.14)). Thus,
from small to large values of M2, first, the vertex contribution εv2 is dominant, before the
self-energy contribution εs2 prevents a further decrease of the CP asymmetry, until finally
the standard contribution ε0

2 takes over and the CP asymmetry increases as usual with
the RHN mass. However, in similarity to Ch. 2, when we use these new processes to lower
the energy scale of leptogenesis, at some point ∆L = 2 processes will lead to a stronger
washout, thereby limiting the efficiency of leptogenesis. We will address this effect and
its consequences in detail in Sec. 3.3.2, but first try to develop an understanding for the
situation in which these scattering processes are still negligible.

3.3 Boltzmann Equations and a Semi-Analytical Solution

To gain a semi-analytical understanding of leptogenesis in the singlet scalar assisted model,
we use the Boltzmann equations for the normalized number densities NNi and the B − L
asymmetry NB−L for our set of assumptions and couplings as laid out in the introduction
to Ch. 3 and Sec. 3.1. They include in addition to the standard decays and inverse decays
of RHNs into Higgses and leptons also the processes induced by the new singlet scalar
S. Furthermore, they capture the ∆L = 2 washout through the scatterings NiNj → HH
mediated by the singlet scalar S, which is the most relevant washout other than the one
from inverse decays. For more information on Boltzmann equations and some of the
appearing quantities see App. B5.
Explicitly, the Boltzmann equations read [94]

dNN2

dz1
= −(D2 +D21) ∆N2 +D21 ∆N1

−∆N1N2 SN1N2→HH −∆N2N2 SN2N2→HH ,
(3.16a)

dNN1

dz1
= −(D1 +D21) ∆N1 +D21 ∆N2

−∆N1N2 SN1N2→HH −∆N1N1 SN1N1→HH ,
(3.16b)

dNB−L
dz1

= −
2∑
i=1

εiDi∆Ni −WNB−L , (3.16c)

4The difference by a factor of two is related to the different definition of the vev v.
5Note that the conventions for the quantities in the Boltzmann equations can deviate slightly from
App. B to match Ref. [94].
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where the temperature (or time) dependence is encoded in

∆Ni(z1) :=
NNi(z1)

N eq
Ni

(z1)
− 1 , (3.17a)

∆NiNj :=
NNiNNj

N eq
Ni
N eq
Nj

− 1 , (3.17b)

N eq
Ni

(z1) =
z2
i

2
K2(zi) , (3.17c)

Di(z1) = Ki zi
K1(zi)

K2(zi)
N eq
Ni

(z1) , (3.17d)

D21(z1) = K21 z2
K1(z2)

K2(z2)
N eq
N2

(z1) , (3.17e)

W (z1) =
∑
i

1

4
Ki z

3
i K1(zi) (3.17f)

and SN1N2→HH(z1), which we will discuss in more detail in Sec. 3.3.2. The CP asymmetry
parameter εi appearing in Eq. (3.16c) has been discussed in Sec. 3.2. Note that the
inverse dimensionless temperature for the i-th RHN, zi := Mi/T , can be converted into a
dependence on z1 by using zi = z1Mi/M1. Furthermore, Ka stands for the a-th modified
Bessel function of the second kind.

The decay parameters are given by

Ki ≡
Γ(Ni → LH)

H(T = Mi)
=

√
45

64π5g∗

MPl

v2
ew

(
MR

ν

)
ii
, (3.18)

where we used the Hubble parameter from Eq. (A.10) and MR
ν represents the CI

parametrization we introduced for the Yukawa couplings (cf. Eq. (3.7)) via

MR
ν ≡ R†DνR . (3.19)

It is important to realize that the decay parameters Ki are independent of the RHN masses
and that they generally fulfill Ki & 8 for the case of two RHNs. Thus, we are always in
the strong washout regime (cf. Sec. 2.3). The reason that the N2 sector can nevertheless
be relevant for leptogenesis is due to the singlet scalar S which modifies the N2 sector in
a different way than the N1 sector, where the difference of the sectors is rooted in the fact
that the decay N1 → N2S is kinematically forbidden whereas N2 → N1S is not. For the
new decay channel we have a decay parameter of

K21 :=
Γ(N2 → N1S)

H(T = M2)
, (3.20)

with the decay width [94]

Γ(N2 → N1S) =
|α12|2M2

16π

[
(1 + r12)2 − σ2

]√
δ12 , (3.21)
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Figure 3.3.: Exemplary solution to the Boltzmann equations, Eqs. (3.16), in terms of the
normalized RHN number densities (red and blue line) and baryon-to-photon
ratio ηB (green line) for M1 = 2TeV, M2 = 6TeV, mS = 500GeV = µ,
mH = 0 and αij = 10−3. The CI parameter was set to z = 0.25i and results
in K1 ≈ 12 and K2 ≈ 51, while we have K21 ∼ 106.

where we used

rij := (Mi/Mj)
2 , σi := m2

S/M
2
i , δij := (1− rij − σj)2 − 4 rij σj . (3.22)

The new decay parameter is in our parameter space of interest typically very large, for
example we have K21 ∼ 106 for M2 = 1TeV and α12 = 10−3. This is very important for
the RHN number densities NNi to be strongly out of equilibrium and thereby to help
facilitating low-scale leptogenesis. We will now neglect the scattering terms SN1N2→HH
in the Boltzmann equations, whose influence we will address in Sec. 3.3.2, and develop a
semi-analytical understanding of the situation in which scattering processes are negligible.

An exemplary solution to the Boltzmann equations, Eqs. (3.16), without ∆L = 2
scatterings can be seen in Fig. 3.3, from which we can observe that the lepton or B − L
asymmetry generation proceeds in three steps. At first, the B − L asymmetry is build up
strongly by the N2 decays until z1 ∼ 0.5, especially due to the enhanced CP asymmetry of
the new decay channels. In a second phase until z1 ∼ 2.5, the N1 decays also lead to a CP
asymmetry that is however significantly smaller for M1 . 106 GeV (cf. Fig. 3.2 and [94]).
At the same time, due to the large coupling of the N1 and N2 sector via K21, the N1

decays also create a deviation in the N2 number density from equilibrium and thereby
lead to additional CP violating decays. Both of these effects combined, together with the
washout, lead to a slow decrease of the baryon-to-photon ratio ηB . Finally, in a third phase
for z1 & 2.5, the washout dominates and exponentially suppresses the baryon asymmetry
before it freezes out and becomes constant, as can be seen by the initially comparably
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sharp decline of ηB before it flattens off in the corresponding region of Fig. 3.3.

Like in the usual case, the B−L asymmetry generated in the RHN decays gets converted
into a baryon asymmetry by SU(2)-sphalerons that are in equilibrium until a temperature
of Tsph = 131GeV [88]. Thus, any process that happens at lower temperatures and does
not explicitly violate baryon number can not influence the baryon asymmetry. This implies
that the washout after Tsph will not affect the baryon-to-photon ratio, which can be
used to circumvent part of the washout and to find low-scale leptogenesis scenarios with
M1 . Tsph . M2 (cf. Ref. [94]). However, we want to refrain from using this possibility and
hence find for the final baryon-to-photon ratio ηB ≈ 0.01NB−L(z =∞) (cf. Ch. 2), where
the prefactor takes into account sphaleron conversion and subsequent entropy generation.

Note that the example of Fig. 3.3 highlights the different regimes, but falls short of
producing the BAU by roughly two orders of magnitude. Thus, it is either necessary to
increase the amount of CP violating due to the RHN decays by an increase of the trilinear
coupling µ (cf. Eq. (3.14)), which we will find to be limited by ∆L = 2 scattering processes
in Sec. 3.3.2, or to accept a smaller separation of the RHN masses, which will enhance the
CP asymmetry (cf. Fig. 3.2) and suppress the washout (cf. discussion on Fig. 3.3), thereby
increasing the efficiency of leptogenesis. To analyze both of these paths, it is helpful to
develop a semi-analytical understanding for the baryon-to-photon ratio and determine its
limits of validity in order to facilitate an analysis of the whole parameter space.

3.3.1 A Semi-Analytical Solution

Working in the regime where ∆L = 2 scatterings are negligible and the N1 and N2 sectors
are strongly coupled through large values of the decay parameter K21, it turns out to be
possible to separate the creation of a B − L asymmetry into a generation in the N2 sector
combined with a washout from the N1 sector. In terms of a formula this can be expressed
by (cf. [34])

ηB ≈ 0.01 ε2 κ2(K2, r12) e−ω(K1, r12) , (3.23)

which depends on the squared mass ratio r12 = (M1/M2)2 and the decay parameters K1

and K2. The reason this ansatz works for our case is that the dominant contribution to
the CP violation and thus the B − L asymmetry comes from the N2 decays, while the N1

sector mainly leads to a washout of the asymmetry.

In the standard case of a hierarchical RHN spectrum, the washout and efficiency functions
are given by ω = 3π/8K1 and κ2 = 2/zB(K2) with zB(K2) = 2 + 4K2

0.13 e−2.5/K2 [34].
However, as one of our paths to reach a larger baryon asymmetry is by a smaller separation
of RHN masses, these functions will be more complicated in our case since we want them
to hold for RHN masses of the same order (but non-degenerate)6. Allowing these functions
to have a more general form and to depend on the squared mass ratio r12, we find as a

6A similar setting for the type-I seesaw case has been studied in Ref. [123].
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Figure 3.4.: Comparison of the efficiency factor κ2 and the N1 washout function ω be-
tween the numerical results (solid lines) and the fit functions presented in
Eqs. (3.23, 3.24) (dashed lines). The color coding displays the relative devia-
tion of the fit functions to the numerical results and is for nearly all of the
parameter space less than 10 %.

good fit of the N2 efficiency factor κ2 and the N1 washout function ω:

κ2(K2, r12) =
2

zB(K2)

K0.44
2 r−0.2

12

0.3K2 + 1.6 r2.6
12

, (3.24a)

ω(K1, r12) =
3π

8

(
−K0.5

1 (1.4 r2
12 − 2.1 r12 + 0.8) ln(r12) + 1.2K0.2

1

)
. (3.24b)

A comparison of these semi-analytical solutions to the numerically determined values is
shown in Fig. 3.4. The way that the efficiency κ2 and the washout function ω are extracted
from the numerical solution of the Boltzmann equations is by starting from the maximal
B − L asymmetry Nmax

B−L := maxz NB−L(z) and then extracting κ2 = Nmax
B−L/ε2 ≥ 0 and

ω = ln(Nmax
B−L/NB−L(∞)) ≥ 0 in the spirit of Eq. (3.23). By means of Fig. 3.4, we find

that the semi-analytical solutions of Eqs. (3.24) are accurate for nearly all of our region of
interest with a deviation of less than 10 %. Note that in contrast to the standard formulas
of [34], the efficiency κ2 can in our case be larger than one. The reason for this is the
strong coupling of the N1 and N2 sector through the large values of K21, as described in
Sec. 3.3, leading to additional CP violation in the N2 sector.

This semi-analytical description of the final baryon-to-photon ratio enables us to describe
the regime with a smaller separation of RHN masses and therefore one of the paths leading
to a larger final baryon asymmetry. Furthermore, they can also describe the other path to
a larger baryon asymmetry by an increase of the CP violation through larger values of
the trilinear coupling µ as long as the ∆L = 2 scatterings remain negligible. To verify
this claim and to determine when the scatterings become important will be the guiding
questions of the next section.
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3.3 Boltzmann Equations and a Semi-Analytical Solution

3.3.2 Washout from Scattering Processes

The most relevant washout other than the one by inverse decays is due to the ∆L = 2
scatterings NiNj → HH mediated by the singlet scalar and encoded in the Boltzmann
equations (cf. Eqs. (3.16) and [94]) by the term SN1N2→HH . The corresponding scattering
cross section is given by [110]

σNiNj→HH(s) =
|(αα†)ji|2µ2

8π

s− (Mi +Mj)
2

(s−m2
S)2
√
δMi,Mj (s)

, (3.25)

with

δMi,Mj (s) = (s−M2
i −M2

j )2 − 4M2
iM

2
j . (3.26)

This also quantifies the statement that the ∆L = 2 scatterings increase with the trilinear
coupling µ and therefore will limit the achievable baryon asymmetry for too large values
of µ. Using the scattering cross section of Eq. (3.25), we can now give an explicit expression
for the scattering functions SN1N2→HH [94]

SNiNj→HH ≡
Mi

64π2H(T = Mi)

∫ ∞
wmin

dw
√
wK1(

√
w) σ̂NiNj→HH

(
wM2

i

z2
i

)
, (3.27)

with wmin = (Mi +Mj)
2 and

σ̂NiNj→HH(s) =
1

s
δMi,Mj (s)σNiNj→HH(s) . (3.28)

With the full expressions for the scattering functions SN1N2→HH at hand, we can finally
compare the full numerical results with ∆L = 2 scatterings to the semi-analytic functions
determined in Sec. 3.3.1. A sample of these comparisons is depicted in Fig. 3.5 and shows
that the semi-analytical solutions agree well with the full numerical solution including
scatterings for small enough values of the trilinear coupling µ. Explicitly, we can estimate
that the semi-analytical solutions are an accurate description for

µ < µ∗ ≈M1

(
0.5

δM

)(
10−3

α

)
, (3.29)

with

δM :=
M2 −M1

M1
(3.30)

and we have fixed all couplings between the singlet scalar and the RHNs to be equal for
simplicity αij ≡ α. We want to remark that Fig. 3.5 only represents a sample of parameter
points investigated and we checked the estimate for µ∗, Eq. (3.29), to be accurate for a
larger range of parameters.
There are two important aspects for our analysis that are visible from Fig. 3.5. First,

to reiterate, the semi-analytical solution is a good approximation for the full numerical
solution for µ ≤ µ∗. Second, for values around µ ≈ µ∗ the final baryon-to-photon ratio

41



3. Singlet Scalar Assisted Leptogenesis

101 102 103 104

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7
η B

M1 = 0.5 TeV, M2 = 0.7 TeV,
mS = 100 GeV, α = 10−3

exact

semianalytic

10−5

10−3

10−1

101

103

|η B
−
η

n
o

sc
at
.

B
|/η

B

101 102 103 104

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7

η B

M1 = 2.0 TeV, M2 = 4.0 TeV,
mS = 1000 GeV, α = 10−3

exact

semianalytic

10−5

10−3

10−1

101

103

|η B
−
η

n
o

sc
at
.

B
|/η

B

101 103 105

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7

η B

M1 = 10.0 TeV, M2 = 20.0 TeV,
mS = 100 GeV, α = 10−3

exact

semianalytic

10−5

10−3

10−1

101

103

|η B
−
η

n
o

sc
at
.

B
|/η

B

101 102 103 104

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7

η B

M1 = 0.5 TeV, M2 = 0.7 TeV,
mS = 100 GeV, α = 10−4

exact

semianalytic

10−5

10−3

10−1

101

103
|η B
−
η

n
o

sc
at
.

B
|/η

B

101 102 103 104

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7

η B

M1 = 2.0 TeV, M2 = 4.0 TeV,
mS = 1000 GeV, α = 10−4

exact

semianalytic

10−5

10−3

10−1

101

103

|η B
−
η

n
o

sc
at
.

B
|/η

B

101 103 105

µ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

10−7

η B

M1 = 10.0 TeV, M2 = 20.0 TeV,
mS = 100 GeV, α = 10−4

exact

semianalytic

10−5

10−3

10−1

101

103

|η B
−
η

n
o

sc
at
.

B
|/η

B

Figure 3.5.: Comparison of the full numerical solution to the Boltzmann equation for
the final baryon-to-photon ratio ηB (cf. Eq. (3.16c)), displayed as a solid
red line, to the semi-analytical solution (cf. Eqs. (3.23, 3.24)), shown as a
dashed red line, in dependence on the trilinear coupling µ for several points in
parameter space. The different rows display different values of αij ≡ α, while
the columns correspond to different masses. The dashed gray line depicts µ∗ as
defined in Eq. (3.29) and thus an estimate of when ∆L = 2 scatterings become
important. In dashed blue, the relative deviation of the numerical solution
with and without scatterings is shown. This relative deviation measures how
important scatterings are and implicitly defines µ∗ by the condition that the
relative deviation is ∼0.1 for µ∗.

ηB reaches its maximal value, since for larger trilinear couplings the additional washout
due to the ∆L = 2 scattering processes is stronger than the additionally generated CP
asymmetry. These two aspects combined enable us to use the semi-analytical functions,
Eqs. (3.23, 3.24), to determine the viable parameter space for low-scale leptogenesis in our
next and final step.

3.4 Viable Parameter Space for Low-Scale Leptogenesis

As detailed in Sec. 3.1, we consider for the parameter space analysis the minimal example of
a Z2 symmetric potential with a real singlet scalar as specified by Veven(H, S̃) in Eq. (3.2).
Furthermore, we focus on the scenario of low-scale leptogenesis, so we want to show that
the BAU can be created within the model for very low RHN masses. Therefore, we will
fix in two benchmark scenarios M1 = 500GeV and M1 = 10TeV, and demonstrate that
for both of these masses successful leptogenesis is possible. However, we will see that
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3.4 Viable Parameter Space for Low-Scale Leptogenesis

the parameter space in which this is the case is substantially bigger for M1 = 10TeV
compared to M1 = 500GeV, where only a very restricted combination of parameters
enables leptogenesis. For M2 we find that a mass splitting parameter (cf. Eq. (3.30)) of
δM = 0.3 is approximately optimal for the creation of a baryon asymmetry and we fix
M2 accordingly. This corresponds to a modest degeneracy of the RHN masses, which
is necessary to strike an optimal balance between maximizing the CP asymmetry while
minimizing the washout. For the CI parameter we choose z = 0.25i, as in Fig. 3.3, since
this ensures a small decay parameter K1 and therefore a not too strong washout in the
N1 sector.

This leaves us with the trilinear coupling µ and the new scalar mass during leptogenesis
mS as important parameters with simple bounds. As discussed in Sec. 3.3.2, the trilinear
coupling has to be smaller than µ∗ (cf. Eq. (3.29)) for the semi-analytical solutions to hold,
and the scalar mass is restricted by the fact that for the singlet scalar to lead to additional
CP violation, εv/s2 6= 0, it needs to fulfill mS < M2 −M1 (cf. Sec. 3.2). Due to this, we
choose mS and µ to span the parameter plane in which we will depict the scan results
and limits. However, mS and µ are not explicit parameters of our theory but depend on
the scalar potential Veven(H, S̃) (cf. Eq. (3.2)) with the quantities m̃H , m̃S , λH , λSH and
λS . For our analysis we want to focus on the case in which the new scalar and the SM
Higgs do not decouple at low energies, but instead mix. This implies that the present
day scalar vev v0

S has to be non-vanishing, as we will see. We remark that a symmetry
restoration scenario in which the scalar vev is non-zero for a limited time-period during
the evolution of the universe could give rise to interesting phenomenology and therefore
provides a potential starting point for further research.

Let us now provide the links of the fundamental parameters in the scalar potential to
the ones we use for our leptogenesis parameter scan. The most direct link exists for the
new scalar mass, which is simply

m̃2
S = −1

2
m2
S . (3.31)

Furthermore, by taking λS to be a free parameter, we find for the scalar vev in the present
day (low-energy) vacuum

v0
S =

√
m2
S − λSHv2

ew
2λS

, (3.32)

which includes λSH and is showing that v0
S can only vanish for λSH > 0. Thus, we will

distinguish the cases λSH > 0 and λSH < 0. The parameter λSH can be determined via

λSH =
2µµS
3m2

S

, (3.33)

where the singlet self coupling µS is implicitly defined through

λS = 2

(
µS

3mS

)2

. (3.34)
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3. Singlet Scalar Assisted Leptogenesis

Additionally, we find for the mixing angle between the SM Higgs and the new singlet

tan θ =
λSHv

0
Svew

2λS(v0
S)2 −m2

h0

(3.35)

that can be easily converted into sin θ, which is the parameter for which experimental limits
are usually given. Furthermore, in Eq. (3.35) the SM Higgs mass mh0 = 125.1GeV [8]
appears and it also makes the statement explicit that for non-zero mixing we need v0

S 6= 0.
Finally, we have for the quartic Higgs coupling

λH =
m2
h0

2v2
ew

+ tan θ
λSHv

0
S

2vew
, (3.36)

for the low-energy new scalar mass

m2
s0 = m2

S + tan θ λSHvewv
0
S , (3.37)

and for the Higgs mass parameter

m̃2
H = −1

2
λSH(v0

S)2 − λHv2
ew . (3.38)

The above relations will allow us to convert the theoretical and experimental limits from
several sources into bounds on the viable parameter space.

From a theoretical perspective, the couplings in the scalar potential are not completely
free, but need to adhere to certain restrictions. First, for the perturbative treatment to
be valid, the quartic couplings have to fulfill λH , λS , |λSH | < 4π. However, in the light
of perturbative unitarity bounds [124], we will use a more conservative limit of |λi| < 3.
Second, as we want the scalar potential to be bounded from below, we need λH , λS ≥ 0
together with λSH > −2

√
λHλS . It will turn out that of these restrictions, only λH < 3

will provide dominant limits to our parameter space.

Additionally, the mixing angle between the SM Higgs and the new scalar (cf. Eq. (3.35))
can be restricted by two different kinds of measurement at colliders. From signal strength
measurements of the SM Higgs, one can derive a limit of sin θ . 0.3 [114, 125], while there
are also limits from searches for resonant scalar singlet production at the LHC. Both of
them will be relevant to restrict our parameter space and for the resonance searches we
will work with the limits provided by the CMS collaboration based on 36 fb−1 of data at
13TeV [119, 126]. The resonance searches provide stronger limits than the Higgs signal
strength measurements in the range of new scalar masses of 200GeV . mS . 800GeV.
Another limit from collider physics appears for small scalar masses ofms0 < mh0/2 because
there the SM Higgs can decay into two new scalars. As this decay would be invisible at
the LHC, the current bounds on invisible Higgs decays of BR(h→ inv) ≤ 0.23 [127, 128]
apply. To access the branching ratio, we need to compare the decay width of h0 → s0s0

given by

Γh0→s0s0 =
λ2
SHv

2
ew

32πmh0

√
1− 4m2

s0

m2
h0

(3.39)
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Figure 3.6.: Parameter space scans of the real scalar singlet model using the semi-analytical
functions Eqs. (3.23, 3.24) to asses the viability of leptogenesis. The excluded
regions due to different limits are shown in corresponding colors as laid out by
the legends. Only the limits that are significant for at least one of the cases
are shown. See text for details and parameter values.

to the total Higgs decay width including the visible SM channels that have a decay width
of Γh0 ≈ 4.03MeV for mh0 [129].
Besides the already mentioned limits of mS < M2 −M1 for the N2 → N1S decay to

be kinematically allowed and v0
S > 0 to not be in a symmetry restoration scenario, this

leaves us with the choice of λS . As λS does not influence the resulting baryon asymmetry,
we can use its numerical values to ensure the desired phase transition pattern as laid out
in Sec. 3.1. To do so, we fix λS = 10−3 since this leads to smaller thermal corrections for
the singlet mass parameter in comparison to the Higgs mass parameter (cf. [107, 109])7.

With all the relevant bounds at hand, we can scan the parameter space with the help of
our semi-analytical solutions, Eqs. (3.23, 3.24), and identify viable regions. The results
of this parameter scan are shown in Fig. 3.6, from which we can see that singlet scalar
assisted leptogenesis can create the BAU for RHN masses of as low as ∼500GeV with
corresponding scalar masses of mS ∼ 50GeV. Note that for the results of Fig. 3.6 we have

7If a higher scalar phase transition temperature is necessary to realize leptogenesis, it can be achieved by
picking a smaller λS .
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3. Singlet Scalar Assisted Leptogenesis

set the RHN mass splitting to δM = 0.3 and thereby admitted a modest degeneracy of
RHN masses. A lower degeneracy is also possible, but comes at the expense of higher
necessary RHN masses. Although in the viable (white) region of Fig. 3.6 the baryon
asymmetry is strictly speaking too large, it can always be reduced to the measured BAU
by adjusting the mass splitting between the RHNs or the CI parameters. For masses below
M1 ∼ 500GeV, singlet scalar assisted leptogenesis soon becomes under pressure as the
window due to the restriction on the scalar mass closes and the conversion of a lepton into
a baryon asymmetry has to finished before Tsph ≈ 130GeV [88]. On the other hand, larger
RHN masses like M1 = 10TeV (cf. right panels of Fig. 3.6) allow for a larger viable region
of parameter space with corresponding scalar masses in the range 600GeV . mS . 3TeV.
It is interesting to note that both of these mass ranges for M1 or mS are accessible to
current (and future) experiments, with the main restrictions coming from collider limits
on the Higgs sector in contrast to Ch. 2 where the experimental accessibility was through
the active neutrino sector.

3.5 Summary

In this chapter, we have, by analyzing the singlet scalar assisted model, investigated
another option to create the BAU via low-scale leptogenesis, while following the same
guiding principles as in Ch. 2. The singlet scalar assisted model enlarges the SM by two
RHNs and a real singlet scalar that modifies the scalar potential through interactions with
the Higgs field and serves as the low-energy effective theory of a large class of UV-complete
models. It therefore represents a simple and rather general modification to the standard
type-I seesaw framework. The possible coupling of the new scalar S to the two RHNs N1

and N2, opens up the additional decay channel N2 → N1S, which leads to an increased
lepton (or baryon) asymmetry created in the N2 sector through a larger CP asymmetry
and stronger deviation from thermal equilibrium. Combined with a not too strong washout
in the N1 sector, this effect enables low-scale leptogenesis even below the TeV scale without
the need for a strongly degenerate RHN mass spectrum.
For the analysis, we developed a semi-analytical solution for the resulting baryon-to-

photon ratio, Eqs. (3.23, 3.24), that accurately reproduces the full numerical result and
allows for an efficient study of the parameter space. These solutions also incorporate
the data on the low-energy active neutrino sector by employing a CI parametrization.
We used the semi-analytical solutions to study in more detail the viable parameter
space for two benchmark scenarios, covering a very-low-scale leptogenesis scenario of
M1 = 500GeV with scalar masses (at the time of leptogenesis) of around mS ∼ 50GeV
and a low-scale leptogenesis scenario of M1 = 10TeV with scalar masses in the range
600GeV . mS . 3TeV. The main result we found is that leptogenesis can account for
the BAU in both of these scenarios, with the viable parameter space being significantly
smaller for the very-low-scale version. Thus M1 ∼ 500GeV provides a rough estimate of
how small the lightest RHN mass can be in the singlet scalar assisted model to allow for
successful leptogenesis. Furthermore, both of these benchmark regions turn out to be
accessible by current and future experiments, mostly through measurements of the Higgs
sector.
In addition to the mentioned symmetry restoration scenario, in which the scalar vev
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is only non-zero during a limited part of the evolution of the universe during which also
leptogenesis happens, further studies can also aim at a more precise determination of the
lower bound on M1. This would imply to extend Eq. (3.23) to take into account flavor
effects, as well as a more detailed treatment of the effects due to the electroweak phase
transition shortly before the SU(2)-sphaleron freeze-out. Moreover, it would be interesting
to embed the singlet scalar assisted model into a concrete UV-complete model, allowing
to predict important model parameters like the RHN-singlet Yukawa matrix αij or the
trilinear coupling µ from fundamental parameters.
With this, we want to conclude the discussion of SM extensions enabling low-scale

leptogenesis and therefore providing a possible explanation for the BAU. In our discussion,
we have analyzed two models that not only make low-scale leptogenesis possible, but are
also accessible by current and future experiments. While leptogenesis in the scotogenic
model can be probed by measurements of the neutrino sector and especially the lightest
active neutrino mass, singlet scalar assisted leptogenesis can potentially show up in LHC
measurements of the Higgs sector. This second kind of experiments will also be the focus
of our investigations in the next chapter, where we will shift our attention to DM as
another puzzling new physics effect and look at so-called next generation simplified DM
models, which we will compare by studying their LHC signatures.
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Chapter 4

Two Higgs Doublet Model +
Scalar or Pseudoscalar

In our study of low-scale new physics phenomena beyond the SM, we will, after looking at
leptogenesis as a possibility to explain the BAU, now change our focus to DM searches at
the LHC. Beside the discovery and analysis of the Higgs boson [130, 131], searches for
DM have been, and remain, one of the prime goals for studies of LHC data (cf. e.g. [132]
for a review), with weakly interacting massive particles (WIMPs) [133] being a common
candidate to look for. These WIMPs can escape the detector unnoticed and can therefore
lead to signatures with a substantial amount of missing transverse energy (MET), as the
particles recoiling against the WIMPs can oftentimes be detected. Although these MET
searches can generally be kept independent of specific theoretical models, a theoretical
framework is necessary to highlight important regions of parameter space, characterize a
possible discovery and enable a comparison to non-collider results like direct detection
(DD) and indirect detection (ID) [134].

Historically, supersymmetry was for a long time the main theoretical framework for DM
searches at the LHC to compare results in. With the non-discovery of supersymmetric
particles at the LHC [135] and also over time, the focus for the theoretical framework
shifted to DM effective field theories (EFTs) because they allow for a simple and model
independent way to account for the interaction of the SM with DM [136–141]. By
construction, EFTs are a good description for processes as long as the relevant momentum
transfer is substantially smaller than the mass scale of the particles mediating this process,
which is for example the case for DD [142]. However, this assumption does not necessarily
hold at colliders, where the momentum transfer can be of a similar order as the mass
scale of the mediating particle [143–148]. Due to this fact, the focus changed from DM
EFTs to the framework of simplified models [148, 149] (cf. e.g. [150] for a review) that
includes not only a DM candidate, but also a particle mediating the DM interactions.
Although improving on the DM EFTs by taking the mediating particle into account,
simplified models face problems of their own right. Besides allowing due to their simplicity
only for a limited set of experimental signatures and being already very constrained
by measurements, they also often violate theoretical restrictions like gauge invariance,
unitarity and renormalizability [151–157]. Therefore, with the next-generation DM models,
a new theoretical framework beyond the DM simplified models was developed to overcome
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these shortcomings, while still having a not too large set of free parameters. As laid out
by Ref. [134], the guiding principles for the next-generation DM models are:

(I) the model should preferably be a theoretically consistent extension of one of the
DM simplified models already used by the LHC collaborations;

(II) the model should still be generic enough to be used in the context of broader, more
complete theoretical frameworks;

(III) the model should have a sufficiently varied phenomenology to encourage comparison
of different experimental signals and to search for DM in new, unexplored channels;

(IV) the model should be of interest beyond the DM community, to the point that other
direct and indirect constraints can be identified.

The 2HDM+S and 2HDM+PS, which we will analyze in this chapter, are two notable
examples of these next-generation DM models. Within these models, as their name
suggests, we have in addition to a second Higgs doublet a singlet scalar or pseudoscalar,
which couples to a fermionic singlet DM particle. Since the scalar or pseudoscalar can mix
with the CP-even or CP-odd states of the two Higgs doublets sector, their interactions with
the DM are not secluded from the SM sector. Thus, both of these next-generation DM
models lead to a rich collider phenomenology beyond the expected simple MET signatures
(cf. [134, 142, 158–161]).

In an effort to better understand the LHC phenomenology of both models, we will
analyze the LHC channels that provide the strongest bounds, namely tt̄ resonance, mono-
Z and mono-h searches. Although the 2HDM+S and 2HDM+PS are very similar by
construction and all of these signatures appear in both models, we will show that there can
be sizable differences between the signal rates of the scalar and pseudoscalar version. Our
aim is thus to characterize and understand the similarities and differences of the respective
signatures of the two models, by contrasting the limits on the parameter space that can
be derived from current LHC data and analyses. Furthermore, we will project the reach of
the mono-Z limits for LHC upgrades and comment on possibilities to distinguish between
the 2HDM+S and 2HDM+PS in case of a signal detection. Our analysis goes beyond
the existing literature by updating some of the available LHC results on the 2HDM+PS
(cf. [134, 160]) and providing new results for the 2HDM+S, together with a comparison of
both of these models. We remark that the work and results presented in this chapter are
based on Ref. [162].

4.1 Model Description of the 2HDM + Scalar / Pseudoscalar

The two models we want to analyze and compare both have an enlarged scalar sector by
including a second Higgs doublet together with an additional singlet scalar and therefore
a more complex scalar potential than the SM. Additionally, the new scalars can interact
via Yukawa interactions with the SM fermions, which we will look at after considering
the effects of the modified scalar potential. Furthermore, these models have been widely
studied in the literature (cf. e.g. [142, 153, 160, 163–166]), so we will keep the following
model description brief as it serves to lay out our parameter space and the notation we
will be using.
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4.1 Model Description of the 2HDM + Scalar / Pseudoscalar

4.1.1 Scalar Potential

As the scalar potentials of the 2HDM+S and 2HDM+PS are very similar, we will use
the notation for the 2HDM+S, but discuss them together as a general two Higgs doublet
model with an additional (pseudo)scalar. After having laid out our general assumptions
and identified the coefficient that discriminates between the scalar and pseudoscalar model,
we will then introduce the equations for the pseudoscalar case, such that each parameter
associated with the singlet sector can be clearly identified as belonging to the 2HDM+S
or 2HDM+PS.
In general, the scalar potential can be split up into

V (Φ1,Φ2, S) = V2hdm(Φ1,Φ2) + VS(S) + VS2hdm(Φ1,Φ2, S) , (4.1)

with V2hdm being the standard 2HDM potential, VS the potential of the scalar singlet
and VS2hdm the potential responsible for interactions between the scalar singlet and the
doublets. The two Higgs doublets in V2hdm have identical charges and thus allow us the
freedom to choose a specific base Φ1,Φ2 in terms of which to write the potential. A general
SU(2) basis change, (

Φ1

Φ2

)
→
(

Φ
′
1

Φ
′
2

)
= U

(
Φ1

Φ2

)
(4.2)

where U is an arbitrary SU(2) matrix, leads to a potential that results in the same physics
but enables us to shift the weight of different terms as their coefficients change due to
the SU(2) transformation. Although it is possible to get rid of this residual freedom
by basis independent methods [167–169], we will focus on two reference bases that are
suited for our purposes. First, we have the flavor basis, which is well suited to analyze
the interactions of the doublets with the fermions under the assumption that the Yukawa
interactions in the 2HDM are of the usual types: I, II, X, Y or Inert. We will describe the
Yukawa interactions and their different types mentioned here in more detail in Sec. 4.1.3.
Then, the basis Φ1,Φ2 is defined by which of the two Higgs doublets interacts with the
different fermions. Second, there is the Higgs basis, which simplifies the treatment of the
Higgs doublets as one of them does not have a vev in that basis. To distinguish these two
bases, we will label the coefficients differently depending on which basis we are in. For
the coefficients in the flavor basis we will use λi, Mij , whereas the same quantities with a
hat λ̂i, M̂ij express the coefficients in the Higgs basis. For the doublets we will use the
above mentioned Φ1,Φ2 in the flavor basis, while in the Higgs basis we will refer to them
as Φh,ΦH .
For the 2HDM potential in the flavor basis we have

V2hdm(Φ1,Φ2) = M2
11Φ†1Φ1 +M2

22Φ†2Φ2 + (M2
12Φ†2Φ1 + h.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†2Φ1)(Φ†1Φ2) +
1

2

(
λ5(Φ†2Φ1)2 + h.c.

)
,

(4.3)

where a Z2 symmetry Φ1 → Φ1, Φ2 → −Φ2 has been imposed to suppress flavor changing
neutral currents (FCNCs), thus removing the additionally possible terms λ6,7 containing
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4. Two Higgs Doublet Model + Scalar or Pseudoscalar

three Φ1 doublets and one Φ2 doublet and vice versa. However, we still allow for a soft
breaking of the Z2 symmetry via the M2

12 term, which is necessary for the minimum to be
the global minimum of the scalar potential [153, 161, 170]. Furthermore, we also assume
that the potential does not break CP explicitly. This implies that (M2

12)2 and λ5 are
required to have the same phase (up to a relative sign) and we can absorb this phase by a
field redefinition into Φ2. Thus, we take the parameters λi,Mij to be real and the freedom
of the SU(2) basis change mentioned above reduces to SO(2) rotations:(

Φ1

Φ2

)
→
(

Φ
′
1

Φ
′
2

)
=

(
cosβ sinβ
− sinβ cosβ

)(
Φ1

Φ2

)
. (4.4)

This leaves us with the other two terms of Eq. (4.1) that are, in their most general form,
given by

VS(S) =
1

2
M2
SSS

2 +
1

3
µSS

3 +
1

4
λSS

4 , (4.5)

VS2hdm(Φ1,Φ2, S) = µ11S(Φ†1Φ1)S + µ22S(Φ†2Φ2)S + (µ12SΦ†2Φ1S + h.c.)

+
λ11S

2
(Φ†1Φ1)S2 +

λ22S

2
(Φ†2Φ2)S2 +

1

2
(λ12SΦ†2Φ1S

2 + h.c.) .
(4.6)

Here, again, a Z2 symmetry can lead to a smaller number of allowed terms in these parts
of the scalar potential. For a Z2 symmetry of the kind S → −S, the terms with the
coefficients µS , µ11S and µ22S would be forbidden, except for the case of a soft breaking
of the Z2 symmetry. On the other hand, the λ12S term is always forbidden due to the
assumed Z2 symmetry of the Higgs fields. However, as these terms only affect the scalar
trilinear and quartic interactions, their impact on the LHC phenomenology we will discuss
is negligible and we will therefore, in line with [160], not include them (set them to zero)
in our analysis.

The coefficients of the scalar interaction potential, Eq. (4.6), need to be real as well,
except for λ12S and µ12S . Since λ12S is forced to zero by the assumed Z2 symmetry on the
Higgs doublet fields, the only remaining possible phase is the one of µ12S (after appropriate
rotations of the Higgs doublets to absorb all phases in Eq. (4.3)). To conserve CP, there
are then only two possible choices for this coefficient, either purely real or imaginary. If
it is purely real, the CP-even states in the Higgs doublets Φ1 and Φ2 can mix with the
singlet scalar, while if it is purely imaginary, the corresponding CP-odd states can mix
with the (then pseudo)scalar. Consequently, this is the coefficient that differentiates the
2HDM+S and 2HDM+PS, by being purely real for the scalar case and purely imaginary
for the pseudoscalar case.

Thus, we will now restate the relevant equations for the 2HDM+PS, which was introduced
in [163] and had its LHC bounds discussed in [160], where we use instead of an index S
now an index P to make the parameters distinguishable and emphasize the pseudoscalar
nature of the singlet. For the potential we have

V (Φ1,Φ2, P ) = V2hdm(Φ1,Φ2) + VP (P ) + VP2hdm(Φ1,Φ2, P ) , (4.7)
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where V2HDM is identical to Eq. (4.3), while

VP (P ) =
1

2
M2
PPP

2 +
1

4
λPP

4 , (4.8)

VP2hdm(Φ1,Φ2, P ) =
λ11P

2
(Φ†1Φ1)P 2 +

λ22P

2
(Φ†2Φ2)P 2 + µ12PP (iΦ†1Φ2 + h.c.) , (4.9)

with

Φi =

(
Φ+
i

vi+ρi+iηi√
2

)
, P = η3 , (4.10)

and v1,2 are usually parameterized in terms of

tanβ =
v2

v1
, with v2

1 + v2
2 = v2 (4.11)

and v = 246GeV is the SM Higgs vev. In these equations, ρ1,2 are CP-even scalar particles
and η1,2,3 are CP-odd scalar particles, but they do not have to be mass eigenstates.

As mentioned in our discussion of the different bases, we can rotate the flavor basis
doublets {Φ1,Φ2} into the Higgs basis {Φh,ΦH}, in which we have 〈ΦH〉 = 0 and 〈Φh〉 = v.
This turns out to be handy and changes the potential to

V̂ (Φh,ΦH , P ) = V̂2hdm(Φh,ΦH) + V̂P (P ) + V̂P2hdm(Φh,ΦH , P ) , (4.12)

where the different contributions are given by

V̂2hdm(Φh,ΦH) = M̂2
hhΦ†hΦh + M̂2

HHΦ†HΦH + (M̂2
hHΦ†HΦh + h.c.)

+
λ̂h
2

(Φ†hΦh)2 +
λ̂H
2

(Φ†HΦH)2 (4.13)

+ λ̂3(Φ†hΦh)(Φ†HΦH) + λ̂4(Φ†HΦh)(Φ†hΦH) +
λ̂5

2

(
(Φ†HΦh)2 + h.c.

)
+ λ̂6Φ†hΦh

(
(Φ†HΦh)2 + h.c.

)
+ λ̂7Φ†HΦH

(
(Φ†HΦh)2 + h.c.

)
,

V̂P (P ) =
1

2
M̂2
PPP

2 +
λ̂P
4
P 4 , (4.14)

V̂P2hdm(Φh,ΦH , P ) =
λ̂HHP

2
Φ†HΦHP

2 +
λ̂hhP

2
Φ†hΦhP

2 +
λ̂hHP

2
P 2(Φ†HΦh + h.c.)

+ µ12PP
(
iΦ†hΦH + h.c.

)
. (4.15)

For the two Higgs doublets, we then have

Φh = cosβ Φ1 + sinβ Φ2 =

(
G+

v+ρ̂1+iG0
√

2

)
, (4.16)

ΦH = − sinβ Φ1 + cosβ Φ2 =

(
H+

ρ̂2+iη̂2√
2

)
, (4.17)
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with the SM Goldstone bosons G± and G0, and the charged scalar H±, which are all mass
eigenstates. The CP-even scalars ρ̂1,2 can in general mix and result in the mass eigenstates
of the SM Higgs boson h and an additional heavy scalar H. Similarly, the CP-odd scalars
η̂2, η̂3 also mix due to the µ12P coupling and lead to the pseudoscalar mass eigenstates a
and A, where we choose our notation such that in general we have Ma < MA. Note that
the terms λ6, λ7, λhHP can arise due to the change of basis and that the coefficient of the
term P

(
iΦ†hΦH + h.c.

)
is invariant under this basis change.

For the 2HDM+S there are in principle two possible ways to obtain the mixing between
the different CP-even or CP-odd states. One option would be to proceed analogously to
the 2HDM+PS described above, only with µ12S being purely real valued. However, we
will follow the second way here, as done by [142, 153], where the mixing is due to a vev of
the singlet and not the µ12S term (cf. Ch. 3, where also the singlet vev leads to mixing).
In this second way, one assumes a spontaneously broken Z2 symmetry S → −S, which
removes all odd terms with respect to S in the potential, including the µ12S term. This
could for example arise in theories where S is part of a complex scalar charged under a
dark U(1) gauge group. Following [142], the potential given directly in the Higgs basis is

V̂ (Φh,ΦH , S) = V̂2hdm(Φh,ΦH) + V̂S(S) + V̂S2hdm(Φh,ΦH , S) , (4.18)

with

V̂2hdm(Φh,ΦH) = M̂2
hhΦ†hΦh + M̂2

HHΦ†HΦH + (M̂2
hHΦ†HΦh + h.c.)

+
λ̂h
2

(Φ†hΦh)2 +
λ̂H
2

(Φ†HΦH)2 + λ̂3(Φ†hΦh)(Φ†HΦH) (4.19)

+ λ̂4(Φ†HΦh)(Φ†hΦH) +
λ̂5

2

(
(Φ†HΦh)2 + h.c.

)
,

V̂S(S) =
1

2
M̂2
SSS

2 +
λ̂S
4
S4 , (4.20)

V̂S2hdm(Φh,ΦH , S) =
λ̂HHS

2
Φ†HΦHS

2 +
λ̂hhS

2
Φ†hΦhS

2 +
1

2

(
λ̂hHSΦ†HΦhS

2 + h.c.
)
,

(4.21)

and

Φh =

(
G+

v+ρ̂1+iG0
√

2

)
, (4.22)

ΦH =

(
H+

ρ̂2+iA√
2

)
, (4.23)

S = vs + ρ̂3 . (4.24)

Here, we have in addition to the SM Goldstone bosons G0,± and the charged scalars H±,
a single CP-odd scalar A and three CP-even scalars ρ̂1,2,3. These CP-even scalars can all
mix and result in the SM Higgs boson h together with two new scalar particles S1,2. In
comparison to the 2HDM+PS, the role of the lighter new (pseudo)scalar particle is now
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filled by S2, so in general we have MS2 < MS1 . Note that in terms of the potential and in
contrast to the pseudoscalar case, the terms λ̂6,7 are generally absent in the Higgs basis.

4.1.2 Scalar Mass Spectrum, Couplings and Alignment Limit

As the Higgs boson observed at the LHC [130, 131] behaves experimentally very similar to
the Higgs boson predicted by the SM, the models we want to investigate have to include a
SM Higgs-like boson with Mh = 125GeV. In this way, the model automatically fulfills
most of the constraints from Higgs physics. To ensure that our model parameters lead
to such a Higgs-like bosons we will work in the so-called alignment limit [171, 172]. The
alignment limit restricts the accessible parameter space in a way such that the mixing
between ρ̂1 and ρ̂2 is negligible and ρ̂1 can be identified with the experimentally observed
(CP-even) Higgs boson at 125GeV.

For our models, there are two possible ways to achieve this. One way is to set β, the
parameter associated to the ratio of the Higgs vevs, to (cf. e.g. [153])

cos(2β) = − λ1 − λ2

λ1 + λ2 − 2(λ3 + λ4 + λ5)
, (4.25)

while it is also possible to assume a CP2 symmetry [173] that enforces

λ1 = λ2 = λ3 + λ4 + λ5 . (4.26)

The CP2 symmetry alignment limit comes with the additional benefit of simplifying the
basis change between the flavor and the Higgs basis, as one finds the relations λ1 = λ̂h,
λ2 = λ̂H , λi = λ̂i for i = 3, 4, 5 and λ̂6,7 = 0. Furthermore, as Eq. (4.26) is independent
of tanβ whereas Eq. (4.25) is not, enforcing the CP2 symmetry makes it possible to
vary tanβ independent of the couplings λi, which is why we will use it in our analysis.
Since we achieved mixing in the 2HDM+S through a non-zero singlet vev and therefore
differently to the 2HDM+PS, we need for the alignment limit in the 2HDM+S in addition
to Eq. (4.25) or (4.26) also the condition [153]

λ̂hhS = 0 . (4.27)

By employing the alignment limit through Eq. (4.25) or (4.26) (together with Eq. (4.27)
in the scalar case), the corresponding mass matrix becomes block-diagonal. For the
2HDM+PS, we find two zero eigenvalues that correspond to the Goldstone bosons G0,
G±, the CP-even non-mixing part of the two Higgs doublets result in M2

h , M
2
H± , M

2
H , and

the CP-odd mixing part results after a diagonalization in two pseudoscalar particles with
squared masses M2

a , M2
A. The corresponding mixing angle between the two pseudoscalar

particles θ is then given by

sin(2θ) =
2 v µ12P

M2
A −M2

a

. (4.28)

This procedure enables us to switch to a more intuitive set of parameters, by changing from
the original parameters λ1,2,4,5, M

2
11, M

2
22, M

2
12, M

2
PP , µ12P to the new set of parameters

Mh, MH , MH± , MA, Ma, θ, tanβ, v, together with the alignment condition. Of the
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remaining parameters, λ11P , λ22P , λP stay free parameters of the theory, while λ3 gets
fixed if the CP2 symmetry version of the alignment condition is chosen (cf. Eq. (4.26)).

Following the same steps for the 2HDM+S, we find in the block-diagonal matrix
two zeroes for the Goldstone bosons G0, G±, the mixing independent squared masses
M2
h , M

2
H± , M

2
A and a CP-even mixing part resulting after a diagonalization in two scalar

particles with squared masses M2
S2
, M2

S1
. The corresponding mixing angle between the

two scalar particles, which we will also refer to as θ, is similarly (in the Higgs basis) given
by

sin(2θ) =
2λ̂hHs v vS
M2
S1
−M2

S2

. (4.29)

Again, this enables switching to more intuitive parameters, through going from λ1,2,4,5,
M2

11, M2
22, M2

12, M2
SS , vS to the parameters Mh, MS1 , MH± , MA, MS2 , θ, tanβ, v,

together with the alignment condition. By means of the additional alignment condition in
the scalar case, Eq. (4.27), the parameter λ11S is fixed. Similar to the pseudoscalar case,
of the remaining parameters, λ22S , λS stay free parameters of the theory, while λ3 gets
fixed if the CP2 symmetry version of the alignment condition is chosen (cf. Eq. (4.26)).

As we will discuss later on, electroweak precision constraints are very restrictive if
the scalars that are mostly doublet do not have very similar masses. Thus we will work
with the degenerate masses assumption MH = MH± = MA > Ma and MA = MH± =
MS1 > MS2 , where the last relations refer to the above mentioned mass ordering we
assume for the particles that result from the mixing. These relations also show one of the
correspondences between the different particles in the 2HDM+PS and 2HDM+S. While
the heavy pseudoscalar A, the charged Higgses H± and the heavy scalar H ↔ S1 appear
in both models, corresponding roles are taken on by the light pseudoscalar a and light
scalar S2, such that we have the correspondence a↔ S2.

Since we want to compare the 2HDM+PS and 2HDM+S, we need to ensure that
the parameters are comparable. To do so, we choose the CP2 symmetry version of the
alignment condition (cf. Eq. (4.26)), which fixes λ3, and decide to set from now on

λ̂hhS = 0 = λ̂HHS , (4.30)

λ̂hhP = 0 = λ̂HHP , (4.31)

or equivalently

λ11S = 0 = λ22S , (4.32)
λ11P = 0 = λ22P . (4.33)

Ensuring these comparable values for the above couplings (and their particular value)
is most relevant for the Aah vertex in the pseudoscalar model and the S1S2h vertex in
the scalar model, which are both relevant vertices for the corresponding mono-h searches
(cf. Fig. 4.11 in Sec. 4.3.4 on mono-h searches). Explicitly, these vertices depend on the
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respective couplings gAah and gS1S2h that depend on the above parameters via (cf. App. D)

λ̂hhS = λ11S cos2 β + λ22S sin2 β , (4.34)

λ̂hhP = λ11P cos2 β + λ22P sin2 β . (4.35)

The last parameters which we have not discussed above, are the quartic self-couplings
λP and λS . However, both of them do not play a role for the tt̄, mono-Z and mono-h
resonance signatures we will be looking at.

4.1.3 Yukawa Sector

After having discussed the scalar potential and its couplings, we now turn to the interactions
of the SM fermions with the two Higgs doublets. These Yukawa interactions can be
expressed in the Lagrangian

LYukawa = −
∑
n=1,2

(
Y u
n,ijQ̄

i
Lu

j
RΦ̃n + Y d

n,ijQ̄
i
Ld

j
RΦn + Y l

n,ijL̄
i
Ll
j
RΦn + h.c.

)
, (4.36)

with the Yukawa coupling matrices to up-type quarks / down-type quarks / leptons Y u/d/l
n,ij ,

the left-handed quark doublets QiL, the right-handed quarks ujR / djR, the left-handed
lepton doublets LiL and the right-handed leptons ljR. As common for 2HDMs, we need to
choose the Yukawa matrices in a way such that flavor violating processes are suppressed.
Since we are interested in how the Yukawa interactions look like with respect to the

Higgs mass eigenstates h and H, we rewrite Eq. (4.36) in the Higgs basis and obtain

LYukawa = −
∑
n=h,H

(
Ŷ u
n,ijQ̄

i
Lu

j
RΦ̃n + Ŷ d

n,ijQ̄
i
Ld

j
RΦn + Ŷ l

n,ijL̄
i
Ll
j
RΦn + h.c.

)
. (4.37)

To reproduce the Yukawa interactions of the SM Higgs, the corresponding Yukawa matrices
Ŷ
u/d/l
h have to be identical to the SM ones, so

Ŷ
u/d/l
h = Ŷ

u/d/l
SM , (4.38)

while to avoid FCNCs, we can choose the Yukawa couplings associated with the new heavy
Higgs H to be proportional to the SM ones

Ŷ
u/d/l
H = εu/d/lŶ

u/d/l
SM , (4.39)

with the Yukawa scaling factors εu/d/l. These values for the Yukawa matrices are the
so-called aligned Yukawa model [174–180], which reduces for specific values of the Yukawa
scaling factors εu/d/l to the different Z2 symmetric Yukawa structures (type I, II, X or Y),
as shown in Tab. 4.1. The underlying assumption of the Z2 symmetric Yukawa structures
is that there is a Z2 symmetry in the Yukawa sector, which allows only one of the two
Higgs doublets Φ1,2 to couple to a certain type of quarks / leptons and is usually referred
to as natural flavor conservation (NFC). However, there can still be flavor violation at
loop level through the presence of the charged Higgs H±, which in principle allows to
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Model εd εu εl
Type I cotβ cotβ cotβ
Type II − tanβ cotβ − tanβ
Type X cotβ cotβ − tanβ
Type Y − tanβ cotβ cotβ
Inert 0 0 0

Table 4.1.: Values of the Yukawa scaling factors εu,d,l that correspond to the different Z2

symmetric Yukawa structures.

set limits on tanβ and MH± (cf. e.g. [174, 181]). For our analysis, we will focus on
the parameter region 0.3 ≤ tanβ ≤ 3, which has the advantage that the different types
of Yukawa structures of Tab. 4.1 all behave very similar, except for the inert one, and
our results hold (approximately) irrespective of which specific type is chosen. Whenever
necessary to specify a type, for example for the explicit formulas of branching ratios, we
will use the type-I scenario of the Yukawa structures.

In addition to the Yukawa couplings of the two Higgs doublets, there is also a Yukawa
coupling of the singlet to the DM particle χ with mass mχ. In the flavor basis, these
interactions are described either by

LDM = −ySχ S χ̄χ , (4.40)

for the scalar model, or by

LDM = −yPχ P χ̄γ5χ , (4.41)

for the pseudoscalar model. These interactions with the DM are passed on via the mixing
of the (pseudo)scalar singlet to the (CP-odd) CP-even part of the scalar doublets. Thus,
the DM particle is not secluded from the 2HDM part of the model.

4.1.4 Decay Widths and Branching Ratios

With the masses and couplings at hand, we can now look in more detail at the branching
ratios (BRs) of the four neutral scalar states in the 2HDM+PS (h, a, H, A) and 2HDM+S
(h, S2, S1, A), which will be helpful for our analysis of the different LHC signatures later
on. The corresponding analytic expressions for the dominant decay widths are, together
with the ones for the charged scalars, given in App. D. For the model parameters of all
BR plots shown here, we choose the values given by the parameter overview of Eq. (4.46)
and additionally set MA = 500GeV and tanβ = 1, where the value of tanβ implies that
the results are applicable to all types of the Yukawa structure except for the inert one
(cf. Tab. 4.1). These values are representative of our parameter space of interest and
therefore allow us to gain insight into how the BRs behave in the region of interest. Since
the mass of the light new (pseudo)scalar Ma/S2

is the most important quantity with the
masses of the heavy scalars and pseudoscalars fixed, we will look at the different BRs in
terms of its mass.

Starting out with the SM Higgs-like scalar h, we find for the BRs the results depicted in

58



4.1 Model Description of the 2HDM + Scalar / Pseudoscalar

40 60 80 100 120 140

Ma [GeV]

10−2

10−1

100

B
R
(h
→

X
)

aa aχχ̄ bb̄

W+W−

PS

40 60 80 100 120 140

MS2
[GeV]

10−2

10−1

100

B
R
(h
→

X
)

S2S2 S2χχ̄ bb̄

W+W−

S

Figure 4.1.: Dominant branching ratios of the SM Higgs-like scalar h for MA = 500GeV,
tanβ = 1, mχ = 10GeV and other parameter values as given by the parameter
overview of Eq. (4.46) in the 2HDM+PS (left) and 2HDM+S (right).
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Figure 4.2.: Dominant branching ratios of the light (pseudo)scalar (a) S2 for MA =
500GeV, tanβ = 1, mχ = 100GeV and other parameter values as given by
the parameter overview of Eq. (4.46) in the 2HDM+PS (left) and 2HDM+S
(right). The DM mass mχ was set to 100GeV to also show the decay channels
below 2mχ.

Fig. 4.1. As we work in the alignment limit (cf. Sec. 4.1.2), the couplings of h essentially
coincide with the couplings of the SM Higgs boson. However, the total decay width can
differ from the SM value due to additional possible decay channels. These additional
decay channels are dominantly h → aa or respectively h → S2S2, if these decays are
kinematically allowed, and the three body decays h → aχχ̄ or respectively h → S2χχ̄
above the kinematically accessible region of the two-body decays (half the SM Higgs
mass). For the h → SM decays, we only show the two largest BRs to bb̄ and W+W−.
Comparing the 2HDM+PS and 2HDM+S, we see that both models behave practically
identical, except for the particles h can decay to having different names.

The BRs for a/S2, shown in Fig. 4.2, are especially in the region above Ma/S2
> 2mχ

also very similar, except for a slight preference to decay into tt̄ for the 2HDM+PS. Both
BRs are dominated by the decay into DM (χχ̄) as long as that channel is kinematically
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Figure 4.3.: Dominant branching ratios of the heavy scalar H / S1 for MA = 500GeV,
tanβ = 1, mχ = 10GeV and other parameter values as given by the parameter
overview of Eq. (4.46) in the 2HDM+PS (left) and 2HDM+S (right).
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Figure 4.4.: Dominant branching ratios of the heavy pseudoscalar A for MA = 500GeV,
tanβ = 1, mχ = 10GeV and other parameter values as given by the parameter
overview of Eq. (4.46) in the 2HDM+PS (left) and 2HDM+S (right).

allowed. This behavior is expected, since the light (pseudo)scalar state is mostly singlet
like and therefore the coupling to DM is nearly unsuppressed (by cos2 θ), while the other
decay channels are introduced by mixing and thus scale like sin2 θ. The region below
Ma/S2

< 2mχ is shown for completeness and will not be relevant to our analysis since we
assume the DM to be light.

For the decay channels of the heavy scalars H/S1 and pseudoscalars A, we can find from
Fig. 4.3 (H/S1) and Fig. 4.4 (A) that they are exchanged between the 2HDM+PS and
2HDM+S. This correspondence of decay channels comes as no surprise because in both
cases the component that is involved in the mixing couples to the DM (albeit suppressed
by sin2 θ), so the heavy pseudoscalar A in the 2HDM+PS and the heavy scalar S1 in the
2HDM+S. Similarly, also the non-mixing components show a comparable behavior. One
feature that all of the four depicted decay channels share is that they are dominated by the
decay to top quarks, which reflects the comparably large top-Yukawa coupling with respect
to the other fermions. For the mono-h and mono-Z signatures that we will be looking
at, the important decay channels are A→ ah and H → aZ in the 2HDM+PS together
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with S1 → S2h and A→ S2Z in the 2HDM+S. While the corresponding processes have a
similar shape in all cases and the absolute values of the BRs are similar for the decays
leading to mono-h signatures, BR(H → Za) in the pseudoscalar model is bigger by roughly
a factor of two in comparison to BR(A→ ZS2) in the scalar model. The reason is that
scalar particles have a smaller decay width to quarks than pseudoscalar particles, thus
leading to a smaller total decay width of the scalar particle H in the 2HDM+PS, which
finally results in a larger BR for the process H → Za compared to A→ ZS2. This effect
will become important when we interpret and compare our results for different signatures.

4.2 Overview of Model Constraints

Before we look at the constraints due to collider searches for tt̄, mono-Z and mono-h
resonance signatures in the next section, we will discuss other collider and non-collider
constraints on the 2HDM+PS and 2HDM+S here. The focus of this section is to assess
how the parameter space of the two models is restricted due to these other searches and
thereby to guide us in choosing sensible parameter ranges for our analysis. A more detailed
discussion of the different limits can be found in Ref. [162].

4.2.1 Non-Collider Constraints

In terms of non-collider constraints, we have in general constraints from DD and ID exper-
iments together with searches for flavor violation, as well as parameter space restriction
to achieve the correct DM relic density and theoretical bounds from considerations of
perturbativity and unitarity.
The DD phenomenology is rather different for the 2HDM+PS and 2HDM+S, due to

the (pseudo)scalar character of the additional scalar singlet that couples to DM. While the
spin independent (SI) interactions, which are most strongly constrained by experiments,
appear at tree level for the scalar model (cf. [142, 153, 182]), they are only present at
loop level for the pseudoscalar model (cf. [164, 165, 182–187]). Thus, DM masses in the
typical WIMP range of a few hundred GeV are tightly constrained for the scalar model
but only within the range of next-generation DD experiments like XenonnT and Darwin
for the pseudoscalar model (cf. [163, 188]). Therefore, we will focus on the complementary
region of parameter space of light DM, explicitly mχ = 10GeV, for our analysis of collider
signatures.

For ID and relic density bounds, both in the scalar [142] and pseudoscalar model [134],
there are no constraining limits for light DM due to ID and it is usually possible to achieve
the correct relic density by an appropriate choice of the model parameters. In the region of
higher DM masses (190 to 400GeV), Fermi-LAT bounds [189] can restrict the parameter
space of the pseudoscalar model through ID searches [134].
Although we are working in the alignment limit of the 2HDM extensions we are

considering, FCNCs do appear at loop level and can lead to bounds on the parameter
space, as there are tight experimental limits on such processes (cf. Sec. 4.1.3 and see [181]
for a detailed discussion). These bounds are most pronounced for type-II and type-Y
models but also appear for type-I and type-X models. Generally, they restrict especially
very small (. 0.1) and moderate to large values (> O(10)) of tanβ as well as leading
to a lower bound of MH± & 570GeV in type-II and type-Y models. The choice of
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0.3 < tanβ < 3 does allow for the flavor constraints to generally be fulfilled, while we do
not explicitly take into account the lower bound on MH± .

Furthermore, the theoretical bounds due to perturbativity and unitarity constraints limit
the allowed ranges for the couplings of the scalar potential together with the requirement
for the scalar potential to be bounded from below. They cannot be too large (. O(1)) to
fulfill perturbativity and unitarity, while also the couplings associated with the highest
exponents that dominate for large field values have to be positive and their combinations
need to exceed the couplings of the terms that link different fields, to guarantee that the
potential is bounded from below. These bounds for the scalar and pseudoscalar model
have been studied in [153, 190, 191] and [155], and an overview of the explicit relations
for the couplings is shown for example in [162]. As the region of parameter space we are
interested in does not require any particularly large or otherwise “special” couplings, these
limits do not restrict our analysis.

4.2.2 Collider Constraints

Besides the restrictions from non-collider constraints, there are also collider measurements
like electroweak precision measurements that can guide us in terms of which part of
the parameter space is still accessible and therefore of special interest for our analysis.
Moreover, we will also briefly comment on sub-dominant channels like tt̄ + /ET (MET)
and mono-jet, which will not be part of our main analysis that deals with tt̄, mono-Z and
mono-h searches in Sec. 4.3.
Most importantly, we find constraints from electroweak precision measurements deter-

mining the ρ parameter. Since both the 2HDM+S and 2HDM+PS break the custodial
symmetry [192–197] (in particular the λ4, λ5 and λhHS terms) they would in general imply a
deviation of the ρ parameter from ρ = 1. These additional contributions to the ρ parameter
depend on the mass splitting of the heavy (pseudo)scalars and therefore restrict the masses
and the mixing angle to fulfill MS1 ∼ MA ∼ MH± and 0 ≤ θ . π/4 for the 2HDM+S
and MA ∼ MH ∼ MH± and 0 ≤ θ . π/4 for the 2HDM+PS (cf. [142, 160]). Thus, our
choice of degenerate masses MH = MH± = MA > Ma and MA = MH± = MS1 > MS2 ,
as touched upon in Sec. 4.1.2, allows us to ensure that our parameter space does not
violate electroweak precision constraints, while the hierarchies given by the last relations
(MA > Ma and MS1 > MS2) are necessary to not suppress the mono-Z and mono-h
signals.

Furthermore, searches for tt̄+ /ET (and bb̄+ /ET) are carried out by the experiments at
LHC with recent results being reported in [198, 199]. Their results have been interpreted
in simplified DM models and can be recast to our next-generation simplified models for a
sufficient hierarchy between the heavy and light scalars (cf. [134]). As an example, the
scaling relation between the DM simplified model (abbreviated by DMF, referring to the
dark matter forum) and the 2HDM+PS reads

σ(pp→ tt̄+ /ET)2HDM+PS

σ(pp→ tt̄+ /ET)DMF
=

(
yχ sin θ

gχgq tanβ

)2

, (4.42)

where the factor of tanβ needs to be replaced according to Tab. 4.1 if one looks at limits
for bb̄+ /ET. Generally, it turns out that these limits are subdominant for the extended
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2HDMs we are considering [200] and thus they do not constrain our parameter space and
we will not derive explicit bounds for them.

Finally, we consider mono-jet searches whose experimental results are, like the tt̄+ /ET

searches, typically interpreted in simplified DM models. If the heavy (pseudo)scalars of
the 2HDM sector are significantly heavier than the mostly singlet-like states, comparable
scaling relations to Eq. (4.42) hold. However, this condition is not valid for the whole
parameter space. Therefore, we used the CheckMate [201] implementation of the latest
Atlas search [202] and found no excluded points for tanβ = 1 for both the 2HDM+S and
the 2HDM+PS. This implies that initial state radiation signatures in general should not
be of importance in this parameter region, because mono-jet signatures provide usually
the strongest bounds among them [203]. The analysis of [160] supports this finding by
showing that mono-jet limits arise only for tanβ < 1 in the 2HDM+PS. However, this
parameter region of tanβ < 1 is strongly constrained by tt̄ searches, as we will find in
our corresponding analysis, so that we will focus on the limits due to tt̄ and not further
investigate the mono-jet searches.

4.3 Comparison of LHC Signatures

After this general overview, let us now turn to the most important LHC signatures for
the 2HDM+PS and 2HDM+S and the limits we can derive from comparing dedicated
collider simulations to results by experimental searches. We will start out by discussing
some general aspects relevant to all signatures before dealing with tt̄, mono-Z and mono-h
searches in detail.

4.3.1 General Aspects

Beside the decay side of the processes we want to analyze, which we described in Sec. 4.1.4,
also the production side of the mediating particles is important to understand the resulting
limits. This is what we are going to address in this section together with an overview of
our parameter space and how we simulated the expected signals for both models.

Resonant Production Using the narrow width approximation, we can write the pro-
duction cross section for a (pseudo)scalar X with mass MX as [204]

σ(pp→ X) =
1

MXs

∑
i

CiΓ(X → i) , (4.43)

where a further decay to a state Y can be incorporated by including a factor BR(X → Y ).
Here, the sum over i refers to all possible partonic initial states, like quark or gluon
pairs, Ci are weight factors taking into account color factors and the parton distribution
functions (PDFs) of the (initial state) protons, and s = (13TeV)2 refers to the squared
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Figure 4.5.: Comparison of the production cross sections (cf. Eq. (4.43)) in the 2HDM+PS
and 2HDM+S for the heavy scalars H/S1 and pseudoscalars A in the case of
gluon fusion (left) and bb̄ initial state (right) for tanβ = 1.

center of mass energy. Explicitly, the weight factors Ci for gluons and quarks are given by

Cgg =
π2

8

∫ 1

M2
X/s

dx

x
g(x) g

(
M2
X

sx

)
, (4.44)

Cqq̄ =
4π2

9

∫ 1

M2/s

dx

x

[
q(x) q̄

(
M2
X

sx

)
+ q

(
M2
X

sx

)
q̄(x)

]
, (4.45)

with the PDFs of the quarks q(x) (anti-quarks q̄(x)) and gluons g(x) depending on the
Bjorken scaling variable x.

The dominant contribution to the production cross section of the (pseudo)scalars is in
general given by gluon fusion and bb̄ initial states. Their dependence on the (pseudo)scalar
mass MX is shown in Fig. 4.5, which is based on Eq. (4.43). From Fig. 4.5, we can see
that the production cross section due to gluon fusion is for the depicted case of tanβ = 1
about 100 times larger than for bb̄ initial states. Although this dominance of gluon fusion
depends on both the Yukawa structure (cf. Tab. 4.1) and the value of tanβ, it holds for
our whole parameter space of interest (0.3 ≤ tanβ ≤ 3), allowing us to safely neglect the
contributions to the production cross section from bb̄ initial states. Furthermore, Fig. 4.5
also shows that it is always easier (by gluon fusion) to create a pseudoscalar particle in
comparison to a scalar particle. The reason for this is that a pseudoscalar particle has a
larger effective coupling to gluons than a scalar particle under the same assignment of
Yukawa couplings (cf. e.g. [205, 206]). This enhancement of intermediary pseudoscalars,
independent of whether that pseudoscalar is part of the 2HDM+PS or 2HDM+S, will play
a significant role for the limits we find, as we will see later on.

Parameter Overview To provide a better overview of the model parameters we use,
and therefore the parameter space we focus on, we list all choices of model parameters
here. These choices are based on constraints mostly discussed in Sec. 4.2 and leave
as remaining (mostly unconstrained) parameters to span our parameter space the light
(pseudo)scalar masses Ma/S2

together with the heavy ones MA,H±,H/S1
or tanβ. For the

light (pseudo)scalar masses Ma/S2
we will find a lower limit of Ma/S2

∼ 100GeV from
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Higgs-to-invisible searches, which will be discussed in Sec. 4.3.5, and is just stated here
for completion, since it will guide our choice of the corresponding parameter range. In
summary, we take for our model parameters the values

MA = MH± = MH/S1

λ3 = M2
h/v

2

λiiS/P = 0

yS,PSχ = 1

mχ = 10GeV
sin θ = 0.3

tanβ ∈ [0.3, 3] .

(4.46)

Signal Generation Lastly in this overview of general aspects, we want to comment
on how exactly we ran our simulations that we compared to the results of the experi-
mental analyses. To simulate a potential signal in the 2HDM+PS and 2HDM+S, we
used MadGraph5_aMC@NLO [207–211] at next-to-leading order (NLO) in quantum
chromo dynamics (QCD) using the 263000 PDF set (NNPDF3.0) [212] provided through
LHAPDF6 [213]. The parton-showering was done within MadGraph via the built-in
Pythia 8.2 [214] and for the fast detector simulation we used Delphes 3.4.2 [215] together
with the provided CMS detector card. Finally, we implemented the appropriate cuts
in MadAnalysis 5 [216, 217]. As a test that the program chain for the simulations and
analyses is working as intended, we reproduced the mono-Z and mono-h exclusion limits
in the 2HDM+PS presented in [134, 200]. Therefore, we are confident that our simulation
and analysis procedure is reliable and stable.

4.3.2 tt̄ Resonances

In general, tt̄ resonances are powerful tools to search for models in which intermediately
created particles decay dominantly into top pairs. In our case, these are the heavy scalars
or pseudoscalars H/S1 or A that mostly decay to tt̄ (cf. Sec. 4.1.4) if their masses are above
the top threshold MH/S1, A > 2mt. What complicates such an analysis of tt̄ resonances is
that the signal processes interfere non-trivially with the SM background, however these
effects are taken properly into account by recent experimental analyses of ATLAS [218]
and CMS [219].

The ATLAS analysis [218] uses the s =
√

8TeV dataset and interprets it in two different
cases. First, they analyze a 2HDM of type-II (cf. Sec. 4.1.3) in which the different mediators
can be considered independently and second, a mass degenerate scenario in which both
contributions are analyzed simultaneously. By comparing the two scenarios, we can see
that the mass degenerate one gives significantly stronger constraints. This means that
considering the two mediators independently can be seen as a conservative estimate.
The CMS analysis [219] is more recent, takes into account a wider range of mediator

masses and uses the s =
√

13TeV dataset with 35.9 fb−1. They analyze the data in
simplified models containing either a scalar or a pseudoscalar, thereby being similar to the
ATLAS analysis in which the mediators are distinguished. Furthermore, they also provide
limits for interpreting the data in the hMSSM, resembling the mass degenerate case of the
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Figure 4.6.: Exclusion limits on tanβ (at 2σ) depending on MA,H/S1
from tt̄ resonance

searches by CMS [219] for the 2HDM+S (top) and 2HDM+PS (bottom). The
limits from searches for a scalar are depicted in orange, while the limits for
pseudoscalars are shown in red. The parameters are fixed toMa/S2

= 400GeV
and the values given by the parameter overview of Eq. (4.46).

ATLAS analysis. However, as the CMS analysis finds a 1.9σ “signal-like deviation” that
would fit a pseudoscalar with a mass of around 400GeV, their limits do not improve as
significant as one might expect upon the limits found by ATLAS.
The mixing with the additional (pseudo)scalar singlet that leads to the light new

(pseudo)scalar a/S2 can in principle also have a non-trivial impact due to interference
effects, as laid out in Sec. 7.1 of [134]. However, thanks to our choice of small mixing
(sin θ = 0.3), these interference effects are expected to be small and we will therefore
neglect them. We leave a detailed analysis of the appearing interference effects and the
combination of the limits for the heavy scalar and pseudoscalar for future work and derive
our limits by recasting the CMS results of [219] for single mediators to our parameter
space. To do so, we interpolate between the different exclusion limits given for specific
total width to mass ratios. Since combining the limits for the scalar and pseudoscalar
mediators significantly strengthens the resulting limit, as mentioned in the context of our
discussion of the ATLAS results above, our method can be seen as a conservative estimate.
In this way, we find the limits depicted in Fig. 4.6 in the MA,H/S1

–tanβ–plane.
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Even though the limits on tanβ shown in Fig. 4.6 show some dependence on the
heavy (pseudo)scalar mass MA,H/S1

, they are always in the range tanβ ∼ 1, which is
the strong constraint we referred to in Sec. 4.2.2. In addition to the dependence on the
heavy (pseudo)scalar mass, there is also a small dependence on the light (pseudo)scalar
mass Ma, S2 , which appears in Figs. 4.13 and 4.14 where we compare the 2HDM+S and
2HDM+PS. Furthermore, we can see that in the 2HDM+S, the pseudoscalar mediator
leads to generally stronger limits than the scalar mediator, while in the 2HDM+PS both
mediators lead to comparably strong limits on tanβ. This behavior is caused by two
effects. First, for masses above the top threshold, the decay width of pseudoscalars to
quarks and in particular tt̄ is bigger than the one for scalars (cf. Sec. 4.1.4, App. D
and [220]), while also the effective coupling for the gluon fusion production is larger
(cf. Sec. 4.3.1 or Eq. (4.43) and [221]). This leads to an enhancement of the limits from
pseudoscalar searches. Second, we have to take into account the mixing of the light
and heavy (pseudo)scalar in the 2HDM+S (2HDM+PS). It leads to a suppression of
the cross section of the mixing particle by a factor of cos2 θ (cf. Sec. 4.1.4 and App. D),
thus decreasing the strength of the scalar channel in the 2HDM+S and the pseudoscalar
channel in the 2HDM+PS. Therefore, for the 2HDM+S both of these effects pull into the
same direction, namely making the limit from pseudoscalar searches more constraining
than the one from scalar searches (cf. Fig. 4.6), while in the 2HDM+PS the enhancement
of the pseudoscalar searches due to the first effect is canceled by the second one, leading
to similar exclusion results of the scalar and pseudoscalar searches.
In summary, we find that tt̄ resonance searches provide strong limits on tanβ and,

especially for masses of the heavy (pseudo)scalar Higgses of 500GeV (which is often used
as a benchmark value), can exclude values of tanβ . 1.

4.3.3 Mono-Z Searches

The dominant contribution to the mono-Z signal is via the resonantly produced non-mixing
heavy (pseudo)scalar decaying to a Z boson and the light state a/S2, as shown in Fig. 4.7.
Thus, the mediating particle is a scalar in the 2HDM+PS and a pseudoscalar in the
2HDM+S. The light state a/S2 continues to decay predominantly into DM (cf. Sec. 4.1.4),
while for the Z decay we focus on the decays to electrons and muons, which provide the
cleanest signatures. Searches for this (comparably) clean final state of the decay to DM,
leading to MET (/ET), and leptons (electrons and muons), have been carried out by both
the ATLAS and CMS collaborations [222, 223].
The main idea of the analysis is to compare the MET distribution expected from SM

backgrounds to the measured / simulated one, because a potential signal of the 2HDM+S or
2HDM+PS might leave its footprint there. Thus we will first discuss the MET distribution
expected in both of our models, then comment on the backgrounds expected from the
SM, before finally showing the results we find by comparing them. Strictly speaking, by
comparing the simulated signal to the SM backgrounds in this way, we obtain the expected
exclusion limits, so the limits one would expect to get by an experimental search. This is
different to the tt̄ and mono-h searches where our results are observed limits. However, as
the expected limits we find are very similar to the observed ones where available (cf. [200]),
we can use them for our comparison of limits from the different search channels.
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Figure 4.7.: Feynman diagrams for the dominant contribution to a mono-Z signal in the
2HDM+S (left) and 2HDM+PS (right). The consecutive decay of the light
(pseudo)scalar a/S2 to DM and of the Z boson to electrons or muons is not
depicted, but necessary for a (comparably) clean MET + leptons signature.

MET Spectrum in the 2HDM+S/PS The MET spectrum of the mono-Z process
we are interested in “is a steeply rising function with a sharp cut-off at /Emax

T ” [158], where
the maximal MET is given by [158, 160]

/E
max
T =

λ1/2(MA/H ,MS2/a,MZ)

2MA/H
, (4.47)

with λ(m1,m2,m3) as given by Eq. (D.17) and the first (second) subscript corresponds
to the 2HDM+S (2HDM+PS). However, this sharp cut-off is smeared out by detector
effects, leading to to a MET distribution that is peaked close to /E

max
T , rather than having

a cut-off there. If the heavy (pseudo)scalar mass MA/H is the dominant mass related to
this process, so MA/H �MS2/a and MA/H �MZ , the expression for the maximal MET
simplifies significantly to /E

max
T ≈MA/H/2.

To find the MET distributions in our models, we use the signal generation process as
described in Sec. 4.3.1. Two examples for them, in the case of an e+e− + /ET final state in
the 2HDM+PS, are shown together with the predicted SM backgrounds and the observed
number of events provided by ATLAS [222] in Fig. 4.8. Nearly identical MET spectra
exist both for the µ+µ− + /ET final state as well as the corresponding processes in the
2HDM+S. From Fig. 4.8 we see that the signal consists of a peak a bit below /ET = MA/2
above a smoothly falling SM background, which we discuss next.

Backgrounds As laid out by [222] and depicted in Fig. 4.8, the main irreducible
background for mono-Z searches is the production of two Z bosons of which one decays to
neutrinos which lead to a MET signature. Another relevant contribution comes from WZ
production in which one lepton of theW decay escapes detection or a τ decays hadronically.
Furthermore, there are additional, but significantly smaller, background contributions
from Z+jets processes with poor MET reconstruction and non-resonant `` production
(two leptons that do not originate from a Z). The background estimates of [222] are based
on simulations as well as data-driven methods and the dominant uncertainty on the total
background is systematic and mostly due to uncertainties on the Z+jets contribution.

Current Constraints For our analysis and the constraints we want to derive, we can
now work with MET spectra like the ones shown in Fig. 4.8 and compare the experimentally
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Figure 4.8.: Top panel: MET spectra for gg → e+e−χχ̄ in the 2HDM+PS for Ma =
250GeV, MA = 700GeV (solid blue line) and Ma = 150GeV, MA = 400GeV
(dotted blue line), with the other parameters having the values of Eq. (4.46).
The expected SM backgrounds and observed events are taken from [222]
and shown in different colors with their combined uncertainty displayed as a
hatched region on top.
Lower panel: ratios of the observed events (points with error-bars) and signal
+ background expectation (solid blue line) to the background expectation
plotted together with the background uncertainty (hatched region).

and with simulations determined backgrounds with our simulated results for the 2HDM+S
and 2HDM+PS. To do so, we use the results of [222], since they are also used by the
LHC dark matter working group (DMWG) [134] and in terms of the applied cuts easier to
reproduce than the (slightly stronger) CMS results of [223]. Explicitly, the significance
with which a specific point in parameter space is excluded is given by [134, 224]

Zi =

√
2

(
(s+ b) ln

[
(s+ b)(b+ σ2

b )

b2 + (s+ b)σ2
b

]
− b2

σ2
b

ln

[
1 +

σ2
bs

b (b+ σ2
b )

])
, (4.48)

where b is the expected number of background events with corresponding uncertainty σb
(both given by [222]), s is the number of signal events we find from our simulations and
the index i of Zi refers to the different MET bins as shown in Fig. 4.8. To find the (square
of the) total significance Z2, the values Zi for the different bins have to be added up
quadratically, and parameter points with Z > 2 are excluded at 95% confidence level. We
would like to note that Eq. (4.48) can be understood as a likelihood-inspired generalization
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Figure 4.9.: Exclusion limits at 2σ (dashed) and 5σ (solid) from mono-Z searches for
the 2HDM+S (blue) and 2HDM+PS (red) in the Ma/S2

–MA–plane (left) and
Ma/S2

–tanβ–plane (right). The model parameters are given by the values
specified in Eq. (4.46), while for the left plot we fixed tanβ = 1 and for the
right one MA = 500GeV.

of the standard expression for the significance of Z = s/
√
b+ σ2

b (cf. [224]). Furthermore
and as described above, this procedure results in the expected exclusion limits, which are
however very similar to the experimental ones where available (cf. [200]), thus enabling us
to use these limits for comparison with the other experimental limits of tt̄ resonances and
mono-h searches in Sec. 4.3.5.

The resulting constraints on the parameter space of our analysis are shown in Fig. 4.9,
from which we can see that they are similar both in shape and reach for the 2HDM+PS
and 2HDM+S. This similarity however might come as a surprise, since the production
cross section for pseudoscalar mediators is larger than for scalar mediators (cf. Sec. 4.3.1)
and one might thus expect that the exclusion limits for the 2HDM+S are stronger than
for the 2HDM+PS (cf. dominant Feynman diagrams in Fig. 4.7). That this is not the
case is related to the branching ratios discussed in Sec. 4.1.4. There, we found that the
branching ratio BR(A→ ZS2) in the scalar model is smaller by roughly a factor of two
in comparison to BR(H → Za) in the pseudoscalar model, approximately canceling the
enhancement due to the larger production cross section. Thus, we get similar exclusion
limits from the mono-Z channel for both the 2HDM+PS and 2HDM+S.
In addition to the general similarity of the exclusion limits, we can also understand

several distinct features of the exclusion plots shown in Fig. 4.9. In theMa/S2
–tanβ–plane,

the limits on the light new Higgs massMa/S2
are only moderately dependent on tanβ, with

weaker limits for larger values of tanβ. This is a reflection of the type-I Yukawa couplings
we use as a default (cf. Sec. 4.1.3), for which the top coupling scales like (tanβ)−1. The top
Yukawa is very important to the process since it is the coupling involved in the production
of the mediator (cf. Fig. 4.7). In the Ma/S2

–MA–plane, there are three different features
in terms of the shape of the exclusion limits that can be understood. First, there is an
upper bound on the exclusion limits in terms of the heavy Higgs mass, which is simply
rooted in the fact that the heavy Higgs is the mediator of the process (cf. Fig. 4.7) and
the cross section of the process is therefore suppressed by its mass. Second, the “diagonal”
lower bound of the excluded region is due to kinematics, as for MA . Ma/S2

+MZ not
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Figure 4.10.: Current 5σ exclusion limits for the 2HDM+PS (in red) and projected ones
for the high-luminosity LHC (in blue and green) for mono-Z searches in the in
the Ma–MA–plane (left) and Ma–tanβ–plane (right). The 2HDM+S limits
are nearly identical and therefore not shown. The dashed lines correspond to
a scenario without any improvement in the systematic uncertainties, whereas
the solid lines assume a reduction by 50 %, called YR18 scenario. For the
other parameters, the numerical values used are identical to Fig. 4.9.

all three of those particles can be on-shell, leading to a strong suppression of a potential
signal. Third, the triangular shaped exclusion limit which might be expected from the first
two features is smoothed out due to kinematics, since a heavier light new Higgs (a/S2)
leaves less energy available for the Z, which kinematically suppresses its production.

Projected Sensitivity Thanks to having access to the detailed data of the experimental
analysis of [222], we can in addition to determining the current limits also estimate the
projected sensitivity for the high luminosity phase of the LHC (HL-LHC). The results for
the projected sensitivity can be found in Fig. 4.10 and are shown for integrated luminosities
of 300 fb−1 and 3000 fb−1, while for the systematic uncertainties we distinguished between
having them unchanged and a reduction by 50 %, which is the so-called YR18 scenario [225].
From Fig. 4.10, we can see that the increased luminosity will lead to significantly stronger
limits on the parameter space for both the 2HDM+PS and 2HDM+S, where the latter
is not shown explicitly in Fig. 4.10 because the resulting limits look the same. The
general shape of the limits remains identical to the one of the current limits as discussed
above. In case of the masses, the maximal reach is estimated to increase by a factor of
roughly 1.5 for the heavy Higgses and 2.5 for Ma/S2

. That this is not reflected in the
corresponding plot in the Ma–tanβ–plane, and that there seems to be little improvement
from 300 fb−1 to 3000 fb−1, is due to our parameter choice of MA = 500GeV. For this
value, the 300 fb−1 case already reaches down close to the lower “diagonal” kinematical
limit (MA . Ma/S2

+MZ), making any further progress in terms of the excluded parameter
space hard to reach through larger integrated luminosities. On the other hand, the impact
of reducing the systematic uncertainties will likely be small.
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Figure 4.11.: Feynman diagrams for the dominant contribution to a mono-h signal in the
2HDM+S (left) and 2HDM+PS (right). The consecutive decay of the light
(pseudo)scalar a/S2 to DM and of the SM Higgs to bb̄ is not depicted.

4.3.4 Mono-h Searches

Similar, but in contrast to the mono-Z searches described in Sec. 4.3.3, for which the
dominant contribution comes from a resonance of the non-mixing heavy (pseudo)scalar
(cf. Fig. 4.7), the mono-h signal gets its dominant contribution from the heavy (pseudo)scalar
that is mixing. The corresponding Feynman diagrams of the dominant channels are de-
picted in Fig. 4.11 and lead to a similar MET signature and spectrum as the mono-Z case
(cf. Fig. 4.8). This is due to the fact that the resulting light new (pseudo)scalar from the
vertex involving the SM Higgs-like boson decays mostly to DM. For a heavy enough light
new (pseudo)scalar as in our case, the SM Higgs-like boson decays mostly into bb̄ pairs like
in the SM (cf. Sec. 4.1.4), which makes the h→ bb̄ channel well suited to search for the
mono-h + MET signature. Corresponding searches for h→ bb̄ by ATLAS and CMS can
be found in [226, 227], while searches for mono-h with h→ bb̄, γγ, τ+τ−,W+W−, ZZ are
performed in [228], however the limits are also dominated by the contribution of h→ bb̄.
For our analysis, we work with the model-independent upper limit on the cross section for
h+ /ET as derived by ATLAS in [226] and compare it to the cross section we find from
our simulations.

This procedure is the same as followed by the LHC DMWG [134] and encapsulated in
the formula for the resulting sensitivity in bin i [134]

Si =
σi
(
pp→ h+ /ET

)
sim · BR(h→ bb̄)SM · (A · ε)i

σi
(
pp→ h+ /ET → bb̄+ /ET

)
exp

, (4.49)

where we have in the numerator the simulated cross section σ(·)sim, the SM branching ratio
of the Higgs BR(h→ bb̄)SM ≈ 58 %, and the kinematic acceptance of the event selection
A together with the detection efficiency ε (both given by [226]), and in the denominator
the experimentally determined limit on the cross section σ(·)exp. Note that the sensitivity
Si here is not identical to the significance Zi discussed for mono-Z searches in Sec. 4.3.3,
but the different sensitivities need to be added up in order to get the total sensitivity
S =

∑
i Si, for which any parameter point with S > 1 is excluded at more than 2σ [134].

Since the experimental data is directly combined with the corresponding background
expectations into upper limits on the cross section by [226], we do not need to address the
MET spectrum or the backgrounds as for the mono-Z searches (cf. Sec. 4.3.3). However, we
still want to briefly comment on the dominant background contributions before discussing
the current constraints.

72



4.3 Comparison of LHC Signatures

100 150 200 250 300 350

Ma/S2
[GeV]

200

400

600

800

1000

M
A
[G

eV
]

PS

S

2σ

100 150 200 250 300 350

Ma/S2
[GeV]

1

0.4

0.6

0.8

2

ta
n
β

PS

S

2σ

Figure 4.12.: Exclusion limits at 2σ (dashed) from mono-h searches for the 2HDM+S
(blue) and 2HDM+PS (red) in the Ma/S2

–MA–plane (left) and Ma/S2
–tanβ–

plane (right). The model parameters are given by the values specified in
Eq. (4.46), while for the left plot we fixed tanβ = 1 and for the right one
MA = 500GeV.

Backgrounds The main backgrounds for mono-h searches with a following h → bb̄
decay come from top pairs or single tops as well as leptonically decaying vector boson +
jets processes [226]. For top pairs or single tops, a top decaying to a bottom can look like
it came from a Higgs decay in combination with another b-tagged jet, while the missing
energy escapes via neutrinos. Similarly, decaying vector bosons can also induce MET via
decays to neutrinos or missed charged leptons, and the jets can be misreconstructed as
a Higgs decay. These processes are important to derive limits on the cross section for
mono-h + MET and to generate them Monte-Carlo simulations are used in [226].

Current Constraints By determining the sensitivity according to Eq. (4.49), plugging
in our simulation results and the experimental findings of [226], we get the exclusion limits
on the parameter space shown in Fig. 4.12. It is important to note that the experimental
analysis of [226] only uses one MET bin at a time to minimize the model dependency,
while also, within each bin, sampling the kinematic dependencies as well as the acceptance
and efficiency for several parameter points and using only the least stringent limits in the
end. Both of these measures lead to conservative estimates for the limits derived from the
experimental data.
From Fig. 4.12, we can see that the limits behave similarly to the mono-Z searches

(cf. Fig. 4.9), which are discussed in the corresponding Sec. 4.3.3, with weaker exclusion
limits for larger values of tanβ, MA and Ma/S2

as well as strongly suppressed ones
for MA . Ma/S2

+ Mh. Another striking feature is the dip in the exclusion limit for
masses of the heavy (pseudo)scalar of MA ∼ 700GeV as visible in the Ma/S2

–MA–plane
plot of Fig. 4.12. This is a binning effect, caused by the relatively large MET bins
used in the experimental analysis (150 to 200GeV, 200 to 350GeV, 350 to 500GeV and
> 500GeV) together with the fact that their corresponding experimental limits on the
cross section differ significantly from bin to bin. Around MA ∼ 700GeV, there are mainly
two effects that play a role. First, the production cross section decreases for a larger
mass MA, thus suppressing the exclusion power. Therefore, MA = 700GeV leads to a
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weaker limit than MA = 600GeV, as both of their MET spectra fall dominantly into the
200 to 350GeV bin since they are peaked around /ET = MA/2 (cf. corresponding discussion
in Sec. 4.3.3). Second, the 350 to 500GeV bin is significantly stronger constrained than
the 200 to 350GeV bin (cf. [226]). This results for MA = 800GeV in an overcompensation
of the decrease in cross section, since its MET spectrum falls mostly in the 350 to 500GeV
bin (being again peaked around MA/2), which brings about a stronger limit than for
MA = 700GeV and leads to the dip.
The last relevant feature, which is also in contrast to the mono-Z searches, is that

the exclusion limits for the mono-h searches lead to significantly different results for the
2HDM+PS and 2HDM+S, while being stronger for the pseudoscalar model. Its explanation
however, goes along the same lines as the explanation of why the mono-Z searches lead to
similar results for both models. From the production of the intermediate particle, we can
for the mono-h searches expect that the 2HDM+PS leads to a stronger limit, because its
mediating particle is the pseudoscalar A, which has a larger production cross section than
the scalar S1 in the 2HDM+S (cf. Sec. 4.3.1 and the Feynman diagrams of Fig. 4.11). The
difference to the mono-Z searches is that this comparably larger production cross section
for the pseudoscalar model is however not counteracted by a smaller branching ratio, as
we find from Sec. 4.1.4 that BR(S1 → S2h) ≈ BR(A → ah). Thus, the exclusion limits
due to mono-h searches for the 2HDM+PS are stronger than for the 2HDM+S.

4.3.5 Combined Constraints

In addition to the constraints from the searches for tt̄ resonances as well as mono-Z and
mono-h signatures, we also take limits from Higgs-to-invisible searches into account for our
analyses, even though so far only implicitly. Namely, for our models, both the two-body
decays h → aa/S2S2 and the three-body decays h → a/S2 χχ̄, discussed in Sec. 4.1.4,
lead to Higgs-to-invisible signatures, since the light (pseudo)scalar a/S2 decays nearly
exclusively into DM. We can thus find, with the help of the decay width formulas of
App. D, the Higgs-to-invisible branching ratio for each point in parameter space and
compare this to the experimental limit for the combined corresponding searches given
by [229]

BR(h→ inv) < 0.26
(
0.17+0.07

−0.05

)
, (4.50)

as the observed (expected) upper limit at 95 % confidence level. Doing so results in a lower
limit of Ma/S2

∼ 100GeV for mχ = 10GeV, which has a slight dependence on the mass
scale of the heavy Higgses MA = MH± = MH/S1

. As already mentioned in our discussion
of the parameter space in Sec. 4.3.1, this limit guides our choice of the lowest values of
Ma/S2

we consider.
Combining all our constraints into a single plot of the corresponding parameter plane

for each model, we find the results depicted in Figs. 4.13 and 4.14. Having addressed the
differences between the 2HDM+PS and 2HDM+S in each of the searches in the respective
sections, we want to now focus on the comparison of the different constraints within each
model. Starting with the 2HDM+PS in the Ma–MA–plane (cf. left panel of Fig. 4.13), we
see that the dominant exclusion limits come from searches for mono-Z signatures, while
for small masses of Ma and large masses of the heavy Higgses, the mono-h limits are of
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Figure 4.13.: Combined constraints at 2σ for searches of tt̄ resonances as well as mono-Z
and mono-h signatures, together with limits from Higgs-to-invisible decays
in the Ma/S2

–MA–plane for the 2HDM+PS (left) and 2HDM+S (right). The
model parameters are given by the values specified in Eq. (4.46), while fixing
tanβ = 1.
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Figure 4.14.: Combined constraints at 2σ for searches of tt̄ resonances as well as mono-Z
and mono-h signatures in the Ma/S2

–tanβ–plane for the 2HDM+PS (left)
and 2HDM+S (right). The model parameters are given by the values specified
in Eq. (4.46), while fixing MH/S1

= MH± = MA = 500GeV.

similar order or can even be stronger. The Higgs-to-invisible limits essentially provide us
with a lower bound on Ma, which becomes only relevant for very small or large masses
of the heavy Higgses, where the other limits disappear. Furthermore, even for tanβ = 1,
we see the limits from tt̄ resonance searches start to appear in the parameter space as a
(patchy) band for values of MH = MH± = MA between 400 and 500GeV.

For the 2HDM+S in the MS2–MA–plane (cf. right panel of Fig. 4.13), we find a nearly
identical behavior of tt̄, mono-Z and Higgs-to-invisible limits, only with the band of the
tt̄ limits being less patchy due to the slightly stronger limits (cf. 4.3.2 and Fig. 4.14). In
contrast to the 2HDM+PS, the mono-h limits are completely subdominant to the mono-Z
limits for the 2HDM+S, thus not providing any additional excluded parameter space.

A similar picture as in the MS2–MA–plane emerges from the limits in the Ma/S2
–tanβ–

plane (cf. Fig. 4.14), with the masses of the heavy Higgses fixed to 500GeV. We find for
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both the 2HDM+PS and 2HDM+S that the mono-Z limits dominate over the mono-h
limits, with both searches making it possible to find exclusion limits for parameter points
with tanβ > 1, however depending on the value of the light (pseudo)scalar Higgs mass
Ma/S2

. In contrast to that, the limits from tt̄ resonances are nearly independent of the
light (pseudo)scalar Higgs mass Ma/S2

and provide thus the strongest limits on tanβ for
large values of Ma/S2

.
We want to remark that for values of tanβ > 3, which we did not analyze in our

parameter scan, it is important which type of Z2 symmetric Yukawa structure is used
(cf. Tab. 4.1). This is due to the fact that for type-II and type-Y (the types with enhanced
couplings of b quarks for tanβ > 1), in addition to the gluon fusion production also the
bb̄ production channel becomes important, leading to stronger limits for larger values of
tanβ. On the other hand, type-I and type-X do not have this strengthening of constraints,
as there the bb̄ production channel is not enhanced.
Finally, there is a potential upshot of the exclusion limits being weaker for mono-h

searches in the 2HDM+S compared to the 2HDM+PS. Assuming a potential signal
discovery in the future, one could use the weaker constraints for the mono-h searches in the
2HDM+S to distinguish between the two models, as there is a large part of parameter space
in which both models would see a signal in the mono-Z channel, but only the 2HDM+PS
would see one in the mono-h channel as well. Thus, this difference in sensitivity to the
different signatures could potentially be used to distinguish between the two models by
looking at their collider signatures and in particular the respective signal strength ratios.

4.4 Summary

In an effort to better understand the LHC phenomenology of the 2HDM+PS and 2HDM+S,
as two notable examples of next-generation DM models, we analyzed the exclusion limits
from tt̄ resonances as well as mono-Z and mono-h searches. The next-generation DM
models are benchmark models used by ATLAS and CMS to interpret their experimental
data and extend the simplified DM models used before, by offering a richer phenomenology
and overcoming some of their shortcomings. For the 2HDM+PS and 2HDM+S in particular,
this richer phenomenology is due to an added additional doublet and (pseudo)scalar singlet
to the field content of the SM.
Guided by existing experimental results on Higgs physics, FCNCs and electroweak

precision data, and the intention to compare the 2HDM+PS and 2HDM+S, we restricted
our parameter space in the same way as done by experimental collaborations (cf. [134]).
At the same time, we tried to stay as general as possible in terms of the Yukawa coupling
structure, however at the expense of limiting the allowed range for tanβ that represents the
ratio of the vevs of the two Higgs doublets. We focused on rather light DM ofmχ = 10GeV,
since for larger masses especially signatures from direct detection experiments can provide
stronger limits than collider searches.

With the help of data from experimental analyses, we derived exclusion limits for both
the 2HDM+PS and 2HDM+S for Higgs-to-invisible and tt̄ resonance searches as well
as mono-Z and mono-h signatures, which we compared both between and within the
models. While Higgs-to-invisible searches provide a lower bound of ∼100GeV on the light
(pseudo)scalar mass, tt̄ resonance searches are best suited to exclude values of tanβ . 1
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irrespective of it. Mono-Z searches are generally dominant over mono-h searches and
provide strong exclusion limits in all cases, however they are getting weaker the larger the
light (pseudo)scalar mass is. Comparing the strength of the different signatures, especially
the mono-Z and mono-h one, would in case of a signal detection allow for a discrimination
between the 2HDM+PS and 2HDM+S.
As the experimental data analysis of the LHC collaborations is an ongoing effort, one

possible avenue of future research would be to recast their coming results to interesting
benchmark models, which would help in getting a better understanding of these models.
Furthermore, also for the experimental data at hand there is the potential for improvement.
For example in case of the tt̄ resonance searches, getting a combined limit including both
mediators would improve the limits derived here, however, such an analysis requires a
dedicated effort.
This concludes our investigation of possible signatures of next-generation DM models

including a rather light DM candidate and we will see in the next chapter that the scale of
10GeV is by far not a low one for possible DM candidates. However, the common particle
DM picture including interactions with the SM used in this chapter, will not be well suited
to look at (pseudo)scalar and vector DM with curvature couplings discussed in the next
chapter.
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Chapter 5

Dark Matter from
Gravitational Couplings

The lack of a suitable DM candidate in the SM provides a strong motivation to search
for possible SM extensions that include such a candidate, as well as their corresponding
signatures in experiments (cf. Ch. 4). Oftentimes, the most relevant couplings in the
production and decay of these DM candidates are the ones to SM particles. However, we
want to pursue a different approach here, by using the fact that (very) light (pseudo)scalars
and vectors, which are very weakly coupled to the SM, can be viable dark matter
candidates [230–236] (cf. e.g. [237] for a review). Due to their (very) light mass and very
weak couplings to the SM, they usually require different experiments and search strategies
than the conventional SM extensions (cf. [238–242] for overviews) and are automatically
stable on cosmological time scales even without an additional symmetry protecting them.

Creating DM in this way is closely tied to the cosmological period of inflation and
several mechanism are able to generate a sufficient DM density. Which of them are viable
and lead to the dominant contribution depends on the parameters of inflation as well as
the ones governing the DM candidate. For our investigation, we will focus on two options:
the misalignment mechanism [230–232, 234–236] and the stochastic scenario [243–248].
In general there can also be contributions from inflationary fluctuations [249–254] as
well as from decays of precursor particles [255–259]. While most of the previous studies
have focused on the case of a minimal coupling to gravity for a (pseudo)scalar field
(cf. e.g. [230–232]) and the corresponding situation for a vector field (cf. [235, 260]), we
will instead allow in both cases for a non-minimal coupling to gravity, represented by
the Ricci scalar R. This will enable us to significantly enlarge the parameter space that
allows for the creation of the correct amount of DM. Note that the results presented in
this chapter are based on work published as Ref. [261].

For our discussion of DM from curvature couplings, we will first describe the actions
(and thereby Lagrangians) underlying our analysis and the mechanisms to generate DM,
before dealing first with the (pseudo)scalar case and then with the vector case in detail.
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5.1 Curvature Coupling Models

The action including a curvature coupling for the (pseudo)scalar case reads

S =

∫
d4x
√−g

(
1

2
(m2

Pl − ξφ2)R− 1

2
∂µφ∂

µφ− 1

2
m2
φφ

2

)
, (5.1)

where g is the determinant of the metric gµν with signature (+,−,−,−), mPl the reduced
Planck mass, ξ the respective coupling strength of the gravitational coupling and mφ the
mass of the (pseudo)scalar field φ. Similarly, we have for the vector case

S =

∫
d4x
√−g

(
1

2

(
m2

Pl +
κ

6
XµX

µ
)
R− 1

4
XµνX

µν − 1

2
m2
XXµX

µ

)
, (5.2)

with the respective coupling strength κ of the gravitational coupling as well as the field
strength tensor Xµν and mass mX of the vector field Xµ. For both cases we assume any
potential coupling to the SM to be negligible, at least for the purposes of our analysis.

In the expression of the action for the vector case, Eq. (5.2), we choose the normalization
of the non-minimal coupling κ in line with the convention of [235, 262–264], implying that
the components of the vector field behave like a minimally coupled scalar field for κ = 1,
as we will discuss in detail in Sec. 5.3. With Eq. (5.1), we can now also make explicit that
a minimal coupling to gravity refers to the case ξ = 0. Furthermore, it is helpful to note
that the (pseudo)scalar and vector non-minimal coupling come with a different sign, hence
ξ < 0 corresponds to κ > 1 and vice versa. As the pseudoscalar case behaves identically to
the scalar one, we will from now on drop the “(pseudo)” and only refer to the scalar case.
One important aspect of the actions we are considering, Eqs. (5.1) and (5.2), is that

both of them are in the Jordan frame that includes a term linking the (scalar / vector)
field to the Ricci scalar, in contrast to the Einstein frame in which the couplings to gravity
are canonically normalized (cf. [254] for a short discussion on such actions in the Jordan
and Einstein frame). These two frames are linked by a transformation of the metric and
a field redefinition, necessary to have both gravity and the field canonically normalized.
However, as we do not want to significantly change or influence GR through our assumed
coupling with a scalar or vector field, we can directly work in the Jordan frame and identify
the mass scale linked to the Ricci scalar with the reduced Planck mass mPl, as done
above. For this to be valid however, the field value should have at least no transplanckian
excursions, assuming a coupling of order one. To determine the size of the corrections or
additional interactions due to the non-minimal coupling, we need to perform the above
mentioned transformation to the Einstein frame. Doing so, we find that they scale with
1/m2

Pl (cf. [254]), which is the naturally expected size of such terms in theories of quantum
gravity.
Especially for the scalar case represented by Eq. (5.1) there exist several works that

motivate such a non-minimal coupling to gravity (the Ricci scalar). For example [265]
argues that such couplings need to be considered if one views GR as an effective field
theory. Furthermore, the quantization of a scalar field theory in a gravitational background
produces such couplings [266] and they are essential for the renormalizability of the energy-
momentum tensor in curved backgrounds [267]. Finally, such scalar couplings scaling with
1/m2

Pl as described above, generically arise in theories like asymptotic safety (cf. [268, 269]
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for reviews) aiming at the quantization of gravity [270–276].
For the action of the vector field, the situation is more complicated. One aspect is that

to generate the mass term of the vector field (cf. Eq. (5.2)) in a gauge invariant way, we
need to employ a Stueckelberg (or Higgs) mechanism. However, the terms necessary for
such a Stueckelberg mechanism can lead to a violation of unitarity already at energies
below the Planck scale [255]. Additionally, in the vector theory, the kinetic term of the
longitudinal modes becomes negative for a specific range of momenta of the corresponding
particles, reminiscent of a ghost, which is a scalar particle with a negative kinetic term.
Such ghosts are normally unwanted in any theory as they destabilize the vacuum [277,
278]. Since the negative sign of the kinetic term is only realized for a specific range of
momenta and a sufficiently large Ricci scalar, it cannot directly be concluded that the
vacuum would be destabilized. This feature together with an appearing singularity in the
kinetic term have been discussed in dedicated works [264, 279, 280], but no final verdict
on the viability has been reached. Understanding these issues better would be a suitable
topic for further research that is however beyond the scope of our analysis in this chapter.
While acknowledging the potential issues with the vector scenario, we will nevertheless
analyze it alongside the scalar one.

Non-minimal couplings as we are considering, have been studied for a variety of reasons
in the literature so far. Originally, they have been mostly used to construct models of
inflation (e.g. [281, 282]), which received a lot of attention with the realization that large
values of the non-minimal coupling ξ ∼ 104 allow the Higgs boson to take on the role of the
inflaton [283, 284]. Also the possibility to realize inflation with the help of a non-minimally
coupled vector field was studied, cf. [260]. More recently and as in our case, the focus for
these kind of couplings shifted to the possible connection to DM. Here, their connections
to the creation of DM during inflation [249–254] or at preheating and reheating [285–293]
have been studied.

As mentioned in the introduction to this chapter, both the misalignment mechanism and
the stochastic scenario are closely tied to the cosmological period of inflation. The reason
is that for both mechanisms to work, they need to have a non-zero homogeneous field value
at the end of inflation to represent a viable dark matter candidate, however they differ with
regard to how this non-zero homogeneous field value is reached. It needs to be non-zero to
lead to the DM energy density of the universe, as we will see when explicitly calculating
the energy density stored in the scalar or vector field non-minimally coupled to gravity,
and it needs to be homogeneous to correspond to cold DM, as experimentally required for
structure formation to be efficient enough [294]. That a homogeneous field represents very
cold matter is easiest understood by thinking about the quantum mechanical momentum
operator which is essentially the spatial derivative of the field, thereby implying that if the
field derivative is close to zero, the corresponding particle also has close to zero momentum
and is thus very cold. In the misalignment scenario, the underlying assumption is that the
field has a random (and therefore expectedly non-zero) initial state. Through inflation,
this field gets stretched until an initially tiny, nearly constant patch covers the whole
observable universe, resulting in a non-zero but very homogeneous field value. In the
stochastic scenario on the other hand, inflation is long enough for this initial non-zero
field value to relax back to zero, so the contribution from the misalignment mechanism
is negligible, while all the fluctuations that get stretched to super-horizon scales during
inflation add up in a random walk like process and thus slowly build up the non-zero
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Figure 5.1.: Illustration of the evolution of the effective mass over the history of the universe
(the lengths of the different eras are not to scale) under the assumption of ξ = 1
for illustrative purposes, displayed together with the quantities determining
it. While being dominated during inflation by the contribution due to the
coupling to the Ricci scalar R, for later eras the mass parameter m ≡ mφ/X is
dominant if it is larger than the Hubble parameter at matter-radiation-equality
m > Heq ≈ 2 · 10−28 eV [296]. The present day Hubble parameter during the
era of the cosmological constant Λ is given by H0 ≈ 10−33 eV [296], while we
take its value during inflation HI to be a free parameter of the theory.

homogeneous field value.
For our following analysis, we will assume inflation to be described by a perfect de Sitter

(exponential) expansion with a constant Hubble parameter HI , followed by instantaneous
reheating. This significantly simplifies our calculations and keeps the results qualitatively
valid as long as the small spectral tilt measured at CMB scales [295], which indicates
that HI is a slowly decreasing function of time, remains small for all relevant scales.
Quantitatively, the effect of a slowly decreasing value for HI can be compensated by
slightly larger values of the non-minimal coupling in the scalar case and slightly smaller
ones in the vector case.
Before continuing with our detailed discussion of the scalar and vector model, we can

already provide an intuitive understanding of why such non-minimal couplings to gravity
can alter the evolution of the corresponding field and thereby enlarge the parameter space
that allows for the creation of the correct amount of DM. As depicted in Fig. 5.1 together
with the evolution of the Ricci scalar R, the non-minimal couplings lead to a (positive or
negative) contribution to the mass and can therefore strongly influence the effective mass
of the field, which is very important to its evolution. Thus, by means of this effective
mass, the field value during inflation can be significantly enhanced or suppressed, making
new regions of parameter space accessible.
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5.2 Non-Minimally Coupled Scalar Fields

For the discussion of the non-minimally coupled scalar fields, we will first focus on the
misalignment scenario and look at the homogeneous scalar field value and the resulting relic
density, before turning to the scalar fluctuations that provide a limit through measurements
of the isocurvature fluctuations of the CMB by Planck and finally addressing how the
stochastic scenario could be realized with a non-minimal coupling to gravity.

5.2.1 Homogeneous Scalar Field Value and Relic Density

The equation of motion (EOM) for the homogeneous scalar field can be derived from
Eq. (5.1) or found by analogy to, e.g., [235]. When viewing the non-minimal coupling
as an additional mass term, cf. Fig. 5.1, we can follow the standard derivation for the
minimal coupling case and simply replace m2

φ → m2
φ + ξR to find

φ̈+ 3Hφ̇+
(
m2
φ + ξR

)
φ = 0 . (5.3)

As we can see from Fig. 5.1, the additional mass term due to the non-minimal coupling
is only important during inflation, which implies that the equations of motion and the
dynamics of the scalar field after inflation are described by the same equations as the
minimally coupled case. Therefore, we can follow [235] to derive an expression for
the energy density stored in the scalar field. Oftentimes, this is expressed in terms
of the density parameter Ωφ = ρφ/ρcrit as the fraction of the critical energy density
ρcrit = 3m2

PlH
2
0 ≈ 3 · 10−47 GeV4. Since we want our field to explain the DM content of

the universe, we are especially interested in the ratio of the density parameter of the scalar
field to the density parameter of the DM in the universe ΩDM ≈ 0.26 [295]. Thus, we aim
for a compact expression for

Ωφ

ΩDM
=

ρφ(t0)

ρcrit ΩDM
, (5.4)

with the energy density in the scalar field today ρφ(t0). It can be expressed using a WKB
approximation as [235]

ρφ(t0) ≈ 1

2
m2
φφ

2(tWKB)
a3(tWKB)

a3(t0)
, (5.5)

where tWKB denotes the time where we begin using the WKB approximation and a(t)
refers to the scale factor. Transforming the fraction of scale factors with the help of
comoving entropy conservation [235]

S = sa3 =
2π

45
g∗,s(T )T 3a3 = const , (5.6)
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where s is the comoving entropy density, g∗,s is the effective number of entropy dofs and
T is the temperature, we get

a3(tWKB)

a3(t0)
=

g∗,s(T0)T 3
0

g∗,s(TWKB)T 3
WKB

. (5.7)

Furthermore, using the condition implicitly defining TWKB, 3H(TWKB) = mφ, combined
with the equation for the Hubble parameter during radiation domination, Eq. (A.10), we
find that the energy density scales like

ρφ(t0) ∼ φ2(tWKB)m
1
2
φ F(TWKB) , (5.8)

where the hidden proportionality factor depends on T0 = 2.73K (1K = 8.62 · 10−14 GeV)
and we introduced

F(TWKB) :=

(
g∗(TWKB)

3.38

) 3
4
(

3.94

g∗,s(TWKB)

)
, (5.9)

which is approximately one and encodes the change in relativistic dofs from tWKB until
today. In difference to [235], we use a more careful matching of the initial conditions
(cf. [262]) resulting in a slightly altered relation between the field value at the end of
inflation φe and φ(tWKB). In this way we find φ2

e ≈ 3φ2(tWKB), leading finally to

Ωφ

ΩDM
≈ 5F(TWKB)

(
φe

1012 GeV

)2√mφ

eV
. (5.10)

Note that due to the non-minimal coupling to gravity, the field value at the end of inflation
φe is in general not identical to the field value at the start of inflation φs. Furthermore,
assuming from now on that the scalar field makes up all of the DM in the universe,
Ωφ = ΩDM, Eq. (5.10) provides a possibility to link the mass of the scalar field mφ to φe.

Let us now turn to the evolution of the scalar field during inflation, as this is the only
era really being affected by the non-minimal coupling. Since we assume a perfect de Sitter
expansion, we have during inflation R = 12H2

I (cf. Fig. 5.1) and the EOM, Eq. (5.3), is
one of a damped harmonic oscillator. However, we can not assume φ̇s = 0 like for the
minimally coupled case, as the non-minimal coupling generally allows for the field value
to change during inflation1. Taking this into account, we find for the general solution of
the scalar field evolution during inflation

φ(t) = φs

(
c1 e−

1
2
α−HI t + c2 e−

1
2
α+HI t

)
, (5.11)

where t denotes the time from the start of inflation, we have c1 + c2 = 1 with their exact
expressions being given by Eq. (F.2) and encoding the dependence on the initial conditions,

1For a minimal coupling, the damping of any non-zero φ̇s is so strong that it quickly becomes φ̇ ≈ 0
and one usually neglects this short initial period of inflation and works directly with φ̇s = 0. The
possibility for the field value to change during inflation implies that this strong damping is not there
for the non-minimally coupled case and we can therefore not assume φ̇s = 0.
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and we introduced2

α± := 3±
√

9− 48ξ . (5.12)

Since α± appears in the exponential, its influence is very strong and our region of
interest are values of ξ relatively close to zero. Thus, we generally have ξ < 3/16, leading
to α± being both real and positive and α+ > α−. Therefore, the first term of Eq. (5.11)
will after a short amount of time become dominant and we can approximate the field value
during (later times of) inflation by

φ(a) ≈ c1φs

(
a

as

)− 1
2
α−

= c1φs e−
1
2
α−N(a), (5.13)

where we used in the first step that for exponential inflation we have the relation a = ase
HI t

and in the second one the definition of the number of e-foldsN(a) := ln(a/as). In particular,
the field value at the end of inflation is given by

φe ≈ c1φse
− 1

2
α−Ntot , (5.14)

where the total number of e-folds of inflation Ntot can potentially be very large [297, 298]
depending on the scenario of inflation, allowing even in the case of small values of ξ (and
thereby α−) for a substantial impact of the exponential factor. Another difference with
regard to the minimally coupled scenario is the fact that the scalar field has a non-zero
time derivative at the end of inflation, directly linked to the size of ξ via α−

φ̇e = −1

2
α−HIφe , (5.15)

which can be relevant to the post-inflationary evolution of the field.
As discussed in Sec. 5.1, we have to ensure that the field value does not grow beyond

the Planck scale for our treatment to be valid. This limits the allowed values for ξ, as
negative values would lead to negative values of α− (cf. Eq. (5.12)) and thereby to a
growing field value during inflation. We show the corresponding limits in Fig. 5.2 under
the conservative assumptions of minimal inflation, Ntot = Nmin(HI) (cf. App. E), and
initial de Sitter vacuum fluctuations, φs = HI/2π and φ̇s = 0. From Fig. 5.2 we find that
the bound is usually in the range of ξ ∼ −1 to − 0.1, depending on the value of HI . For
lower scales of inflation, HI . 10−14 GeV, it can be a bit looser. Since the depicted limit
is calculated for minimal inflation, we want to remark that it can for longer periods of
inflation become significantly stronger (cf. Eq. (5.14)).

5.2.2 Scalar Fluctuations and Isocurvature Perturbations

Besides the constraint that the scalar field value has to remain below the Planck scale, the
second important constraint is given by the non-detection of isocurvature perturbations
by the Planck satellite [295]. These kind of perturbations are expected to appear in
models like ours, where in addition to the inflaton field there is a second field present

2This definition of α± implicitly assumes m2
φ/H

2
I � ξ, which is usually the case.
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Figure 5.2.: Limits on the non-minimal coupling to gravity for the scalar case (left axis) and
the vector case (right axis) depending on the Hubble parameter during inflation
HI from the constraint that the field value has to remain below the Planck
scale mPl. The depicted limits assume minimal inflation, Ntot = Nmin(HI),
and initial de Sitter vacuum fluctuations, φs = HI/2π and φ̇s = 0.

during inflation. As both of these fields acquire perturbations over the course of inflation
imprinted in their corresponding energy densities, both of them could in general manifest in
the CMB measurements done by Planck. The perturbations stemming from the inflaton
field are called adiabatic or curvature perturbations and are identical for all particles,
since all of them originate from the decay of the inflaton field. Thus, with respect to a
reference particle species (usually photons), there is no spatial variation. This is different
for entropy or isocurvature perturbations, because they are independent of the inflaton
field and one would therefore expect spatial variation with respect to photons. For this
reason, we will look in this section at the energy density contrast power spectrum related
to the fluctuations of the scalar field and use it to derive constraints for the parameter
space of our model, focused on the misalignment mechanism.

In a first step towards the energy density contrast power spectrum, we will look at the
power spectrum of the scalar field fluctuations themselves. This was analyzed in [254] in
the context of DM generated from fluctuations, but is identically valid for our analysis of
the misalignment mechanism and given by

Pφ(k, ak) =

(
HI

2π

)2

F (α−) , (5.16)
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with the comoving wavenumber k and

F (α−) :=
22−α−

π
Γ2

(
3− α−

2

)
, (5.17)

where Γ(·) refers to the Gamma function. Furthermore, we introduced ak := k/HI that
denotes at which time the power spectrum is evaluated, with ak referring to the point in
time that the scale k left the horizon. Looking at Eq. (5.16) for the power spectrum, we see
that it is the same as the usual scale invariant result (HI/2π)2 for the minimally coupled
case, except for the additional factor F (α−) ∼ 1. This similarity can be understood by the
fact that within the horizon we have k/a� HI and therefore the non-minimal coupling
term, which scales with HI by means of the Ricci scalar R, is actually subdominant.

After horizon exit however, this changes very quickly when the fluctuations have the
same EOMs as the homogeneous field value and the power spectrum evolves according
to [254]

Pφ(k, a) = Pφ(k, ak)

(
φ(k, a)

φ(k, ak)

)2

. (5.18)

Using the evolution equation for the homogeneous field, Eq. (5.13), we can evaluate the
above expression to find

Pφ(k, a) = Pφ(k, ak)

(
k

aHI

)α−
(5.19)

and in particular for the end of inflation

Pφ(k, ae) = Pφ(k, ak) e−α−N(k) , (5.20)

with N(k) being the number of e-folds between the mode k exiting the horizon and
the end of inflation, cf. Eq. (E.1). In comparison to the evolution of the homogeneous
field, as laid out by Eq. (5.14), we see that the fluctuations only behave similar when
superhorizon in scale. This is a distinct difference, as in contrast to Ntot one can (under
certain assumptions) derive an upper limit for the corresponding number of e-folds N(k)
for the modes of interest in cosmology [296].

With the help of the above formula for the power spectrum of the scalar field fluctuations,
we can now find an expression for the corresponding energy density contrast power spectrum,
which is constrained by Planck measurements. The energy density contrast represents
the deviations from the mean energy density 〈ρ〉 and is thus in general given by

δ(x) :=
ρ(x)− 〈ρ〉
〈ρ〉 ≡ δρ(x)

〈ρ〉 , (5.21)

where we will drop the spatial dependence from now on and introduced the deviation from
the average energy density δρ. In our situation of the misalignment scenario things simplify,
as the homogeneous field value is dominant compared to the fluctuations and we can
therefore identify 〈ρ〉 = ρφ, so the energy density of the homogeneous field. Furthermore,

87



5. Dark Matter from Gravitational Couplings

since the energy density generally scales with φ2 (cf. Eq. (5.5))3, the leading contribution
due to the fluctuations scales in the same way with δρφ ∝ 2φ δφ. With this, we get in a
first step for the energy density contrast of the scalar field

δφ ≡
δρφ
ρφ
≈ 2

δφ

φ
(5.22)

and in a second step for the energy density contrast power spectrum

Pδφ(k) ≈ 4

φ2
Pφ(k, a) . (5.23)

Here we intentionally did not write a scale factor dependence for the energy density
contrast power spectrum on the left side, since in terms of the scale factor Pφ(k, a) scales
like φ2 (cf. Eq. (5.18)) and therefore the scale factor dependence of the right side cancels.
Due to this, we can evaluate the energy density power spectrum at any time, in particular
at horizon exit, and find with the help of Eqs. (5.16) and (5.13) for CMB scales

Pδφ(kCMB) ≈ 4

c2
1φ

2
s e−α−(Ntot−NCMB)

(
HI

2π

)2

F (α−)

≈ 4

φ2
e eα−NCMB

(
HI

2π

)2

F (α−) ,

(5.24)

where we used Eq. (5.14) in the second step. As detailed in App. E, NCMB ≡ NCMB(HI)
is (under common assumptions) a function only of the scale of inflation HI and thereby
fixed once HI is chosen. Furthermore, we display the result both in terms of φs and φe to
highlight once more the difference of the scalar field value at the start and end of inflation.
Using the expression for the energy density contrast power spectrum provided by

Eq. (5.24), we can derive limits on the non-minimally coupled scalar field scenario from
the non-observation of isocurvature perturbations by Planck [295]. From Eq. (5.24), we
find with φe, HI and ξ the same set of important parameters as in our whole analysis
so far. Since ξ is in principle arbitrary, up to the bounds presented in Fig. 5.2, and our
requirement for the scalar field to explain all of the DM (Ωφ = ΩDM) links mφ and φe,
we choose mφ and HI as the fundamental parameters of our parameter space. Defining
the parameter space with mφ instead of φe has the advantage that it provides a natural
lower cutoff of mφ & 10−22 eV [299], due to the restriction that the wavelength of the DM
candidate has to fit within a galaxy (size ∼1kpc) to be able to be confined to it. For the
upper end we choose the cutoff mφ = 1 eV, which reflects our focus on the potential to
realize (extremely) light DM candidates.
The isocurvature limits from Planck provide an upper bound on the energy density

contrast power spectrum (cf. e.g. [262]) and we use the “axion II” case of the Planck CDI
scenario [295] because it reflects the non-zero spectral index and uncorrelatedness with
adiabatic perturbations of our scenario. In this way we get the limits presented in Fig. 5.3,
where in addition to the constraint from isocurvature perturbations we also include the
constraint that the initial homogeneous field value has to be smaller than the Planck scale

3This scaling is true for the envelope of the WKB approximation or if one uses the relation between φ̇
and φ to express everything in terms of φ.
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Figure 5.3.: Constraints on the scalar misalignment scenario depicted in the mφ–HI–
plane for several values of the non-minimal coupling ξ. The colored regions
indicate which part of the parameter space is excluded due to isocurvature
constraints, while the colored lines denote the necessary initial field value
under the assumption of minimal inflation to get the correct DM energy
density (solid lines for φs = mPl and dashed ones for φs = 1016 GeV). The
black hatched region depicts the part of parameter space in which there exists
no combination of ξ and φs < mPl that reproduces the observed amount of
DM while fulfilling the isocurvature constraints by Planck. As there is a
one-to-one correspondence of the scalar mass parameter mφ and the scalar
field value at the end of inflation φe (cf. Eq. (5.10)) as well as the scale of
inflation HI and the minimal number of e-folds Nmin (cf. Eq. (E.2)), their
respective values are given on the top and right axis.

mPl, where we assume the shortest possible duration of minimal inflation (cf. App. E).
Overall, we find that a large enough non-minimal coupling can relax the isocurvature
bounds to a degree that the misalignment mechanism provides a viable way to create
the correct abundance of DM for scales of inflation up to HI ∼ 1013 GeV, irrespective
of the scalar mass mφ. In comparison to the minimal coupling case, represented by
ξ = 0 in Fig. 5.3, this is significantly different, as especially for larger values of mφ the
scale of inflation has to be considerably lower in the minimal coupling case. For each
specific value of ξ, the two bounds from isocurvature perturbations and non-transplanckian
field values exclude different parts of parameter space. The non-transplanckian field
value restriction dominantly excludes low scalar masses mφ, as very light DM masses
require larger field values to recreate the correct abundance of DM (cf. Eq. (5.10)), while
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isocurvature perturbations mostly exclude large scales of inflation (cf. dependence on HI

of Eq. (5.24)).

5.2.3 Stochastic Scenario

In the addition to the misalignment scenario discussed in the last sections, it is also
possible to generate the correct abundance of DM in the stochastic scenario [245, 246] as
briefly described in Sec. 5.1. The underlying idea is that for long periods of inflation the
small fluctuations that get stretched to superhorizon scales during inflation can add up in
a random walk like process and thereby create a non-zero homogeneous field value. To
describe this random walk, one can assume that the homogeneous field value receives a
“kick” every Hubble time tH = 1/HI from the modes that exit the horizon at that time.
This gets counteracted by the relaxation of the homogeneous field value driven by the
effective mass of the scalar as described in Sec. 5.2.1. In our discussion here, we will focus
on the case in which equilibrium between these two effects is reached, even though, in
general, this is not a strict requirement for the stochastic scenario to work.

Similarly to the misalignment scenario, we will extend the existing literature by taking
into account a non-minimal coupling of the scalar to gravity. To do so, we will follow along
the lines of [246], considering that the (squared) effective mass m2

eff ≡ m2
φ + ξR ≈ 12ξH2

I

is generally non-negligible compared to the (squared) scale of inflation H2
I . This will most

strongly affect the last Nmin e-folds of inflation, during which the stretched fluctuations
cannot contribute to the homogeneous field value any more, as they would not be stretched
enough to cover the whole horizon and therefore not lead to a homogeneous field value. On
the other hand, the superhorizon homogeneous field value continues to be driven towards
its minimum by the effective mass of the field. For the details of our calculation we refer
to App. F, while we here focus on the main results and consequences of the non-minimal
coupling.
For a long enough period of inflation, the probability distribution of the homogeneous

field value created from summing up small contributions from stretched fluctuations
approaches a Gaussian distribution with a mean of zero and a variance of (cf. Eq. (F.9)
for the exact expression)

〈
φ2
δ

〉
≈ F (α−)

α−

(
HI

2π

)2

e−α−Nmin , (5.25)

valid for our range of interest of 0 . ξ . 3/16. Note that for extremely small values of ξ
(or α−) the implicit assumption m2

φ/H
2
I � ξ can be violated and our results would reduce

to the minimally coupled case by taking an effective ξeff ∼ m2
φ/H

2
I (cf. App. F and [246]).

From the result of Eq. (5.25) we can deduce the expected typical value of the homogeneous
field, since its size is given by

√〈
φ2
δ

〉
. Additionally, we remark that only modes are taken

into account that are still superhorizon today and therefore correspond to a homogeneous
field value, as mentioned above. Furthermore, we can also identify both contributions
resulting in an equilibrium from Eq. (5.25). While the first part corresponds to the creation
of a homogeneous field value from fluctuations (cf. Eq. (5.16)), the exponential suppression
corresponding to the second part represents the field evolution during the last Nmin e-folds
of inflation (cf. Eq. (5.14)). From the exponential character of this suppression, we can
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already infer that a non-minimal coupling has a substantial influence on the stochastic
scenario.

While the suppression of the homogeneous field value during the last e-folds of inflation
favors the minimally coupled case, the time it takes to reach the equilibrium between
creation and relaxation of the homogeneous field value can be substantially shorter. For our
calculation of this time, or number of e-folds, we require two things. First, the equilibrium
between creation and relaxation of the homogeneous field value from fluctuations has to be
reached and second, the stochastic contribution has to be dominant over the misalignment
contribution which is in principle also there. From the requirement of having reached the
equilibrium we find for the necessary extra number of e-folds (cf. App. F)

∆N := Ntot −Nmin >
1

α−
, (5.26)

while for the stochastic contribution to be bigger by a factor of γ, we get the expression
(cf. App. F)

∆N >
1

α−
ln

γ 22+α−π3

Γ2
(

3−α−
2

) α−
(α+ − α−)2

(
φ̇s
H2
I

+
1

2
α+

φs
HI

)2

+ 1

 . (5.27)

The results of Eqs. (5.25) and (5.26)/(5.27) are our main results for the description of
the stochastic scenario and generalize the results found in [245, 246] to arbitrary initial
conditions and large effective masses, e.g. due to a non-minimal coupling to gravity.
With these results at hand, we can now proceed by looking at possible restrictions of
the stochastic scenario. Since the subhorizon fluctuations in the stochastic scenario
lead to isocurvature perturbations in the CMB in the same way as we analyzed for the
misalignment mechanism, our corresponding discussion for the energy density contrast
power spectrum carries over and Eq. (5.24) remains valid. The only difference is that φe
is now not a free parameter of the theory, but determined by the fluctuations themselves
through φe ≈

√〈
φ2
δ

〉
(cf. Eq. (5.25)). Thus we find for the energy density contrast power

spectrum (assuming enough e-folds of inflation)

Pδφ(kCMB) ≈ 4α− eα−(Nmin−NCMB) , (5.28)

where the exponential factor appears due to the difference of the largest observable scales
and the ones accessible by the CMB, and corresponds to about 7 e-folds (cf. App. E). For
small values of α−, this exponential contribution is subdominant and Pδφ(kCMB) ≈ α−,
which reflects the fact that the accumulated field variance is enhanced by a factor of 1/α−
in comparison to the amplitude of the fluctuations of an individual mode (cf. comparison
of Eqs. (5.25) and (5.16)).

Again using the Planck constraint on isocurvature perturbations [295], we find explicitly
for the limit Pδφ(kCMB) = PI(kCMB) . 10−9 and thus the strong bound of ξ . 10−10,
corresponding to ∆N & 109. This implies that any non-minimal coupling of the scalar
field to gravity makes it hard to realize such a stochastic scenario. Since we only used
the fact that the effective mass is non-negligible in comparison to the scale of inflation to
derive this strong bound, we conjecture that this difficulty to realize a stochastic scenario
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is not specific to models with a non-minimal coupling to gravity but holds for all models
for which the effective mass is non-negligible.

5.3 Non-Minimally Coupled Vector Fields

For our discussion of non-minimally coupled vector fields, we will follow the same route
as we did for the scalar case, by first focusing on the misalignment scenario and looking
at the evolution of the homogeneous field value together with the relic density, before
addressing the generated isocurvature perturbations and how they limit the available
parameter space. Afterwards we will conclude our discussion by analyzing the stochastic
scenario also for non-minimally coupled vector fields. While most of the results for the
vector case can be found following the same steps as in the scalar case, especially the
treatment of fluctuations will need some additional effort.

5.3.1 Homogeneous Vector Field Value and Relic Density

From the action of the non-minimally coupled vector model, Eq. (5.2), we can derive in
the same way as for the scalar model the EOMs for the homogeneous field value [235, 260,
262]

χ0 = 0 and χ̈i + 3Hχ̇i +

(
m2
X +

1− κ
6

R

)
χi = 0 , (5.29)

where we introduced the physical field χµ ≡ Xµ/a (cf. [260]4) to express them. This turns
the energy density (for an approximately homogeneous field) into [235, 260, 262]

ρχ =

3∑
i=1

[
1

2
χ̇2
i +

1

2
m2
Xχ

2
i + (1− κ)

(
1

2
H2χ2

i +Hχ̇iχi

)]
. (5.30)

The advantage of introducing the physical field as done above is that the EOM for each
spatial component is identical to the one of the scalar field (cf. Eq. (5.3)) once we identify

(1− κ)

6
←→ ξ . (5.31)

This correspondence is very important, as it will enable us to establish connections between
our calculations done for the scalar case and the ones for the vector case. In particular,
we find that a non-minimally coupled vector with κ = 1 behaves identical to a minimally
coupled scalar (ξ = 0).

Making use of the correspondence between the scalar and vector case through Eq. (5.31),
we can directly transfer our results found for the scalar case in Sec. 5.2.1 to the vector
case discussed here. This includes in particular all evolution equations given by Eq. (5.11)
and following. By denoting the absolute value of the vector field by χ ≡ |χ|, we thus find

4Strictly speaking, the physical field χ is usually only introduced for the spatial components χi, however,
because we find X0 = 0 from the EOMs, we can extend the definition to the time component to
simplify the notation.
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for the relic density

Ωχ

ΩDM
≈ 5F(T?)

( χe
1012 GeV

)2
√
mX

eV
, (5.32)

where we remind the reader that in general χe 6= χs because of the non-minimal coupling
to R and the resulting superhorizon evolution. Their relation is defined by the non-minimal
coupling κ through

χe ≈ c1χs e−
1
2
β−Ntot , (5.33)

where we introduced (corresponding to α± in the scalar case)

β± := 3±
√

1 + 8κ . (5.34)

Also for reference to other works, we note that β− defined here is related to ν used in [262,
263] by β− = 3− 2ν and we assumed m2

X/H
2
I � 1− κ.

From Eq. (5.33), we see that the evolution during inflation can lead to a substantial
enhancement or suppression of the field value, depending on whether we have κ > 1 or
κ < 1. As this potentially growing field value has to remain below the Planck scale mPl
(cf. Sec. 5.1), we can derive limits on κ > 1. These limits are depicted in Fig. 5.2 under
the conservative assumptions of minimal inflation, Ntot = Nmin(HI) (cf. App. E), and
initial de Sitter vacuum fluctuations, χs = HI/2π and χ̇s = 0. In the vector case they are
usually in the range of κ ∼ 1.5 to 10, with larger values being allowed for low scales of
inflation HI . Again, we note that they become significantly stronger for longer periods of
inflation (cf. Eq. (5.14)) and are independent of whether or not we assume the vector field
to represent DM.

5.3.2 Vector Fluctuations and Isocurvature Perturbations

Similar to the scalar case, also a non-minimally coupled vector field results in isocurvature
perturbations that would be imprinted in the CMB and could therefore be detected by
Planck. Thus, the non-detection of these isocurvature perturbations [295] leads to
constraints on the parameter space of the non-minimally coupled vector scenario. To
calculate the expected amount of isocurvature perturbations and the resulting limit, we
will split our calculation into two parts, since the multicomponent nature of the vector field
complicates the treatment. First, we will look into the generation of fluctuations during
inflation, before we will address in detail their evolution after inflation. For both regimes,
it is best to split the fluctuations into transverse (⊥) and longitudinal (‖) modes and
address each of these polarizations separately. Additionally, the treatment is furthermore
simplified by working in momentum space by Fourier transforming the equations.

5.3.2.1. Generation During Inflation

For the generation of vector fluctuations we start out by looking at the transversal
fluctuations before considering the more involved longitudinal ones.
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Transversal Fluctuations The EOMs of the two transversal polarizations δχ⊥i of the
fluctuations, are in momentum space given by (cf. [262])

δ̈χ
⊥
i + 3H ˙δχ

⊥
i +

(
m2
X +

1− κ
6

R+
k2

a2

)
δχ⊥i = 0 , (5.35)

which is identical to the expression in the scalar case (cf. [254]), using the usual identification
(1− κ)/6 ↔ ξ. Thus, we can transfer our result from Sec. 5.2.2 and find for the power
spectrum of the transversal fluctuations

P⊥χi(k, a) =

(
HI

2π

)2

F (β−)

(
k

aHI

)β−
, (5.36)

with F (·) as defined in Eq. (5.17).

Longitudinal Fluctuations In addition to working in momentum space, we can sim-
plify the treatment of the EOM for longitudinal fluctuations further by introducing
conformal time τ via dt/τ = a and a = −1/(τHI) as well as working with the original
field δX‖ = a δχ‖. Doing so, we find the EOM (cf. [262])

0 =

[
∂2
τ −

2τk2H2
I

τ2k2H2
I +m2

X − 2κH2
I

∂τ +
m2
X − 2κH2

I

τ2H2
I

+ k2

]
δX‖ . (5.37)

Since it turns out that this EOM is hard to solve in its complete form, we will focus on the
limiting cases of the sub- and superhorizon limit, in which it can be solved analytically,
and then use numerical methods to accurately link the two.

Starting with the subhorizon limit, for which k/(aHI) = −kτ � 1, the EOM simplifies
to

0 =

[
∂2
τ −

2

τ
∂τ +

m̃2

τ2H2
I

+ k2

]
δX‖ , (5.38)

where we also introduced the shifted mass m̃2 := m2
X − 2κH2

I . Furthermore redefining

δ̃X
‖
i ≡ −|m̃|/(τkHI) δX

‖
i (cf. [263]) removes the term proportional to ∂τ and results in

0 =

[
∂2
τ +

m2
X − 2(κ+ 1)H2

I

τ2H2
I

+ k2

]
δ̃X
‖
. (5.39)

The correct physical solution to this equation requires the Bunch-Davies vacuum as initial
condition (cf. [263]), which is given by

δ̃X
‖ τ→−∞−−−−→ 1√

2k
e−ikτ . (5.40)

Explicitly solving Eq. (5.39) with the initial condition of Eq. (5.40), results in the solution
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(cf. [262])

δX‖ ≡ −τkHI

|m̃| δ̃X
‖

= −τkHI

|m̃|
√
−πτ ei

π
2 (ν̃+ 1

2)

1− e2iπν̃

[
Jν̃(−kτ)− eiπν̃J−ν̃(−kτ)

]
, (5.41)

with J±ν̃(·) being Bessel functions of the first kind and we introduced the expression

ν̃ := 1/2
√

1 + 8(κ+ 1)− 4m2
X/H

2
I . Thus, we have found an explicit solution in the

subhorizon limit, which will be important for linking the sub- and superhorizon regime.

In the superhorizon limit, for which −τk � 1, the EOM Eq. (5.37) reduces to

0 =

[
∂2
τ −

2τk2H2
I

m̃2
∂τ +

m̃2

τ2H2
I

+ k2

]
δX‖ , (5.42)

which can be explicitly solved in terms of confluent hypergeometric functions of the first
kind. For our purposes however, it is more practical to use m2

X � 2κH2
I and −τk � 1 to

find the approximate solution

δX‖ ≈ 2−2− 1
2
β−(kτ)−1+ 1

2
β−
[
C̃1 (kτ)3−β− + C̃2 23−β−

]
≈ C̃2 21− 1

2
β−(kτ)−1+ 1

2
β− ,

(5.43)

where the approximation of the second line is valid long after horizon exit and the appearing
coefficients C̃1 and C̃2 are in general functions of k and κ. One important realization is
that for the superhorizon solution to fit to the subhorizon one, the coefficients need to
scale in terms of k like C̃1,2 ∼ 1/

√
k, as can be seen from trying to analytically match

them. Extracting this dependence on k, we are left with a dependence on κ and thus
define C̃2 ≡ 1/

√
k f(κ). Switching back to the physical field and scale factor (instead of

conformal time), the solution becomes

δχ‖ ≈ f(κ) 21− 1
2
β− HI

k3/2

(
k

aHI

) 1
2
β−

. (5.44)

Importantly, this superhorizon solution depends in the same way on time as the solution
for the homogeneous field and the transversal fluctuations.

The last remaining step is to link the sub- and superhorizon solution by numerically
solving the full EOM Eq. (5.37). To do so, we use the subhorizon solution as the initial
condition, evolve it numerically to the superhorizon regime and then choose f(κ) such that
the analytical superhorizon solution fits the numerical one. A particular example of this
is depicted in Fig. 5.4 for κ = 1, showing how the numerical solution at first agrees well
with the subhorizon one before shortly after horizon exit (at τk = −1) the superhorizon
solution represents the evolution better. Furthermore, we can also see that the subhorizon
solution provides a very accurate description for τk . −10, while the superhorizon solution
does so for τk & −0.1, where τk → −∞ represents the Big Bang and τk = 0 the infinite
future.

Extracting several values for f(κ) in the range κ ∈ [10−4, 10], which extensively covers
our region of interest, we can determine an accurate fit to the numerical results. This fit
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−10 −1 −0.1
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subhorizon sol.

superhorizon sol.

Figure 5.4.: Evolution of the subhorizon (early time), superhorizon (late time) and numer-
ical solution to the EOM Eq. (5.37) for κ = 1. The value for f(κ) is chosen
such that the superhorizon solution agrees with the numerical one for late
times.
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Figure 5.5.: Numerical results for f(κ) determined from figures like Fig. 5.4 depicted
together with a fit to these numerical results (cf. Eq. (5.45)) in the top panel.
The bottom panel shows the relative deviation of this fit (residuals) to the
numerical results themselves.
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function representing f(κ) is given by

|f(κ)| ≈ 0.502κ−0.5 − 0.224 + 0.262κ− 0.0411κ2 + 0.00654κ3 , (5.45)

which is displayed together with the underlying data and the residuals in Fig. 5.5. With
deviations of less than 2.5 % from the numerical results, the fit function represents an
accurate representation of the real dependence. Note that we chose to directly work with
the absolute value of f(κ), since this is the quantity appearing in the power spectrum and
easier to handle numerically.

With this result we can now calculate the power spectrum of the longitudinal fluctuations
given by P‖χ = k3/(2π2)|δχ‖|2 and find in the superhorizon limit

P‖χ(k, a) ≈ 23−β− |f(κ)|2
(
HI

2π

)2( k

aHI

)β−
, (5.46)

which is similar to the power spectrum of the transversal perturbations and we can identify
the relation

P‖χ =
2π|f(κ)|2

Γ2
(

3−β−
2

) P⊥χi . (5.47)

This relation generalizes the result P‖χ = 2P⊥χi for κ = 1 found in [263, 264] to arbitrary
values of κ and is our central result of this section. We therefore found that the power
spectra from longitudinal and transversal perturbations are proportional to each other
and since the proportionality constant is of order one, especially around κ ∼ 1, they are
usually also similar to each other in size. However, this similarity does not necessarily
hold for the evolution of the power spectra after inflation, to which we will turn next.

5.3.2.2. Evolution After Inflation

As we did for the discussion of the generation of vector fluctuations during inflation, we
will also split the analysis of their evolution after inflation into transversal and longitudinal
fluctuations.

Transversal Fluctuations In the same way as the generation of transversal perturba-
tions during inflation is identical to the scalar case, their evolution after inflation is also
the same, since they have the identical EOMs after we identify κ ↔ 1− 6ξ (cf. Eq. (5.35)
and [254]). Thus, for large scales like the ones of the CMB, we can follow one to one our
analysis of the scalar case from Sec. 5.2.2. Keeping in mind that there are two transversal
polarizations that each behave like a scalar field, we get an additional factor of two
and therefore for the energy density contrast power spectrum representing the induced
isocurvature perturbations is

P⊥δχ(kCMB) ≈ 8

χ2
e eβ−NCMB

(
HI

2π

)2

F (β−) . (5.48)
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In correspondence to the scalar case, we find a suppression of the isocurvature perturbations
for κ < 1 and an enhancement for κ > 1.

Longitudinal Fluctuations To analyze the evolution of the longitudinal fluctuations,
we start from the EOM Eq. (5.37), but in proper time and with setting R ≡ 0 for radiation
domination or using R, Ṙ� m2

X for later eras (cf. Fig. 5.1). The EOM then reads

δ̈χ
‖

+

(
3 +

2k2

k2 + a2m2
X

)
H ˙δχ

‖
+

(
2k2

k2 + a2m2
X

H2 +
k2

a2
+m2

X

)
δχ‖ = 0 . (5.49)

Since we assume reheating to be approximately instantaneous, this EOM covers the whole
evolution of the perturbations until today.
Already a simple comparison of the EOMs in the transversal and longitudinal case,

cf. Eqs. (5.35) and (5.49), suggests that their behavior can be substantially different
from each other and thus we have to study the evolution of the longitudinal modes in
detail. What helps to simplify the discussion is that we are interested in rather large-scale
modes that become non-relativistic before reentering the horizon, since these are the ones
connected to the CMB. Thus, we have to analyze their behavior in three different regimes:

(i) H � k/a� mX

In the superhorizon and relativistic5 regime, the EOM Eq. (5.49) reduces to

δ̈χ
‖

+ 5H ˙δχ
‖

+ 2H2δχ‖ = 0 , (5.50)

which can be solved by using that in this regime we have to be in the radiation
dominated era for our masses of interest mX & 10−22 eV [299] (cf. Fig. 5.1). Thus,
we can use Hrad = 1/(2t) (and arad ∼ t1/2) to find

δχ‖ ≈ c̃1√
t

+
c̃2

t
= c̃′1a

−1 + c̃′2a
−2 (5.51)

and after a short while the term scaling with a−1 will be the dominant one. However,
modes that become non-relativistic before the end of inflation will skip this regime
completely, since they violate k/a� mX . In particular, the CMB modes of interest
skip this regime if

mX &
kCMB

ar
≈ 2 · 10−4 eV

√
HI

6.6 · 1013 GeV
, (5.52)

where we used the Planck pivot scale as a typical CMB scale, kCMB = 0.05 Mpc−1,
and ar denotes the scale factor at reheating. The scale factor at reheating can, assum-
ing instantaneous reheating as we do, be expressed as ar = e−Nmin(HI) (cf. App. E
for Nmin(HI)). For the scale of inflation HI we choose as normalization the upper
limit compatible with the non-observation of tensor modes [295], HI < 6.6 · 1013 GeV.
Thus, we conclude that the relativistic and superhorizon regime will not be entered

5Note that k/a is not only related to the size of the horizon, but also represents the momentum of the
particle p = k/a.
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by the CMB scale modes of the longitudinal fluctuations if the mass parameter
is large enough, mX & 10−4 eV (or less for smaller HI), and if they do enter, the
solution tends to scale with a−1.

(ii) H � mX � k/a

For the superhorizon and non-relativistic regime, we can simplify the EOM Eq. (5.49)
to

δ̈χ
‖

+ 3H ˙δχ
‖

= 0 , (5.53)

for which we find the solution (again using the fact that we are in the radiation
dominated era like for regime (i))

δχ‖ ≈ c′1 + c′2a
−1 . (5.54)

Therefore, one would naively expect that the constant term6 quickly becomes the
dominant one and one could drop the term scaling with a−1. However, as argued
by [249], this is not necessarily the case and depends in our situation strongly
on how long the fluctuations evolved in regime (i). If they spend enough time in
regime (i), their solution becomes nearly perfectly proportional to a−1, leading to a
large hierarchy of the coefficients, c′1 � c′2, from demanding continuity of the solution
and its derivative between regimes (i) and (ii).
Thus, we have to distinguish two different cases. One option is that the fluctuations
skip regime (i) completely, which would lead them to follow the constant branch of
Eq. (5.54) and hence there is no suppression of the fluctuations. The other option
is that they enter regime (i) and the power spectrum gets suppressed. Carefully
matching the field value and its derivative through regimes (i) and (ii), we find

δχ‖(kCMB, a(ii)) ≈
(

mX

kCMB/ar

)2

δχ‖(kCMB, ar) , (5.55)

with a(ii) being the scale factor at the end of regime (ii). Here, the appearance of
mX/(kCMB/ar) can be intuitively understood, since it gives a measure of how long
regime (i) is traversed (cf. discussion on regime (i)) and thus is related to how well
the solution scales like a−1 before entering regime (ii).

(iii) mX � H, k/a

In this non-relativistic regime the Hubble parameter has become small enough for
the field to overcome the Hubble friction and therefore the EOM Eq. (5.49) becomes
that of pressureless matter

δ̈χ
‖

+ 3H ˙δχ
‖

+m2
Xδχ

‖ = 0 , (5.56)

being identical to the EOM of the homogeneous field and transversal fluctuations.
Therefore we can use the results found in the corresponding discussions and combine
the different regimes in the next step.

6This corresponds to a growing δX‖i (cf. [249]), however, not to a real growth of the density perturbations.
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Since the influence of the evolution through regimes (i) and (ii) is covered by the potential
suppression factor of Eq. (5.55) and regime (iii) behaves as in the transversal case, we can
combine all three regimes and find with respect to the transversal result

P‖δχ(kCMB) ' 1

2
P⊥δχ(kCMB) · 2π|f(κ)|2

Γ2
(

3−β−
2

) ·
1 , if m & kCMB/ar(

m
kCMB/ar

)4
, if m . kCMB/ar .

(5.57)

Here, the factor of 1/2 in front accounts for the change in dofs from two transversal ones
to one longitudinal one, the central factor reflects the change in the generation of the
longitudinal fluctuations during inflation (cf. Sec. 5.3.2.1) and the final distinction between
cases is due to the evolution after inflation (cf. Sec.5.3.2.2). The total energy density
contrast power spectrum is then given by the sum of the individual polarizations, hence

Pδχ(kCMB) = P⊥δχ(kCMB) + P‖δχ(kCMB) . (5.58)

Like in the scalar case, we can now derive limits from the non-observation of isocurvature
perturbations by Planck [295]. The resulting limits are depicted in Fig. 5.6 and are
very similar to the scalar limits shown in Fig. 5.3, with the difference that the standard
scenario now corresponds to κ = 1. However, this implies that a non-minimal coupling is
essential for the vector scenario to provide a viable DM candidate. One noticeable feature
of the depicted limits is a small kink in the isocurvature exclusion limits that stems from
the suppression of the longitudinal modes for small enough masses as given by Eq. (5.57).

5.3.3 Stochastic Scenario

Similar to the stochastic scenario discussed for a scalar field in Sec. 5.2.3, it can also be
realized for a vector field. While the calculation follows along the same lines, it is, like in
the previous sections, helpful to split the contributions of the vector field fluctuations into
transversal and longitudinal polarizations.

For the transversal fluctuations, we find again a behavior identical to scalar fluctuations
with the usual replacements α± ↔ β± and ξ ↔ (1− κ)/6. Thus we can use the result of
the scalar case from Sec. 5.2.3 (see also App. F) and find

〈
χ⊥δ

2
〉
≈ 2

F (β−)

β−

(
HI

2π

)2

e−β−Nmin , (5.59)

where the factor of two accounts for the two transversal polarizations.
For the longitudinal fluctuations, we can use (cf Eq. (5.44))

δχ‖ ≈ f(κ) 21− 1
2
β− HI

k3/2

(
k

aHI

) 1
2
β−

. (5.60)

as derived in Sec. 5.3.2.1. While strictly speaking this result was derived for late times of
inflation, it is still a reasonable approximation around horizon exit (cf. Fig. 5.4). Thus, we
can follow App. F in finding the accumulated field value at the end of inflation from the
longitudinal fluctuations by integrating over all modes that are still superhorizon today.
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Figure 5.6.: Constraints on the vector misalignment scenario depicted in the mX–HI–
plane for several values of the non-minimal coupling κ. The colored regions
indicate which part of the parameter space is excluded due to isocurvature
constraints, while the colored lines denote the necessary initial field value
under the assumption of minimal inflation to get the correct DM energy
density (solid lines for χs = mPl and dashed ones for χs = 1016 GeV). The
black hatched region depicts the part of parameter space in which there exists
no combination of κ and χs < mPl that reproduces the observed amount of
DM while fulfilling the isocurvature constraints by Planck. As there is a
one-to-one correspondence of the vector mass parameter mX and the vector
field value at the end of inflation χe (cf. Eq. (5.32)) as well as the scale of
inflation HI and the minimal number of e-folds Nmin (cf. Eq. (E.2)), their
respective values are given on the top and right axis.

However, as we have seen in Sec. 5.3.2.2, the post-inflationary evolution of transversal and
longitudinal perturbations can substantially differ, depending on the mass parameter mX .
As we assume equilibrium between the creation and relaxation of the homogeneous field
value, the integral over all modes that are still superhorizon today is dominated by the
largest scales (cf. App. F), which means that the present horizon scale k0 is the dominant
one. Therefore, the suppression of the longitudinal fluctuations discussed in Sec. 5.3.2.2
(see also [249]) is slightly modified and we find that no suppression occurs for

mX &
k0

ar
∼ 10−7 eV

√
6.6 · 1013 GeV

HI
, (5.61)
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where k−1
0 ∼ 10Gpc is the size of the observable universe. Accounting for the possible

suppression, the resulting variance of the superhorizon longitudinal fluctuations is then

〈
χ
‖
δ

2
〉
' 1

2

〈
χ⊥δ

2
〉
· 2π|f(κ)|2

Γ2
(

3−β−
2

) ·
1 , if m & k0/ar(

m
k0/ar

)4
, if m . k0/ar .

(5.62)

The total variance is simply given by adding up the two contributions from the transversal
and longitudinal polarizations

〈
χδ

2
〉

=
〈
χ⊥δ

2
〉

+

〈
χ
‖
δ

2
〉
, (5.63)

and a typical stochastically generated field value is
√
〈χδ2〉.

Demanding that the equilibrium between creation and relaxation of the homogeneous
field value from fluctuations has been reached and that the stochastic contribution is
dominant over the misalignment contribution, which is in principle also there, requires an
extra number of e-folds ∆N in addition to the minimally necessary one Nmin. Like in the
scalar case, an extra number of e-folds of

∆N >
1

β−
(5.64)

is required to attain equilibrium, while for the created homogeneous field value to be
dominant by a factor of γ over the misalignment contribution we find the constraint

∆N >
1

β−
ln

γ
 π|f(κ)|2

Γ2
(

3−β−
2

) + 1

−1

21+β−π3

Γ2
(

3−β−
2

) β−
(β+ − β−)2

(
χ̇s
H2
I

+
1

2
β+

χs
HI

)2

+ 1

 .
(5.65)

Finally, we can use the above results to look at possible restrictions of the stochastic
scenario due to isocurvature perturbations. Like in the scalar case, we can employ the en-
ergy density contrast power spectrum found when discussing the misalignment mechanism
(cf. Eq. (5.58) with Eqs. (5.48) and (5.57)) together with χe ≈

√〈
χ2
δ

〉
(cf. Eq. (5.63) with

Eqs. (5.59) and (5.62)) to get

Pδ(kCMB) ≈ 4β− eβ−(Nmin−NCMB) , (5.66)

where we neglected a small effect due to the different scales appearing in Eq. (5.57) and
Eq. (5.62) (kCMB vs k0). The equation for the energy density contrast power spectrum
reflects again the enhancement of the accumulated field variance by a factor of 1/β− with
respect to the amplitude of the fluctuations of an individual mode, while it also implies
that the stochastic scenario is hard to realize for deviations from κ = 1. Explicitly, we
find from the isocurvature constraint of Planck [295] a limit of 1− κ . 10−10 and thus
any deviation from the minimally coupled scalar like case is strongly constrained.
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5.4 Summary

This chapter was devoted to the study of DM consisting of very light (pseudo)scalar and
vector fields that have non-minimal couplings to gravity by means of the Ricci scalar R.
The strongest impact of these couplings is during inflation, when they have a significant
impact on the effective mass of the fields, resulting in effective masses in the order of the
Hubble parameter. This does not only influence the evolution of the homogeneous field
value, but also the evolution of the fluctuations, having a profound impact on both the
misalignment and stochastic scenario. After inflation, the Ricci scalar ceases to be the
dominant scale as it becomes negligible compared to the mass parameter, and thus the
influence of the non-minimal coupling is only a consequence of inflation.
For (pseudo)scalar fields, we found that the non-minimal coupling to gravity can

substantially alleviate the bound from isocurvature fluctuations for the misalignment
mechanism, as the perturbations get suppressed at CMB scales. To do so, a non-minimal
coupling of ξ ∼ 0.05 is sufficient, while negative values strengthen the isocurvature limits
and larger negative values are excluded as they would lead to transplanckian field excursions.
With respect to the stochastic scenario, which requires inflation to last sufficiently long to
build up a homogeneous field value from fluctuations that get stretched to superhorizon
scales during inflation, we were able to generalize the existing results to arbitrary non-
minimal couplings (or effective masses). However, the isocurvature constraints lead in this
scenario to a strong bound on the non-minimal coupling of ξ . 10−10, showing that the
stochastic scenario is hard to realize for non-minimally coupled models.
For the vector case, we found in general similar results as for the scalar one, since the

evolution of the homogeneous field value is identical to the scalar case after identifying
κ ↔ 1−6ξ. Thus a minimally coupled scalar field corresponds to a non-minimally coupled
vector field with κ = 1. As remarked in the introduction, the non-minimally coupled
vector field has the potential issue that its longitudinal component has a negative kinetic
term for a finite range of momenta. This is an interesting issue but beyond the scope of
our presented analysis and thus left for future work.

In the calculation of the vector fields, we split the analysis into transversal and longitudi-
nal polarizations, of which the transversal ones behave like a scalar field, while the behavior
of the longitudinal ones can differ. This applies both to the generation of longitudinal
fluctuations during inflation, as well as their evolution after inflation. For the generation
during inflation, we were able to provide a fit formula that accurately describes the behav-
ior of the longitudinal fluctuations for late times and arbitrary non-minimal couplings,
and thus allowed us to describe the generated isocurvature perturbations. Evolving this
power spectrum through time, we find a suppression factor for the longitudinal modes for
light mass parameters below mX ∼ 10−4 eV (depending on the scale of inflation). When
not being suppressed, the longitudinal fluctuations are similar or slightly bigger in size
compared to the transversal perturbations. Properly accounting for both contributions, we
find similar to the scalar case that a non-minimally coupled vector field can substantially
alleviate the bound from isocurvature perturbations for the misalignment mechanism. In
agreement with the identification κ ↔ 1− 6ξ, non-minimal couplings of around κ ∼ 0.7
are necessary to do so, while couplings larger than one become at some point constrained
by avoiding transplanckian excursions. For the stochastic scenario we find equally strong
bounds as in the scalar case, again showing that it is hard to realize for any deviation in
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the couplings from their standard value.
Summarizing one can say that non-minimal curvature couplings allow for the generation

of DM both for scalar and vector fields in a large part of parameter space for the
misalignment mechanism, while the stochastic scenario can only be realized in a very small
range of non-minimal couplings. This provides an additional possibility to accommodate
for DM even without any sizable couplings to the SM and thus beyond the standard DM
particle picture.
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Chapter 6

Conclusions

In this work, we examined a set of BSM models that allow for a low-scale explanation of
the BAU or DM. For both of these phenomena there is ample observational evidence and
their full explanation requires BSM physics. While especially for the BAU there are well
studied theories that can explain it by introducing new particles at high scales, we focused
on low-scale realizations that are accessible to current and future experiments in the spirit
of the motto of the Royal Society Nullius in verba. For DM, these low-scale realizations
can provide new pathways besides the standard WIMP paradigm.

With regard to low-scale theories that explain the BAU, we first analyzed the scotogenic
model in Ch. 2 for both cases of two and three RHNs. For two RHNs, we found to
be bound to the strong washout regime and derived a fully analytical solution for the
baryon-to-photon ratio by which we determined a lower limit for the RHN mass scale of
∼ 1010 GeV, similar to the limit in standard leptogenesis. We furthermore argued that
the possible enhancement of the CP asymmetry, as apparent from the DI-type bound we
derived, mostly cancels out in the calculation of the baryon-to-photon asymmetry and
thus does not help in creating a baryon asymmetry. For three RHNs, we are able to access
the weak washout regime and the situation fundamentally changes. As long as ∆L = 2
washout remains negligible, we were able to work analytically and show that the lower limit
on the smallest RHN mass is proportional to the lightest active neutrino mass and can
thus be substantially decreased. This remains true down to lightest active neutrino masses
of ml & 10−7...−6 eV, at which point a numerical treatment became necessary to include
the ∆L = 2 washout. Below these lightest active neutrino masses, it is possible to lower
the necessary RHN mass scale for successful leptogenesis even further down to ∼10TeV by
delaying the decay of the lightest RHNs until right before the SU(2)-sphalerons freeze out
via a decrease of the corresponding Yukawa couplings. Any later conversion of a baryon
into a lepton asymmetry is impossible as it is mediated by the SU(2)-sphalerons. Since
low-scale leptogenesis in the scotogenic model requires a very small mass of the lightest
active neutrino, any detection of a non-zero mass for it would make this mechanism (at
low scales) impossible.
In the singlet scalar assisted model of leptogenesis in Ch. 3, we realized low-scale

leptogenesis by introducing an additional source of CP violation via the new RHN decay
channels that opened up due to the scalar singlet. To make a parameter scan of the
model feasible, we first derived a semi-analytical fit function of the final baryon-to-photon
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ratio by numerical methods. With the help of this fit function, we were able to compare
the parameters necessary for successful leptogenesis to exclusion limits from collider
measurements and theoretical considerations like perturbativity and unitarity, all while
taking recent neutrino data into account. Doing so revealed the possibility to realize
singlet scalar assisted leptogenesis at RHN mass scales even below 1TeV and evading all
limits at the same time. However, especially for such low scales, the available parameter
space for a successful creation of the BAU is tightly constrained and thus accessible to
future more precise measurement of the Higgs sector at colliders.
Next, we turned from the BAU to DM and compared the LHC signatures of two

benchmark models, given by the 2HDM+PS and 2HDM+S. Although DM is represented
within these models in the standard way of vector-like DM, we focused on the parameter
region of light DM with a mass of a few GeV, which is only weakly constrained by other
types of experiments and can lead to a rich phenomenology at colliders. Studying this
rich collider phenomenology in detail, we investigated the limits from tt̄, mono-Z and
mono-h searches and compared these limits between the models as well as between each
other. As the bounds from tt̄ searches strongly constrain regions of parameter space
with values of tanβ < 1 for both models, they also start to exclude parameter points in
the commonly considered case of tanβ = 1. Mono-Z and mono-h searches on the other
hand, are strongest for small masses of the light new pseudoscalar or scalar and lead to
significant constraints mostly independent of tanβ. While mono-Z searches are dominant
over mono-h searches for both models, their relative signal strength significantly differs in
the 2HDM+PS and 2HDM+S, thus making it generally possible to distinguish between
the two models by their collider signatures in case of a future signal detection.

Lastly, we considered the possibility that DM is not linked to couplings to the SM but
related to couplings between (pseudo)scalar or vector fields and gravity by means of the
Ricci scalar R. In particular, we analyzed the misalignment and stochastic scenario for
non-minimally coupled (pseudo)scalar and vector fields. As known from the minimally
coupled scenario for the (pseudo)scalar (ξ = 0) and the corresponding one for the vector
(κ = 1), both of these mechanisms generally allow for an explanation of the observed
DM relic density even for DM mass scales as low as the sub-eV regime, while evading
their strongest constraint from the non-observation of isocurvature fluctuations in the
CMB. We found that the generalization to non-minimal couplings in the misalignment
scenario allows for a substantially larger part of parameter space to evade the isocurvature
limits, while reproducing the correct amount of DM. This improvement over the minimally
coupled scenario gets more significant for larger mass parameters of the (pseudo)scalar
and vector fields. For the stochastic scenario on the other hand, it turned out that the
minimally coupled case (corresponding to κ = 1 for the vector field) represents the least
constrained value for the coupling, even though very small deviations from this value in
the order of 10−10 are allowed. To derive these results for the vector field, we developed a
semi-analytical fit function that generalizes the literature result for the power spectrum of
the longitudinal fluctuations generated during inflation to a large range of the non-minimal
coupling κ. Thus, our investigation of DM from non-minimal curvature couplings led to
new insights into the evolution of longitudinal fluctuations of a vector field as well as
showing that such non-minimal couplings can open up new viable regions of parameter
space.
For all of our above studies there are possible improvements that we already touched
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upon in the respective chapters. In the case of leptogenesis, this usually implies including
sub-leading contributions like flavor corrections. However, since these contributions
normally do not qualitatively change the workings of leptogenesis, the more intriguing
question might be how it could be linked to other phenomena and what that might tell
us about leptogenesis itself, especially for the low-scale version. These links to other
phenomena were in principle present in both of our low-scale leptogenesis models, by a
link to DM in the scotogenic model and a singlet scalar S that could be related to a rich
phenomenology in the singlet scalar assisted model, but may deserve more attention. One
option would be, for example, to try to learn more about leptogenesis by studying its
connection to gravitational waves (cf. [300] for recent work in this direction).
In regard to DM, our study of two benchmark models can be seen as a small piece

in a bigger puzzle, which tries to develop a sensible theoretical framework to analyze
experimental data in. This is not only important for the analysis of models themselves,
but also as a mean to compare different models to each other. Since new experimental
data will rule out old models and shift the focus to new ones, this puzzle is likely to
never be completely finished, but will continue to be work in progress. For the study of
DM from curvature couplings, an interesting question would be to assess the viability of
the non-minimally coupled vector field, which has been picked up by some works but is
still a subject of ongoing discussion. On a bigger scale, it reminds us of the far reaching
consequences that a unified theory of gravity and quantum field theory can potentially
have and that it is worth to always look for new mechanism that could explain unresolved
phenomena like DM.
With phenomena like the BAU and DM lacking an explanation (and experimental

confirmation thereof), the field of astroparticle physics will remain an active and attractive
field of research searching for a solution to these challenges. The presented possible
low-scale explanations for these phenomena in this thesis provide one approach that might
be particularly interesting thanks to the many currently ongoing experimental efforts.
However, as often (probably falsely) attributed to Niels Bohr, “it’s very difficult to make
predictions, especially about the future”.
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Appendix A

Equilibrium Thermodynamics

Here we give a brief overview over the important relations from equilibrium thermodynamics
that can come in handy in the study of processes in thermal baths, like leptogenesis in
the thermal bath of the early universe. This overview is based on the standard literature,
e.g. [301], which also provides further details. The most fundamental quantity of equilibrium
thermodynamics is probably the phase space distribution function f(p) depending on the
momentum p. It is normally given by Fermi-Dirac oder Bose-Einstein statistics

f(|p|) =
1

e
E−µ
T ± 1

, (A.1)

where the former refers to the plus sign and the latter to the minus sign. Here E is
the energy which depends on the absolute value of the momentum |p|, µ the chemical
potential and T the temperature (with kB = 1). In the classical limit of quantum statistics
(sufficiently small number density or sufficiently large temperature while the total number
of particles is fixed) we have e

E−µ
T � 1 and both simplify to the Maxwell-Boltzmann

distribution

f(|p|) = e
−(E−µ)

T . (A.2)

With the phase space distribution function one can determine the number density n,
energy density ρ and the pressure p of a dilute, weakly-interacting gas of particles with g
internal degrees of freedom (e.g. spin) as1

n =
g

(2π)3

∫
f(p) d3p

ρ =
g

(2π)3

∫
E(p)f(p) d3p

p =
g

(2π)3

∫ |p|2
3E(p)

f(p) d3p.

(A.3)

The relation for the pressure is interesting because it leads in the relativistic limit

1The factor of (2π)3 is due to the volume a single state occupies in phase space.
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(T � m) and negligible chemical potential (T � µ) to the relation

p =
ρ

3
. (A.4)

For the other quantities we get under the same assumptions

n =

{
ζ(3)
π2 gT

3 for bosons
3
4
ζ(3)
π2 gT

3 for fermions

ρ =

{
π2

30 gT
4 for bosons

7
8
π2

30 gT
4 for fermions,

(A.5)

with the Riemann zeta function ζ(3) ≈ 1.202.

In the non-relativistic case (m� T ) we get

n = g

(
mT

2π

) 3
2

e−
m−µ
T

ρ = mn

p = Tn� ρ,

(A.6)

where there is no difference between fermions and bosons. Comparing these expressions
to the one for relativistic species, we see that the non-relativistic ones are exponentially
suppressed. Therefore, the total energy density and pressure can be well approximated by
only taking into account the relativistic species. Since the different species of particles
might have different temperatures Ti compared to the bath of photons with temperature
T , due to energy injection from particle decay (e.g. e+ + e− → γ + γ), we can define the
effective number of relativistic dofs

g∗ :=
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

(A.7)

and write in a very compact way

ρR =
π2

30
g∗T 4

pR =
ρR
3

=
π2

90
g∗T 4.

(A.8)

In the scotogenic model we have g∗ = 114.25 for two RHNs and g∗ = 116 for three RHNs.

The relation for the total energy density is especially handy when combining it with the
first Friedmann equation for a flat (k = 0) universe with neglected cosmological constant
(Λ = 0), which is given by

H2 =
8π

3M2
Pl

ρR (A.9)

and we used that in natural units (~ = 1, c = 1) the Planck mass is given by MPl =
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√
G
−1 ' 1.22 · 1019 GeV. Plugging in the above relation for ρR, we find for the radiation

dominated regime during which dark matter and dark energy do not play an important
role that

H =

√
8π3g∗

90

T 2

MPl
. (A.10)
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Appendix B

Boltzmann Equations

This appendix serves as a collection of information on Boltzmann equations, which are the
equations that track the phase space distribution function fX(pX) of a particle species X,
and builds upon App. A on equilibrium thermodynamics. For further information on the
topic and as a source of this overview see for example [301] and [302, Appendix A].

Integrated over a phase space volume, fX(pX) gives the average number of X particles
in that phase space volume at a specific time. In general, it depends on all phase space
coordinates as well as time t. However, after imposing homogeneity (all points in space
are equal) and isotropy (no preferred direction), the phase space distribution function only
depends on the momentum of the corresponding particle species1 |pX | ≡ p (the particle
species index is implicitly understood) and t. In this case the Boltzmann equation reads

L̂[fX(p, t)] ≡ EX
(
∂

∂t
−Hp ∂

∂p

)
fX(p, t) = CX [fX(p, t)] , (B.1)

with the Liouville operator L̂, the collision operator CX , EX =
√
p2 +m2

X with mass mX

and the Hubble rate H. Essentially, the equation states that changes in the phase space
distribution function have to come from interactions - tracked by the collision operator
CX - or are due to the momentum of the particles or the expansion of space - tracked by
the second part of the Liouville operator L̂.
The collision operator can be split into the different interactions by

CX =
∑
ab...

∑
ij...

CX(Xab . . .↔ ij . . . )

=
∑
ij...

CX(X ↔ ij . . . ) +
∑
a

∑
ij...

CX(Xa↔ ij . . . ) + . . . ,
(B.2)

while each CX is determined from QFT in terms of the matrix element and multi-particle

1Note the difference in notation to App. A in which p is referring to the pressure and not the absolute
value of the momentum of the particle.
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phase-space by

CX(Xab . . .↔ ij . . . ) =
1

2

∫
dΠ(X|a, b, . . . , i, j, . . . )(2π)4δ

(∑
pin −

∑
pout

)
[
fifj . . . (1± fX)(1± fa)(1± fb) . . . |M(ij . . .→ Xab . . . )|2

−fafb . . . fX(1± fi)(1± fj) . . . |M(Xab . . .→ ij . . . )|2
]
,

(B.3)

where we introduced

dΠ(X|a, b, . . . , i, j, . . . ) ≡ S(X, a, b, . . . , i, j, . . . )dp̃adp̃b . . . dp̃idp̃j . . . , (B.4)

with S being the appropriate symmetry factor for identical particles in the initial or final
state (n identical particles lead to a factor of 1/n!) and dp̃α ≡ gα/(2π)3 ·d3pα/(2Eα) is the
Lorentz invariant momentum space element. The matrix elements |M|2 are understood
as summed (not averaged; cf. [303, p. 80]) over initial and final spins and the quantum
mechanical factors of (1 + fα) for Bose enhancement and (1− fα) for Pauli blocking have
normally only a minor influence [304] (order of 10% at T = m according to [303, p. 78])
and can therefore often be neglected in the sense that (1± fα) ≈ 1. Furthermore, there is
another way to split the CX according to the direction the process proceeds in

CX(Xab . . .↔ ij . . . ) = CX(ij . . .→ Xab . . . )− CX(Xab . . .→ ij . . . ) . (B.5)

It is important to mention that the above expression for CX is a phenomenological
approximation. That it works and is sufficiently accurate has been shown in [305] by
comparing it to the full Kadanoff-Baym equations. Under certain assumptions, a derivation
of the Boltzmann equations from Kadanoff-Baym equations also seems to be possible [306].

To arrive at the more common version of the integrated Boltzmann equation, we take it
in the form of Eq. (B.1), divide both sides by EX , multiply by gX/(2π)3 and integrate
over d3p. Using the relation for the number density, Eq. (A.3), and integration by parts,
we get

ṅX + 3HnX = γ̂X =
∑
ab...

∑
ij...

γX(Xab . . .↔ ij . . . ) , (B.6)

where we introduced the interaction density

γX(Xab . . .↔ ij . . . ) =
gX

(2π)3

∫
d3p

EX
CX(Xab . . .↔ ij . . . ) . (B.7)

To further simplify these equations, we have to take a closer look at the phase space
distribution functions.

It will be helpful to introduce a Maxwell-Boltzmann phase space distribution function
with zero chemical potential, so we define

f eqα (p) := e−
Eα
T . (B.8)

One important realization is that we can, after approximating the Fermi-Dirac and Bose-
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Einstein distributions as Maxwell-Boltzmann distributions fα(p) ≈ e−Eα−µαT , rewrite the
phase space distribution function as

fX(p, t) = R(t)f eqX (p, t) with R(t) := e
µX
T (B.9)

and use Eq. (A.3) for the number density to realize that

R(t) := e
µX
T =

nX
neqX

. (B.10)

This means that we can replace fα(p) with f eqα (p) in terms of

fα(p) =
nα
neqα

f eqα (p) , (B.11)

where we did not mention the time dependence explicitly.

Plugging this into the interaction density γX we get

γX(Xab . . .↔ ij . . . ) =

S(X, a, b, . . . , i, j, . . . )

∫
dp̃Xdp̃adp̃b . . . dp̃idp̃j . . . (2π)4δ

(∑
pin −

∑
pout

)
[
ni
neqi

nj
neqj

. . . f eqi f
eq
j . . . (1± fX)(1± fa)(1± fb) . . . |M(ij . . .→ Xab . . . )|2

− na
neqa

nb
neqb

. . .
nX
neqX

f eqa f
eq
b . . . f eqX (1± fi)(1± fj) . . . |M(Xab . . .→ ij . . . )|2

]
.

(B.12)

In the following, we want to show how to derive the Boltzmann equation for two specific
cases from this expression. However, the relations and approximations we will use are
helpful in general. The first example we are looking at is the Boltzmann equation for a
sterile neutrino Ni that can decay to a Higgs boson η and a lepton ` as in the scotogenic
model. So we identify X → Ni, i→ η and j → `, where we, for simplicity, do not explicitly
write the sums over all possible η and `. In this case the integrated Boltzmann equation,
Eq. (B.6), for Ni reads

ṅNi + 3HnNi = γNi(Ni ↔ η`) . (B.13)

Plugging in the interaction density, Eq. (B.12), and neglecting all quantum mechanical
factors (1± fα) ≈ 1, we find (the symmetry factor is S(Ni, η, `) = 1)

ṅNi + 3HnNi =

∫
dp̃Nidp̃ηdp̃`(2π)4δ(pNi − pη − p`)[
nη
neqη

n`
neq`

f eqη f
eq
` |M(η`→ Ni)|2 −

nNi
neqNi

f eqNi |M(Ni → η`)|2
]
.

(B.14)
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To further simplify this expression we can use energy conservation to get

f eqη f
eq
` = e−

Eη+E`
T = e−

ENi
T = f eqNi (B.15)

and follow [307, p. 3] to see that the matrix elements are identical up to CP violating
effects. Explicitly, we have

M(i→ j) =M(j̄ → ī) by charge, parity and time conjugation (CPT) invariance
M(i→ j) =M(̄i→ j̄) =M(j → i) by first CP and second CPT invariance.

(B.16)

Since the non CP violating part is much larger than the part that can appear due to CP
violation we can safely neglect the latter and approximate

|M(η`→ Ni)|2 ≈ |M(Ni → η`)|2 , (B.17)

where the matrix element is summed and not averaged over the initial states as noted
above. Finally, as nα only deviates from neqα around mα = T and we assume mη � mN1

as well as m` � mN1 , we can set

nη
neqη
≈ 1

n`
neq`
≈ 1 . (B.18)

This deviation from equilibrium happens around mα = T , because at this temperature the
Boltzmann suppression e−

Eα
T in the phase space distribution function “kicks in” and the

number density cannot directly follow the equilibrium number density due to the finite
lifetime of the particles.

Using these relations for the equilibrium phase space distribution functions, matrix
elements and number densities in the Boltzmann equation of our example, Eq. (B.14), we
get

ṅNi + 3HnNi =

∫
dp̃Nidp̃ηdp̃`(2π)4δ(pNi − pη − p`)|M(Ni → η`)|2f eqNi

(
1− nNi

neqNi

)
(B.19)

and it is important to remember that the factor nNi/n
eq
Ni
≡ R(t) depends only on

time and therefore is not relevant for evaluating the integral. Inserting a factor of
2mNigNi/(2mNigNi) and splitting the integral up into the different parts, leads to

ṅNi + 3HnNi =

(
1− nNi

neqNi

)
2mNigNi

∫
dp̃Nif

eq
Ni

1

2mNi

∫
dp̃ηdp̃`(2π)4δ(pNi − pη − p`)

1

gNi
|M(Ni → η`)|2 .

(B.20)

From Peskin & Schroeder [122, p. 107] we find that the second line is by definition
Γavg(Ni → η`) - note that due to the factor of 1

gNi
this is now the over initial states
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averaged decay width (still summed over final states though). The integral in the first line
can be explicitly calculated to be∫

dp̃Nif
eq
Ni

=

∫
d3p

2ENi(2π)3
f eqNi =

1

2

T 2

2π2
ziK1(zi) , (B.21)

where we introduced zi := mNi/T and K is the modified Bessel function of the second
kind2.

To end up with a very compact expression, it is helpful to also have the explicit results
for the equilibrium number density neqX and the number density for a relativistic particle
species nrelX (with Maxwell-Boltzmann distribution)

neqX = gX
T 3

2π2
z2
iK2(zi)

nrelX = gX
T 3

π2

(B.22)

that can be derived from Eq. (A.3) together with the specific expression of the phase space
distribution function. Comparing these expressions with the result of the integration in
Eq. (B.21) we find

2mNigNi

∫
dp̃Nif

eq
Ni

= neqNi
K1(zi)

K2(zi)
, (B.23)

which finally leads us to the compact Boltzmann equation

ṅNi + 3HnNi =
K1(zi)

K2(zi)
Γavg(Ni → η`)(neqNi − nNi) . (B.24)

However, this equation has still one significant drawback, which is that zi := mNi/T
implicitly depends on time by means of the Temperature T . Therefore, it is helpful to
rewrite the equation as a differential equation in zi instead of t.

As a first step, it is useful to rewrite the left-hand side of the Boltzmann equation in a
more compact way. This is achieved by switching from nNi to N

(eq)
Ni

:= n
(eq)
Ni

/nrelNi , so by
normalizing the number density of the sterile neutrinos by its relativistic number density.
For the normalized number density we have

ṄNi =
ṅNin

rel
Ni
− nNi ṅrelNi

(nrelNi)
2

=
ṅNi
nrelNi
− nNi
nrelNi

ṅrelNi
nrelNi

=
1

nrelNi
(ṅNi + 3HnNi) , (B.25)

where in the last step we used (with a(t) being the scale factor)

ṅrelNi
nrelNi

= −3
ȧ(t)

a(t)
=: −3H . (B.26)

This can be derived using the assumption of homogeneity, meaning that nrelNi scales with

2For the modified Bessel functions of the second kind we use K instead of the usual K to distinguish it
from the later appearing decay parameter called K.
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the volume V of space, so nrelNi ∼ V ∼ a(t)3 and ṅrelNi ∼ −
d
dta(t)3 = −3 ȧ(t)

a(t)a(t)3, where
the minus sign reflects the fact that the number density decreases if the volume of space
increases.

After plugging ṅNi + 3HnNi = nrelNiṄNi into the Boltzmann equation and by using the
definition of N (eq)

Ni
, we get

ṄNi =
K1(zi)

K2(zi)
Γavg(Ni → η`) (N eq

Ni
−NNi) , (B.27)

nevertheless we are still left with a differential equation in t. To change that we have to
quickly dive into GR. In GR energy conservation is given by ∇µTµν = 0, which together
with the Robertson-Walker metric (using homogeneity and isotropy) and the assumption
of a perfect fluid3 (with stress-momentum-tensor Tµν = diag(ρ,−p,−p,−p)) leads to the
energy conservation equation

ρ̇+ 3H(ρ+ p) = 0 . (B.28)

For the radiation dominated universe we have, as mentioned in Eq. (A.4), p = ρ
3 and

therefore ρ̇ + 4Hρ = 0 or ρ ∼ a(t)−4. Comparing this to the Stefan-Boltzmann law
ρ = αT 4, we can deduce that T ∼ a(t)−1. The same result can also be found by using
an argument about adiabatic expansion. For adiabatic expansion we have δS = 0, which
implies S ∼ a(t)3s = const, where s denotes the entropy density and S the entropy. The
entropy density can in the radiation dominated era be determined to be

s =
ρ+ p

T
=

2π2

45
g∗,s T 3 , (B.29)

which implies

g∗,s a(t)3 T 3 = const (B.30)

or T ∼ a(t)−1 as long as we have adiabatic expansion and g∗,s = const. This insight can
be used via

dzi
dt

= mNi

d

dt

1

T
= −mNi

T 2

dT

dt
= −zi

1

T

dT

dt
(B.31)

and

− 1

T

dT

dt
= −a(t)

d
(

1
a(t)

)
dt

= H (B.32)

to get

dzi
dt

= Hzi , (B.33)

3Here and for the next couple of lines about GR p refers to the pressure and not the momentum of a
particle.
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which implies

ṄNi =
dNNi

dzi
Hzi . (B.34)

This translates the Boltzmann equation into

dNNi

dzi
=

Γavg(Ni → η`)

Hzi

K1(zi)

K2(zi)
(N eq

Ni
−NNi) , (B.35)

where only the Hubble parameter is left as being dependent on time t. Using Eq. (A.10)
for the Hubble parameter, we can rewrite it as4

H =

√
8π3g∗

90

T 2

MPl
= H(zi = 1)

1

z2
i

(B.36)

and by defining the decay parameter

Ki :=
Γavg(Ni → η`)

H(zi = 1)
(B.37)

we finally end up with the Boltzmann equation in its normally for leptogenesis used form

dNNi

dzi
= −Kizi

K1(zi)

K2(zi)
(NNi −N eq

Ni
) , (B.38)

with (cf. Eqs. (B.22))

N eq
Ni

:=
neqNi
nrelNi

=
z2
i

2
K2(zi) . (B.39)

The second Boltzmann equation we want to derive is the one for the B − L asymmetry,
which is conserved by all SM processes. Here we will stick to the simplest case5 with only
one sterile neutrino Ni and one lepton `1, without taking into account flavor effects or
scatterings, and follow the derivation of [79, pp. 6 sq.]. If one wants to account for flavor
effects, the usual approach is to work with N∆α , with ∆α := 1

3B − Lα, instead of NB−L
and include flavor branching ratios (cf. [79, 80]) and a flavor coupling matrix.
The first step is to ignore the reprocessing action of sphalerons, which distributes the

lepton asymmetry generated by the decays of the sterile neutrino Ni in the whole lepton
and baryon sector, allowing us to write

dNB−L
dzi

=
dN¯̀

1

dzi
− dN`1

dzi
. (B.40)

This is of course equivalent to assuming NB−L = N¯̀
1
−N`1 and implies that only the Ni

decays lead to a lepton (or baryon) asymmetry. In this way, we linked the Boltzmann
equation for the B−L asymmetry to Boltzmann equations for the leptons and anti-leptons.

4H(zi = 1) means to set T = mNi in the expression for H.
5The indices are given to show how the formulas generalize.
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B. Boltzmann Equations

For this reason, we go back to the general integrated Boltzmann equation, Eq. (B.6)
or (B.13), and use X → ¯̀

1/`1, a→ η and i→ Ni (this is the only significant CP violating
process generating a lepton asymmetry), to get

ṅ`1 + 3Hn`1 = γ`1(`1η ↔ Ni) (B.41)

and the same for ¯̀
1. We will give only the equations for `1 from here on and it is understood

that each one is also valid for `1 → ¯̀
1. Following the exact same steps as above, except

for not using n`1/n
eq
`1
≈ 1, leads to

ṅ`1 + 3Hn`1 =
K1(zi)

K2(zi)
Γavg(Ni → η`1)

(
nNi − neqNi

n`1
neq`1

)
, (B.42)

which has an additional minus sign compared to Eq. (B.24) because the roles of initial and
final particles are exchanged. Switching again to a differential equation in zi and using
N

(eq)
Ni

:= n
(eq)
Ni

/nrelNi , N
(eq)
`1

:= n
(eq)
`1

/nrelNi , gives us

dN`1

dzi
=

Γavg(Ni → η`1)

Hzi

K1(zi)

K2(zi)

(
NNi −N eq

Ni

N`1

N eq
`1

)
. (B.43)

Defining

〈Γi〉 := Γavg(Ni → η`1)
K1(zi)

K2(zi)

〈
Γ̄i
〉

:= Γavg
(
Ni → η ¯̀

1

) K1(zi)

K2(zi)
(B.44)

and (ID stands for “inverse decay”)

〈
ΓID
i

〉
:= 〈Γi〉

N eq
Ni

N eq
`1

〈
Γ̄ID
i

〉
:=
〈
Γ̄i
〉 N eq

Ni

N eq
¯̀
1

(B.45)

finally leads to the equations given in [79, pp. 6 sq.]

dN`1

dzi
=
〈Γi〉
Hzi

NNi −
〈
ΓID
i

〉
Hzi

N`1

dN¯̀
1

dzi
=

〈
Γ̄i
〉

Hzi
NNi −

〈
Γ̄ID
i

〉
Hzi

N¯̀
1
. (B.46)

Note that the definition given above for 〈Γ〉 is equivalent to the expectation value for the
decay width Γ of a Maxwell-Boltzmann distributed collection of particles. The expectation
value of a quantity Q(p) with phase space distribution function f(p) is generally given by

〈Q〉f(p) =

∫
d3p Q(p)f(p)∫

d3p f(p)
, (B.47)

which specializes to 〈Q〉MB for f(p) = e−
E
T or f(p) = e−

E−µ
T because the part of the

chemical potential µ does not depend on p and therefore cancels out. Using the relation
for the Lorentz factor γ = E

m and time dilation t = γt̃ (quantities with a tilde are in the
rest frame of the particle) from special relativity together with Γ = 1/τ , with the lifetime
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τ of the particle, we get

〈Γ〉 =

〈
1

τ

〉
=

〈
1

γτ̃

〉
=

〈
1

γ

〉
1

τ̃
=
〈m
E

〉
Γ(T = 0) =

K1(z)

K2(z)
Γ(T = 0) , (B.48)

which is equivalent to the above given definition.
Continuing with the derivation of our Boltzmann equation, we have for a vanishing

asymmetry 0 = NB−L ≡ N¯̀
1
−N`1 thatN¯̀

1
= N`1 ≡ N eq

` , which impliesN¯̀
1
≈ N eq

¯̀
1
≡ N eq

`

and N`1 ≈ N eq
`1
≡ N eq

` up to CP violating effects. The linear parts of these differences due
to CP violation have different signs, while the quadratic parts have the same sign. This
suggests that 1

2(N`1 +N¯̀
1
) = N eq

` +O
(
N2
B−L

)
and therefore

N`1 =
1

2
(N`1 +N¯̀

1
) +

1

2
(N`1 −N¯̀

1
) = N eq

` −
1

2
NB−L +O

(
N2
B−L

)
N¯̀

1
=

1

2
(N`1 +N¯̀

1
)− 1

2
(N`1 −N¯̀

1
) = N eq

` +
1

2
NB−L +O

(
N2
B−L

)
.

(B.49)

Plugging these relations into Eq. (B.46) and using Eqs. (B.40, B.45), while neglecting the
O
(
N2
B−L

)
terms, we get

dNB−L
dzi

=

〈
Γ̄i
〉
−
〈
Γi
〉〈

Γ̄i
〉

+
〈
Γi
〉 〈Γ̄i〉+

〈
Γi
〉

Hzi

(
NNi −N eq

Ni

)
− 1

2

〈
Γ̄ID
i

〉
+
〈
ΓID
i

〉
Hzi

NB−L . (B.50)

To achieve a more compact notation, we define the CP asymmetry

εi :=
Γi − Γ̄i
Γi + Γ̄i

, (B.51)

where the averaging over the phase space distribution functions canceled out, the decay
term

Di(zi) :=

〈
Γ̄i
〉

+
〈
Γi
〉

Hzi
(B.52)

and the washout term

Wi(zi) :=
1

2

〈
Γ̄ID
i

〉
+
〈
ΓID
i

〉
Hzi

, (B.53)

and finally end up with the compact Boltzmann equation for the B − L asymmetry

dNB−L
dzi

= −εiDi(zi) (NNi −N eq
Ni

)−Wi(zi)NB−L . (B.54)

Often it is helpful to have expressions for the decay and washout term in terms of
the decay parameter Ki introduced in Eq. (B.37) and not in terms of the decay rates
Γi. Under the usual assumption that the leptons are relativistic in the period we are
interested in and that the internal number of degrees of freedom are the same for the
sterile neutrinos and the leptons (gNi = 2 = g`j ), we can deduce from its definition that
N eq
` = 1 and we have to zeroth order of the CP asymmetry N eq

`j
= N eq

` = N eq
¯̀
j
. Note that
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B. Boltzmann Equations

we only take into account the zeroth order of the CP asymmetry for Wi(zi) because NB−L
is an effect in first order of the CP asymmetry and in this way all terms of Eq. (B.54)
are of the same (first) order in the CP asymmetry. Furthermore, it is important to note
that the decay parameter as defined in Eq. (B.37) does not differentiate between decay to
particles and anti-particles, so it refers to the sum of those two decay rates. Plugging in
the above definitions of the inverse decay rate, using Eq. (B.39) for N eq

Ni
and rewriting the

Hubble parameter in terms of zi, leads to

Wi(zi) =
1

4
Kiz

3
iK1(zi) (B.55)

for the washout term, whereas similar steps give

Di(zi) = Kizi
K1(zi)

K2(zi)
(B.56)

for the decay term. With the help of this expression for the decay term, we can also
express the first Boltzmann equation we derived for sterile neutrinos, Eq. (B.38), in a
more compact form as

dNNi

dzi
= −Di(NNi −N eq

Ni
) . (B.57)

To be able to write one single Boltzmann equation for several sterile neutrinos, one has
to use the fact that zi/z1 = mNi/mN1 is a constant and therefore d

dzi
= mN1/mNi

d
dz1

=

z1/zi
d

dz1
. Since the equations for the different sterile neutrinos are otherwise well separated

for a hierarchical sterile neutrino mass spectrum mNi+1 ≥ 3mNi , we can write

d

dz1
NB−L =

∑
i

zi
z1

[
εiDi(NNi −N eq

Ni
)−WiNB−L

]
. (B.58)

Well separated means in this context that except for mNi ≈ T we have NNi ≈ N eq
Ni

and
Wi ≈ 0, so the contributions from the other sterile neutrinos are negligible and we can use
Eq. (B.54) for each sterile neutrino and use its final result as initial condition for the next
lighter sterile neutrino.

Finally, let us for completeness also mention how to extend the Boltzmann equation(s)
to also take into account flavor effects by introducing flavor branching ratios Piα and the
flavor coupling matrix Cαβ . With these corrections the Boltzmann equation(s) then read

d

dz1
N∆α =

∑
i

zi
z1

εiαDi(NNi −N eq
Ni

)−Wi

∑
β

PiαCαβN∆β

 . (B.59)

Thus, the interplay of the different flavors changes how the washout effects the evolution
of the B − L asymmetry.
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Appendix C

Loop Functions of the
Singlet Scalar Model

Here we want to state the full expressions for the loop functions that are relevant for the
CP asymmetry in the singlet scalar model. They have been determined in [94] and read

Fv
ij, R =

√
rji ln

[
(1 + ηi)(1− rji)− (1− ηi)(σi +

√
δji)

(1 + ηi)(1− rji)− (1− ηi)(σi −
√
δji)

]
, (C.1)

Fv
ij, L = −

√
δji +

rji − ηi
1− ηi

ln

[
(1 + ηi)(1− rji)− (1− ηi)(σi +

√
δji)

(1 + ηi)(1− rji)− (1− ηi)(σi −
√
δji)

]
, (C.2)

F s
ijk,RR =

√
rji
√
rki
√
δji

1− rji
, (C.3)

F s
ijk,RL =

1

2

√
rki
√
δji(1 + rji − σi)
1− rji

, (C.4)

F s
ijk, LL =

√
rji
√
δji

1− rji
, (C.5)

F s
ijk, LR =

1

2

√
δji(1 + rji − σi)

1− rji
, (C.6)

where we defined rij := M2
i /M

2
j , σi := m2

S/M
2
i , ηi := m2

h/M
2
i and δij := (1− rij − σj)2 −

4 rijσj . Note that since leptogenesis happens before the EW phase transition, we have a
vanishing mass of the SM Higgs boson mh = 0. This can be different if another Higgs
doublet is involved in leptogenesis as for example in the scotogenic model (cf. Ch. 2).
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Appendix D

Formulae for the Decay Widths

This appendix serves as an overview of the formulae for the decay widths in the 2HDM+S
and 2HDM+PS, as discussed (in parts) by Sec. 4.1.4. Like Ch. 4, this appendix is based
on Ref. [162].

We focus in the analysis of the decay widths on a mass spectrum of the type MA ∼
MH/S1

∼ MH± > Ma/S2
, Mh as it also appears in Sec. 4.1.4. Furthermore, we use

tanβ ∼ 1, implying that we are nearly independent of the specific type of the Yukawa
structures, except for the inert one. Nevertheless, we will mostly use εf for a (type of)
fermion f to indicate the Yukawa scaling factors as laid out by Tab. 4.1 and note that the
SM value for the Yukawa coupling is given by yf =

√
2mf/v. Additionally, we introduce

the regularly appearing kinematic quantity τi,j := 4M2
i /M

2
j .

D.1 Scalar Model

Higgs Boson h As discussed in Sec. 4.1.2, the alignment or decoupling limit ensures
that the couplings of h with the SM states coincide with the ones of the SM Higgs boson.
However, its total width can deviate from the SM prediction, because of possible additional
decay channels. The most relevant, if kinematically allowed, is the one into a pair of S2

states. Since the Higgs width is small, also three-body decays can be relevant and the
additional widths are given by

Γ(h→ S2S2) =
1

32π
g2
hS2S2

Mh

√
1− τS2,h , (D.1)

Γ(h→ S2χχ̄) =
y2
χ

32π3
g2
hS2S2

Mh g(τS2,h) cos2 θ (1− τχ,S2)3/2 , (D.2)

Γ
(
h→ S2ff̄

)
=
Nf
c ε2

f y
2
f

16π3
g2
hS2S2

Mh g(τS2,h) sin2 θ (1− τf,S2)3/2 , (D.3)
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D. Formulae for the Decay Widths

with [220]

g(τ) =
τ − 4

8

[
4− ln

(τ
4

)]
− 5τ − 4

4
√
τ − 1

[
arctan

(
τ − 2

2
√
τ − 1

)
− arctan

(
1√
τ − 1

)]
,

(D.4)

ghS2S2 =
1

Mhv

(
M2
h − 2 (M2

S1
−M2

S2
) cos2 θ

)
sin2 θ . (D.5)

Light Scalar S2 The light scalar S2 mostly decays into gg, ff̄ and χχ̄ (direct couplings
with gauge boson are forbidden in the alignment limit), depending on the mass. We quote
below the corresponding decay widths and the loop-induced one into gluons, which is
useful for the interpretation of our collider studies:

Γ(S2 → gg) =
α2
s

16π3
MS2 sin2 θ

∑
q

ε2
q y

2
q FS(τq,S2) , (D.6)

Γ(S2 → ff̄) =
Nf
c ε2

f y
2
v

16π
MS2 sin2 θ (1− τf,S2)3/2 , (D.7)

Γ(S2 → χχ̄) =
y2
χ

8π
MS2 cos2 θ (1− τχ,S2)3/2 , (D.8)

with

FS(x) = x

∣∣∣∣1 + (1− x) arctan2 1√
x− 1

∣∣∣∣2 . (D.9)

Heavy Scalar S1 The couplings of the heavy scalar to the SM fields are similar to the
usual 2HDM formulas, with an additional factor of cos2 θ that appears due to the mixing
between the scalar singlet and the doublets. Furthermore, we have the additional decay
channels S1 → χχ̄, which is suppressed by sin2 θ, S1 → S2S2, which is very small for our
choice of parameters, and S1 → S2h, which turns out to be important for the mono-h
bounds. The analytic expressions are given by

Γ(S1 → gg) =
α2
s

16π3
MS1 cos2 θ

∑
q

ε2
q y

2
q FS(τq,S1) , (D.10)

Γ
(
S1 → ff̄

)
=
Nf
c ε2

f y
2
f

16π
MS1 cos2 θ (1− τf,S1)3/2 , (D.11)

Γ(S1 → χχ̄) =
y2
χ

8π
MS1 sin2 θ (1− τχ,S1)3/2 , (D.12)

Γ(S1 → S2S2) =
1

32π
g2
S1S2S2

MS1

√
1− τS2,S1 , (D.13)

Γ(S1 → S2h) =
1

16π

λ1/2(MS1 ,Mh,MS2)

MS1

g2
S1S2h , (D.14)
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D.2 Pseudoscalar Model

with

gS1S2S2 =
1

MS1vS

(
M2
S1

+ 2M2
S2
− 2− 3 sin2 θ

cos2 θ
λ̂HHS v

2
S

)
sin θ cos θ , (D.15)

gS1S2h =
1

MS1v

(
M2
h +

(
M2
S1
−M2

S2

)
cos 2θ

)
sin θ cos θ . (D.16)

Furthermore, we introduced

λ(m1,m2,m3) :=
(
m2

1 −m2
2 −m2

3

)2 − 4m2
2m

2
3 . (D.17)

Pseudoscalar A In addition to the decay channels known from 2HDMs, the pseudoscalar
has a further one to S2Z. Their decay widths are found to be

Γ(A→ gg) =
α2
s

16π3
MA

∑
q

ε2
q y

2
q FP (τq,A) , (D.18)

Γ
(
A→ ff̄

)
=
Nf
c ε2

f y
2
f

16π
MA (1− τf,A)1/2 , (D.19)

Γ(A→ S2Z) =
1

16π

λ3/2(MA,MS2 ,MZ)

M3
A v

2
, (D.20)

with

FP (x) = x

∣∣∣∣arctan2 1√
x− 1

∣∣∣∣2 . (D.21)

Charged Scalar H± For completeness, we also list the partial widths of H± to quarks
and the new scalars in combination with a W±. The H±hW± vertex, and therefore the
corresponding partial width, vanishes in the alignment limit.

Γ
(
H+ → tb̄

)
=
N t
c |Vtb|2ε2

t y
2
t

16π
MH±

(
1− τt,H±/4

)2
, (D.22)

Γ
(
H± → S1W

±) =
1

16π

λ3/2(MH± ,MS1 ,MW )

M3
H±v

2
cos2 θ , (D.23)

Γ
(
H± → AW±

)
=

1

16π

λ3/2(MH± ,MA,MW )

M3
H±v

2
, (D.24)

Γ
(
H± → S2W

±) =
1

16π

λ3/2(MH± ,MS2 ,MW )

M3
H±v

2
sin2 θ , (D.25)

where in the case of H+ → tb̄ we have neglected terms of O(m2
b/M

2
H±).

D.2 Pseudoscalar Model

The results in this section are taken from [160] and transferred into our notation. In
general, the decay width formulas and their behavior is very similar to the scalar ones
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D. Formulae for the Decay Widths

presented in the previous section.

Higgs Boson h Similarly to the 2HDM+S, the couplings of h to ff̄ and gauge boson
pairs are fixed to their SM values by the alignment limit. Nevertheless, due to the
additional two and three body decay channels, the total decay width is enlarged and we
find the expressions [220]:

Γ(h→ aa) =
1

32π
g2
haaMh (1− τa,h)1/2 , (D.26)

Γ(h→ aχχ̄) =
y2
χ

32π3
g2
haaMh g(τa,h) cos2 θ (1− τχ,a)1/2 , (D.27)

Γ
(
h→ aff̄

)
=
Nf
c ε2

f y
2
f

16π3
g2
haaMh g(τa,h) sin2 θ (1− τf,a)1/2 , (D.28)

with g(τ) given by Eq. (D.4) and

ghaa =
1

Mhv

[ (
M2
h − 2M2

H + 4M2
H± − 2M2

a − 2λ3v
2
)

sin2 θ

−
(
λ11P cos2 β + λ22P sin2 β

)
v2 cos2 θ

]
.

Light Pseudoscalar a The partial widths to gg, ff̄ and χχ̄ are given by

Γ(a→ gg) =
α2
s

16π3
Ma sin2 θ

∑
q

ε2
q y

2
q FP (τq,A) , (D.29)

Γ
(
a→ ff̄

)
=
Nf
c ε2

f y
2
f

16π
Ma (1− τf,a)1/2 , (D.30)

Γ(a→ χχ̄) =
y2
χ

8π
Ma cos2 θ (1− τχ,a)1/2 , (D.31)

with FP as given in Eq. (D.21).

Heavy Pseudoscalar A For the heavy pseudoscalar we find for the partial widths to
gg, ff̄ , χχ̄ and ah

Γ(A→ gg) =
α2
s

16π3
MA cos2 θ

∑
q

ε2
q y

2
q FP (τq,A) , (D.32)

Γ
(
A→ ff̄

)
=
Nf
c ε2

f y
2
f

16π
MA cos2 θ (1− τf,A)1/2 , (D.33)

Γ(A→ χχ̄) =
y2
χ

8π
MA sin2 θ (1− τχ,A)1/2 , (D.34)

Γ(A→ ah) =
1

16π

λ1/2(MA,Ma,Mh)

MA
g2
Aah , (D.35)
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with

gAah =
1

MA v

[
M2
h − 2M2

H −M2
A + 4M2

H± −M2
a

+
(
λ11P cos2 β + λ22P sin2 β − 2λ3

)
v2
]

sin θ cos θ .

(D.36)

Heavy Scalar H In this case, the partial widths to gg, ff̄ , aa and aZ are given by

Γ(H → gg) =
α2
s

16π3
MH

∑
q

ε2
q y

2
q FS(τq,H) , (D.37)

Γ
(
H → ff̄

)
=
Nf
c ε2

f y
2
f

16π
MH (1− τf,H)3/2 , (D.38)

Γ(H → aa) =
1

32π
g2
HaaMH (1− τa,H)1/2 , (D.39)

Γ(H → aZ) =
1

16π

λ3/2(MH ,Ma,MZ)

M3
Hv

2
sin2 θ , (D.40)

with λ(·) as defined by Eq. (D.17) and the Haa coupling

gHaa =
1

MHv

[
cot(2β)

(
2M2

h − 4M2
H + 4M2

H± − 2λ3v
2
)

sin2 θ

+ sin(2β) cos2 θ v2 (λ11P − λ22P ) / 2
]
.

(D.41)

Charged Scalar H± Finally, we find for the decay width of the charged scalar

Γ
(
H+ → tb̄

)
=
N t
c |Vtb|2 ε2

t y
2
t

16π
MH±

(
1− τt,H±/4

)2
, (D.42)

Γ
(
H± → HW±

)
=

1

16π

λ3/2(MH± ,MH ,MW )

M3
H±v

2
, (D.43)

Γ
(
H± → AW±

)
=

1

16π

λ3/2(MH± ,MA,MW )

M3
H±v

2
cos2 θ , (D.44)

Γ
(
H± → aW±

)
=

1

16π

λ3/2(MH± ,Ma,MW )

M3
H±v

2
sin2 θ , (D.45)

where in the case of H+ → tb̄ we have again neglected terms of O(m2
b/M

2
H±). Note that

in the alignment limit the H±hW± vertex, and therefore the corresponding partial width,
vanishes. Additionally, these decay widths of the charged scalar H± are mostly relevant
for small tanβ.
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Appendix E

Inflation Scale and
Minimal Number of e-Folds

Since inflation is the central focus of our analysis, we want to address here several points
about the number of e-folds of inflation and their connection to the scale of inflation HI .
For our discussion, we will closely follow [296] and rely on some common assumptions in
cosmology.

We denote the number of e-folds between the comoving scale (wavenumber) k leaving the
horizon at k = aH during inflation and the end of inflation by N(k), while Ntot represents
the total number of e-folds of inflation. From the present horizon scale k0 = a0H0, which
is the largest scale that we can access observationally, we find a lower limit Ntot ≥ N(k0),
however Ntot can in principle be much larger. To be able to get quantitative results, we
have to specify in some cases the total number of e-folds Ntot, for which we will then use
the assumption of minimal inflation, meaning to choose Ntot = Nmin = N(k0).
In general N(k) can be expressed as [296]

N(k) = − ln

(
k

a0H0

)
+

1

3
ln

(
ρreh

ρend

)
+

1

4
ln

(
ρeq

ρreh

)
+ ln

(
Hk

Heq

)
+ ln(219 Ωmh) , (E.1)

where ρend, ρreh, ρeq are the energy density at the end of inflation, at reheating and
at matter-radiation equality, Hk and Heq are the Hubble parameters at the time when
the scale k exits the horizon during inflation and at matter radiation equality, and Ωm

is the matter density. To simplify the above expression we will rely on two common
assumptions in cosmology. First, we assume Hk = Hend ≡ HI , thus an exactly exponential
expansion during inflation. Second, ρreh = ρend, thus instantaneous reheating at the
end of inflation. Additionally, we can make use of the first Friedmann equation for a
flat universe, ρ = 3m2

PlH
2 with the reduced Planck mass mPl, and the numerical values

Heq ≈ 2 · 10−37 GeV, Ωm ≈ 0.3 and h ≈ 0.7. In this way we find for minimal inflation
(k = k0) the nicely simple expression

Nmin = 62 +
1

2
ln

(
HI

6.6 · 1013 GeV

)
. (E.2)

Here, the chosen normalization for HI refers to the largest scale of inflation allowed by
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observations (using the 95 % confidence limit from [295]). An important aspect of this
result for the minimal number of e-folds is that we can directly see that Nmin decreases
for smaller scales of inflation.
In addition to the minimal number of e-folds, we are also interested in the number of

e-folds that the scales related to the CMB left the horizon before the end of inflation,
N(kCMB). With the Planck pivot scale kCMB = k? = 0.05 Mpc−1, we find

Nmin −N(kCMB) = 7.26 . (E.3)

To conclude and for comparison, we also give the expression for the minimal number of
e-folds without any assumptions on reheating and assuming slow-roll inflation:

Nmin = 62 +
1

2
ln

(
HI

6.6 · 1013 GeV

)
+

1

4
ln

(
Vk0

ρend

)
+

1

12
ln

(
ρreh

ρend

)
. (E.4)

The slow-roll approximation implies Hk = 8πVk/3m
3
Pl and we reformulated the result in

terms of the energy scale of inflation instead of the Hubble scale. Note that for a longer
period of preheating we generally have ρreh ≤ ρend, leading to a decrease in Nmin, while
a deviation from pure de Sitter expansion means that Vk0 ≥ ρend and results in a larger
value for Nmin.
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Appendix F

Stochastic Scenario

This appendix provides the details of the calculation for the stochastic scenario, following
along the lines of [246]. While we provide all formulas here for the scalar case, note that
the calculation works essentially identical for the vector case for which we partially use
formulas from [262].

As the stochastic scenario relies on an equilibrium between the accumulation of fluctu-
ations that get stretched to superhorizon scales and the relaxation of the so generated
homogeneous field value, we will need for our calculations the exact form of the homoge-
neous field evolution during inflation. Taking general initial conditions φs and φ̇s, it is
given by

φ(t) = φs

(
c1e−

1
2
α−HI t + c2e−

1
2
α+HI t

)
, (F.1)

with

c1 =
1

α+ − α−

(
α+ +

φ̇s
HI φs

)
,

c2 = − 1

α+ − α−

(
α− +

φ̇s
HI φs

)
,

(F.2)

and identical equations being valid in the vector case for χi(t), only exchanging α± for
β±. Using α+ > α− (β+ > β−), we can for late times approximate the solutions by

φ(t) ≈ 2

HI(α+ − α−)

(
φ̇s +

1

2
α+HIφs

)
e−

1
2
α−HI t (F.3)

φ̇(t) ≈ − α−
α+ − α−

(
φ̇s +

1

2
α+HIφs

)
e−

1
2
α−HI t . (F.4)

Note that the time t appearing here is defined such that at the end of inflation HIt = Ntot.
Furthermore, we find for the time derivative in general

φ̇(t) = −1

2
α−HIφ(t) , (F.5)
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implying for the initial conditions that the assumption φ̇s ∼ HIφs is reasonable as long as
α− 6≈ 0.

For the computation of the variance of the field value sourced by fluctuations, we, in a
first step, identify how the notation used in [246] relates to our notation. The quantity
ν, used by [246, 262], is in terms of our α− given by α− = 3 − 2ν, or directly in terms
of ξ by ν ≈ 3/2

√
1− 16/3ξ, with 0 . ξ . 3/16. Solving the EOM of the fluctuations,

which is very similar to the one solved in [246], we find a solution that depends on a
Hankel function. Splitting this Hankel function into Bessel functions, it turns out that the
contribution scaling with the Bessel function of the first kind J−ν(·) is dominant and thus,
after approximating J−ν(·), the (late time) field values of the fluctuations turn out to be

|δφk|2 ≈
H2
I

4π
Γ2

(
3− α−

2

)(
1

aHI

)3(2aHI

k

)3−α−
. (F.6)

However, the fluctuations do only contribute to the homogeneous field value as long as
inflation stretches their size to scales that are still superhorizon today. The accumulated
effect of all these sufficiently long wavelength modes then results in a Gaussian distribution
for the homogeneous field value with variance

〈
φ2
δ

〉
horizon =

∫ a(thorizon)HI

a(ti)HI

d3k

(2π)3
|δφk|2a=ahorizon

=
2−α

π3α−
Γ2

(
3− α−

2

)
H2
I

[
1− e−α−(Ntot−Nmin)

]
,

(F.7)

where the subscript “horizon” indicates the quantity at horizon exit of the present horizon
scale k0. Note that we implicitly assumed in this expression (through the definition of α±)
that m2

φ/H
2
I � ξ (cf. [246, 262]). For smaller values of ξ, this result and the ones below

still hold but for an effective ξeff ∼ m2
φ/H

2
I . Thus it is not possible to make α− arbitrarily

small to retrieve an arbitrarily large variance.

The homogeneous field value that is realized in our universe and created in this way
is thus a draw from this Gaussian distribution. Naturally assuming that the Gaussian
distribution has a mean of zero, the “typical” result of such a draw is φhorizon =

√〈
φ2
δ

〉
.

However, the presence of a non-minimal coupling can significantly change this homogeneous
field value between the time of horizon exit of the present horizon scale and the end of
inflation. Assuming equilibrium has been reached (we will specify an exact condition
for this below), we have φ̇horizon = 0 and the subsequent evolution can be described by
(cf. Eq. (F.3))

φe ≈
α+

α+ − α−
e−

1
2
α−Nminφhorizon . (F.8)

As this subsequent evolution lasts for the last Nmin e-folds of inflation, we find for the
(square of the) typical homogeneous field value at the end of inflation

〈
φ2
δ

〉
=
F (α−)

α−

(
HI

2π

)2 [
1− e−α−(Ntot−Nmin)

]( α+

α+ − α−
e−

1
2
α−Nmin

)2

. (F.9)
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From Eq. (F.9) we can also deduce an exact condition what it means for equilibrium to be
reached. In general, and also in the way we used the term above, equilibrium means that
a state does not change (any more) with time. Since time refers for us to the duration
of inflation during which the homogeneous field value is built up ∆N := Ntot − Nmin,
equilibrium happens when Eq. (F.9) is (approximately) independent of ∆N , so for ∆N &

1/α−. This is equivalent to demanding that the integral of Eq. (F.7) is dominated by the
upper limit (or independent of the lower limit), corresponding to the superhorizon modes
with the shortest wavelengths that just span the observable universe. Thus, assuming
equilibrium, the term in the square brackets in Eq. (F.9) becomes one and to simplify
things further we can use α+ > α− to approximate α+/(α+ − α−) ≈ 1.
To compare the homogeneous field value created through the stochastic scenario to

the one from the misalignment mechanism, it is best to evaluate both at thorizon, since
afterwards their evolution is identical. Using Eq. (F.3) after ∆N e-folds of inflation for the
misalignment field value and Eq. (F.7) for the stochastic field value, we need to specify, as
a last ingredient, how much larger the stochastic field value should be compared to the
misalignment one. Calling this factor γ, we end up with a single equation that can be
readily solved for ∆N . The corresponding result is given in the respective sections of the
stochastic scenario for the scalar and vector case.
For the calculations of the stochastic scenario in the case of a vector field, we simply

have to split the contributions into transverse and longitudinal modes, while following the
same lines as above.
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Disclaimer

The scientific findings presented in this thesis are based on work performed by the author
in collaboration with others. As most of these scientific findings have been part of
publications, we indicate the corresponding publication in the respective introduction to
the chapter. In summary,

• chapter 2, from Sec. 2.2 onward, is based on Ref. [1],

• while chapter 3 is rooted in Ref. [2],

• chapter 4 is adapted from Ref. [3]

• and chapter 5 is based on Ref. [4].

While all of the above papers are published, Refs. [1, 2, 4] are available in peer-reviewed
journals, whereas Ref. [3] is (as of submission of this thesis) in the peer-review process.

In addition to the above mentioned works, the author also contributed to the peer-reviewed
Refs. [5, 6] and was part of the CONUS collaboration with a focus on data analysis.

Note that the reference numbers here are not identical to the main text.
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