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I. MAGNON AND PHONON MODES

Here we derive the normalized magnetic and mechanical eigenmodes used in the main text.

The Landau-Lifshitz equation for the transverse dynamics in our configuration with saturated magnetization

along the x̂ direction reads

dmy

dt
= −µ0γ(Happ −NxxMs +NzzMs)mz,

dmz

dt
= µ0γ(Happ −NxxMs)my, (S1)

which is solved by

mz = iξ2Mmy, (S2)

with dimensionless ellipticity

ξM =

(
H0 −NxxMs

H0 −NxxMs +NzzMs

)1/4

. (S3)

When H0 is large, ξM → 1. With normalization condition [1, 2]∫
dr
(
mym

∗
z −m∗

ymz

)
= − i

2
, (S4)

the magnon amplitudes read

my = − 1

2
√
Lwd

1

ξM
, mz = − i

2
√
Lwd

ξM . (S5)

We treat the thin YIG nanowire as a small perturbation of the elastic GGG substrate. The surface strains

obey the equation of motion [3, 4]

ρ
∂2ui
∂t2

=
∑
j

∂σij
∂xj

, (S6)

with free boundary condition σij |S = 0 at the surface “S”. We focus on an isotropic material in the linear regime

of Hooke’s Law σij =
∑

kl Cijklεkl with stiffness coefficient Cijkl and strain tensor εij = (∂ui/∂xj+∂uj/∂xi)/2

[3]. The displacement field can be written in terms of the elastic scalar and vector potentials V and A as

u = ∇V + ∇ × A, with A = A~y because the displacement field of an acoustic wave propagating in the ~x

direction does not depend on y. With ux = ∂V/∂x− ∂A/∂z and uz = ∂V/∂z + ∂A/∂x we arrive at

∂2V

∂x2
+
∂2V

∂z2
=

ρ

λ+ 2µ

∂2V

∂t2
,

∂2A

∂x2
+
∂2A

∂z2
=
ρ

µ

∂2A

∂t2
. (S7)

A sufficiently thin YIG nanowire follows the displacement field of the substrate. By a plane wave ansatz for

V and A, we obtain the (unnormalized) amplitudes of the Rayleigh surface acoustic waves (SAWs)

ψx = ikϕk

(
eqz − 2qs

k2 + s2
esz
)
eikx,

ψz = qϕk

(
eqz − 2k2

k2 + s2
esz
)
eikx,

(S8)
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where q =
√
k2 − k2l and s =

√
k2 − k2t have been introduced in the main text. The surface modes decay

exponentially on two lengths as eqz and esz and a single node. We normalize the SAW as [5]∫ 0

−∞
dz
(
|ψx|2 + |ψz|2

)
=

~
2ρLωk

, (S9)

leading to the normalization factor

ϕk =
1

|k|
1 + b2

2a(1− b2)

√
2~
ρLcr

ξP , (S10)

where

ξP =
a(1− b2)

1 + b2

(
1 + a2

2a
+

2a(a− 2b)

b(1 + b2)

)−1/2

(S11)

with dimensionless material constants

a = q/ |k| =
√
1− (cr/cl)2,

b = s/ |k| =
√
1− η2.

(S12)

Here cr = η
√
µ/ρ and cl =

√
(λ+ 2µ)/ρ are the sound velocities of the surface and longitudinal bulk waves,

respectively.

The node in the eigenmodes leads to zeros in the z-dependence of the excited phonon spin density (parameters

in the main text), as shown in Fig. S1 for typical parameters.

FIG. S1. (Color online) Depth (z) dependence of the excited phonon spin density, normalized by the surface amplitude

(z = 0) (for the parameters in the main text).

II. CLASSICAL FORMALISM OF SAWS PUMPING

Here we formulate the excitation of Rayleigh SAWs by the oscillating surface force

F |x=±w
2 +xi

=
δHc

δuz(x, t)
= ∓B⊥Ld

Ms
Mz~z, (S13)
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that arises from the magnetoelastic coupling [4, 6], which is consistent with the matrix elements in the (quan-

tum) Hamiltonian approach used in the text.

The boundary conditions for the stress tensor (line load)

σzz|z=0− =
1

L

dF (x, z)

dx
' −B⊥d

Ms
M̂z

[
δ
(
x−

(w
2
+ xi

))
− δ

(
x−

(
−w

2
+ xi

))]
,

σxz|z=0− = 0, (S14)

conserve momentum [4, 6]. We solve the elastic equation of motion [Eq. (S7)] with these conditions by a

plane-wave ansatz (dropping the explicit time harmonic) [4]

V =

∫ ∞

−∞
V(k)ei

(
kx+

√
k2
l −k2z

)
dk,

A =

∫ ∞

−∞
A(k)e

i

(
kx+

√
k2
t−k2z

)
dk.

(S15)

The Fourier transform of the boundary condition σzz(k)|z=0 = ifz/(µπ) sin (kw/2)e
−ikxi with fz = (B⊥d/Ms)M̂z

and σxz(k)|z=0 = 0 leads to dynamic elastic potentials in k-space

V(k) = i
fz
πµ

2k2 − k2t
F (k)

sin

(
kw

2

)
e−ikxi ,

A(k) = − fz
πµ

2k
√
k2 − k2l
F (k)

sin

(
kw

2

)
e−ikxi ,

(S16)

with

F (k) = (2k2 − k2t )
2 − 4k2

√
k2 − k2l

√
k2 − k2t . (S17)

F (k) = 0 is the so-called Rayleigh equation. The displacement field at the substrate surface (z = 0)

ux|z=0 = − fz
πµ

∫ ∞

−∞

k sin (kw/2)

F (k)

[
(2k2 − k2t )− 2

√
k2 − k2l

√
k2 − k2t

]
eik(x−xi) dk,

uz|z=0 = − ifzk
2
t

πµ

∫ ∞

−∞

√
k2 − k2l sin (kw/2)

F (k)
eik(x−xi) dk.

(S18)

Far from the nanowire |x| > xi, the integrals can be carried out analytically by following the contours in

Fig. S2. The roots of the Rayleigh equation F (kr) = 0 are poles, while ±kl and ±kt are branch cuts. We can

carry out the contour integral by closing the contours depending on x > xi or x < xi. Using Watson’s lemma

for the asymptotic treatment of the integral along the branch cuts the displacement field on the substrate

surface (z = 0) reads

u±x |z=0 = ± ifz
2µ

(1− b2)

−4 + (1 + b2)
[
1 + 1

2 (
1
a2 + 1

b2 )
] sin(krw

2

)
e±ikr(x−xi)

± 2fze
−iπ

4

µ

√
2

π

√
a2 − b2

1− b2

(
(1− a2)

1
2 (1− b2)

3
2

(1 + b2 − 2a2)3
sin

(
klw

2

)
e±ikl(x−xi)

[kl(x− xi)]3/2
+ sin

(
ktw

2

)
e±ikt(x−xi)

[kt(x− xi)]3/2

)
+O(kx)−

5
2 , (S19)

u±z |z=0 = −fz
µ

a(1− b2)

(1 + b2)
[
−4 + (1 + b2)[1 + 1

2 (
1
a2 + 1

b2 )]
] sin(krw

2

)
e±ikr(x−xi)

+
fze

iπ
4

µ

√
2

π

(
(1− a2)(1− b2)

(1 + b2 − 2a2)2
sin

(
klw

2

)
e±ikl(x−xi)

[kl(x− xi)]3/2
+

4(a2 − b2)

1− b2
sin

(
ktw

2

)
e±ikt(x−xi)

[kt(x− xi)]3/2

)
+O(kx)−

5
2 , (S20)
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where the “± ” sign stands for the right- and left-going waves on the right and left sides of the wire, respec-

tively. The second terms decay far from the nanowire as 1/(klx)
3/2 and 1/(ktx)

3/2 and can be attributed

to the evanescent contributions from longitudinal (eiklx) and transverse (eiktx) bulk acoustic waves. These

contributions can be disregarded far from the nanowire, where only the Rayleigh SAWs (eikrx) survive.

FIG. S2. Contour in the complex k plane. The upper half plane is used when x > xi and lower half plane when x < xi.

Branch cuts at ±kl and ±kt are indicated. The Rayleigh points ±kr acquire a small imaginary part by causality or

sound attenuation.

Retaining only the SAWs, we find the displacement field from the integral for general z,

ux = − fz
πµ

∫ ∞

−∞

k sin (kw/2)

F (k)

[
(2k2 − k2t ) e

√
k2−k2

l z − 2
√
k2 − k2l

√
k2 − k2t e

√
k2−k2

t z

]
eik(x−xi) dk,

uz =
ifz
πµ

∫ ∞

−∞

√
k2 − k2l sin (kw/2)

F (k)

[
(2k2 − k2t ) e

√
k2−k2

l z − 2k2 e

√
k2−k2

t z

]
eik(x−xi) dk,

(S21)

and

u±x = ± ifz
µ

1

−4 + (1 + b2)
[
1 + 1

2 (
1
a2 + 1

b2 )
] sin(krw

2

)[
eqz − 2ab

1 + b2
esz
]
e±ikr(x−xi),

u±z =
fz
µ

a

−4 + (1 + b2)
[
1 + 1

2 (
1
a2 + 1

b2 )
] sin(krw

2

)[
eqz − 2

1 + b2
esz
]
e±ikr(x−xi).

(S22)

Inserting the force term fz = B⊥M̂z/Ms and the expression for Mz from the main text, we arrive at the

pumped displacement fields,

u±x = ∓B⊥ξMξP
ρc2r

√
2~γd
LwMs

ξP
1− b2

sin

(
krw

2

)(
eqz − 2ab

1 + b2
esz
)
e±ikr(x−xi)〈β̂(t)〉

= − 1

cr
iψxg

∗
±kr

〈β̂(t)〉,

u±z =
iB⊥ξMξP

ρc2r

√
2~γd
LwMs

aξP
1− b2

sin

(
krw

2

)(
eqz − 2

1 + b2
esz
)
e±ikr(x−xi)〈β̂(t)〉

= − 1

cr
iψzg

∗
±kr

〈β̂(t)〉,

(S23)

in which we used the Rayleigh relation 4ab = (1+ b2)2 [3]. These results agree with those derived in the main

text by the quantum formalism.
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III. MICROWAVE TRANSMISSION SPECTRA

Here we address the excitation of magnons and phonons for two parallel magnetic nanowires on a dielectric

substrate. One wire is excited by a microwave source, while the other is coupled inductively to another

stripline. We compute here the microwave scattering matrix. The Kittel-magnon operators for the two

magnetic nanowires at R1 and R2 are expressed by β̂L and β̂R, respectively. Augmented by the magnetic and

elastic damping and microwave input p̂Lin acting on the left nanowire, the Heisenberg equations of motion for

the magnon-phonon coupled system (including source and dissipation) read

dβ̂L
dt

= −i~ωFβ̂L(t)− i~
∑
k

|gk|eikR1 b̂k(t)−
(
κL + κω,L

2

)
β̂L(t)−

√
κω,L p̂

L
in(t),

dβ̂R
dt

= −i~ωFβ̂R(t)− i~
∑
k

|gk|eikR2 b̂k(t)−
κR
2
β̂R(t),

db̂k
dt

= −i~ωk b̂k(t)− i~|gk|e−ikR1 β̂L(t)− i~|gk|e−ikR2 β̂R(t)−
δk
2
b̂k(t).

(S24)

Here κL and κR denote the (Gilbert) damping of the Kittel modes in the left and right nanowires, and κω,L

is the radiative coupling of the left nanowire to the microwave source. For sufficiently large |R2 −R1| (tens of

micrometers for the present system), the excited magnon and phonon operators in frequency space read

β̂L(ω) =
−i√κω,L

ω − ωF + i
κL+κω,L

2 −
∑

k |gk|2Gk (ω)− f(ω)
p̂Lin(ω),

β̂R(ω) =

∑
k |gk|2Gk (ω) e

ik(R2−R1)

ω − ωF + iκR/2−
∑

k |gk|2Gk (ω)
β̂L(ω),

b̂k(ω) = |gk|Gk(ω)
(
e−ikR1 β̂L(ω) + e−ikR2 β̂R(ω)

)
,

(S25)

where

f(ω) =

(
|gk|2/cr

)2
ei2ω(R2−R1)/cr

ω − ωF + iκR/2−
∑

k |gk|2Gk(ω)
. (S26)

The phonon operator b̂k governs the displacement field in the main text.

The microwave output of the left and right nanowires is inductively detected by striplines represented by

photon operators p̂Lout and p̂Rout that are related by the input-output relations [7, 8]

p̂Lout(ω) = p̂Lin(ω) +
√
κω,L β̂L(ω),

p̂Rout(ω) =
√
κω,R β̂R(ω).

(S27)

The microwave reflection (S11) and transmission (S21) spectra become

S11(ω) ≡
p̂Lout
p̂Lin

= 1− iκω,L

ω − ωF + i(κL + κω,L)/2−
∑

k |gk|2Gk (ω)− f(ω)
,

S21(ω) ≡
p̂Rout
p̂Lin

= (S11(ω)− 1)

√
κω,R

κω,L

∑
k |gk|2Gk (ω) e

ik(R2−R1)

ω − ωF + iκR/2−
∑

k |gk|2Gk (ω)
.

(S28)

When the two magnetic nanowires are identical, the microwave transmission with excitation (input) at R1 and

detection (output) at R2,

S21(ω) = (S11(ω)− 1) 〈β̂R(ω)〉/〈β̂L(ω)〉, (S29)
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can measure the phase relation between the Kittel modes at FMR in the two wires:

S21(ωF) = (1− S11(ωF))χ(kr)e
ikr(R2−R1).

Here χ(kr) stands for the ratio of the magnetization amplitudes in the right and left nanowires, as defined

in the main text. At the special microwave frequencies ωn = ωF = πcr(n + 1/2)/(R2 − R1), where n is a

non-negative integer, S11(ωF) is real while the phase factor eikr(R2−R1) = i(−1)n becomes purely imaginary

and ReS12(ωF = ωn) = 0 develops minima. However, the microwave transmission alone cannot detect the

chirality of the excited displacement field, which must therefore be found by other means.

We plot the real part of the transmission amplitude in Fig. S3 as a function of microwave frequency close

to ωF = 3 GHz and static magnetic field H0. Here, with w = 2.5 µm and thickness d = 200 nm for the YIG

nanowires, the additional damping coefficient α = 1.2 × 10−4. The intrinsic magnetic damping is chosen as

κm = 8 × 10−5 ωF = 0.24MHz and the radiative damping κω = 1 MHz. The dips in the transmission are

traced by the black contour in Fig. S3(a), while the horizontal dash lines correspond to the special frequencies

ωn = πcr(n+ 1/2)/(R2 −R1), where n is a non-negative integer. Due to the magnon-phonon coupling, these

horizontal lines are deformed to the anti-crossings when ωF → ωn. Indeed, we can understand these features by

S12(ωF) → (1−S11(ωF))e
ikr(R2−R1), where S11(ωF) is real while the phase factor eikr(R2−R1) = i(−1)n becomes

purely imaginary and then ReS12(ωF = ωn) = 0. The dips in the transmission on the FMR resonance line are

shown in Fig. S3(b). We note that the transmission does not vanish at dips as it becomes purely imaginary.

For R2 −R1 = 300 µm the frequency spacing between these dips ∆ω = πcr/(R2 −R1) = 34.26 MHz.

FIG. S3. (Color online) Microwave transmission (|Re(S21)|) between two YIG nanowire transducers on top of a GGG

substrate. (a) The minima in the transmission (black contour) anticross with the FMR at regularly spaced frequencies

ωn. (b) Transmission spectra at the FMR frequency. The transmission dips originate from the thin black contour

hidden within the FMR peaks (yellow region).
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