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Claudia Giesecke-Thiel15,17 ✉, Leif Erik Sander4,17 ✉ & Andreas Thiel1,2,17 ✉

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly 
unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations 
of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The 
mechanisms determining such variable outcomes remain unresolved. Here, we 
investigated SARS-CoV-2 spike glycoprotein (S)-reactive CD4+ T cells in peripheral 
blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors (HD). We 
detected SARS-CoV-2 S-reactive CD4+ T cells in 83% of patients with COVID-19 but also 
in 35% of HD. S-reactive CD4+ T cells in HD reacted primarily to C-terminal S epitopes, 
which show a higher homology to spike glycoproteins of human endemic 
coronaviruses, compared to N-terminal epitopes. S-reactive T cell lines generated 
from SARS-CoV-2-naive HD responded similarly to C-terminal S of human endemic 
coronaviruses 229E and OC43 and SARS-CoV-2, demonstrating the presence of 
S-cross-reactive T cells, probably generated during past encounters with endemic 
coronaviruses. The role of pre-existing SARS-CoV-2 cross-reactive T cells for clinical 
outcomes remains to be determined in larger cohorts. However, the presence of 
S-cross-reactive T cells in a sizable fraction of the general population may affect the 
dynamics of the current pandemic, and has important implications for the design and 
analysis of upcoming COVID-19 vaccine trials.

The COVID-19 pandemic poses an unprecedented threat to public health 
and the global economy with ever-increasing cases and COVID-19-related 
deaths worldwide1,2. COVID-19 is routinely diagnosed by detection of 
SARS-CoV-2 RNA in nasopharyngeal swabs via PCR3, which works reliably 
in the acute phase of COVID-194,5. However, limited test availability and 
preferential testing of symptomatic patients has likely lead to significant 
underestimation of infection burden and overestimation of case-fatality 
rates6. Serological analysis of SARS-CoV-2-induced humoral immunity 
could reveal asymptomatic infections, but it is not yet widely applied7,8 and 
complicated by the fact that coronavirus-induced antibody responses 
are quite variable and rather short-lived9,10. Coronavirus-induced cellular 
immunity is predicted to be more sustained, but poorly characterized 
so far. However, several T cell epitopes in coronavirus structural pro-
teins have been predicted or identified9,11–13. Importantly, T helper cell 

responses and generation of neutralizing antibodies may be interdepend-
ent9,14. Studies of the SARS-CoV epidemic in 2002/03 have shown that 
adaptive immune responses directed against spike glycoprotein were 
protective9,15,16. Hence, induction of SARS-CoV-2-specific CD4+ T cells is 
likely to be critical in the instruction of affinity maturated and potentially 
protective antibody responses17. We therefore examined the presence, 
frequencies and phenotypic characteristics of SARS-CoV-2 spike glyco-
protein (S)-reactive T cells in COVID-19 patients compared to SARS-CoV-2 
unexposed healthy donors (HD).

Identification of S-reactive CD4+ T cells
We identified S-reactive CD4+ T cells by flow cytometry according to 
their expression of CD40L and 4-1BB after in vitro stimulation with S 
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peptides. To this end, we designed two peptide pools (15 amino acids 
(aa), 11 aa overlaps) spanning the entire S that comprised different 
amounts of putative MHC-II epitopes based on identified epitopes in 
SARS-CoV11–13 (Fig. 1a). SARS-CoV-2 S peptide pool PepMixTM 1 (hence-
forth: S-I) spans the N-terminal part (aa residues 1-643) including 21 
predicted SARS-CoV MHC-II epitopes (Fig. 1a, Extended Data Fig. 1, 
Extended Data Table 1). The second peptide pool PepMixTM 2 (S-II) cov-
ered the C-terminal portion (amino acid residues 633-1273) including 
13 predicted SARS-CoV MHC-II epitopes (Fig. 1a, Extended Data Fig. 1, 
Extended Data Table 1). The peptides of the receptor-binding domain 
(RBD) in the subunit S1, which represents a major target of neutralizing 
antibodies, are included in S-I18,19.

For antigen-specific stimulation, PBMC from patients and HD (see 
patient and HD characteristics: Table 1, Extended Data Table 2 and 3) 
were stimulated for 16 hours with S-I and S-II peptide pools, respectively. 
Antigen-reactive CD4+ T cells were identified by co-expression of 4-1BB 
and CD40L, which allows for sensitive detection of S-reactive CD4+ 
T cells re-activated by TCR engagement ex vivo20–22 (Fig. 2a, Extended 
Data Fig. 2, and Supplementary File). In 12 (67%) and 15 (83%) of 18 
patients we detected CD4+ T cells reacting against the S-I and the S-II 
peptide pool, respectively (Fig. 2b, d, e). Most COVID-19 patients with 
critical disease exhibited no reactivity to S-I (Extended Data Fig. 3).

Remarkably, S-II-reactive CD4+ T cells, albeit at slightly lower frequen-
cies compared with patients, could also be detected in 24 of 68 HD (35%), 
henceforth referred to as reactive healthy donors (RHD) (Fig. 2c, d, e). 
S-I-reactive CD4+ T cells could only be detected in 6 out of the 24 RHD, 
i.e. in 5.8% of all HD (Fig. 2d, e). All HD were negative for IgG antibodies 
specific for S subunit 1 (S1) in contrast to patients (Fig. 2f). We further 
ruled out early SARS-CoV-2 infection at initial sampling by 1) direct PCR 
standard diagnosis in 10 RHD (data not shown), 2) serological testing 
(Fig. 2f) and 3) by repeated serological testing at least 28 days later for 
65 of 68 HD (Extended Data Fig. 4).

We further phenotypically and functionally characterized S-reactive 
CD4+ T cells in additional patients (Extended Data Table 4) and RHD. 
Notably, in both groups, SARS-CoV-2 S-II-reactive CD4+ T cells exhibited 
a memory phenotype and a significant proportion of the cells expressed 
IFNγ, indicative of TH1 polarization (Fig. 2g, Extended Data Fig. 5a-d). 
Most S-reactive CD4+ T cells expressed IL-2 but only few expressed IL-17A 
(Extended Data Fig. 5a-d). Frequencies of S-II-reactive CD4+ T cells 
expressing IFNγ+ were similar in patients and RHD (Fig. 2g). Testing for 
TNFα expression revealed that S-II reactive IFNγ+ CD4+ T cells from RHD 
mostly co-expressed TNFα, whereas S-II reactive IFNγ+ CD4+ T cells from 
P displayed rather heterogenous TNFα expression patterns (Extended 
Data Figure 5e). This is likely reflecting the different disease stages dur-
ing the acute SARS-CoV-2 infection of the individual patients included 
in our study. These results demonstrate the presence of S-reactive 
CD4+ T cells with a predominantly TH1 memory phenotype not only in 
COVID-19 patients but also in seronegative SARS-CoV-2 unexposed HD.

S-reactive CD4+ T cells in RHD are cross-reactive to 
HCoVs 229E and OC43
S-reactive CD4+ T cells from COVID-19 patients equally targeted both, 
the N-terminal (S-I) and C-terminal peptide pools (S-II) of S, while 
S-reactive CD4+ T cells from RHD reacted significantly stronger to S-II 
(Fig. 2d). S-II exhibits a higher homology to human endemic “common 
cold” coronaviruses (HCoVs) 229E, NL63, OC43, and HKU1 with regard 
to the SARS-CoV MHC-II epitopes, as compared to peptide pool S-I 
(Extended Data Table 1 and Extended Data Fig. 1). This suggests that 
S-reactivity in SARS-CoV-2 naïve HD originated from previous immune 
responses to HCoVs. We therefore tested 18 of the 68 HD for the pres-
ence of antibodies specific for the four endemic HCoVs. We detected 
IgG antibodies against all four HCoVs in all tested HD, regardless of 
the presence of measurable S-reactive CD4+ T cells (Extended Data 
Fig. 6a). Frequencies of S-(cross)-reactive CD4+ T cells in RHD did not 

correlate with antibody levels against HCoVs potentially indicating 
that they have not been generated very recently. Similar findings have 
been obtained for other anti-viral CD4+ T cell responses, for example 
following yellow fever vaccination (YFV-17D). CD4+ T cell responses 
showed a significant correlation with the later generation of high titers 
of neutralizing antibodies only at very early time points after YFV-17D 
vaccination23.

We next determined whether SARS-CoV-2 S-reactive CD4+ T cells in 
RHD correlated with a CD4+ T cell response to spike glycoprotein of 
endemic HCoVs (SHCoV). To this end, PBMC from HD and RHD were stimu-
lated with S-I and S-II pools from SARS-CoV-2 and SHCoV-I and SHCoV-II 
(spike gylcoprotein subunit 1 and subunit 2 peptide pool, respectively) 
of OC43 and 229E (Fig. 2h, and Extended Data Fig. 6b-d), respectively. 
There was a strong positive correlation of CD4+ T cell reactivity against 
S-II and SHCoV-II of OC43 and 229E (r=0.629, r=0.715, Fig. 2h), respec-
tively, while there was no or only a weak negative correlation detected 
between S-I-reactivity and reactivity towards SHCoV-I of OC43 and 229E, 
respectively (r=0.037, r=-0.259) (Extended Data Fig. 6b). No correla-
tion was observed between reactivity towards S-I/S-II and CMVpp65 
(Extended Data Fig. 6c, d).

Next, we tested whether S-reactive CD4+ T cells of RHD responded 
to stimulation with SHCoV. To this end, from three RHD (RHD01, 07 and 
15), S-II-reactive CD4+ T cells were isolated, expanded ex vivo for 12 
days and subsequently re-stimulated with SHCoV-I and SHCoV-II of OC43 
and 229E, with the S-II pool as positive control, and S-I and a peptide 
pool from CMVpp65 as negative controls (Fig. 2i, j). Restimulation with 
the SARS-CoV-2 S-II peptide pool induced the highest frequencies of 
4-1BB+CD40L+ CD4+ T cells, while negligible responses were meas-
ured in the negative controls (S-I, CMVpp65, unstimulated), demon-
strating the high specificity of the established S-II reactive CD4+ T cell 
lines (Fig. 2j). In contrast, strong responses were observed against 
SHCoV-II peptide pools of the two HCoVs (Fig. 2j). These findings provide  
evidence that cross-reactivity of SARS-CoV-2 S-II-reactive cells to SHCoV 
in the tested RHD, suggesting that pre-existence of SARS-CoV-2 reactive 
T cells in seronegative naïve individuals originates from prior immune 
responses to endemic HCoVs.

Specific activation signatures in COVID-19 patients
Finally, we assessed additional activation marker profiles on S-reactive 
T cells from COVID-19 patients and RHD. Expression of CD38, HLA-DR 
and Ki-67 has previously been shown to reliably characterize recently 
in vivo activated human T cells during acute and chronic infection24–28. 
Notably, S-reactive CD4+ T cells from patients largely expressed CD38, 
HLA-DR and Ki-67 (Fig. 3a–d). The majority of S-reactive T cells in patients 
co-expressed CD38 and HLA-DR (Fig. 3e), characteristic for effector 
T cell responses during acute viral infections24,26, whereas CD38 and Ki-67 
co-expression was more variable (Fig. 3f). By contrast, S-reactive CD4+ 
T cells from RHD did not express CD38, HLA-DR and Ki-67, or only at low 
frequencies (Fig. 3b–f), and co-expression was not observed (Fig. 3e, 
f). In patients, considerable proportions of the entire peripheral CD4+ 
and CD8+ T cell populations co-expressed CD38 and HLA-DR (data not 
shown), which, however, could not be re-activated with our S peptide 
pools in vitro. These findings are in line with results of a recent study 
showing refractory T cell signatures in COVID-19 patients29. Additionally, 
a proportion of these CD38+HLADR+ CD4+ T cells likely targets other 
structural proteins of SARS-CoV-2. We furthermore show that the pres-
ence of S-reactive CD4+ T cells and in particular of CD38-expressing 
cells among S-reactive CD4+ T cells exhibited a high variability among 
patients in the course of COVID-19 disease (Fig. 3g, h).

Discussion
Our study demonstrates the presence of S-reactive CD4+ T cells in 
COVID-19 patients, and in a considerable proportion of SARS-CoV-2 
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unexposed HD. In light of the recent emergence of SARS-CoV-2, our 
data raise the intriguing possibility that such pre-existing S-reactive 
T cells represent cross-reactive clones, probably acquired in previ-
ous infections with endemic HCoVs. HCoVs account for approxi-
mately 20% of “common cold” upper respiratory tract infections, 
are ubiquitous, but display a winter seasonality30–32. Based on epi-
demiological data, it may be extrapolated that adults contract an 
HCoV infection on average every two to three years. Protective anti-
bodies may wane mid-term but cellular immunity could remain13,33. 
Although the overall amino acid sequence homology of S is relatively 
low compared to spike glycoproteins of HCoVs, there is an overlap 
of MHC-II epitopes especially in the C-terminal domain of the here 
used peptide pools (Fig. 1a, Extended Data Fig. 1). This may explain 
the preferential reactivity of CD4+ T cells to the C-terminal domain 
in one third of HD.

The biological role of pre-existing S-cross-reactive CD4+ T cells in 35% of 
HD remains unclear for now. However, assuming that these cells have a pro-
tective role in SARS-CoV-2 infection, they may contribute to understanding 
the divergent manifestations of COVID-19, and the striking resilience of 
children and young adults to symptomatic SARS-CoV-2 infection. Espe-
cially children in day care centers but also young adults have more frequent 
social contacts than elderly, and thus may have a higher HCoV prevalence. 
This hypothesis requires further investigation in future longitudinal stud-
ies assessing the presence of pre-existing SARS-CoV-2-cross-reactive CD4+ 
T cells and their impact on the susceptibility to SARS-CoV-2 infection and 
age-related clinical outcomes of COVID-19.

SARS-CoV neutralizing antibodies are associated with convales-
cence, and they have been detected 12 months after disease9. However, 
the durability of neutralizing antibody responses against SARS-CoV-2 
remains unknown. Although antibodies against HCoV can wane within 
months after infection, HCoV re-infection is accompanied by low-level 
and short-lived virus shedding with only mild symptoms of short dura-
tion pointing towards humoral-independent residual immunity10. 
Cellular immunity has not yet been studied in this context. In mouse 
models, however, CD4+ as well as CD8+ T cell responses directed against 
structural proteins such as spike or nucleocapsid protein of SARS-CoV 
critically contributed to viral clearance15,34,35. Understanding the extent 
to which and how SARS-CoV-2-specific humoral or cellular immunity 
mediates durable protection against reinfection is of critical impor-
tance in the coming months.

Our study reveals pre-existing cellular SARS-CoV-2-cross-reactivity 
in a substantial proportion of SARS-CoV-2 seronegative HD. This find-
ing might have significant epidemiological implications regarding 
herd immunity thresholds and projections for the COVID-19 pan-
demic. Our results provide a decisive rationale to initiate worldwide 
prospective studies to assess the contribution of pre-existing, poten-
tially region-dependent SARS-CoV-2-cross-reactive immunity to the 
diverse clinical outcomes of SARS-CoV-2 infections. Together with 
currently introduced novel serological tests, the data generated by 
such studies may critically inform evidence-based risk evaluation, 
patient monitoring, adaptation of containment methods, and last but 
not least, vaccine development.
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Fig. 1 | Structural domains, homology and MHC-II epitopes of the 
SARS-CoV-2 spike glycoprotein. a, SARS-CoV-2 spike glycoprotein (1237 
amino acids (aa)) is separated at the cleavage site (CS) into subunit S1 harboring 
the receptor-binding domain (RBD) and subunit S2 containing the fusion 
peptide (FP), the transmembrane domain (TM) and the cytoplasmic peptide 
(CP). Sequence homology of spike glycoprotein of SARS-CoV-2 to SARS-CoV 
and HCoV strains NL63, 229E, HKU1 and OC43 was calculated as percentage of 
aa identity in sliding windows of 10 aa and is depicted as grey vertical scale bars. 
Predicted SARS-CoV MHC-II epitopes are indicated as small horizontal lines 

below and sequences and references are listed in Extended Data Table 1. 
Homology is depicted for each reported MHC-II epitope in Extended Data 
Figure 1. SARS-CoV-2 PepMixTM 1 (N-term) (in the main text referred to as S-I) 
spans over the N-terminal and SARS-CoV-2 PepMixTM 2 (C-term) (in the main text 
referred to as S-II) spans over the C-terminal part of S, as indicated above the 
alignment. b, Proportion of sequence identity of the N-terminal and C-terminal 
parts of SARS-CoV-2 spike glycoprotein to the spike glycoproteins of HCoV 
strains NL63, 229E, HKU1 and OC43.
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Fig. 2 | SARS-CoV-2 spike glycoprotein-reactive CD4+ T cells in COVID-19 
patients and healthy donors. a, Gating strategy to detect SARS-CoV-2 
S-reactive CD4+ T cells after 16 hours in vitro stimulation with PepMixTM 
SARS-CoV-2 spike glycoprotein peptide pool 1 (S-I (N-term)) and 2 (S-II 
(C-term)). Representative data of one COVID-19 patient is depicted.  
b, c, Representative plots displaying CD40L and 4-1BB as well as CD40L and 
IFN-γ expression on CD4+ T cells of COVID-19 patients (P), healthy donors (HD) 
and reactive healthy donors (RHD) after 16 hours in vitro stimulation with S-I 
(N-term) or S-II (C-term). Numbers are percent of double-positive cells from 
total CD4+ T cells. d, Comparison of S-I (N-term)- or S-II (C-term)-reactive 
CD40L+4-1BB+ CD4+ T cell frequencies of HD (n=44), RHD (n=24) and P (n=18). 
p-values (from left to right and top to bottom): ns: 0.1632, ***: <0.0001,  
**: 0.0031, **: 0.0059, ns: 0.9766. e, Percent of individuals from P and HD, 
respectively, with S-I (N-term)- and S-II (C-term)-reactive CD4+ T cells, 

respectively. f, SARS-CoV-2 S1 serology of HD (n=44), RHD (n=24) and P (n=18). 
p-values: upper ***: <0.0001, lower ***: <0.0001. g, Comparison of frequencies 
of IFN-γ+ cells among CD40L+4-1BB+ CD4+ T cells in RHD (n=24) and P (n=18).  
h, Correlation between SARS-CoV-2 S-II and SHCoV-II CD4+ T cell responses. 
Frequencies of CD40L+ 4-1BB+ CD4+ T cells after stimulation with S-II peptide 
pools of SARS-CoV-2 (y-axis) and S-II peptide pools of HCoVs (x-axis) 229E 
(lightgrey, n=12) and OC43 (darkgrey, n=9) from RHD are shown. i, Schematic 
summary of SARS-CoV-2 S-II-reactive CD4+ T cell lines generation. j, Enriched 
and expanded SARS-CoV-2 S-II-reactive CD4+ T cells were re-stimulated with 
the indicated S-I and S-II peptide pools of SARS-CoV-2 and the two HCoV strains. 
Statistics: d,f,g, * p<0.05, ** p<0.01, *** p<0.001 as calculated by two-tailed 
Mann-Whitney U test; i, Correlation coefficient r was calculated by bivariate 
Pearson correlation and the related p value based on t-distribution.
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Fig. 3 | CD38, HLA-DR and Ki-67 expression of SARS-CoV-2 S-I- and 
S-II-reactive CD4+ T cells discriminates SARS-CoV-2 patients from reactive 
healthy donors. a, Representative examples of HLA-DR and Ki-67 expression 
plotted against CD38 expression on S-II-reactive CD4+ T cells (red dots) 
compared to total CD4+ T cells (grey contours) in reactive healthy donors 
(RHD) and COVID-19 patients (P). b-d, Comparison of frequencies of CD38+, 
HLA-DR+ and Ki67+ cells among S-I (N-term)- and S-II (C-term)-reactive CD4+ 
T cells in RHD (b,c, n=23; d, n=17) and P (n=18). * p<0.05, ** p<0.01, *** p<0.001 
as calculated by two-tailed Mann-Whitney U test. p-values (from left to right):  
b) **: 0.0060, ***: <0.0001, ns: 0.2482; c) ***: <0.0001, ***: <0.0001, ns: 0.8618; 
d) *: 0.0405, *: 0.0102, ns: 1.00. e, f, Co-expression of HLA-DR or Ki-67 and CD38 
among S-II-reactive CD4+ T cells from RHD (e, n=23; f, n=17) and P (n=18).  
g, h, Frequencies of S-I- and S-II-reactive CD40L+4-1BB+ CD4+ T cells (g) or CD38+ 
among S-II-reactive CD4+ T cells (h) of P (n=18) plotted against days post 
symptom onset. Statistics: b-d, * p<0.05, ** p<0.01, *** p<0.001 as calculated by 
two-tailed Mann-Whitney U test; e,f, Correlation coefficient r was calculated by 
bivariate Pearson correlation and the related p value based on t-distribution.
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Table 1 | Baseline characteristics of COVID-19 patients and 
healthy donors

Cohort m:f Age Avg 
(range)

severity ICU (y/n) Sampling day  
Avg (range)

COVID-19 
patients

72 : 28% 52.6  
(21-81 yrs)

mild 38.9% 
severe 27.8% 
critical 33.3%

n 44.4%  
y 55.6%

14.9 (2-39)

Healthy  
donors

31 : 59% 41.9  
(20-64 yrs)

- - -

*Day after onset of symptoms, Avg: average, m: male, f: female, ICU: intensive care unit, y: yes, 
n: no.
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Methods

Study subjects
The study was approved by the Institutional Review board of the 
Charité (EA2/066/20). After providing written informed consent, 68 
healthy donors (HD, Extended Data Table 3, Table 2) and 18 and 7 addi-
tional COVID-19 patients (Table 1 and Extended Data Table 2 and 4) 
were included in the study. COVID-19 patients who tested positive for 
SARS-CoV-2 RNA in nasopharyngeal swabs were recruited at Charité 
Campus Virchow-Klinikum, Berlin, between March 1st and April, 2nd 2020. 
All COVID-19 patients were enrolled in the Berlin prospective observation 
COVID-19 study (PA-COVID-19)36. Disease severity was grouped based on 
requirement for supplemental oxygen or ventilation (mild; hospitalized, 
no supplemental oxygen, severe: hospitalized, supplemental oxygen 
(including High-flow), critical: hospitalized, invasive ventilation). For 
intracellular cytokine and memory T cell stainings, 7 additional COVID-
19 patients (Extended Data Table 4) were enrolled at later time points 
and 5 RHD were re-recruited. To retrospectively validate SARS-CoV-2 
seronegativity, all HD were re-invited between 4th and 7th May 2020 for 
re-assessment of anti-S1 IgG titers. 65 of 68 could be re-recruited and all 
were seronegative for SARS-CoV-2 (Extended Data Fig. 4).

Serology
Anti-SARS-CoV-2 IgG ELISA was performed using a commercial kit 
(EUROIMMUN) as described and validated before37. Recombinant 
immunofluorescence assays (rIFA) to determine IgG titers against HCoV 
were performed by using VeroB4 cells expressing cloned recombinant 
coronavirus spike proteins from HCoV-229E, HCoV-NL63, HCoV-OC43, 
HCoV-HKU1 as described in Corman et al.38.

Cell isolation and stimulation
Peripheral blood mononuclear cells (PBMC) were isolated from hep-
arinized whole blood by gradient density centrifugation according 
to manufacturer’s instructions (Leucosep tubes, Greiner; Biocoll, 
Bio&SELL). Stimulation was conducted with 5x106 PBMC in RPMI 1640 
medium (Gibco) supplemented with 10% heat inactivated AB serum 
(Pan Biotech), 100 U/ml penicillin (Biochrom), 0.1 mg/ml streptomy-
cin (Biochrom) and PepMixTM SARS-CoV-2 spike glycoprotein ( JPT) 
peptide pool 1 or 2 in the presence of 1 µg/ml purified anti-CD28 (clone 
CD28.2, BD Biosciences). The PepMixTM SARS-CoV-2 spike glycoprotein 
pool 1 covering the N-terminal amino acid (aa) residues 1-643 (abbre-
viated to "S-I” (N-term)) contained 158 15-mers overlapping by 11 aa. 
PepMixTM SARS-CoV-2 spike glycoprotein pool 2 covered the C-terminal 
aa residues 633-1273 (abbreviated to "S-II” (C-term)) containing 156 
15-mers overlapping by 11 aa and one 17-mer at the C-terminus, i.e. 157 
peptides in total. Both peptide pools were used at 1 µg/ml per pep-
tide, respectively. Further details on the peptide pools and predicted 
MHC-II epitopes are given in Fig. 1, Extended Data Fig. 1 and Extended 
Data Table 1. Stimulation controls were performed with equal concen-
trations of DMSO in PBS (unstimulated) or 1.5 mg SEB/1.0 mg TSST1 
(Sigma-Aldrich) and PepMixTM HCMVA (pp65) (>90%; CMVpp65) ( JPT) 
in the presence of 1 µg/ml purified anti-CD28 (clone CD28.2, BD Bio-
sciences) as positive controls, respectively. Incubation was performed 
at 37˚C, 5% CO2 for 16 h with 10 µg/ml brefeldin A (Sigma-Aldrich) added 
after 2 h. Stimulation was stopped by incubation in 2 mM EDTA for 5 
min. Stimulation with HCoV spike glycoprotein (SHCoV) peptide pools 
was conducted under the described conditions above but with 1 µg/ml 
per peptide of the following peptide pools: PepMixTM HCoV-229E spike 
glycoprotein pool 1 or 2 or PepMixTM HCoV-OC43 spike glycoprotein 
pool 1 or 2 (all JPT).

Flow Cytometry
After stimulation, surface stainings were conducted for 15 min with the 
following fluorochrome conjugated antibodies titrated to their optimal 
concentrations: CD38-PE-Vio770 (clone REA671, Miltenyi, dilution: 

1:400), CD69-APC-Cy7 (FN50, Biolegend, 1:100), HLAD-DR-VioGreen 
(REA805, Miltenyi, 1:50), CD4-BrilliantViolet605 (RPA-T4, Biolegend, 
1:200), CD8-PerCP (SK1, Biolegend, 1:100) with 1 mg/ml Beriglobin 
(CSL Behring) added prior to the staining. For exclusion of dead cells, 
Zombie Yellow fixable viability staining (Biolegend) was added for 
the last 10 min of incubation. Fixation and permeabilization were 
performed with eBioscienceTM FoxP3 fixation and PermBuffer (Inv-
itrogen) according to the manufacturer’s protocol and intracellular 
staining carried out for 30 min in the dark at room temperature with 
Beriglobin added prior to staining with 4-1BB(CD137)-PE (clone 4B4-1, 
BD, 1:10), CD40L(CD154)-APC (5C8, Miltenyi, 1:40), IFNγ-AlexaFluor700 
(B27, BD, 1:50), TNFα-PacificBlue (MAb11, Biolegend, 1:100) and 
Ki-67-AlexaFluor488 (B56, BD, 1:100). To assess naive/memory T cell 
phenotypes and cytokine expression, the following antibodies were 
used: surface staining was performed with CD3-V500 (SP34-2, BD, 1:50), 
CD8-PerCP (SK1, Biolegend, 1:100), CD4-BrilliantViolet605 (RPA-T4, 
Biolegend, 1:200), CCR7-AlexaFluor488 (G043H7, Biolegend, 1:150), 
CD45RA-PE-Cy7 (HI100, Biolegend, 1:200). IFNγ-AlexaFluor700 (B27, 
BD, 1:100), CD40L(CD154)-BrilliantViolet421 (24-31, Biolegend, 1:200), 
IL-2-APC (5344.111, BD, 1:200), 4-1BB(CD137)-PE (4B4-1, BD, 1:10) and 
IL-17A-APC-Cy7 (BL168, Biolegend, 1:20) were utilized for intracellu-
lar staining after fixation and permeabilization using BD FACSLysing 
Buffer and BD Perm2 Buffer, according to manufacturer’s instructions. 
Samples were measured on a MACSQuant® Analyzer 16 using MACS-
Quantify software (v2.13). Instrument performance was monitored 
daily with Rainbow Calibration Particles (BD).

Cell enrichment, expansion, and restimulation
S-II-reactive T cells were enriched by magnetic cell sorting (MACS) 
from PBMC stimulated with PepMixTM SARS-CoV-2 spike glycoprotein 
peptide pool 2 ( JPT) in the presence of 1 µg/ml purified anti-CD28 (clone 
CD28.2, BD Biosciences) and 1 µg/ml a-CD40 (clone 5C3, Biolegend). 
Following stimulation for 16 h, cells were stained with CD40L-APC and 
4-1BB-PE and firstly enriched with anti-APC MultiSort MicroBeads 
(Miltenyi) according to manufacturer’s instructions. After the release of 
anti-APC-MicroBeads, a second enrichment was performed with anti-PE 
MicroBeads (Miltenyi). Purity was checked each time to >80% of alive 
cells. APC feeder cells were generated by CD3 MicroBead (Miltenyi) 
depletion of the CD40L-APC-negative fraction and subsequent inactiva-
tion by irradiation at 50Gy. The irradiated feeder cells were co-cultured 
with the enriched 4-1BB+CD40L+ T cells at a ratio of 1:1 in RPMI 1640 
medium (Gibco) supplemented with 10% heat inactivated AB serum 
(Pan Biotech), 100 U/ml penicillin (Biochrom), 0.1 mg/ml streptomy-
cin (Biochrom) in the presence of 10 ng/ml IL-7 and IL-15, respectively 
(both Miltenyi) for 12 days followed by 2 day cytokine starvation prior 
to restimulation. Restimulation was conducted with the described 
conditions above and additionally with 1 µg/ml per peptide of the fol-
lowing peptide pools: PepMixTM HCoV-229E spike glycoprotein pool 1 
or 2 or PepMixTM HCoV-OC43 spike glycoprotein pool 1 or 2 (all JPT).

Data analysis and statistics
Sequence alignments have been performed using R (v3.6.1) including 
package ClustalX39 and using the Needlemann-Wunsch algorithm40. 
Flow cytometry data were analyzed with FlowJo 9.9.6 (FlowJo LLC). 
Microsoft Excel (v14.1.0) and Prism 5 and 8 (GraphPad Inc.) was used 
for plotting and statistical analysis. In stimulation experiments, fre-
quencies of activated CD4+ T cells were background-subtracted, with 
the frequency in the unstimulated control sample representing the 
background. Non-parametric testing was used to compare cell frequen-
cies and antibody titers between groups (two-tailed Mann-Whitney U 
test). n indicates the number of donors.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.
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Data availability
All flow cytometry data are made available in the FlowRepository.org 
(experiment ID: FR-FCM-Z2K3). An additional Supplementary Figure 
displaying the individual gating strategy for all donors is available in 
the online version of the paper.
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Extended Data Fig. 1 | Homology of reported MHC-II epitopes from 
Extended Data Table 1 in the spike glycoprotein of SARS-CoV to SARS-CoV-2 
and endemic coronavirus strains. Shown is for each epitope the respective 

section from a global sequence alignment between the 6 indicated 
coronaviruses. Identical residues are color-coded from white (no identity) to 
red (100% identity).
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Extended Data Fig. 2 | Overview of the analyses gates and dot plots from COVID-19 patients, reactive healthy donors (RHD) and healthy donors (HD) to 
determine the frequencies of S-I- and S-II-reactive CD4+ T cells and the ratios of CD38+, HLA-DR+ and Ki-67+ cells among them.ACCELE
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Extended Data Fig. 3 | Most S-I- and S-II-non-reactive COVID-19 patients 
had a critical disease stage. Frequencies of S-I- and S-II-reactive CD4+ T cells in 
COVID-19 patients are grouped according to disease severity in mild (n=7), 
severe (n=5) and critical (n=6).
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Extended Data Fig. 4 | Repeated serology of HD confirms unexposed status 
of HD and RHD. SARS-CoV-2 S1 serology of HD (n=43) and RHD (n=22) more 
than 28 days after initial sampling. Anti-spike glycoprotein subunit 1 (S1) IgG 
titers are expressed as ratio normalized to calibrator well.
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Extended Data Fig. 5 | Cytokine and differentiation marker expression of 
S-I- and S-II-reactive CD40L+4-1BB+ CD4+ T cells from COVID-19 patients and 
RHD. a, Gating scheme of one representative donor to select CD3+CD4+ T cells 
and exclude dead cells and doublets. b, c, Determination of the differentiation 
marker and cytokine profile of S-I-/S-II-reactive CD4+ T cells exemplarily shown 
for one COVID-19 patient (P) and one reactive healthy donor (RHD) after S-I and 
S-II peptide pool stimulation, respectively. SARS-CoV-2 S-reactive CD4+ T cells 
were defined by CD40L and 4-1BB expression post stimulation and are 
displayed as red dots in the subsequent dotplots. Numbers are the frequencies 

of cytokine expressing cells of S-I-/S-II-reactive CD4+ T cells and distribution 
between naïve (CCR7+CD45RA+) and memory (CCR7+/-CD45RA-) phenotype of 
S-I-/S-II-reactive CD4+ T cells, respectively. d, Diagrams summarizing the 
cytokine and differentiation marker distribution frequencies of S-I- and 
S-II-reactive CD4+ T cells from seven patients and five RHD. e, Expression of 
TNFα and IFNγ in S-II-reactive CD4+ T cells in P and RHD. Five representative 
plots of TNFα versus IFNγ expression in CD40L+4-1BB+ CD4+ T cells in reactive 
healthy donors (RHD) and COVID-19 patients (P), gating strategy as shown in 
Fig. 2.
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Extended Data Fig. 6 | HCoV-specific IgG antibody titres in HD and RHD and 
specificity of SARS-CoV-2-reactive T cells in HD. a) IgG antibody titers 
against endemic coronavirus strains (HCoV). VeroB4 cells expressing 
recombinant spike (S) proteins of HCoV-HKU1, HCoV-OC43, HCoV-229E and 
HCoV-NL63, respectively, were used in a recombinant immunofluorescence 
assay (rIFA) as outlined in Corman et al. 2012. Titers above 1:20 dilution were 
considered positive (indicated by dashed line). HD: healthy donor (n=9); RHD: 
reactive healthy donor (n=9). b-d, Frequencies of SARS-CoV-2 S-I-reactive CD4+ 
T cells in healthy donors do not correlate with frequencies of SHCoV-I-reactive or 

CMV-reactive CD4+ T cells and frequencies of SARS-CoV-2 S-II-reactive CD4+ 
T cells in healthy donors do not correlate with frequencies of CMV-reactive 
CD4+ T cells b, Scatter plot of SHCoV-I-reactive CD4+ T cell (for 229E (n=12) and 
OC43 (n=9)), respectively) and SARS-CoV-2 S-I-reactive CD4+ T cell frequencies. 
c, Scatter plot of SARS-CoV-2 S-I-reactive CD4+ T cell and CMV-reactive CD4+ 
T cell frequencies (n=21). d, Scatter plot of SARS-CoV-2 S-II-reactive CD4+ T cell 
and CMV-reactive CD4+ T cell frequencies (n=21). Statistics: c - d, Correlation 
coefficient r was calculated by Pearson correlation and the related p value 
based on t-distribution.
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Extended Data Table 1 | Reported MHC-II epitopes in the spike glycoprotein of SARS-CoV with identity calculation for 
SARS-CoV-2 and the HCoVs NL63, 229E, HKU1, and OC43 (maximum identity)
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Extended Data Table 2 | Baseline characteristics of hospitalized COVID-19 patients

*Day after onset of symptoms, m: male, f: female, ICU: intensive care unit, y: yes, n: no.
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Extended Data Table 3 | Baseline characteristics of healthy donors

m: male; f: female.
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Extended Data Table 4 | Baseline characteristics of 7 COVID-19 patients enrolled for cytokine staining

 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Day after onset of symptoms, m: male, f: female, ICU: intensive care unit, y: yes, n: no.
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Miltenyi MACSquantify software v2.13 was used for flow cytometry data collection.

Data analysis All the softwares and there version information are shown her. FlowJo (v9.9.6) was used for all FACS analyses. Microsoft Excel (v.14.1.0) 
was used to collect and arrange data and patient / donor information. GraphPad Prism (v5.0b and v8.4.2. (464)) was used to analyze data 
and create plots. 
Sequence alignments have been performed using R (v3.6.1) including package ClustalX (Larkin,M.A., Blackshields, G., Brown, N.P., 
Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G. 
(2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948.) and using the Needlemann-Wunsch algorithm (Needleman S., 
Wunsch C. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of 
Molecular Biology, 48(3): 443-453).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All flow cytometry data are made available in the FlowRepository.org (experiment ID: FR-FCM-Z2K3). An additional Supplementary Figure displaying the individual 
gating strategy for all donors is available in the online version of the paper. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Within COVID-19 patients, 83% exhibited T cell reactivity to the Spike glycoprotein of SARS-CoV-2. 
Within the healthy donors recruited, 35% were identified as reactive healthy donors. With these proportions, the recruited numbers of 
subjects are sufficient.

Data exclusions No data were excluded from the analyses.

Replication We remeasured several donors (accompanied by anti-SARS-CoV-2 IgG antibody testing) at later timepoints and used another Spike 
glycoprotein peptide pool from Miltenyi to ensure reproducibility of T cell reactivity in SARS-CoV-2 naive donors. 

Randomization No randomization was performed since it was not applicable to the study.

Blinding Blinding was not applicable to this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used CD69-APCCy7 BioLegend Cat# 310914, RRID:AB_314849 

CD4-BV605 BioLegend Cat# 300556, RRID:AB_2564391 
CD8-PerCp BioLegend Cat# 344708, RRID:AB_1967149 
IFNg-AlexaFluor700 BioLegend Cat# 502520, RRID:AB_528921 
TNFa-PB BioLegend Cat# 502920, RRID:AB_528965 
CD38-PeVio770 Miltenyi Biotec Cat# 130-118-982, RRID:AB_2751601 
HLADR-VG Miltenyi Biotec Cat# 130-111-795, RRID:AB_2652164 
CD154(CD40L)-APC Miltenyi Biotec Cat# 130-113-603, RRID:AB_2726191 
CD137(4-1BB)-PE BD Biosciences Cat# 555956, RRID:AB_396252 
CD154(CD40L)-BV421 BioLegend Cat# 310824, RRID:AB_2562721 
IL-2-APC BD Biosciences Cat# 341116, RRID:AB_400574 
IL-17A-APCCy7 BioLegend Cat# 512320, RRID:AB_10613103 
CCR7-AlexaFluor488 BioLegend Cat# 353206, RRID:AB_10916389 
CD45RA-PeCy7 BioLegend Cat# 304126, RRID:AB_10708879 
CD3-V500 BD Biosciences Cat# 560770, RRID:AB_1937322 
Ki-67 AlexaFluor488 BD Biosciences Cat#558616, RRID:AB_647087 
anti-CD28 BD Biosciences Cat#555725, RRID:AB_396068

Validation All antibodies are established, well described and published elsewhere. Informations are accessible on the manufacturers 
websites under Catalogue or RRID numbers.
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Human research participants
Policy information about studies involving human research participants

Population characteristics The study included: 
- 18 COVID-19 patients (age mean 52.6, range: 21-81 yrs; gender: female ratio 27.8%; sampling day (post symptom onset): mean 
14.9, range: 2-39 
- 68 healthy donors (age mean 41.93, range: 20-64 yrs; gender: female ratio 59%) 
All healthy donors stated to be free of  symptoms indicating an acute infection.

Recruitment Patients were hospitalised in the Charité. The patients were selected based on disease severity to achieve a balanced 
representation of the three disease severity groups. 

Ethics oversight Institutional Review Board of the Charité.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Peripheral blood mononuclear cells (PBMC) were isolated from heparinized whole blood by gradient density centrifugation 
according to manufacturer’s instructions (Leucosep tubes, Greiner; Biocoll, Bio&SELL). Stimulation was conducted with 5x10e6 
PBMC in RPMI 1640 medium (Gibco) supplemented with 10% heat inactivated AB serum (Pan Biotech), 100 U/ml penicillin 
(Biochrom),  0.1 mg/ml streptomycin (Biochrom), and PepMixTM SARS-CoV-2  in the presence of 1 μg/ml purified anti-CD28 
(clone CD28.2, BD Biosciences). PepMixTM SARS-CoV-2 (Spike Glycoprotein) subpool 1 covering the N-terminal aa 1-643 
(abbreviated to "S-I (N-term)") containing 158 15-mers overlapping by 11 and PepMixTM SARS-CoV-2 (Spike Glycoprotein) 
subpool 2 covering the C-terminal aa 633-1273 (abbreviated to "S-II (C-term)") (JPT) containing 156 15-mers overlapping by 11 
and one 17-mer at C-terminus were used at 1 μg/ml per peptide, respectively. Stimulation controls were performed with equal 
concentrations of DMSO in PBS (unstimulated) or 1.5 mg SEB/1.0 mg TSST1 (Sigma-Aldrich) and PepMixTM CMV pp65 (Miltenyi) 
as positive controls, respectively. Incubation was performed at 37˚C, 5% CO2 for 14h with 10 μg/ml brefeldin A (Sigma- Aldrich) 
added after 2 h. Stimulation was stopped by incubation in 20 mM EDTA for 5 min and surface staining conducted for 15 min with 
the following fluorochrome conjugated antibodies titrated to their optimal concentrations: CD38-PE-Vio770 (clone REA671, 
Miltenyi), CD69-APC-Cy7 (FN50, Biolegend), HLAD-DR-VioGreen (REA805, Miltenyi), CD4-BrilliantViolet605 (RPA-T4, Biolegend), 
CD8-PerCP (SK1, Biolegend) with 1 mg/ml Beriglobin (CSL Behring) added prior to the staining. For exclusion of dead cells, 
Zombie Yellow fixable viability staining (Biolegend) was added for the last 10 min of incubation. Fixation and permeabilization 
were performed with eBioscienceTM FoxP3 fixation and PermBuffer (Invitrogen) according to the manufacturer’s protocol and 
intracellular staining carried out for 30 min in the dark at room temperature with Beriglobin added prior to intracellular staining 
with 4-1BB-PE (clone 4B4-1, BD), CD40L-APC (5C8, Miltenyi) and Ki-67-AlexaFluor488 (B56, BD). For intracellular cytokine 
staining, we employed different antibodies. Surface staining was performed with CD3-V500 (SP34-2, BD), CD8-PerCP (SK1, 
Biolegend), CD4-BrilliantViolet605 (RPA-T4, Biolegend), CCR7-AlexaFluor488 (G043H7, Biolegend), CD45RA-PE-Cy7 (HI100, 
Biolegend). IFN-γ-AlexaFluor700, CD40L-BrilliantViolet421 (24-31, Biolegend), IL-2-APC (5344.111, BD), 4-1BB-PE (4B4-1, BD) and 
IL-17A-APC-Cy7 (BL168, Biolegend) were utilized for intracellular staining after fixation and permeabilization using BD FACSLysing 
Buffer and BD Perm2 Buffer, according to manufacturer’s instructions.  

Instrument Samples were measured on a MACSQuant® Analyzer 16 and the instrument performance monitored daily with Rainbow 
Calibration Particles (BD).

Software Miltenyi MACSquantif software (v2.13) and FlowJo (v9.9.6)

Cell population abundance Cells have not been enriched or sorted. Data are shown within ex vivo stimulated peripheral blood mononuclear cells.

Gating strategy All recorded events were gated according to FSC and SSC as lymphocytes; single cells were further selected using FSC-H vs. FSC-
W and again using SSC-H vs. SSC-W. Subsequently living cells were identified as ZombieYellow negative cells gated against CD4-
BV605. An artefact population in some samples (probably induced by DMSO) was observed disturbing data analysis and was 
gated out using V500 vs V450. The subsequent gating scheme is depicted in Fig.2a and Fig. 3a. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


	SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19

	Identification of S-reactive CD4+ T cells

	S-reactive CD4+ T cells in RHD are cross-reactive to HCoVs 229E and OC43

	Specific activation signatures in COVID-19 patients

	Discussion

	Online content

	Fig. 1 Structural domains, homology and MHC-II epitopes of the SARS-CoV-2 spike glycoprotein.
	Fig. 2 SARS-CoV-2 spike glycoprotein-reactive CD4+ T cells in COVID-19 patients and healthy donors.
	Fig. 3 CD38, HLA-DR and Ki-67 expression of SARS-CoV-2 S-I- and S-II-reactive CD4+ T cells discriminates SARS-CoV-2 patients from reactive healthy donors.
	Extended Data Fig. 1 Homology of reported MHC-II epitopes from Extended Data Table 1 in the spike glycoprotein of SARS-CoV to SARS-CoV-2 and endemic coronavirus strains.
	Extended Data Fig. 2 Overview of the analyses gates and dot plots from COVID-19 patients, reactive healthy donors (RHD) and healthy donors (HD) to determine the frequencies of S-I- and S-II-reactive CD4+ T cells and the ratios of CD38+, HLA-DR+ and Ki-67+
	Extended Data Fig. 3 Most S-I- and S-II-non-reactive COVID-19 patients had a critical disease stage.
	Extended Data Fig. 4 Repeated serology of HD confirms unexposed status of HD and RHD.
	Extended Data Fig. 5 Cytokine and differentiation marker expression of S-I- and S-II-reactive CD40L+4-1BB+ CD4+ T cells from COVID-19 patients and RHD.
	Extended Data Fig. 6 HCoV-specific IgG antibody titres in HD and RHD and specificity of SARS-CoV-2-reactive T cells in HD.
	Table 1 Baseline characteristics of COVID-19 patients and healthy donors.
	Extended Data Table 1 Reported MHC-II epitopes in the spike glycoprotein of SARS-CoV with identity calculation for SARS-CoV-2 and the HCoVs NL63, 229E, HKU1, and OC43 (maximum identity).
	Extended Data Table 2 Baseline characteristics of hospitalized COVID-19 patients.
	Extended Data Table 3 Baseline characteristics of healthy donors.
	Extended Data Table 4 Baseline characteristics of 7 COVID-19 patients enrolled for cytokine staining.




