
J
H
E
P
0
7
(
2
0
2
0
)
2
2
4

Published for SISSA by Springer

Received: May 14, 2020

Accepted: June 15, 2020

Published: July 30, 2020

Out-of-horizon correlations following a quench in a

relativistic quantum field theory

I. Kukuljan,a,b S. Sotiriadisc and G. Takácsd
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Abstract: One of the manifestations of relativistic invariance in non-equilibrium quantum

field theory is the “horizon effect” a.k.a. light-cone spreading of correlations: starting

from an initially short-range correlated state, measurements of two observers at distant

space-time points are expected to remain independent until their past light-cones overlap.

Surprisingly, we find that in the presence of topological excitations correlations can develop

outside of horizon and indeed even between infinitely distant points. We demonstrate this

effect for a wide class of global quantum quenches to the sine-Gordon model. We point

out that besides the maximum velocity bound implied by relativistic invariance, clustering

of initial correlations is required to establish the “horizon effect”. We show that quenches

in the sine-Gordon model have an interesting property: despite the fact that the initial

states have exponentially decaying correlations and cluster in terms of the bosonic fields,

they violate the clustering condition for the soliton fields, which is argued to be related to

the non-trivial field topology. The nonlinear dynamics governed by the solitons makes the

clustering violation manifest also in correlations of the local bosonic fields after the quench.
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1 Horizon effect in quantum field theory

Consider the following thought experiment: a system described by a quantum field theory

(QFT) is prepared in some initial state and let to evolve under unitary relativistic dynam-

ics. This can be realised by a paradigmatic protocol known as a “quantum quench” [1],

in which a closed quantum system initially prepared in an equilibrium state undergoes a

sudden change of its Hamiltonian at time t = 0. Let us suppose that the initial state is

characterised by short-range correlations of local quantum fields with a small correlation

length ξ; such states are rather common and include ground and thermal states of massive

QFTs. As a result, measurements made by two observers separated by a distance r will be

independent until time t ∼ r/2c, where c is the finite maximum speed at which information

propagates [1, 2]. This is known as the “horizon effect” and can be justified by a semi-

classical interpretation: correlations propagate by pairs of entangled quasiparticles emitted

from initially correlated nearby points (at a distance . ξ) that travel to opposite directions

with velocities limited by c. The horizon effect can be demonstrated in Conformal Field

Theory for a class of initial states [1, 3, 4], and can be proved in the case of non-interacting

relativistic dynamics for all initial states that satisfy the cluster decomposition property as

shown in appendix A. Several works have verified the presence of horizon both analytically

and numerically also in lattice systems with local Hamiltonians [5–15], whose dynamics,

even though not relativistically invariant, is still constrained by a maximum velocity of

information propagation [16]. The effect has been observed in disordered systems [17–23]

and systems with long-range interaction [24–28], and has also been found for the time

evolution of the entanglement entropy [5, 17, 29–37]. The horizon effect has also been

observed in cold-atom experiments [38–40]. Based on these results, the horizon effect has

been generally accepted as a universal feature of non-equilibrium quantum field theory and

non-equilibrium quantum statistical physics in general.

It is known that non-trivial interactions can have significant effects on the speed of

propagation [13] or even fully suppress the spreading of correlations [41]. However, their

interplay with the horizon effect remains incompletely understood. Here we address this

question in the context of the sine-Gordon (SG) model described by the Hamiltonian (using

units in which c = 1)

HSG =

∫ (
1

2
Π2 +

1

2
(∂xΦ)2 − µ2

β2
cosβΦ

)
dx (1.1)

where [Φ(x),Π(x′)] = iδ(x−x′), µ is the mass parameter and β the interaction parameter of

the theory. The SG model is a prototypical example of a 1+1 dimensional relativistic QFT

with rich physics governed by topological excitations called solitons and antisolitons. They

appear due to the periodic cosine potential compactifying the field to a circle topology

Φ ∼ Φ + 2π/β. Moreover, when the coupling parameter β is in the attractive regime

β2 < 4π, they form neutral bound states called breathers. The SG model has a non-trivial

phase diagram with a transition of the Berezinskii-Kosterlitz-Thouless type at β2 = 8π. It

is an integrable model [42, 43] and describes the dynamics of numerous condensed matter

systems [44]. The SG model has recently been realised in an ultra-cold atom experiment
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which enables the study of its correlation functions and non-equilibrium dynamics [45, 46].

Its dynamics has attracted considerable recent interest [47–56].

We prepare the system in an initial state |Ω〉 with finite correlation length ξ and

clustering property for local boson fields. The canonical case is the ground state of the

massive Klein-Gordon (KG) Hamiltonian

HKG =

∫ (
1

2
Π2 +

1

2
(∂xΦ)2 +

1

2
m2

0Φ2

)
dx (1.2)

for which ξ = 1/m0, while another case is the ground state of the SG model with parameters

µ0, β0. At time t = 0 we switch on SG dynamics with parameters µ, β and study the time

evolution of connected correlations

CO(x, y; t) := 〈Ω|e+iHSGtO(x)O(y)e−iHSGt|Ω〉conn (1.3)

of local observables O. We focus on three physically relevant observables: the field Φ(x)

and its derivatives ∂xΦ and ∂tΦ = Π corresponding to the soliton density and current

respectively. Although Φ(x) is an angular variable, its correlations are experimentally

observable [45].

Using numerical simulations based on the Truncated Conformal Space Approach

(TCSA) [57, 58], we observe violation of the horizon effect and long-range correlations

that extend through the whole system and exhibit oscillatory time dependence. The vio-

lation turns out to be a general feature of quenches to the sine-Gordon model, it is robust

under changes in the parameters of the dynamics or the initial state, and is strongly sensi-

tive to the boundary conditions. Exploiting the mapping between sine-Gordon and massive

Thirring model [59] based on Bosonisation [60–62], we analytically verify this numerical

observation by exactly solving the full quench dynamics at the point β =
√

4π (free fermion

point). Our calculation shows that the horizon violation can be attributed to the topolog-

ical nature of the soliton fields [63].

The paper is organised as follows. In section 2, we present a numerical investigation

of horizon dynamics in the SG model and the surprising finding of the horizon violation

In section 3 we outline the analytical solution for the horizon violation at the free fermion

point. Based on this derivation, in section 4 we propose a physical explanation of the

phenomenon. Further analysis of the characteristic properties of the horizon violation is

presented in section 5. In section 6, we propose a protocol to measure the horizon violation

in ultra-cold atom experiments. Lastly, in section 7 we summarise our conclusions, com-

ment on the exceptionality of our findings within the general framework of QFT and discuss

outlook for further study. Further details on methods used in this work are presented in the

appendices. Appendix A contains a proof of the horizon effect in the case of free dynamics

and initial states that are local in terms of the freely evolving fields. Appendix B provides

technical details of the numerical simulations. Lastly, appendix C provides a more detailed

presentation of each of the steps of the analytical solution.

2 A surprise: out-of-horizon spreading of correlations

In order to study the dynamics of correlations in the sine-Gordon model, we employ a recent

variant [64] of a numerical method known as “Truncated Conformal Space Approach”
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(TCSA) [57] (cf. [58] for a recent review). This method is especially suited for the study

of interacting 1+1 dimensional QFTs, it captures efficiently non-perturbative effects and

has recently been extended to non-equilibrium time evolution problems [64, 65].

The method assumes that the Hamiltonian of the model under study can be written as

H = H0 + ∆H where H0 is exactly solvable, while ∆H is an operator with known matrix

elements between eigenstates of H0. Truncating the Hilbert space in finite volume L by

a high-energy cut-off, it becomes finite dimensional thus enabling numerical computation.

For the SG model (1.1) the reference Hamiltonian H0 is the massless free boson Conformal

Field Theory (CFT) HCFT =
∫ (

1
2Π2 + 1

2(∂xΦ)2
)

dx and the perturbing operator is ∆H =

−(µ/β)2
∫

cosβΦ dx [66]. For β2 < 8π the operator cos βΦ is a relevant scaling operator

and so the effective coupling flows to zero at high energy, therefore the numerical results

are expected to converge with the cut-off, with a rate dependent on β; for sufficiently

attractive couplings the method converges very fast. The evolution is followed for times

up to t = L/2 to avoid boundary effects arising from the finite volume.

Our numerical simulation for the present problem consists of the following steps:

1. Constructing truncated matrix representations of the pre-quench and post-quench

Hamiltonians;

2. Computing the initial state |Ω〉 in the CFT basis, as the ground state of the pre-

quench Hamiltonian;

3. Computing the time evolution operator exp(−iHSGt) by matrix exponentiation;

4. Constructing the observables Φ, ∂xΦ and Π at different positions in space using mode

expansions in the CFT basis;

5. Evaluating the correlation functions as expectation values 〈Ω|e+iHSGtO(x)O(y)

·e−iHSGt|Ω〉, and determining the connected correlations CO(x, y; t).

We stress that the KG Hamiltonian, as well as correlations involving Φ are not generally

possible to implement in TCSA due to infrared divergences from the massless boson zero

mode; Dirichlet boundary conditions are an exception because the zero mode is absent.

Figure 1 shows the spreading of correlations under SG dynamics for increasing values

of the interaction β. In marked contrast to the expected behaviour, SG dynamics leads to

strong violations of the horizon effect: for small values of β the correlations stay within

or close to the horizon, while for larger β they quickly spread outside of the horizon,

and develop temporal oscillations at a frequency increasing with β. It is most drastic for

the derivative fields ∂xΦ and ∂tΦ = Π, for which the out-of-horizon correlations become

spatially uniform for large distance.

We find that the violation of horizon is present universally in quenches to the SG

model, independently of the initial state, as we shall discuss in section 5. The observed

phenomenon has an interesting dependence on the boundary conditions: in case of Dirichlet

boundary conditions (DBC) the violation is dominantly in the C∂xΦ channel, while for

periodic boundary conditions (PBC) the violation is dominated by the CΠ correlations.
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Figure 1. Density plots of connected correlations of Φ, ∂xΦ and Π as functions of distance and

time, obtained from TCSA simulation in a box with Dirichlet or periodic boundary conditions

(DBC resp. PBC). The initial state is the KG ground state with mass m0 in the DBC case or

the SG ground state with first breather mass of equal magnitude m0 = 2M0 sinπ∆/(2 − 2∆) for

PBC. The dynamics corresponds to SG with soliton mass M = 2.5m0 and increasing values of the

coupling parameter ∆ = β2/8π. Initial correlations have been subtracted from the result, and the

box length is L = 10m−1
0 .

3 Analytical demonstration of the horizon violation

To validate our unexpected numerical observation and clarify the origins of the out-of-

horizon effect, we perform an analytical calculation of the dynamics at a convenient value

of the coupling, exploiting the powerful tool of bosonisation [60–62]. Quenches in the

sine-Gordon model have been studied in [48–50, 56, 67] for a special type of initial states

that contain only pairs of opposite momentum excitations. These earlier studies relied on

expressing the initial state in the post-quench basis. In contrast, here we use an approach

that derives directly the dynamics of correlations from initial ones [68–72], which in the

present case relies upon the exact mapping to the massive Thirring model.

Bosonisation provides an exact non-linear and non-local correspondence between a

fermionic and a bosonic QFT in 1+1 dimensions. It relates the SG model to an interacting

fermionic QFT, the massive Thirring model [59], where the soliton-antisoliton fields of SG

are identified with the fermion fields [63]. More specifically, the massive Thirring model

described by the Hamiltonian

HMT =

∫ [
Ψ
(
−iγ1∂x +M

)
Ψ +

1

2
g
(
ΨγµΨ

) (
ΨγµΨ

)]
dx

where Ψ = (Ψ−,Ψ+) is a Dirac fermion field, is equivalent to the SG model (1.1) with

β2

4π
=

1

1 + g/π
,
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where the fermion mass M is identified with the SG soliton mass. The interacting fermion

fields Ψ± create the soliton/anti-soliton excitations and can be written as a non-local

expression of the SG fields Φ(x) and Π(x) [63]:

Ψ±(x) = N : exp

−2πi

β

x∫
−∞

dξΠ(ξ)∓ iβ

2
Φ(x)

 : (3.1)

where N is a normalisation constant, and : : denotes normal ordering. For β2 = 4π the

fermion interaction g vanishes and the SG model becomes equivalent to the free massive

Dirac theory

HMF =

∫
Ψ
(
−iγ1∂x +M

)
Ψ dx , (3.2)

which enables analytic calculation of the time evolution. In particular, (3.1) simplifies to

Ψ±(x) = N :e∓
√

4πiX±(x) : (3.3)

where

X±(x) =
1

2

(
Φ(x)±

∫ x

−∞
dx′Π(x′)

)
, (3.4)

with the inverse relation given by

∂xX±(x) = N ′ :Ψ†±(x)Ψ±(x): (3.5)

The underlying idea of our analytical solution is to take advantage of this duality by

representing the initial bosonic correlations in the fermion picture, propagating them using

the free Dirac dynamics and then mapping the result back to the boson picture. Although

the fermionic dynamics is free, the nonlocal and nonlinear nature of bosonisation acts as

a source of nontrivial physics in the problem under consideration. More precisely, our

calculation consists of the following steps:

1. Fermionising the SG model and rewriting the observables in terms of the fermionic

fields using the inverse of (3.4)

∂xΦ = ∂xX+ + ∂xX−, Π = ∂xX+ − ∂xX−, (3.6)

together with (3.5);

2. Deriving the time evolved correlations C∂Φ(x, y; t) and CΠ(x, y; t) from the initial

fermionic correlations by:

(a) solving the free fermion time evolution

Ψ̇σ = σ∂xΨσ + iMΨ−σ

in terms of initial conditions for the field as

Ψσ(x, t) =
∑
σ′=±

∫
dx′Gσσ′(x− x′, t)Ψσ′(x

′, 0) (3.7)

where Gσσ′(x− x′, t) is the retarded Green’s function;

– 6 –
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Figure 2. The analytical results for the correlations of Π and ∂xΦ under SG dynamics at β =
√

4π

for PBC. Density plot of Π (top) and ∂xΦ (bottom) correlations as function of distance x and time

t (in units 1/M). Initial correlations have been subtracted as in figure 1. The initial state is the

KG ground state with mass m0 and the post-quench soliton mass is M = 2.5m0.

(b) using (3.7) to express the time evolution of bosonic correlations in terms of the

initial fermionic correlations:{
C∂xΦ(x, y; t)

CΠ(x, y; t)

}
= N ′2

∑
σi,ρi=±

{
1

σ0ρ0

}∫
dx1dx2dy1dy2

×G∗σ0σ1(x− x1, t)Gσ0σ2(x− x2, t)G
∗
ρ0ρ1(y − y1, t)Gρ0ρ2(y − y2, t)

×
(
CFσ1σ2ρ1ρ2 (x1, x2, y1, y2)− CFσ1σ2 (x1, x2)CFρ1ρ2 (y1, y2)

)
, (3.8)

3. Deriving the initial fermionic correlations

CFσσ′ρρ′
(
x, x′, y, y′

)
:=
〈

Ω
∣∣∣Ψ†σ(x)Ψσ′(x

′)Ψ†ρ(y)Ψρ′(y
′)
∣∣∣Ω〉

CFσσ′
(
x, x′

)
:=
〈

Ω
∣∣∣Ψ†σ(x)Ψσ′(x

′)
∣∣∣Ω〉 (3.9)

in the KG ground state |Ω〉 as follows:

(a) identifying the index combinations σ, σ′, ρ, ρ′ allowed by fermionic superselec-

tion rules;

(b) expressing fermionic correlations CFσσ′ρρ′ (x, x
′, y, y′) in terms of bosonic ones

〈Ω|Xσ(x)Xσ′(x′)|Ω〉 using (3.3) and exploiting the Gaussianity of |Ω〉 in terms

of the bosonic fields via Wick’s theorem;

(c) obtaining correlators 〈Ω|Xσ(x)Xσ′(x′)|Ω〉 from those of Φ and Π using (3.4).

Finally we integrate numerically (3.8) to get C∂xΦ(x, y; t) and CΠ(x, y; t) for finite r =

|x−y|, and compute analytically the asymptotics at large r for any time t in appendix C.4

to verify the horizon violation effect explicitly.

The resulting exact time evolution of CΠ and C∂xΦ is shown in figure 2 and 3. The

analytical results confirm the dynamical emergence of out-of-horizon connected correla-

tions, which are only present for the field Π(x) and not for ∂xΦ(x), consistently with the

numerical TCSA results. Note that the horizon violation persists up to infinite distances

and its long range asymptotics exhibits oscillations algebraically decaying with time, as

shown in figure 3.
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Figure 3. Time evolution of the large distance asymptotics limx→∞〈Π(0, t)Π(x, t)〉 (blue line)

together with their large time scaling ∼ sin2(2Mt)/t and envelope (gray and red dashed lines

respectively). The vanishing large distance asymptotics of ∂xΦ correlations (green line) are included

for completeness. Inset : log-log plot showing the large time scaling of asymptotic Π correlations.

The points are the maxima of the oscillations and the red dashed line the ∼ 1/t envelope. The

quench parameters are same as in figure 2.

4 Physical explanation of the effect

The analytical solution by bosonisation not only confirms the observed horizon violation

but also provides a transparent explanation for the mechanism of the observed phenomenon.

The correlation functions C∂xΦ(x, y; t) and CΠ(x, y; t) can be expressed as quadruple con-

volutions of the free fermion propagator Gσρ(x − x′, t) (cf. eqs. (3.8) and (3.9)) with the

initial four-point correlations of the fermion fields on the KG ground state |Ω〉. The fermion

propagators vanish identically outside of the light-cone (|x−x′| > t) so they cannot be the

source of the horizon violation, i.e. the dynamics is strictly causal in the relativistic sense.

The initial fermionic correlations, however, display unexpected behaviour which is

where the observed effect originates from. Among the six terms allowed by the fermionic

superselection rules, two of them,

CF±∓∓± := 〈Ω|Ψ†±(x)Ψ∓(x+ a)Ψ†∓(y)Ψ±(y + b)|Ω〉 (4.1)

violate the cluster decomposition principle. That is, these terms do not factorise to a

product of two-point functions asymptotically as |x − y| → ∞. More precisely, CF±∓∓±
tends to a nonzero value in this limit while the two-point functions vanish. Thus, the

ground state of the KG model |Ω〉 clusters perfectly in terms of local bosonic fields but

does not satisfy clustering for the fermionic fields which form the natural basis for the

post-quench time evolution.

Note that such correlations are undetectable at t ≤ 0 by measurements of local bosonic

observables in the initial state. However for t > 0, the long-range correlations of the

fermionic degrees of freedom get dynamically revealed even in the correlations of local

fields, and dominate the asymptotic correlations of Π.

– 8 –
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Figure 4. Oscillation frequencies of the horizon violation effect. Numerical data from the TCSA

and the analytical result at the free fermion point using bosonisation, are compared with several

relevant masses present in the theory: twice the mass of the first breather 2m1, mass of the sec-

ond breather m2 and four times the soliton mass 4M . The TCSA works best in the small and

intermediate ∆ regime and becomes progressively less convergent for ∆ & 0.3.

Our analytical solution explains the mechanism of the horizon violation effect at the

free fermion point and suggests that there, the effect is a consequence of a four-body

process involving two soliton-antisoliton pairs. This manifests itself in the frequency of

out-of-horizon oscillations, which is 4M i.e. four times the soliton mass. This picture is

expected to stay valid beyond the free fermion point into the repulsive regime β2 > 4π.

However, in the attractive regime a different behaviour is expected due to the presence of

bound states.

This is verified by an analysis of the oscillation frequency based on the TCSA data

for quenches in the attractive regime, as shown in figure 4. The data suggest that the

oscillation frequency in this case is 2m1, i.e. twice the mass of the lightest breather B1

which is a bound state of a soliton and an anti-soliton. Note that this frequency changes

continuously into 4M at the free fermion point, consistently with the analytical result. This

suggests that in the attractive regime, the horizon violation is predominantly mediated by

pairs of B1 breathers, instead of unbound soliton-antisoliton pairs. Such an interpretation

leads to a prediction: in the free fermion case and in the repulsive regime, the continuous

spectrum of the soliton-antisoliton pairs leads to dephasing and thus to the time-decay of

the out-of-horizon component as observed in the analytical calculation. In the attractive

regime on the other hand, this dephasing effect is expected to be suppressed due to the

fact that breathers are isolated bound state excitations below the two-particle continuum.

We therefore expect that there should be no decay of the out-of-horizon component or it

should be significantly slower. This expectation seems to be consistent with the TCSA

plots, even though our observation of the effect is limited by the finite system size.

Solitons are topological particles emerging because the boson field is compactified to

a circle as imposed by the periodic potential of the SG model. This results in infinitely

– 9 –
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Figure 5. Density plots of correlation dynamics for different types of quenches: from the KG ground

state, the massless free boson (CFT) ground state, SG mass µ quench, SG interaction quench from

smaller to larger interaction β or vice versa. Plots are for Dirichlet boundary conditions where it

is technically easier to perform a TCSA simulation for all these different types of quench.

many vacua characterised by the topological charge (a.k.a. winding number), and solitons

interpolating between them appear as the fundamental topologically charged particles.

Since the clustering violation appears in the initial state correlations of the soliton creating

fields, this suggests that the horizon violation is due to their topological nature. The

role of topology is further supported by the fact that similar clustering violation has also

been found in ground states of theories with gauge field configurations characterised by a

non-trivial Pontryagin number [73].

5 Further properties of the horizon violation

5.1 Universal presence in quenches to the sine-Gordon model

In order to clarify whether the horizon violation is a special property of the particular

choice of the Klein-Gordon ground state as the pre-quench state, we perform additional

numerical simulations studying quenches from a variety of other physical initial states. In

the absence of analytic solutions we have to rely on the numerical results. We find that

the horizon violation is not restricted to quenches from Klein-Gordon to sine-Gordon but

is universally present in quenches to the sine-Gordon model as demonstrated in figure 5.

The violation was observed in quenches from the massless free boson (CFT) and in SG to

SG quenches both in mass µ and interaction β. The interpretation is that any quench to

the SG model or any global change of a parameter correlates pairs of soliton-anti-soliton

pairs resulting in infinite range correlations.

Some details of the effect do change for different initial states, such as the overall sign

of the correlations if the quench is from a higher value of the µ or β parameter to a lower

one as compared to the opposite direction. This sign flip is quite generic: it is also present

in free KG to KG quenches which show no horizon violation. Another interesting detail is

the dependence on boundary conditions, discussed below.

5.2 Sensitivity to boundary conditions

The horizon violation has an interesting sensitivity to boundary conditions as shown in

figure 1. For Dirichlet boundary conditions the violation is dominated by correlations of

– 10 –
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the ∂xΦ field, while for periodic boundary conditions it switches over to Π. This sensitivity

to boundary conditions is another sign of the topological origin of the phenomenon.

In figure 1, the quenches with Dirichlet boundary conditions (Dirichlet BC, DBC) are

started from a massive KG ground state which is the canonical example of a state with

exponentially decaying correlations and satisfying clustering. This is also the initial state

that we use in the analytical solution based on bosonisation. The pre-quench KG mass m0

is chosen so that the initial correlation length is 1/10 of the system size, ξ0/L = 1/10. For

periodic boundary conditions (periodic BC, PBC), however, it is difficult to implement the

KG ground state in the TCSA Hilbert space of the SG model due to the infrared divergent

zero mode of the boson field, therefore for PBC we study SG to SG quenches in µ. In SG

ground states the correlation length is controlled by the mass m1 of the lightest particle,

i.e. the first breather, which depends on the soliton mass M and the interaction ∆ = β2/8π

as m1 = 2M sin(π∆/(2− 2∆)). The soliton mass itself can be related to the Hamiltonian

parameters using Zamolodchikov’s mass-coupling relation [74]. We choose the pre-quench

µ0 so that m1L = 10 and we thus again have ξ0/L = 1/10. Note that due to the zero

mode the field Φ is not unambiguously defined for periodic BC and so we only compute

correlations of the derivative fields (∂xΦ and Π = ∂tΦ from the TCSA.

The features of the horizon violation observed for PBC agree with our analytical solu-

tion which was also performed for PBC, however starting from a KG ground state, since

the ground state of the interacting SG model is not accessible with state of the art analytic

techniques. As we have discussed, the features of the effect do not depend qualitatively on

the choice of the pre-quench state.

6 Prospective realisation in ultra-cold atom experiments

Experimental techniques in ultra-cold atoms have rapidly developed in the last two decades

and today a broad variety of quantum many-body Hamiltonians can be implemented en-

abling the study of their equilibrium and out-of-equilibrium physics. A type of ultra-cold

atom experiments particularly suitable for the study of quantum field theory are exper-

iments in atom chips [40, 45, 46, 75–80]. Using state of the art magnetic traps, strong

1D trapping potentials can be generated which confine 87Rb atomic quasi-condensates

of around 5000 atoms to 1D elongated geometries. Although consisting from individual

atoms, on scales longer than the so-called healing length ξh such 1D quasi-condensates

effectively behave as a continuum and their physics is described by quantum field theories.

Individual 1D condensates are realisations of the Luttinger liquid (free Bose gas), while

coupling two such condensates via Josephson tunneling results in a system governed by

sine-Gordon dynamics [81]. More precisely, the SG model describes the dynamics of rel-

ative phase between the two condensates, the SG coupling parameter β is related to the

Luttinger parameter K of the individual quasi-condensates and the SG mass parameter µ

is related to the Josephson frequency J .

Atom chip setups have been used to study nonequilibrium dynamics of quantum field

theories following quantum quenches [40, 46, 78, 80] and to measure directly for the first

time higher order correlations of an interacting quantum field theory (the SG model) [45].
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Therefore, all the necessary techniques needed to experimentally measure the horizon vio-

lation presented in this manuscript have already been developed and successfully applied

in several contexts, making the effect accessible to atom chip experiments.

A possible protocol to measure horizon violation in atom chip experiments can be

obtained exploiting the fact that the phenomenon is present also in the SG to SG quenches,

in which case it could be realised in the following steps:

1. A system of two coupled 1D quasi-condensates with Josephson frequency J0 is pre-

pared in a low-temperature thermal state. Such a state corresponds to a thermal

state of the SG model with the mass µ0.

2. The potential barrier separating the two quasi-condensates is changed abruptly which

quenches the Josephson frequency to a new value J . This corresponds to the SG to

SG mass quench from µ0 to µ.

3. The system is left to evolve in time and the equal-time two-point correlations of the

relative phase and the density fluctuations are measured. These correspond to the

CΦ and CΠ and one can use the former to extract C∂xΦ.

In case such a protocol is realised, the prediction is that the correlations of the relative

phase and relative density fluctuation must show a tail not decaying with distance and

oscillating in time.

7 Conclusions

Using the truncated conformal space approach we demonstrated that the connected cor-

relations following quenches in the sine-Gordon model appear outside of the horizon, with

an out-of-horizon component of the correlations which does not decay with distance and

oscillates in time. This is the first explicit counter example to the horizon effect, which is

a feature of time evolution in non-equilibrium quantum field theory that so far has been

expected to be generally valid. For the special case of quenches from Klein-Gordon to sine-

Gordon model at the free fermion point, we established the horizon violation analytically

using bosonisation.

We showed that the violation of horizon is a consequence of an interesting property

of quenches to the SG model: even though the initial states (ground states of the Klein-

Gordon and the SG models at different parameter values) have exponentially decaying

correlations and cluster in terms of the local bosonic field, they violate clustering in terms of

solitonic fields which govern the post-quench dynamics of the SG model. Before the quench

this clustering violation is undetectable by local measurements of bosonic observables, but

appears in the correlations of local bosonic observables after the quench due to the nonlinear

dynamics of the SG model. We have also proposed a protocol to measure the phenomenon

in experiments with ultra-cold atoms in atom chips.

Let us now turn to the physical interpretation of the horizon violation. Firstly, it is

clear that there is no violation of causality involved. Indeed, the sine-Gordon model is

relativistically invariant satisfying micro-causality i.e. all commutators between space-like
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separated observables vanish [82–85]. In the analytic bosonisation approach this is manifest

since the propagator used in the computation vanishes outside of the past light-cone. The

effect thus completely originates from the global quantum quench performed at t = 0.

It is known that non-vanishing connected correlations exist between space-like sepa-

rated regions in the vacuum (and more generally in a dense set of states in the Hilbert

space) of any relativistic quantum field theory [86–89], as a consequence of the Reeh-

Schlieder theorem [90]. However, in a theory with a non-vanishing mass gap and a unique

vacuum [91] such correlations satisfy clustering with their connected component decaying

exponentially with distance, and so cannot explain the observed effect.

The origin of the horizon violation in the non-equilibrium time evolution is that initial

correlations involving soliton creating fields do not satisfy clustering. This is due to the

soliton fields being non-local expressions in terms of the local bosonic field, as demon-

strated explicitly by bosonisation. Such clustering violation is known to occur in ground

states of theories with gauge field configurations characterised by a non-trivial Pontryagin

number [73]. Together with the dependence on boundary conditions, these considerations

strongly support the topological origin of the horizon violation effect.

Note that the system after the quench is in a highly-excited non-equilibrium state of

the post-quench Hamiltonian, therefore the appearance of clustering violation does not con-

tradict any existing theorems of quantum field theory, and it can eventually be considered

a transient feature of the non-equilibrium dynamics.

Our results show that the horizon effect which has been widely accepted as a general

feature of dynamics in non-equilibrium QFT is not generally valid: quantum quenches can

generate infinite range correlations in a class of quantum field theories with non-trivial field

topology.

It would be interesting to investigate the horizon violation from the quantum infor-

mation point of view. From the structure of the initial correlations, it is natural to expect

that the effect is a quantum field theoretic version of long-distance entanglement of the

Einstein-Podolsky-Rosen (EPR) type [92]: the asymptotic nonvanishing of CF±∓∓± could

be a manifestation of long-distance entanglement between soliton-anti-soliton pairs, as de-

picted in figure 6. Research in this direction is left for future work.
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Figure 6. Graphical explanation of how a non-zero out-of-horizon correlation CΠ(x, y; t) emerges

due to the presence of long-range initial fermionic correlations. The coloured links depict the corre-

lation CF+−−+(x1, x2, y1, y2), while the black dashed lines are the fermion (i.e. soliton) propagators.

The yellow regions show the correlation length m−1
0 of the pre-quench KG model.

A Horizon effect for free dynamics and local initial states

Here we show that the horizon effect is always present in the special case of free relativistic

dynamics for any initial state |Ω〉 that exhibits exponential clustering of correlations. More

precisely the condition is that the dynamics is free in terms of some choice of local fields

and the initial state satisfies exponential clustering in terms of the same fields. The horizon

effect can be stated mathematically as follows

|CO(x, y; t)| = |〈Ω|O(x, t)O(y, t)|Ω〉 − 〈Ω|O(x, t)|Ω〉〈Ω|O(y, t)|Ω〉| < A e−(|x−y|−2t)/ξh

(A.1)

where the length ξh can be called ‘horizon thickness’, A is independent of x and y and as

usual we have set the speed of light equal to unit c = 1. To demonstrate this relation we

focus on the example of Klein-Gordon dynamics, on translationally invariant initial states

and choose as local observable the field Φ itself, even though the reasoning holds more

generally. Because the Hamiltonian that describes the dynamics is free, the Heisenberg

equations of motion are linear which means that they can be solved for general initial

conditions using Green’s functions

Φ(x, t) =

∫
dx′
(
∂tG(x− x′, t)Φ(x′) +G(x− x′, t)Π(x′)

)
≡
∑
i=0,1

∫
dx′Gi(x− x′, t)φi(x′) (A.2)

where we denote φ0 = Φ, φ1 = Π, G0 = ∂tG,G1 = G and the Green’s function is

G(x− x′, t) =

∫
dk

2π
eik(x−x′) sinEkt

Ek
(A.3)

with Ek =
√
k2 +m2. Therefore one obtains

CΦ(x, y; t) =
∑
i,j=0,1

∫
dx′dy′Gi(x− x′, t)Gj(y − y′, t)Cφi,φj (x

′, y′; 0) (A.4)

which can be depicted schematically as shown in figure 7.
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Figure 7. Schematic explanation of the horizon effect.

Since the dynamics corresponds to a local relativistically invariant theory, the com-

mutators [Φ(x, t), φi(x
′, 0)] vanish outside of the past light-cone i.e. for |x − x′| > t ≥ 0,

which means equivalently that the retarded Green’s function G(x− x′, t) has support only

in the interval x′ ∈ [x − t, x + t]. This can be easily verified from (A.3) by application

of Cauchy’s theorem and noticing that the integrand is an analytic function of k in the

complex k-plane and decays exponentially in the upper or lower half k-plane for x− x′ > t

or x − x′ < −t respectively. Because the initial state satisfies exponential clustering for

local field correlations we have∣∣Cφi,φj (x′, y′; 0)
∣∣ =

∣∣〈Ω|φi(x′)φj(y′)|Ω〉 − 〈Ω|φi(x′)|Ω〉〈Ω|φj(y′)|Ω〉∣∣ < cije
−|x′−y′|/ξ0

where cij is some constant and ξ0 is the correlation length characterising the initial state.

Substituting in (A.4) and taking into account the support of the functions Gi we deduce that

|CΦ(x, y; t)| < A e−(|x−y|−2t)/ξ0

where A =
∑

i,j=0,1 cij
∫

dx′ |Gi(x′, t)|
∫

dy′ |Gj(y′, t)| is independent of x and y.

This proves (A.1) and shows that for the free case the horizon thickness ξh is equal to

the initial correlation length ξ0.

B Details of the TCSA simulations

As explained in the main text, the TCSA simulations are based on a suitable truncation

of the Hilbert space, so that the computation is performed by operations on finite size

matrix representations of the Hamiltonians, states and observables. The CFT eigenstate

basis is used as basis of the truncated Hilbert space and an energy cutoff is used for the

truncation (we refer the reader to [64] for a detailed presentation of the method). The

quality of the computed results is confirmed by analysing the convergence of the data for

increasing values of the truncation cutoff. For the purposes of the present study we used

TCSA bases of dimension 20000 to 28000 states. The rate of convergence was fast enough

for all parameter values used in the present work, and we checked that the results have

converged sufficiently well for the above values of truncated basis dimensions (cf. also [64]).

The high energy cut-off leads to truncation errors in the computed energy spectra and

observables. These errors decrease when the cut-off is increased and the rate of convergence

depends on the parameters of the quench: it is better for smaller quenches and for smaller
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values of the post-quench interaction parameter ∆. Truncation errors generally increase

from left to right in the sequence of density plots of figure 1. They also depend on the

choice of observable and are stronger for ∂xΦ and Π than for Φ, due to the derivative

enhancing the contribution of large wave-number modes. Moreover they are stronger at

short distances (i.e. in a narrow central part of the density plots) due to the presence of

universal short-distance singularities, however this is not relevant for the horizon effect and

its violation which take place at intermediate to large distances. In the present computation

the maximum wave-numbers kcut used (which determine the finest spatial resolution L/kcut

that can be achieved) range between 28 and 30 in the DBC case and between 11 and 12 in

the PBC case, for the same order of truncated space dimension. The truncation errors in

the spectrum also lead to the unitary time evolution getting out of phase at larger times,

since it is governed by frequencies determined by the energy level differences. However, in

this work we are interested in short time scales t < L/2, where this effect does not play an

important role.

C Analytical derivation of horizon violation in the SG model

In this section we give more details about the analytical solution of the quench from the

Klein-Gordon model to the sine-Gordon model that we presented in the main text. We

follow the three conceptual steps outlined in the main text:

1. Fermionising the sine-Gordon model,

2. Computing the dynamics of the correlation functions in terms of initial fermionic

correlations,

3. Deriving the initial fermionic correlations from the bosonic ones.

Finally we discuss how to extract exact asymptotic expressions for the connected cor-

relations functions at large distances and clarify in this way the origin of the observed

out-of-horizon effect.

C.1 Fermionising the sine-Gordon model

Due to strong coupling, the dynamics of the sine-Gordon theory cannot be accessed pertur-

batively. The model is integrable but the current state of the art methods of the theory of

integrability do not allow for computation of dynamical multi-point correlation functions.

Our solution therefore relies on a powerful analytical tool, the theory of bosonisation.

Bosonisation is an example of QFT dualities, which allow studying strongly interacting

QFTs. The idea is to introduce a nonlinear field transformation, such that the original

strongly-interacting model is mapped into a weakly or non-interacting model in terms of the

new fields. In modern theoretical physics, dualities play a central role in understanding the

physics of quantum fields and unveiling the deeper symmetries of Nature. Bosonisation

establishes a mapping between two different (1+1)-dimensional QFTs, one of which is

bosonic and the other fermionic. This is achieved through an isomorphism between the

Hilbert spaces and the operators of the theories. This isomorphism can be rigorously
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established for a finite system of size L [60]; however, one can take the thermodynamic

limit L→∞ in closed form.

The sine-Gordon model is a bosonic theory governed by the Hamiltonian

HSG =

∫ (
1

2
Π2 +

1

2
(∂xΦ)2 − µ2

β2
cosβΦ

)
dx (C.1)

which can be mapped to a fermionic theory called the massive Thirring model [59, 63, 93]:

HMT =

∫ [
Ψ
(
−iγ1∂x +M

)
Ψ +

1

2
g
(
ΨγµΨ

) (
ΨγµΨ

)]
dx . (C.2)

The relation between the couplings is given by [59]:

β2

4π
=

1

1 + g/π
,

At the so-called “free fermion point” β =
√

4π the Thirring interaction vanishes and the

dual theory of the SG model is thus the theory of a free Dirac fermion field governed by

the Dirac Hamiltonian:

HMF =

∫
Ψ
(
−iγ1∂x +M

)
Ψ dx , (C.3)

for which the time evolution dynamics can be calculated analytically.

C.1.1 Equivalence of Hilbert spaces

Consider a fermionic field theory described by a set of momentum modes ck,σ, k ∈ Z, σ = ±,

satisfying canonical anti-commutation relations. Further, we assume that the vacuum of the

theory is given by the Fermi sea for which all momentum modes with k ≤ 0 are occupied,

while the ones with k > 0 are empty. Then any excitation on top of the Fermi sea can be

decomposed into a part that merely changes the expectation value of the fermionic number

operator and a part containing only particle-hole excitations. The particle-hole excitation

operators:

a†k =
i√
|nk|

∞∑
nq=−∞

c†q+|k|,σcq,σ with σ = −sign(k) (C.4)

have all the algebraic properties of bosonic excitation operators. The fermionic Hilbert

space can thus be decomposed as:

HFermi = HN−,N+ ⊗HBose (C.5)

where the states in HN−,N+ correspond to sectors with different expectation values of the

number operator Nσ and HBose is spanned by all possible particle-hole excitations. The

bosonic character of the particle-hole excitations also enables us to construct operator

identities between fermionic and bosonic fields.
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C.1.2 Bosonisation identities

We can expand the boson field compactified to the radius R as

Φ(x) = Φ0 +
RW

L
x− 1√

L

∞∑
nk=−∞
nk 6=0

1√
2|k|

(
ak + a†−k

)
eikx (C.6)

with k = 2π
L nk and

[
ak, a

†
l

]
= δk,l and W the winding operator. It satisfies Φ ∼ Φ+2πR; in

case of the SG model, a convenient choice for the compactification radius is R =
√

4π/β).

The k 6= 0 part can be decomposed into two (σ = ±) components:

Φσ(x) = − 1√
4π

∞∑
nk=1

1
√
nk

(
a−σke

−σikx + a†−σke
σikx

)
. (C.7)

The σ = ± components can be easily identified as the left/right moving components of the

Φ field when it is time evolved under the free massless boson Hamiltonian HCFT:

e+iHCFTtΦσ(x)e−iHCFTt = Φσ(x+ σt) . (C.8)

The canonical momentum field Π(x) is:

Π(x) = Π0 −
i√
L

∞∑
nk=−∞
nk 6=0

√
|k|
2

(
−ak + a†−k

)
eikx (C.9)

with Π0 the zero mode of the canonical momentum field.

The fermion field

Ψ =

(
Ψ−
Ψ+

)
satisfying canonical anti-commutation relations and anti-periodic (Neveu-Schwarz) bound-

ary conditions has the following mode expansion:

Ψσ(x) =
1√
L
eσi π

L
x

∞∑
nk=−∞

ck,σe
−σikx (C.10)

with σ = ±, k = 2π
L nk and {ck,σ, c†l,ρ} = δσ,ρδk,l. If evolved with the massless Dirac

Hamiltonian H0F = −i
∫

Ψγ1∂xΨ dx the σ = ± modes are the left and right-moving

components:

e+iH0F tΨσ(x)e−iH0F t = Ψσ(x+ σt) . (C.11)

The fermionic number operator is given by:

Nσ ≡
∞∑

nk=−∞
:c†k,σck,σ :
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and acts on the states in HN−,N+ as Nσ |n−, n+〉 = nσ |n−, n+〉 Bosonisation is defined by

an exact operator identity between boson and fermion fields that follows from (C.4):

Ψσ(x) =
1√
L
Fσ e−σi

2π
L (Nσ− 1

2)x : e−σi
√

4πΦσ(x) : (C.12)

To ensure that the expression in the r.h.s. of the equation acts in the Hilbert space (C.5)

identically as the fermion field (C.10), it is composed of a bosonic part (:e−σi
√

4πΦσ(x) :) that

acts upon HBose and a part (Fσ e−i
2π
L (Nσ− 1

2)x) that acts upon HN−,N+ . The exponentials

of the bosonic fields are known as vertex operators, while the operators Fσ are the Klein

factors which act as hopping operators between different Nσ sectors:

F †σ |n−, n+〉 ⊗ |ψ〉Bose ≡ (−1)n−+δσ,+n+ |n− + δσ,−, n+ + δσ,+〉 ⊗ |ψ〉Bose

and have the following algebraic properties:[
Fσ, a

†
k

]
= [Fσ, ak] = 0{

F †σ , Fρ

}
= 2δσ,ρ, ∀σ, ρ (with FρF

†
ρ = F †ρFρ = 1){

F †σ , F
†
ρ

}
= {Fσ, Fρ} = 0, σ 6= ρ[

Nσ, F
†
ρ

]
= δσ,ρF

†
ρ , [Nσ, Fρ] = −δσ,ρFρ (C.13)

where the semicolon denotes the usual normal ordering of the bosonic modes. In terms of

the fermions, the bosonic zero modes are given as

RW =
√
π(N− +N+), Π0 =

√
π

L
(−N− +N+). (C.14)

Formally, the bosonisation identity is proven for systems of finite size L. We therefore

derive all the expressions in finite volume and take the thermodynamic limit L→∞ in the

end. The inverse relations of (C.12) expressing the bosonic fields in terms of the fermionic

ones are given by:

∂xΦ(x) =
√
π
∑
σ=±

:Ψ†σ(x)Ψσ(x):,

Π(x) =
√
π
∑
σ=±

σ :Ψ†σ(x)Ψσ(x): . (C.15)

C.1.3 Sine-Gordon correlations at the free fermion point

Using the above relations we can fermionise the sine-Gordon model (C.1) at β =
√

4π

to obtain the free massive Dirac Hamiltonian (C.3). Exploiting (C.15), the connected

correlation functions of the fields ∂xΦ and Π can be expressed as:

〈Ω |∂xΦ(x, t)∂yΦ(y, t)|Ω〉c = π
∑
σ,ρ=±

(〈
Ω
∣∣∣:Ψ†σ(x, t)Ψσ(x, t): :Ψ†ρ(y, t)Ψρ(y, t):

∣∣∣Ω〉−
−
〈

Ω
∣∣∣:Ψ†σ(x, t)Ψσ(x, t):

∣∣∣Ω〉〈Ω
∣∣∣:Ψ†ρ(y, t)Ψρ(y, t):

∣∣∣Ω〉),
(C.16)
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and:

〈Ω |Π(x, t)Π(y, t)|Ω〉c = π
∑
σ,ρ=±

σρ

(〈
Ω
∣∣∣:Ψ†σ(x, t)Ψσ(x, t): :Ψ†ρ(y, t)Ψρ(y, t):

∣∣∣Ω〉−
−
〈

Ω
∣∣∣:Ψ†σ(x, t)Ψσ(x, t):

∣∣∣Ω〉〈Ω
∣∣∣:Ψ†ρ(y, t)Ψρ(y, t):

∣∣∣Ω〉), (C.17)

We also use the identity

〈Ω |:A: :B :|Ω〉 − 〈Ω |:A:|Ω〉 〈Ω |:B :|Ω〉 = 〈Ω |AB|Ω〉 − 〈Ω |A|Ω〉 〈Ω |B|Ω〉 (C.18)

to eliminate the normal ordering of :Ψ†Ψ: pairs in fermionised expressions for correlation

functions. This equality follows from :A:= A− 〈0 |A| 0〉 where |0〉 is the vacuum state.

C.2 Computing the dynamics of correlation functions

C.2.1 Free fermion dynamics

As anticipated, using the bosonisation identities (C.12) and (C.15), the sine-Gordon Hamil-

tonian at β =
√

4π is mapped to the Dirac Hamiltonian (C.3), more precisely in the form:

HMF =
∑
σ

∫
dx
(
σi :Ψ†σ∂xΨσ : −M :Ψ†σΨ−σ :

)
The equations of motion are:

Ψ̇σ = σ∂xΨσ + iMΨ−σ

which can be solved exactly for arbitrary initial conditions. The solution in infinite volume

can be expressed in the form where the initial fields are propagated with the retarded

Green’s functions

Ψσ(x, t) =
∑
σ′=±

∫ ∞
−∞

dx′Gσσ′(x− x′, t)Ψσ′(x
′) (C.19)

where

Gσ,σ′(x− x′, t) = Θ(t)

∫
dk

2π
eik(x−x′)

[
δσ,σ′ cos (Ekt) +

(
σikδσ,σ′ + iMδσ,−σ′

) sin (Ekt)

Ek

]
(C.20)

with Ek =
√
k2 +M2.

Note that the Green’s function is Lorentz invariant and it vanishes out of the light-

cone, i.e. for |x− x′| > t. For t = 0 it is Gσσ′(x− x′, 0) = δσ,σ′δ(x− x′) and in the special

case M = 0 it reduces to δσ,σ′δ(x+ σt− x′) as it should.

The propagator can be evaluated explicitely [94]:

Gσσ′(x, t) =
1

2
Θ(t)

(
δσ,σ′ (∂t+σ∂x)+iMδσ,−σ′

)(
Θ(t2−x2)J0(M

√
t2−x2)

)
= Θ(t)

{
1

2
MΘ(t2−x2)

[
δσ,σ′ (−t+σx)

J1(M
√
t2−x2)√

t2−x2
+iδσ,−σ′J0(M

√
t2−x2)

]

+δσ,σ′δ(x+σt)

}
(C.21)

where J0 and J1 are the Bessel functions of zeroth and first order respectively.
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Figure 8. Diagrammatic representation of the convolution formulas (C.22) and (C.23) for the

derivation of dynamics of correlations at the free fermion point. The dashed red lines denote the

propagators, the blue and green lines denote the Klein factor contractions corresponding to the

initial fermionic correlations.

C.2.2 Dynamics of correlation functions

Substituting (C.19) into (C.16) and (C.17) and using (C.18) yields

〈Ω |∂xΦ(x, t)∂yΦ(y, t)|Ω〉c = (C.22)

π
∑

σ,ρ,σi,ρi=±

∫
dx1dx2dy1dy2 G

∗
σσ1

(x−x1, t)Gσσ2
(x−x2, t)G

∗
ρρ1(y−y1, t)Gρρ2(y−y2, t)×

×
(〈

Ω
∣∣Ψ†σ1

(x1)Ψσ2
(x2) Ψ†ρ1(y1)Ψρ2(y2)

∣∣Ω〉−〈Ω ∣∣Ψ†σ1
(x1)Ψσ2

(x2)
∣∣Ω〉 〈Ω ∣∣Ψ†ρ1(y1)Ψρ2(y2)

∣∣Ω〉).
and

〈Ω |Π(x, t)Π(y, t)|Ω〉c = (C.23)

π
∑

σ,ρ,σi,ρi=±
σρ

∫
dx1dx2dy1dy2 G

∗
σσ1

(x−x1, t)Gσσ2
(x−x2, t)G

∗
ρρ1(y−y1, t)Gρρ2(y−y2, t)×

×
(〈

Ω
∣∣Ψ†σ1

(x1)Ψσ2
(x2) Ψ†ρ1(y1)Ψρ2(y2)

∣∣Ω〉−〈Ω ∣∣Ψ†σ1
(x1)Ψσ2

(x2)
∣∣Ω〉 〈Ω ∣∣Ψ†ρ1(y1)Ψρ2(y2)

∣∣Ω〉).
A graphical illustration of these expressions is shown in figure 8.

C.3 Initial fermionic correlation functions

The last step is to construct the initial fermionic correlation functions

Cσ1σ2ρ1ρ2(x1, x2, y1, y2) ≡
〈

Ω
∣∣∣Ψ†σ1(x1)Ψσ2(x2) Ψ†ρ1(y1)Ψρ2(y2)

∣∣∣Ω〉
Cσ1σ2(x1, x2) ≡

〈
Ω
∣∣∣Ψ†σ1(x1)Ψσ2(x2)

∣∣∣Ω〉 , (C.24)

entering (C.22) and (C.23).

C.3.1 Initial state

The state |Ω〉 that we are quenching from is the ground state of the Klein-Gordon model

HKG =

∫ (
1

2
Π2 +

1

2
(∂xΦ)2 +

1

2
m2

0Φ2

)
dx.
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When embedded in the fermionic Hilbert space (C.5) the state |Ω〉 only has excitations of

bosonic particle-hole type:

|Ω〉HFermi
= |0, 0〉 ⊗ |Ω〉 .

In (C.16), (C.17) and all other fermionic expressions we drop the index HFermi for simplicity

of notation but always have |Ω〉HFermi
in mind when we write |Ω〉.

C.3.2 Fermionic superselection rules

Using the bosonisation identity (C.12), the initial fermionic correlations (C.24) can be

expressed in terms of bosonic fields. Collecting together all Klein factors entering in

Cσ1σ2ρ1ρ2(x1, x2, y1, y2) and Cσ1σ2(x1, x2) using the algebraic relations (C.13) and com-

muting the Klein factors past the e−i
2π
L (Nσ− 1

2)x factors from (C.12) using the identity

eAB = BeA+c if [A,B] = cB for c ∈ C gives the following phases:

Θσ1σ2ρ1ρ2(x1, x2, y1, y2)

≡ ei
2π
L [σ1( 1

2
−δσ1,σ2+δσ1,ρ1−δσ1,ρ2)x1−σ2(− 1

2
+δσ2,ρ1−δσ2,ρ2)x2+ρ1( 1

2
−δρ1,ρ2)y1+ 1

2
ρ2y2] (C.25)

for Cσ1σ2ρ1ρ2 and

Θσ1σ2(x1, x2) ≡ ei
2π
L [σ1( 1

2
−δσ1,σ2)x1+ 1

2
σ2x2] (C.26)

for Cσ1σ2 . Both of these phases become identically equal to 1 once we take the thermody-

namic limit L→∞.

The Klein factors impose the following superselection rules when contracted with the

HN̂ part of |Ω〉:

〈0, 0|F †σ1Fσ2F
†
ρ1Fρ2 |0, 0〉 = δσ1,σ2δρ1,ρ2 + δσ1,ρ2δσ2,ρ1(1− δσ1σ2). (C.27)

This means that any fermion Fσ appearing in the expression must be matched with an

antifermion F †σ of the same type σ, or in other words the string of operators must pre-

serve the total N+ = 0 and N− = 0. Therefore the only non-vanishing combinations are

C++++, C++−−, C+−−+ and those with all signs reversed. For the two-point functions

we have:

〈0, 0|F †σ1Fσ2 |0, 0〉 = δσ1,σ2 (C.28)

so the only nonvanishing combinations are C++ and C−−.

C.3.3 Contracting vertex operators

We therefore end up with the following expressions:

Cσ1σ2ρ1ρ2(x1, x2, y1, y2) =
1

L2

{
δσ1,σ2δρ1,ρ2+δσ1,ρ2δσ2,ρ1(1−δσ1σ2)

}
Θσ1σ2ρ1ρ2(x1, x2, y1, y2)×

×
〈

Ω
∣∣∣: e+σ1

√
4πiΦσ1 (x1) : : e−σ2

√
4πiΦσ2 (x2) : : e+ρ1

√
4πiΦρ1 (y1) : : e−ρ2

√
4πiΦρ2 (y2) :

∣∣∣Ω〉
Cσ1σ2

(x1, x2) =
1

L
δσ1,σ2

Θσ1σ2
(x1, x2)

〈
Ω
∣∣∣: e+σ1

√
4πiΦσ1 (x1) : : e−σ2

√
4πiΦσ2 (x2) :

∣∣∣Ω〉 .
(C.29)
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In order to evaluate these correlation functions we exploit the fact that, since the initial

state |Ω〉 is the ground state of Klein Gordon model, it is Gaussian in terms of the bosonic

field. For such Gaussian states Wick’s theorem yields〈∏
i

eiaiΦσi (xi)

〉
= e−

1
2

∑
i a

2
i 〈Φ2

σi
(xi)〉−∑i<j aiaj〈Φσi (xi)Φσj (xj)〉 . (C.30)

Using the Baker-Campbell-Hausdorff formula we obtain an analogous formula for normal-

ordered exponentials〈∏
i

: eiaiΦσi (xi) :

〉
= e−

1
2

∑
i a

2
i 〈:Φ2

σi
(xi):〉−∑i<j aiaj〈Φσi (xi)Φσj (xj)〉 . (C.31)

Applying it to our problem results in〈
Ω
∣∣∣:e+σ1

√
4πiΦσ1 (x1) : :e−σ2

√
4πiΦσ2 (x2) : :e+σ3

√
4πiΦρ1 (x3) : :e−ρ2

√
4πiΦσ4 (x4) :

∣∣∣Ω〉 =

= exp

[
− 2π

4∑
i=1

〈
:Φ2

σi :
〉

Ω
−

− 4π
(
− σ1σ2 〈Φσ1(x1)Φσ2(x2)〉Ω − σ1σ4 〈Φσ1(x1)Φσ4(x4)〉Ω − σ2σ3 〈Φσ2(x2)Φσ3(x3)〉Ω

− σ3σ4 〈Φσ3(x3)Φσ4(x4)〉Ω + σ1σ3 〈Φσ1(x1)Φσ3(x3)〉Ω + σ2σ4 〈Φσ2(x2)Φσ4(x4)〉Ω
)]

〈
Ω
∣∣∣:e+σ1

√
4πiΦσ1 (x1) : :e−σ2

√
4πiΦσ2 (x2) :

∣∣∣Ω〉
= exp

[
− 2π

2∑
i=1

〈
:Φ2

σi :
〉

Ω
+ 4πσ1σ2 〈Φσ1(x1)Φσ2(x2)〉Ω

]
(C.32)

where we abbreviated 〈Ω | • |Ω〉 by 〈 • 〉Ω.

C.3.4 Initial two-point functions of bosonic fields

The problem now reduces to calculating the initial two-point correlation functions

〈Ω |Φσ1(x1)Φσ2(x2)|Ω〉, which are correlations between the chiral components of the bosonic

field evaluated in the Klein-Gordon ground state. From (C.7) we find

〈Ω |Φσ1(x1)Φσ2(x2)|Ω〉

=
1

L

∞∑
nk=1

{
δσ1,σ2

[
1

2k
e−σ1ik(x1−x2) +

1

4k

(
E0k

k
+

k

E0k
− 2

)
cos k(x1 − x2)

]

− δσ1,−σ2
1

4k

(
E0k

k
− k

E0k

)
cos k(x1 − x2)

}
(C.33)

where E0k =
√
k2 +m2

0 and the sum runs over discrete momenta, k = 2πnk/L, for positive

integers nk. It is easy to verify that for m0 = 0 the only term that does not vanish is the

first one: this equals − 1
4π log

(
1− e−σi2πx/L

)
and is the one that results in the standard

CFT ground state correlations.
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C.3.5 Putting the building blocks together

Substituting (C.33) in (C.32) and then back to (C.29) we finally find explicit formulae for

the non-vanishing initial four-point fermionic correlations

Cσσσσ(x1, x2, y1, y2) = Θσσσσ(x1, x2, y1, y2) C0
σσσσ(x1, x2, y1, y2)×

×exp
[
4π
(
I1(x1−x2)+I1(y1−y2)+I1(x1−y2)+I1(x2−y1)−I1(x1−y1)−I1(x2−y2)

)]
Cσσ(−σ)(−σ)(x1, x2, y1, y2) = Θσσ(−σ)(−σ)(x1, x2, y1, y2) C0

σσ(−σ)(−σ)(x1, x2, y1, y2)×

×exp
[
4π
(
I1(x1−x2)+I1(y1−y2)+I2(x1−y2)+I2(x2−y1)−I2(x1−y1)−I2(x2−y2)

)]
Cσ(−σ)(−σ)σ(x1, x2, y1, y2) = Θσ(−σ)(−σ)σ(x1, x2, y1, y2) C0

σ(−σ)(−σ)σ(x1, x2, y1, y2)×

×exp
[
4π
(
I2(x1−x2)+I2(y1−y2)+I1(x1−y2)+I1(x2−y1)−I2(x1−y1)−I2(x2−y2)

)]
(C.34)

where C0
σ1σ2ρ1ρ2(x1, x2, y1, y2) denotes the CFT part of the corresponding correlations:

C0
σσσσ(x1, x2, y1, y2) =

1

L2
exp

[
4π
(
Iσ0 (x1 − x2) + Iσ0 (y1 − y2) + Iσ0 (x1 − y2)

+ Iσ0 (x2 − y1)− Iσ0 (x1 − y1)− Iσ0 (x2 − y2)
)]

C0
σσ(−σ)(−σ)(x1, x2, y1, y2) =

1

L2
exp

[
4π
(
Iσ0 (x1 − x2) + I−σ0 (y1 − y2)

)]
C0
σ(−σ)(−σ)σ(x1, x2, y1, y2) =

1

L2
exp

[
4π
(
Iσ0 (x1 − y2) + I−σ0 (x2 − y1)

)]
. (C.35)

The non-vanishing two-point correlations are

Cσσ(x1, x2) = Θσσ(x1, x2)C0
σσ(x1, x2) exp

[
4πI1(x1 − x2)

]
, (C.36)

with

C0
σσ(x1, x2) =

1

L
exp

[
4πIσ0 (x1 − x2)

]
.

The functions I±0 , I1 and I2 are given by

I1(x) :=
1

L

∞∑
nk=1

1

4k

(
E0k

k
+

k

E0k
− 2

)
(cos kx− 1)

I2(x) :=
1

L

∞∑
nk=1

1

4k

(
E0k

k
− k

E0k

)
(cos kx− 1)

Iσ0 (x) :=
1

L

∞∑
nk=1

1

2k
e−σikx . (C.37)

It can be verified that the above formulae reproduce the known fermionic correlations for

the massless free fermion (CFT) ground state. In particular, the fermionic antisymmety

property is granted by the canonical anticommutation relations of the fermion field as
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defined by (C.12). The Iσ0 (x), when evaluated, gives terms ∝ logL that cancel the 1
L

factors in front of the initial correlations.

The thermodynamic limit L → ∞ is obtained by replacing the sums in the func-

tions (C.37) by integrals:

1

L

∞∑
nk=1

→
∫ ∞

0

dk

2π
(C.38)

except when there is an infrared singularity, while the phases Θσ1σ2ρ1ρ2 and Θσ1σ2 become

identically equal to one.

The integrals corresponding to I1(x) and I2(x) are infrared and ultraviolet convergent

and can easily be evaluated numerically. The expression Iσ0 (x) has an infrared divergence

and should be kept as a discrete until the end of the calculation. This part is the only one

that does not vanish in the case m0 = m and it is responsible for the CFT ground state

correlations. Specifically it can be shown that upon exponentiation

lim
L→∞

1

L
exp (4πIσ0 (x)) = − σi

2π

1

x
, (C.39)

which gives the standard algebraically decaying CFT correlations

C0
σσ(x1, x2) = − σi

2π

1

x1 − x2
. (C.40)

It is worth noticing that, while both I1(x) and I2(x) vanish for |x| → 0 and therefore do

not alter the short distance behaviour of any correlator (which should indeed be controlled

by the CFT scaling laws), at large distances their asymptotic behaviour is

I1(x) ∼ −m0|x|
16

+
1

4π
log |x|+ c1

I2(x) ∼ −m0|x|
16

+ c2 (C.41)

where c1, c2 are numerical constants. These asymptotics are precisely cancel the algebraic

decay of CFT correlations and switch it to an exponential one, as expected for a massive

KG ground state |Ω〉.
The initial fermionic correlations can be computed by combining (C.34), (C.36)

and (C.37). Substituting in (C.22) and (C.23) and using (C.20) gives the time evolu-

tion of the two-point connected correlation function C∂Φ(x, y; t). The result of a numerical

integration is shown in figure 2 of the main text. Note that while the numerical compu-

tation is efficient outside of the horizon (for |x − y| > 2t), this is not the case inside the

horizon (for |x − y| < 2t) due to the presence of singularities at x1 = y2 and x2 = y1.

In this region it is necessary to split the integrands into their singular and non-singular

parts and evaluate them separately, noticing that the singular part can be expressed as a

sum of products of double integrals (instead of quadruple), which speeds up its evaluation.

Moreover a short-distance cutoff ε ≈ 0.1/m0 has been used to smear the singularities and

make the numerical integration feasible.
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C.4 Explanation of the out-of-horizon effect

The asymptotics of connected correlations at any time t and large distance r = |x− y| can

be derived using (C.34), (C.36), (C.37), (C.22), (C.23) and (C.20). From (C.22), (C.23) and

the fact that the fermionic propagators have support only inside the light-cones it follows

that the large distance asymptotics outside of the horizon lines r = 2t are determined by

the asymptotics of the initial four-point fermionic correlations as the distance between the

pairs of coordinates x1, x2 and y1, y2 becomes large. The asymptotic expansions (C.41)

imply that the cross-terms Cσ(−σ)(−σ)σ do not tend to Cσ(−σ)C(−σ)σ (which vanishes due

to the Klein factor superselection rules), but they have a non-zero limit instead

lim
r→±∞

Cσ(−σ)(−σ)σ(x1, x2, y1 + r, y2 + r) =

A

(2π)2
e4πI2(x1−x2)+4πI2(y1−y2) 6= Cσ(−σ)(x1, x2)C(−σ)σ(y1, y2) = 0 (C.42)

where A = exp[8π(c1 − c2)] and c1, c2 are the constants defined in (C.41). This is in

contrast with the behaviour of Cσσσσ and Cσσ(−σ)(−σ) correlations, which factorise at large

distances to CσσCσσ and CσσC(−σ)(−σ) respectively.

The above violation of clustering implies the dynamical emergence of infinite range

correlations presented in the main text. More specifically, from (C.22), (C.23) and (C.42)

the asymptotic values of the connected correlation functions C∂Φ(x, y; t) and CΠ(x, y; t) at

large distance r = |x− y| are

lim
r→∞

C∂Φ(0, r; t) = 0 (C.43)

lim
r→∞

CΠ(0, r; t) =
A

2π

∣∣∣∣∣∑
σ

σ

∫
dx1dx2G

∗
σ,+1(x1, t)Gσ,−1(x2, t) e4πI2(x1−x2)

∣∣∣∣∣
2

(C.44)

which is plotted in figure 3 of the main text. At t = 0 the Green’s functions (C.20)

corresponding to the time evolution of the cross-terms vanish, so these terms do not con-

tribute to the initial state. For t > 0 they are propagated by the off-diagonal part of the

Green’s functions. As we can easily see by means of the stationary phase method, the

above expression is oscillatory and decays with time as

lim
r→∞

CΠ(0, r; t) ∼ AB2M

(4π)2

(1 + sin 4Mt)

t
for t→∞ (C.45)

with B =
∫ +∞
−∞ e4πI2(s)ds. We remark that the leading correction to this asymptotic value

at large distances turns out to decay exponentially with the distance.
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