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Abstract

This paper discusses a non-intrusive data-driven model order reduction method that learns low-dimensional dynami-
cal models for a parametrized shallow water equation. We consider the shallow water equation in non-traditional form
(NTSWE). We focus on learning low-dimensional models in a non-intrusive way. That means, we assume not to have access
to a discretized form of the NTSWE in any form. Instead, we have snapshots that are obtained using a black-box solver.
Consequently, we aim at learning reduced-order models only from the snapshots. Precisely, a reduced-order model is learnt
by solving an appropriate least-squares optimization problem in a low-dimensional subspace. Furthermore, we discuss com-
putational challenges that particularly arise from the optimization problem being ill-conditioned. Moreover, we extend the
non-intrusive model order reduction framework to a parametric case where we make use of the parameter dependency at
the level of the partial differential equation. We illustrate the efficiency of the proposed non-intrusive method to construct
reduced-order models for NTSWE and compare it with an intrusive method (proper orthogonal decomposition). We further-
more discuss the predictive capabilities of both models outside the range of the training data.

Keywords: Shallow water equation, scientific machine learning, data-driven modeling, model order reduction, operator in-
ference.

1 Introduction
Shallow water equations (SWE) are a popular set of hyperbolic PDEs with the capability of describing geophysical wave
phenomena, e.g., the Kelvin and Rossby waves in the atmosphere and in the oceans. They are frequently used in geophysical
flow prediction [11], investigation of baroclinic instability [8, 37], and planetary flows [38]. In this paper, we study a model
order reduction (MOR) technique for SWE. MOR techniques allow us to construct low-dimensional models or reduced-order
models (ROMs) for a large-scale dynamical system. We refer to the books [5, 27] for an overview of the available techniques.
These ROMs are computationally efficient and accurate, and are worthy when a full order model (FOM) needs to be simulated
multiple-times for different parameter settings. Additionally, ROMs are even more valuable in the case of SWE, when the
interest lies in simulating the model for a very long time horizon. MOR problems for SWE have been intensively studied in
the literature, see, e.g., [6, 7, 15, 21, 22, 29].

Most MOR techniques are intrusive in nature. This means that these methods require access to the large-scale semi-
discretized FOM, preferably in a matrix-vector form. Moreover, ROMs are typically constructed by projecting the high-
fidelity FOM onto a low-dimensional subspace using appropriate projection matrices. The proper orthogonal decomposition
(POD) is arguably one of the most popular methods that can be seen as a data-driven intrusive method. POD is data-
driven in the sense that we require training data that are usually the solution trajectories for given inputs, initial conditions,
and parameters. By taking the singular value decomposition (SVD) of the training data, we determine a low-dimensional
subspace, where the most important system dynamics reside. The efficiency of the ROM is based on the separation of the
offline cost for evaluating the FOMs and the online cost for evaluating the ROMs.

One of the major drawbacks of intrusive methods is that they require access to the FOM. However, for a complex
dynamical process, it is a challenging task to obtain an explicit discretized FOM. It is even intractable if the process is
simulated using proprietary software. Therefore, in this work, we are interested in a non-intrusive approach to construct
ROMs, where we do not have access to a discretized FOM. We rather have only simulation data, potentially obtained using
proprietary software, corresponding to the FOM.

Building a model using only the simulation data directly fits the philosophy of machine learning and neural networks.
Using neural networks, a large class of functions [19] can be approximated. These methods aim at constructing an input-
output mapping based on data. They learn a model based on the training data that neither requires explicit access to the
high-fidelity model operators nor any additional information about the process. However, the amount of data required to
learn the model accurately imposes a burden in the context of large-scale PDE simulations [35]. Moreover, some ideas
from compressive sensing have been used to learn the operators of a FOM from a large library of candidate functions [28].
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However, the success of the method heavily depends on the built library, and we generally need to perform computations
in the full-order system dimension, thus making the method very challenging in large-scale settings. In recent years, the
operator inference (OpInf) framework to construct ROMs has gained much attention. The framework utilizes the knowledge
of nonlinear terms at the PDE level. In this framework, the operators defining the ROM can be learnt by formulating an
optimization problem, without necessitating the discretized operators of the PDEs. Such a scheme was first investigated in
[24] for polynomial nonlinearities. The methodology was later extended to a class of nonlinear systems that can be written
as a polynomial or quadratic-bilinear (QB) system by introducing new state variables in [26, 25]. Recently, the authors in
[3] have extended the approach to nonlinear systems in which the structure of the nonlinearities is preserved while learning
ROMs from data.

In this work, we discuss an application of the OpInf framework [24] to the parameterized NTSWE. OpInf is also inves-
tigated in [24] for parametric cases, where the ROMs are constructed at each training parameter via interpolation. However,
in this work, we discuss an OpInf framework for the parametric case, where we make use of the known parametric depen-
dency at the PDE level. In the case of a large amount of data, the optimization problem that yields the reduced operators is
generally a discrete ill-posed least-squares problem. To mitigate this issue, a regularized least-squares optimization problem
is proposed in [24]. In this paper, we discuss alternative approaches such as Tikhonov regularization, truncated SVD and
truncated QR.

The remaining structure of the paper is as follows. In Section 2, the NTSWE is briefly described. In Section 3, we
discuss the OpInf method to infer reduced operators from data and present its extension to the parametric case. Furthermore,
we investigate computational issues related to the optimization problem that learns the reduced operators. In Section 4, we
present numerical experiments, where ROMs for (parametric) NTSWEs models are inferred directly from data. The inferred
ROMs are compared with ROMs obtained from the intrusive POD method. We show that non-intrusive ROMs outperform in
most instances, particularly, in the prediction outside the training data. In Section 5, we provide concluding remarks.

2 Shallow Water Equation
In most ocean and atmosphere models, the Coriolis force only depends on the component of the planetary rotation vector. It
is locally normal to the geopotential surfaces, which is called traditional approximation (TA) [14]. The TA is applicable when
the horizontal length scales of rotational geophysical flows are much larger than the vertical length scales [16]. However,
many atmospheric and oceanographic phenomena are substantially influenced by the non-traditional components of the
Coriolis force [32], such as deep convection [23], Ekman spirals [20], and internal waves [17]. The NTSWE [13, 30, 33]
includes the non-traditional components of the Coriolis force with the bottom topography. The non-dimensional NTSWE is
governed by the following PDE system [33]:

∂ũ

∂t
+ qhz× u +∇Φ = 0, (1a)

∂h

∂t
+∇ · (hu) = 0, (1b)

where ũ =: (ũ, ṽ) is the canonical velocity, u =: (u, v) is the particle velocity, h is the height field, q is the potential vorticity
defined as q =: 1

h (Ωz + ṽx − ũy), and Φ is the Bernoulli potential, given by

Φ =
1

2

(
u2 + v2

)
+ hb + h+

1

2
δh (Ωxv − Ωyu) . (2)

The particle velocities are given in terms of the canonical velocities as

u = ũ− δΩy
(
hb +

1

2
h

)
, v = ṽ + δΩx

(
hb +

1

2
h

)
, (3)

where hb is the bottom topography, δ := L/Rd is the so-called non-traditional parameter with L being the layer thickness
scale, and Rd is the Rossby deformation radius [30, 13]. Ωx and Ωy are the x and y components of the angular velocity
vector Ω, respectively, and x and y denote horizontal distances within a constant geopotential surface. The orientation of the
x and y axes are considered arbitrary with respect to the North. The NTSWE (1) describes inviscid fluid that flows over the
bottom topography at z = hb(x, y) in a frame rotating with angular velocity vector Ω = (Ωx,Ωy,Ωz). Both Ωx and Ωy

depend on x and y axes but not on z. The dimensionless angular velocity vector can be given as [31]:

Ωx = cos θ sinφ, Ωy = cos θ cosφ, and Ωz = sin θ, (4)

where θ is the angle corresponding to the latitude, and φ is the angle determining the orientation between the x-axis and
the eastward direction. In this paper, we set the x-axis of the rotation vector to zero, implying that it is aligned to the East.
Moreover, we consider the layer thickness scale for the ocean: L = 1000m , the deformation radius Rd ≈ 6.88km, with no
bottom topography hb = 0 and the non-traditional parameter δ = 0.145. In Figure1, the components of the angular velocity
vector are shown for the latitude θ and φ = 0.
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Figure 1: Outline of the components of the angular velocity vector Ω with respect to the latitude angle θ as Ωx = 0.

3 Learning Parameterized ROMs of Shallow Water Equations
In this section, we study an approach to learn ROMs for NTSWE from data, e.g., obtained from proprietary software, or
real-world measurements. In Subsection 3.1, we begin our discussion with the quadratic form of the parametric NTSWE. We
furthermore discuss the construction of ROMs via an intrusive POD method. Subsection 3.2 presents an operator inference
approach to learn the reduced parametric operators from (simulation) data, where we make use of the knowledge of the
parametric dependency at the PDE level. Moreover, we discuss computational aspects for constructing the reduced operators
in Subsection 3.3.

3.1 Exploiting the quadratic form of the parameterized NTSWE
The success of the OpInf approach [24, 25] lies in exploiting the structure at the PDE level. The OpInf approach aims at
determining a ROM, without having access to the FOMs in a matrix-vector form. It consists of setting up an optimization
problem for determining the reduced operators by taking advantage of the underlying structure of the FOM but at the PDE
level.

The NTSWE (1) can be explicitly written in terms of the canonical velocities by taking into account that the x-axis of the
angular velocity vector is aligned to the East and setting φ = 0 as

∂

∂t
ũ = −hx + sin θ ṽ − ũũx − ṽũy + δ cos θ(hũ)x −

3

8
(δ cos θ)

2
(h2)x, (5a)

∂

∂t
ṽ = −hy + sin θ ũ+

1

2
δ sin θ cos θ h− ũṽx − ṽṽy + δ cos θ

(
(hũ)y +

1

2
h (ṽx − ũy)

)
− 3

8
(δ cos θ)

2
(h2)y, (5b)

∂

∂t
h = −(hũ)x − (hṽ)y +

1

2
δ cos θ(h2)x. (5c)

3.2 Operator inference approach to learning parameterized reduced-operators
Let us consider a parameter vector µ ∈ D ⊂ Rd, the state vector w : [0, T ] × D → RN with N degrees of freedom, and
the time t ∈ [0, T ] ⊂ R. The NTSWE model (5) includes linear terms and quadratic polynomial nonlinearities that can be
exploited to create quadratic ROMs. Hence, we consider the following linear-quadratic ODE system:

ẇ(t;µ) = A(µ)w(t;µ) + H(µ)(w(t;µ)⊗w(t;µ)), (6)

where A(µ) ∈ RN×N corresponds to the linear terms, H(µ) ∈ RN×N2

to the quadratic term. We allow the initial condition
to depend on the parameter µ as well, i.e., w(0, µ) = w0(µ).

Our primary goal is to construct a reduced-order parametrized model that captures the important dynamics of the high-
dimensional model (6) for a given parameter range as follows:

˙̂w(t;µ) = Â(µ)ŵ(t;µ) + Ĥ(µ)(ŵ(t;µ)⊗ ŵ(t;µ)), (7)
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where Â(µ) ∈ Rr×r and Ĥ(µ) ∈ Rr×r2 with r � N . If the FOM is available in explicit form, e.g., in matrix-vector
form, then intrusive MOR techniques can be applied, such as POD [4, 2] and interpolation-based methods [1]. Assuming
an explicit form of the FOM is available, the ROM can be constructed with the projection matrix V ∈ RN×r so that
w(t, µ) ≈ Vŵ(t, µ), for all t ≥ 0 and µ ∈ D obtained by POD. Then, reduced-order matrices of the system (7) can be
computed as follows:

Â(µ) = VTA(µ)V ∈ Rr×r, Ĥ(µ) = VTH(µ)(V ⊗V). (8)

Furthermore, assume that the system matrices in (6) depend affinely on functions of the parameter µ:

A(µ) = α1(µ)A1 + · · ·+ αna(µ)Ana , (9a)
H(µ) = η1(µ)H1 + · · ·+ ηnh

(µ)Hnh
, (9b)

where Ai ∈ RN×N , Hj ∈ RN×N2

are constant matrices, and αi(µ), ηj(µ) : Rd → R are smooth functions of the parameter
µ. In this case, the reduced-matrices in (8) can be precomputed, e.g., Â(µ) = α1(µ)Â1 + · · · + αna(µ)Âna , where
Âi = VTAiV , i ∈ {1, . . . ,na}.

However, as discussed earlier, it is not easy or almost impossible to obtain the FOM in an explicit matrix form, from
proprietary software. Therefore, our primary interest lies in constructing reduced-order operators without having access to
the FOM, but rather having access only to simulation data and some knowledge at the PDE level. With this aim, we collect
simulation data for a training parameter set, µi ∈ D for i = 1, . . . ,M . Thus, let us define a global snapshot matrix:

Sµ = [S(µ1), . . . ,S(µM )] , S(µi) = [w(t1;µi),w(t2;µi), . . . ,w(tK ;µi)] ∈ RN×K , (10)

where w(tj , µi) denotes the value at time tj for the parameter µi. The projection matrix V is determined by the SVD of the
snapshot matrix

Sµ = VµΣµUT
µ , (11)

where Vµ ∈ RN×M ·K ,Σµ ∈ RM ·K×M ·K ,Uµ ∈ RM ·K×M ·K , and V is given then by the first r columns of Vµ. In order
to determine reduced operators by employing an OpInf approach, we first project the snapshot matrix Sµ onto the dominant
subspace spanned by V, yielding the reduced snapshot matrix:

Ŝµ := VTSµ =
[
Ŝ(µ1), . . . , Ŝ(µM )

]
, (12)

where

Ŝ(µi) = [ŵ(t1;µi), ŵ(t2;µi), . . . , ŵ(tK ;µi)] ∈ Rr×K

in which ŵ(tj , µi) := VTw(tj , µi). Furthermore, let us define

˙̂
Sµ =

[
˙̂
S(µ1), . . . ,

˙̂
S(µM )

]
, (13)

where ˙̂
S(µi) can either be determined using the right-hand side of (6)–if accessible–followed by projecting using V, or

can be approximated using Ŝ(µi) by employing a time-derivative approximation scheme, see, e.g., [24]. Subsequently, the
reduced operators of the reduced parametric model (7) are determined by solving the following least-squares problem:

min
Âi∈Rr×r,Ĥj∈Rr×r2

M∑
k=1

∥∥∥∥∥− ˙̂
S (µk)

T
+

na∑
i=1

(
αi(µk)Ŝ(µk)T ÂT

i

)
+

nh∑
i=1

(
ηi(µk)

(
Ŝ(µk)⊗̂Ŝ(µk)

)T
ĤT
i

)∥∥∥∥∥
2

F

(14)

where ⊗̂ denotes the column-wise Kronecker product. It can be noted that the optimization problem (14) does not involve
any explicit knowledge of the FOM, it only involves simulation data projected onto the dominant POD subspace. Moreover,
we can rewrite the optimization problem (14) in standard form as follows:

min
X∈Rr×nar+nhr2

M∑
k=1

∥∥∥A(µk)X T − ˙̂
S (µk)

T
∥∥∥2
F
, (15)

where

X =
[
Â1, . . . , Âna , Ĥ1, . . . , Ĥnh

]
, and

A(µk) =

[
[α1(µk), . . . , αna(µk)]⊗ Ŝ(µk)T , [η1(µk), . . . , ηnh

]⊗
(
Ŝ(µk)⊗̂Ŝ(µk)

)T]
.
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3.3 Computational Aspects
In this section, we discuss computational aspects of the OpInf approach (15). Solving the least-squares problem (15) can
be a computationally challenging task because (a) the problem can be highly ill-conditioned, and (b) its computational cost
grows quadratically with the order r of the reduced system and linearly with the number of snapshots. The computational
cost of the optimization problem (15) can be reduced by decoupling of the least-squares problem. In the remainder, we
discuss techniques for the conditioning. In the OpInf framework, inferred operators are solutions of the potentially discrete
ill-posed least-squares problem (15), where ill-conditioning may be due to nearly linearly dependent columns of the snapshot
matrix. When the distance to a matrix with linearly dependent columns decreases, the condition number of the data matrix
in the least-squares problem increases. Hence, the least-squares problem arising from the OpInf framework needs a suitable
regularization method. There exist different ways to deal with this issue.

A suitable and widely used candidate for this task is Tikhonov regularization [36]. Tikhonov regularization filters the
small singular values to reduce the amplification effect on the least-squares algorithm. The quality of learning via Tikhonov
regularization depends on the L-curve [18]. Using the L-curve information, the stability of the learning algorithm can be
improved [34]. However, the computation of the efficient Tikhonov parameter is costly for large problems [9]. Although one
can argue that the problem (15) is in a low dimension, it still can be of a large scale when the number of snapshots or/and
the number of training parameters are large. The Tikhonov regularization applied to (15) can be written in a compact form
as follows:

min
xi∈Rnar+nhr2

‖Aµxi − si‖22 + λ ‖xi‖22 , i = 1, . . . , r, (16)

where xi are the columns of X T , si are the columns of ˙̂
Sµ and Aµ =

[
AT (µ1), . . . ,AT (µM )

]T
. A heuristic approach to

deal with the conditioning of the data matrix is proposed in [24] in which a subset of the data is considered, by taking the
data in a regular interval, e.g., every 10th time-step. In [24], it is shown that this can alleviate the ill-conditioning problem to
some extend in some cases. However, the choice of the interval should be done in such a way that the important snapshots
are not missed, thus the choice of the interval plays a key role. This problem can be referred to as a heuristic column subset
selection problem (CSSP). The CSSP seeks to find a subset of the most linearly independent columns of a matrix which gives
the best information in the matrix.

The truncated QR method (tQR) with the minimum norm solution [10] finds a suitable subset for the CSSP, which can
be used to find an accurate solution of the rank-deficient least-squares problems. For the tQR method, we use the QR
decomposition of the data matrix with column pivoting (QR-CP). A major advantage of the tQR algorithm is that it allows
us to monitor the linearly dependent columns via QR-CP. Thus, it also allows us to improve the condition number of the data
matrix by selecting linearly independent vectors from the data matrix. The QR-CP algorithm naturally finds a subset for the
CSSP problem via a permutation matrix. One alternative to this approach is the truncated SVD (tSVD) algorithm. The tSVD
is also an attractive method with its best rank-k approximation. The tSVD method and tQR method generally give very close
solutions. Nevertheless, the calculation of the tSVD is more expensive than the tQR algorithm.

For simplicity, suppose Aµ ∈ Rm×n is exactly rank deficient with rank(Aµ) = p. Then, there always exists a QR-CP
factorization of Aµ of the form

AµΠ = QR, (17)

where Π ∈ Rn×n is a permutation matrix, Q ∈ Rm×m is an orthogonal matrix, and R is an upper triangular matrix of the
form

R =

(
R1 R2

0 0

)
(18)

and R1 ∈ Rp×p is upper triangular with rank(R1) = p. The diagonal entries of R in (17) satisfy |Rii| ≥ |Rjj | with j > i so
that the effective rank of A can be determined as the smallest integer p such that

|Rp+1,p+1| < tol · |R11|,

where tol can be considered as the tolerance for the linear dependency of the columns of data matrix Aµ. Hence, this
approach gives us a flexibility of adjustment on the condition number of the data matrix Aµ. The tolerance of tQR tol can
also be determined by the L-curve [12]. Among all solutions of the optimization problem (15), we take the unique minimum
L2 norm solution. The minimum norm solution of (15) by tQR method can be obtained as in [10]. In this paper, we study an
QR-CP based regularization and compare with the Tikhonov regularization in the next section.

4 Numerical results
In this section, we demonstrate the performance of the OpInf approach for two numerical test problems and compare it
with the intrusive POD method. We also study the prediction capabilities of the OpInf approach for the parametric and
non-parametric NTSWE. Furthermore, we examine the non-intrusive methods with the Tikhonov regularization (16) for
the penalty parameter λ = 0.01 and tQR method with the tolerance 10−6. To determine the regularization parameters of
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Tikhonov regularization and tQR, we used L-curve criteria. As a first test example, we consider the propagation of the
inertia-gravity waves by Coriolis force, known as geostrophic adjustment [33]. In the second example, we investigate the
shear instability in the form of a roll-up of an unstable shear layer, known as barotropic instability [33].

The NTSWE (5) is semi-discretized in space by replacing the first-order spatial derivatives with central finite-differences.
The resulting system is a quadratic semi-discrete system that depends on the parameter µ = θ:

ẇ(t;µ) = A(µ)w(t;µ) + H(µ)(w(t;µ)⊗w(t;µ)), (19)

where A(µ) ∈ RN×N corresponds to the linear terms, H(µ) ∈ RN×N2

to the quadratic term, µ ∈ D ⊂ Rd, the state vector
w : [0, T ] × D → RN with N degrees of freedom, and the time t ∈ [0, T ] ⊂ R. The operators A(µ) and H(µ) in (9) have
affine parameter dependence (9) with respect to the parameter µ as follows:

α1(µ) = 1, α2(µ) = Ωz = sin(µ), α3(µ) = ΩzΩy = sin(µ) cos(µ), (20a)

η1(µ) = 1, η2(µ) = Ωy = cos(µ), η3(µ) = (Ωy)2 = (cos(µ))2. (20b)

We consider the NTSWE under periodic boundary conditions, and assume there are no forcing or input terms in (19). All
the models are simulated using the function ode15s in MATLAB® with both the relative and absolute error tolerances set
to 10−8. In all numerical examples, the spatial domain is discretized with 101 × 101 equidistant grid points. The snapshots
are sampled at equidistant time instances with the time step ∆t = 0.1. The accuracy of the ROMs is measured using the
relative error in the Frobenius norm

E =
||SFOM −VSROM||F

||SFOM||F
, (21)

where SFOM ∈ RN×K is the snapshot matrix of the FOM and SROM ∈ Rr×K is the snapshot matrix of either the non-intrusive
or the intrusive ROMs. In the parametric case, the relative error is computed with snapshot matrices by concatenating the
trajectories for parameter samples. A typical approach to determine the reduced dimension r is done through the projection
error as follows:

Eproj =
||SFOM −VVTSFOM||F

||SFOM||F
. (22)

4.1 Single-layer geostrophic adjustment
The initial conditions are prescribed in the form of a motionless layer with an upward bulge of the height field in a periodic
domain [−5, 5]× [−5, 5] :

h(x, y, 0) = 1 +
1

2
exp

[
−
(

4x

5

)2

−
(

4y

5

)2
]
, u(x, y, 0) = 0, v(x, y, 0) = 0.

The inertia-gravity waves propagate after the collapse of the initial symmetric peak with respect to the axes. Nonlinear
interactions create shorter waves, propagating around the domain, and the interactions construct more complicated patterns
[33].

4.1.1 Non-parametric case

We consider the NTSWE for a fixed parameter µ = π
4 . The snapshots corresponding to the FOM are collected by solving (1)

in the time domain [0, T ] with T = 60. The discrete state vectors are concatenated into w = [u,v,h]T ∈ R30000, leading
to a training set of the size SFOM ∈ R30000×601. The inferred non-intrusive ROM and the intrusive ROM are then used to
predict the height field outside of the training set at time T = 80.

The decay of the leading 300 normalized singular values of the snapshot matrix SFOM is shown in Figure 2. The slow
decay of the normalized singular values indicates the difficulty of obtaining accurate ROMs for a small number of POD
modes, which is a common problem for hyperbolic PDEs, e.g., like the NTSWE.

50 100 150 200 250 300

10−6

10−3

100

k

σ
k/
σ

1

Figure 2: Single-layer geostrophic adjustment: Normalized singular values.
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In Figure 3 , we demonstrate the L-curves for the basis sizes r = 20 , tQR tolerances tol = [10−4, 10−5, . . . , 10−10]
and Tikhonov parameters λ = [101, 100, . . . , 10−7, ]. The vertical axis shows the squared norm of the learned operators, and
the horizontal axis shows the least-squares residual. The computation of the L-curves for each dimension is costly therefore
the Tikhonov regularization parameter λ and the tQR tolerance tol are chosen close to the upper part of the corners at the
L-curves for r = 20 which produce stable solutions from dimension r = 20 up to dimension r = 75. The chosen tQR
tolerance and Tikhonov parameter λ are shown as blue dot in Figure 3.

10−5 10−4 10−3
10−2

10−1

100

‖AX − ˙̂ST ‖22

‖X
‖2 2

(a) Tikhonov

10−6 10−5 10−4 10−3 10−2 10−1 100

10−2

100

102

‖AX − ˙̂ST ‖22

‖X
‖2 2

(b) tQR

Figure 3: L-curves: Tikhonov (left) , tQR (right).

Next, we build a POD-projection matrix V ∈ R30000×r with r = 75, which leads to a projection error (22) Eproj =
2.07 · 10−3. Then, we construct ROMs using the intrusive POD and non-intrusive OpInf methods. The non-intrusive
methods regularized with both Tikhonov and tQR-based regularizers for comparison. To examine the accuracy of these
ROMs, we perform time-domain simulations and compare them with the FOM. In Table 1, the accuracy of the intrusive and
non-intrusive ROMs are compared using the FOM-ROM error (21). Table 1 indicates that the non-intrusive method yields a
better ROM as compared to the intrusive POD method, and for this example, both regularizations apparently yield a similar
result.

Method POD Non-intrusive (Tikhonov regularizer) Non-intrusive (tQR)
E 3.27 · 10−3 2.07 · 10−3 2.07 · 10−3

Table 1: Single-layer geostrophic adjustment: Comparison of intrusive and non-intrusive ROMs.

Moreover, we study the quality of the ROMs as the ROM order increases. For this, we compare the relative error E (21)
obtained using intrusive and non-intrusive methods in Figure 4. We observe that the relative error (21) using the intrusive
ROM does not decrease as smoothly as in the case of the non-intrusive case. Furthermore, we observe that both regularizers
perform equally well for all orders of the ROMs. However, the penalty parameter of the Tikhonov regularization has to be
determined by the L-curve, which requires the SVD computation of the data matrix [18]. Thus, the Tikhonov regularization,
combined with L-curve information, is more expensive than the tQR.
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Figure 4: Single-layer geostrophic adjustment: Relative ROMs errors.

In the rest of this paper, for time-domain simulations and prediction, we show the results for the OpInf with tQR since
both the Tikhonov and tQR-based methods yield comparable results with respect to the projection error (22). The height field
of the FOM and ROMs of order r = 75 at time T = 60 are shown in Figure 5. These figures show that both ROMs are very
close to the FOM solutions, with the non-intrusive ROM being slightly more accurate.
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Furthermore, we discuss the prediction capabilities of the obtained ROMs of order r = 75. For this, we predict the height
field at time T = 80 in Figure 6. Note that we have trained the model using the data up to T = 60. It indicates that the
height field can be predicted with significantly higher accuracy using the non-intrusive ROM as compared to the intrusive
POD model.
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Figure 5: Single-layer geostrophic adjustment: Comparison of the height field obtained using the FOM and ROMs of order
r = 75 at time T = 60.
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Figure 6: Single-layer geostrophic adjustment: Prediction of the height field obtained using the FOM and ROMs of order
r = 75 at time T = 80.

4.1.2 Parametric Case

In this example, we set the parameter domain of NTSWE as D =
[
π
6 ,

π
3

]
⊂ R. We consider the time domain [0, T ] ⊂ R

with final time T = 10. The trajectories are generated with M = 5 equidistantly distributed parameters µ1, µ2, . . . , µ5 ∈ D.
The concatenated snapshot matrix SFOM ∈ R30000×505 is constructed as in (10).

The normalized singular values in Figure 7 decay similar to the non-parametric case in Figure 2. To determine the
accuracy of the non-intrusive ROMs, we compute the projection error (22) in the training set, which is Eproj = 2.10 · 10−4 for
r = 75. In Table 2, the relative errors (21) are very close to the projection error (22) for the ROMs of order r = 75, which
indicates that non-intrusive ROM solutions of both methods have the same level of accuracy. For the parametric case, we
present only the results of the non-intrusive approach; however, we observe a similar behavior as in the non-parametric case
when non-intrusive and intrusive methods are compared. We also demonstrate the relative errors for the non-intrusive ROMs
of orders r = 25 to r = 75 over the training set in Figure 8. Again, we observe the same behavior as for the non-intrusive
model; when the order of the ROM increases, the relative errors in the training set decrease.
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Figure 7: Single-layer geostrophic adjustment: Normalized singular values.

Method Non-intrusive (Tikhonov regularizer) Non-intrusive (tQR)
E 2.10 · 10−4 3.32 · 10−4

Table 2: Single-layer geostrophic adjustment: Comparison of non-intrusive ROMs.
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Figure 8: Single-layer geostrophic adjustment: Relative ROMs errors.

Next, we examine the performance of the parametric non-intrusive ROM on the test set, which consists of the parameters
at the midpoint of two successive training parameters. In Figure 9, we demonstrate the relative errors (21) of the non-intrusive
ROM of orders r = 25 and r = 75 for both test and training parameters. Figure 9 shows that the accuracy of the non-intrusive
ROM increases when the reduced dimension increases for training parameters as well as for test parameters.
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Figure 9: Single-layer geostrophic adjustment: Relative error for testing and training parameters; (square): training set,
(circle): testing set. (black): reduced dimension r = 25, (red): reduced dimension r = 75.

Finally, we show the height field at time T = 10 for the parameter µ = 5π
24 and the corresponding absolute errors in

Figure 10 for the non-intrusive ROM of order r = 75 which shows that the non-intrusive ROM captures the dynamics of the
FOM very well.
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Figure 10: Single-layer geostrophic adjustment: Comparison of the height field for the parameter µ = 5π
24 obtained using the

FOM and non-intrusive ROM of order r = 75 at time T = 10.

4.2 Single-layer shear instability
The initial conditions for the second test example on the periodic domain [0, 10]× [0, 10] are given as:

h(x, y, 0) = 1 + ∆h sin

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

u(x, y, 0) = −2π∆h

ΩzL
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
,

v(x, y, 0) = −4π2∆h∆y

ΩzL2
cos

{
2π

L

[
y −∆y sin

(
2πx

L

)]}
cos

(
2πx

L

)
,

where ∆h = 0.2, ∆y = 0.5 and the dimensionless spatial domain length L = 10. This test example illustrates the roll-up of
an unstable shear layer [33].

4.2.1 Non-parametric case

The performance of the OpInf method is shown in terms of learning the vorticity dynamics for the parameter µ = π
4 . We

collect the snapshots as the discrete state vectors concatenated into w = [u,v,h]T ∈ R30000. We perform simulations of the
FOM (19) in the time domain [0, 60], which yields the training set of the size SFOM ∈ R30000×601. The quality of the ROMs in
terms of relative errors (21) are shown in Figure 11 , which shows that the relative errors of the non-intrusive ROMs decrease
smoothly with decreasing singular values in Figure 12, whereas the non-intrusive ROM errors decrease non-smoothly.
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Figure 11: Single-layer shear instability: Relative ROMs errors.
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Figure 12: Single-layer shear instability: Normalized singular values

The projection error (22) for r = 50 yields, Eproj = 3.52 · 10−5. Next, we compare the projection error with relative
errors (21) of ROMs of order r = 50 in Table 3, which again indicates that the non-intrusive ROMs are more accurate.

Method POD Non-intrusive (Tikhonov regularizer) Non-intrusive (tQR)
E 5.54 · 10−5 3.52 · 10−5 3.58 · 10−5

Table 3: Single-layer shear instability: Comparison of intrusive and non-intrusive ROMs.

The potential vorticities of the FOM and ROMs of order r = 50 as well as corresponding absolute error are shown in
Figure 13, where both the FOM and ROMs share similar roll-up behavior in the vorticity dynamics. In Figures 13c, 13e, we
observe that the accuracy of intrusive and non-intrusive ROMs of order r = 50 is similar for the vorticity dynamics.
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Figure 13: Single-layer shear instability: Comparison of the potential vorticity field obtained using the FOM and ROMs of
order r = 50 at time T = 60.

In Figure 14, we demonstrate the prediction capability of the ROMs of order r = 50 obtained via intrusive POD and
non-intrusive OpInf methods by training them in the time interval [0, 60]. We set the final time for the prediction as T = 80.
Figure 14 shows that the non-intrusive OpInf solutions are more accurate than the intrusive POD solutions.
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Figure 14: Single-layer shear instability: Prediction of the potential vorticity field obtained using the FOM and ROMs of
order r = 50 at time T = 80.

4.2.2 Parametric Case

In the last example, we examine the performance of the ROMs for the vorticity dynamics by setting the parameter domain
of NTSWE as D =

[
π
6 ,

π
3

]
⊂ R. In this case, the initial condition is dependent on the angular velocity vector Ωz . The

trajectories in the training set are constructed simulating NTSWE (19) on the time domain [0, T ] with final time T = 30
and M = 5 equidistantly distributed parameters µ1, µ2, . . . , µ5 ∈ D. The total size of the concatenated snapshot matrix is
SFOM ∈ R30000×1505.

The relative errors (21) of the non-intrusive ROMs of orders 20 to 65 over the training set shown in Figure 15, are
smoothly decreasing when the normalized singular values decrease as shown in Figure 16 as in the first test example. The
projection error (22) of the FOM for r = 65 is E = 6.12 · 10−5. Next, we compare the projection error with the relative error
(21) of the non-intrusive ROMs of order r = 65 in Table 4 , which shows that both regularizers provide accurate simulations
of the same order.
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Figure 15: Single-layer shear instability: Relative ROMs errors.
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Figure 16: Single-layer shear instability: Normalized singular values

Method Non-intrusive (Tikhonov regularizer) Non-intrusive (tQR)
E 6.12 · 10−5 7.41 · 10−5

Table 4: Single-layer shear instability (parametric case): Comparison of non-intrusive ROMs.

We again consider the test set consisting of the parameters at the middle points of two successive training parameters.
Figure 17 shows the relative errors for parameters in the test and training sets for non-intrusive ROMs of order 20 and 65.
In Figure 17, the inferred solution for the test parameter µ = 9π

48 is less accurate than at other parameters in the test set for
reduced dimension 65. This indicates that the truncation tolerance for the QR-CP method can deteriorate the accuracy of the
ROMs.
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Figure 17: Single-layer shear instability: Relative error for testing and training parameters; (square):training set, (cir-
cle):testing set. (black): reduced dimension 20, (red): reduced dimension 65.

Finally, we show the potential vorticity of the FOM, the non-intrusive ROM of order r = 65 and the corresponding
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absolute error at time T = 30 for the parameter µ = 5π
24 in Figure 18, which shows that the non-intrusive ROM captures the

dynamics of the NTSWE accurately.
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Figure 18: Single-layer shear instability: Comparison of the potential vorticity field for the parameter µ = 5π
24 obtained using

the FOM and non-intrusive ROM of order r = 65 at time T = 30.
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5 Conclusions
We have constructed data-driven projection-based ROMs of NTSWE by exploiting the structure of the equations. The OpInf
framework is used to construct the non-intrusive ROM. Since the least-squares problem of the OpInf method may suffer from
ill-conditioning, the solutions are regularized using the QR factorization as an alternative to Tikhonov regularization. The
performance of the inferred models is examined in terms of prediction capabilities on two test examples. Numerical results
show that the prediction of the learned model of OpInf is more accurate than the intrusive POD.
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