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I. MAGNON AND PHONON MODES

Here we derive the normalized magnetic and mechanical eigenmodes used in the main text.
The Landau-Lifshitz equation for the transverse dynamics in our configuration with saturated magnetization

along the x direction reads
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which is solved by
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with dimensionless ellipticity
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When Hj is large, &y — 1. With normalization condition [1, 2]
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the magnon amplitudes read
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We treat the thin YIG nanowire as a small perturbation of the elastic GGG substrate. The surface strains

obey the equation of motion [3, 4]
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o = g &
with free boundary condition o;;|s = 0 at the surface “S”. We focus on an isotropic material in the linear regime
of Hooke’s Law 0;; = 3, Cijri€r with stiffness coefficient Cjx; and strain tensor €;; = (Ou,/0z; +0u;/0x;)/2
[3]. The displacement field can be written in terms of the elastic scalar and vector potentials V' and A as
u=VV +V x A, with A = Ay because the displacement field of an acoustic wave propagating in the &
direction does not depend on y. With u, = 0V/0x — 0A/0z and u, = 0V/0z + OA/Ox we arrive at
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A sufficiently thin YIG nanowire follows the displacement field of the substrate. By a plane wave ansatz for
V and A, we obtain the (unnormalized) amplitudes of the Rayleigh surface acoustic waves (SAWs)
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where ¢ = /k? — k? and s = \/k? — k? have been introduced in the main text. The surface modes decay

exponentially on two lengths as 9% and e®* and a single node. We normalize the SAW as [5]
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leading to the normalization factor
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where
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with dimensionless material constants
a=q/lkl=+1-(c;/c)?
(S12)

b=s/ k| =+/1-1n

Here ¢, = ny/p/p and ¢; = /(A + 2u)/p are the sound velocities of the surface and longitudinal bulk waves,
respectively.
The node in the eigenmodes leads to zeros in the z-dependence of the excited phonon spin density (parameters

in the main text), as shown in Fig. S1 for typical parameters.
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FIG. S1. (Color online) Depth (z) dependence of the excited phonon spin density, normalized by the surface amplitude

(z = 0) (for the parameters in the main text).

II. CLASSICAL FORMALISM OF SAWS PUMPING

Here we formulate the excitation of Rayleigh SAWs by the oscillating surface force
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that arises from the magnetoelastic coupling [4, 6], which is consistent with the matrix elements in the (quan-
tum) Hamiltonian approach used in the text.

The boundary conditions for the stress tensor (line load)
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conserve momentum [4, 6]. We solve the elastic equation of motion [Eq. (S7)] with these conditions by a

plane-wave ansatz (dropping the explicit time harmonic) [4]
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The Fourier transform of the boundary condition o, (k)|.—o = if. /() sin (kw/2)e~** with f, = (BL.d/M,)M.,

and o, (k)|.—0 = 0 leads to dynamic elastic potentials in k-space
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with
F(k) = 2k — k)2 — k% Jk2 — k2 &2 — k2. (S17)
F(k) = 0 is the so-called Rayleigh equation. The displacement field at the substrate surface (z = 0)
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Far from the nanowire |x| > x;, the integrals can be carried out analytically by following the contours in
Fig. S2. The roots of the Rayleigh equation F'(k,.) = 0 are poles, while +k; and +k; are branch cuts. We can
carry out the contour integral by closing the contours depending on z > x; or z < z;. Using Watson’s lemma
for the asymptotic treatment of the integral along the branch cuts the displacement field on the substrate

surface (z = 0) reads
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where the “+ 7 sign stands for the right- and left-going waves on the right and left sides of the wire, respec-
tively. The second terms decay far from the nanowire as 1/(kx)?/? and 1/(kiz)?/? and can be attributed
to the evanescent contributions from longitudinal (e**'*) and transverse (e**+*) bulk acoustic waves. These

contributions can be disregarded far from the nanowire, where only the Rayleigh SAWs (e?*%) survive.
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FIG. S2. Contour in the complex k plane. The upper half plane is used when x > z; and lower half plane when = < x;.
Branch cuts at £k; and +k; are indicated. The Rayleigh points £k, acquire a small imaginary part by causality or

sound attenuation.

Retaining only the SAWs, we find the displacement field from the integral for general z,
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Inserting the force term f, = B M, /M and the expression for M, from the main text, we arrive at the

pumped displacement fields,
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in which we used the Rayleigh relation 4ab = (1 + b%)? [3]. These results agree with those derived in the main

(S23)

text by the quantum formalism.



III. MICROWAVE TRANSMISSION SPECTRA

Here we address the excitation of magnons and phonons for two parallel magnetic nanowires on a dielectric
substrate. One wire is excited by a microwave source, while the other is coupled inductively to another
stripline. We compute here the microwave scattering matrix. The Kittel-magnon operators for the two
magnetic nanowires at R and Ry are expressed by B 1, and fBg, respectively. Augmented by the magnetic and
elastic damping and microwave input p& acting on the left nanowire, the Heisenberg equations of motion for

the magnon-phonon coupled system (including source and dissipation) read
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Here k1, and g denote the (Gilbert) damping of the Kittel modes in the left and right nanowires, and &, 1,
is the radiative coupling of the left nanowire to the microwave source. For sufficiently large |Rs — Ry (tens of

micrometers for the present system), the excited magnon and phonon operators in frequency space read
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The phonon operator by, governs the displacement field in the main text.
The microwave output of the left and right nanowires is inductively detected by striplines represented by

photon operators p%,, and pZ, that are related by the input-output relations [7, §]
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The microwave reflection (S11) and transmission (S2;) spectra become
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When the two magnetic nanowires are identical, the microwave transmission with excitation (input) at R; and

detection (output) at Ra,

Sa1(w) = (S11(w) — 1) (Br(w))/{BL(w)), (529)



can measure the phase relation between the Kittel modes at FMR in the two wires:
So1(wr) = (1 — Si1(wr)) x(ky)eFr(F2a= R,

Here x(k,) stands for the ratio of the magnetization amplitudes in the right and left nanowires, as defined
in the main text. At the special microwave frequencies w, = wp = wep(n + 1/2)/(Re — Ry), where n is a
non-negative integer, Si;(wr) is real while the phase factor e?*r(f2=F1) — j(—1)" becomes purely imaginary
and Re Si2(wp = wy,) = 0 develops minima. However, the microwave transmission alone cannot detect the
chirality of the excited displacement field, which must therefore be found by other means.

We plot the real part of the transmission amplitude in Fig. S3 as a function of microwave frequency close
to wp = 3 GHz and static magnetic field Hy. Here, with w = 2.5 um and thickness d = 200 nm for the YIG
nanowires, the additional damping coefficient o = 1.2 x 104, The intrinsic magnetic damping is chosen as
Km = 8 x 107 °wp = 0.24 MHz and the radiative damping k., = 1 MHz. The dips in the transmission are
traced by the black contour in Fig. S3(a), while the horizontal dash lines correspond to the special frequencies
wp, = mep(n+1/2)/(Re — Ry), where n is a non-negative integer. Due to the magnon-phonon coupling, these
horizontal lines are deformed to the anti-crossings when wg — w,,. Indeed, we can understand these features by
Sio(wr) — (1—511 (wr))etrrF2=F1) "where Sy (wr) is real while the phase factor e?*r(F2=F1) = j(—1)" hecomes
purely imaginary and then Re S12(wr = wy,) = 0. The dips in the transmission on the FMR resonance line are
shown in Fig. S3(b). We note that the transmission does not vanish at dips as it becomes purely imaginary.

For Ry — Ry = 300 pum the frequency spacing between these dips Aw = 7¢,/(R2 — R1) = 34.26 MHz.
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FIG. S3. (Color online) Microwave transmission (|Re(S21)|) between two YIG nanowire transducers on top of a GGG
substrate. (a) The minima in the transmission (black contour) anticross with the FMR at regularly spaced frequencies
wn. (b) Transmission spectra at the FMR frequency. The transmission dips originate from the thin black contour

hidden within the FMR peaks (yellow region).
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