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Abstract

Dealing with uncertainty and different degrees of frequency and probability is critical in many every-
day activities. However, relevant information does not always come in the form of numerical estimates
or direct experiences, but is instead obtained through qualitative, rather vague verbal terms (e.g., “the
virus often causes coughing” or “the train is likely to be delayed”). Investigating how people interpret
and utilize different natural language expressions of frequency and probability is therefore crucial to
understand reasoning and behavior in real-world situations. While there is considerable work exploring
how adults understand everyday uncertainty phrases, very little is known about how children interpret
them and how their understanding develops with age. We take a developmental and computational per-
spective to address this issue and examine how 4- to 14-year-old children and adults interpret different
terms. Each participant provided numerical estimates for 14 expressions, comprising both frequency
and probability phrases. In total we obtained 2856 quantitative judgments, including 2240 judgments
from children. Our findings demonstrate that adult-like intuitions about the interpretation of every-
day uncertainty terms emerge fairly early in development, with the quantitative estimates of children
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converging to those of adults from around 9 years on. We also demonstrate how the vagueness of
verbal terms can be represented through probability distributions, which provides additional leverage
for tracking developmental shifts through cognitive modeling techniques. Taken together, our find-
ings provide key insights into the developmental trajectories underlying the understanding of everyday
uncertainty terms, and open up novel methodological pathways to formally model the vagueness of
probability and frequency phrases, which are abundant in our everyday life and activities.

Keywords: Everyday uncertainty terms; Verbal uncertainty terms; Frequency phrases; Probability
phrases; Development; Everyday activities; Computational modeling

1. Introduction

Natural language expressions of frequency and probability are ubiquitous in our every-
day lives and activities. Imagine you are planning and preparing your birthday dinner party.
Some of your prospective guests tell you that they are most likely or almost certain to come,
whereas others tell you that they are unlikely to make it. Despite the uncertainty as to who
will eventually show up, you need to go ahead with planning. You know that some of your
friends frequently travel by car and therefore will probably not drink alcoholic beverages,
whereas others often come by public transport and are more likely to enjoy a drink. You know
that about half of your friends are vegetarians, and it is possible that their partners are as
well. Also, you would love to prepare a fancy dish, but in your experience complicated meals
rarely work out exactly the way they are supposed to, and sometimes do not taste as great
as promised.

As this example illustrates, verbal frequency and probability terms are ubiquitous and play
a crucial role in many aspects of our daily lives—in thinking, communication, and many of
our activities. And, of course, even scientists trained in formal methods and statistics often
[sic!] use these rather vague and imprecise terms in sentences such as “similar findings have
frequently been reported in the literature” or “it is unlikely to obtain such a result merely by
chance.” Nevertheless, how exactly we (learn to) understand, represent, and utilize everyday
uncertainty terms is still poorly understood. This stands in stark contrast to the eminent role
they play in our lives: without a shared understanding of such terms communication is prone
to misunderstandings, and planning, executing, and coordinating actions with others would
be difficult and unreliable.

While there are several studies assessing how adults interpret different frequency and prob-
ability phrases, there is only little work exploring from a developmental perspective how we
learn to make sense of and attribute meaning to these expressions. The present paper inves-
tigates how children aged 4—14 interpret everyday uncertainty expressions, how closely their
quantitative judgments resemble those of adults, and at what point in development adult-
like intuitions emerge. Moreover, we demonstrate how the vagueness of linguistic terms can
be represented within a probabilistic framework, which provides new pathways for building
computational models of everyday reasoning and action.
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2. Mapping words to numbers: How do people understand everyday expressions of
uncertainty?

Research on how people understand expressions of frequency (e.g., often) and probabil-
ity (e.g., likely) extends back to the middle of the 20th century (Cliff, 1959; Lichtenstein
& Newman, 1967; Simpson, 1944, 1963), with several studies investigating what numerical
equivalents adults assign to different terms (for reviews, see Clark, 1990; Mosteller & Youtz,
1990; Teigen & Brun, 2003; Wallsten & Budescu, 1995). In these studies, participants are
typically asked to map words to numbers by providing quantitative judgments (e.g., percent-
ages or frequencies) for different terms.

Two key findings have emerged from this line of research. On the one hand, the per-
ceived meaning of verbal phrases can vary depending on context (Brun & Teigen, 1988;
Weber & Hilton, 1990), base rates (Wallsten, Fillenbaum, & Cox, 1986b), kinds of events
(Harris & Corner, 2011; Weber & Hilton, 1990), conversational rules and pragmatics
(Bonnefon & Villejoubert, 2006; Honda & Yamagishi, 2017; Teigen & Brun, 1999), as well
as the employed elicitation method (Hamm, 1991; Wallsten, Budescu, Rapoport, Zwick, &
Forsyth, 1986a; Wallsten, Budescu, & Zwick, 1993). Generally, within-subject variation tends
to be lower than between-subjects variability, indicating a fairly stable understanding of every-
day uncertainty terms at the individual level, although different people may vary in their
judgments (Budescu & Wallsten, 1985). On the other hand, between-subjects variation in the
interpretation of particular terms notwithstanding, people can also be quite consistent in their
quantitative judgments (Simpson, 1963). For instance, Mosteller and Youtz (1990) evaluated
52 expressions across 20 different studies and found that “the studies give similar, though
not identical, results for the same expression when sampling and other sources of variabil-
ity are considered” (p. 3). These analyses indicate that in many cases people have a shared
understanding of linguistic uncertainty terms, in that they assign similar quantitative estimates
to them.

To what extent people have a common understanding of uncertainty phrases is also critical
from an applied perspective, as such expressions are used in many fields to communicate
quantitative information obtained from experts (who are typically trained in statistical meth-
ods) to lay people, who lack this expertise but need to integrate this information in their
reasoning and decision-making processes. In such cases, it is important to use calibrated
language to ensure that the relevant information is appropriately understood, as mismatches
between intended and perceived meaning loom large when verbal information forms the
basis for decision making on the individual and policy level. For instance, reports of the
Intergovernmental Panel on Climate Change (IPCC) use a codification scheme for mapping
probability information (e.g., model predictions regarding temperature increase) to verbal
expressions, to communicate the current state of scientific knowledge and the associated
uncertainties to policy makers and the public (Mastrandrea et al., 2011). However, the numeri-
cal equivalents that people intuitively assign to these phrases do not always match the intended
meaning, raising concerns about the appropriateness and effectiveness of the used codifica-
tion schemes (Budescu, Broomell, & Por, 2009; Budescu, Por, Broomell, & Smithson, 2014;
Harris, Corner, Xu, & Du, 2013b). Similar results have been obtained in other fields, such as
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medical risk communication (Berry, Knapp, & Raynor, 2002) and forensic science (Martire,
Kemp, Sayle, & Newell, 2014; Thompson & Newman, 2015). These findings highlight
the importance of carefully investigating how people understand linguistic expressions of
uncertainty in different circumstances, and the importance of taking into account behavioral
research when devising a codification scheme that explicates the relation between words and
numbers.

3. (How) Do children understand everyday uncertainty terms?

While there is a rich literature on how adults interpret verbal expressions of uncertainty,
little is known about how children interpret such terms and how their understanding develops
with age.

Kuczaj (1975) investigated whether preschoolers aged 4-5 comprehended deterministic
frequency terms like always and never, and found that most—but not all—children judged
sentences containing these words as understandable. However, sentences containing fre-
quency terms such as sometimes, usually, and seldom were judged by many children as not
understandable, indicating that their meaning may be acquired at a later age. Hoftner, Can-
tor, and Badzinski (1990) analyzed 5- to 11-year-olds’ understanding of the three probability
terms possibly, probably, and definitely. Younger children showed a limited understanding of
these terms and were not able to appropriately distinguish between them, but fourth graders
were able to do so. Along these lines, Mullet and Rivet (1991) found that, with a sample
of 9-, 12-, and 15-year-olds, older children were better than younger children at discrimi-
nating among 12 probability phrases (e.g., likely, low chance), and that judgment variability
decreased with age. Biehl and Halpern-Felsher (2001) studied fifth, seventh, and ninth graders
(age 10-14), as well as adults, asking them to assign numerical percentages to 30 linguistic
expressions. They observed a fairly broad agreement across age groups in terms of the mean
estimates, but also some significant differences. Similar to other studies, judgment variation
was higher for children and adolescents than for adults.

4. Goals and scope

How does the understanding of everyday uncertainty terms develop with age and when do
adult-like intuitions regarding their interpretation emerge? This paper makes two main con-
tributions to address this question. First, we report empirical data on quantitative estimates
for several linguistic expressions of frequency and probability, and for a broader age range
than previously reported. For instance, Biehl and Halpern-Felsher (2001) investigated sev-
eral terms in children 10 years and older, but their sample was limited to early adolescence,
as participants were required to assign numerical percentages to the terms. Thus, a primary
goal of the present study was to map developmental trajectories in the understanding of ver-
bal uncertainty terms across childhood, rather than testing specific factors that could influ-
ence children’s understanding of verbal expressions. To do so, we developed a nonnumerical
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experimental paradigm suitable for younger children, enabling us to investigate the under-
standing of uncertainty phrases within the same paradigm across a broad age range. Our data
trace a full developmental trajectory of the interpretation of the different verbal expressions
under consideration, showing children’s quantitative estimates approximate those of adults’
judgments around age 9.

The second contribution is methodological. Earlier studies with adult subjects used the
framework of fuzzy set theory (Zadeh, 1965) to formally represent the inherent vagueness of
linguistic terms (Bocklisch, Bocklisch, & Krems, 2012; Reagan, Mosteller, & Youtz, 1989;
Wallsten, Budescu, Rapoport, Zwick, & Forsyth, 1986a; Zadeh, 1975). We introduce a con-
ceptually distinct approach using a probabilistic modeling framework, where probability dis-
tributions quantify to what extent different numerical values belong to a term (cf. Meder &
Mayrhofer, 2017). This method provides additional means to trace developmental trends and
enables researchers to harness the framework of probabilistic inference for data analysis and
cognitive modeling. We used this approach to formally assess the similarity of different age
groups’ distributions, providing an additional window into the development of understanding
everyday uncertainty terms.

5. Method
5.1. Participants

Participants were recruited from public museums in Berlin, Germany, and tested individ-
ually using a tablet-based experiment. Our sample includes 44 adult participants (mean age
34.6, SD = 11.8) and 160 children: N = 22 4- to 5-year-olds (mean age 4.7, SD = 0.46);
N = 22 6-year-olds; N = 26 7-year-olds; N = 23 8-year-olds; N = 27 9-year-olds; N = 18
10-year-olds; and N = 22 11- to 14-year-olds (mean age = 11.7, SD = 1.03). An additional
24 children were excluded from the analyses for the following reasons: not native German
speakers (N = 3), parents intervened during the experiment (N = 3), did not understand the
instructions (N = 3), failed the practice test (N = 10), were too young (N = 2), missing con-
sent (N = 1), or always answered with 0 or 100 throughout the experiment (N = 2). The
study was approved by the Ethics Committee of the Max Planck Institute for Human Develop-
ment; written informed consent was obtained from all participants/from their legal guardian.
Children received stickers for participating.

5.2. Design

We elicited quantitative judgments for 14 different expressions, including seven frequency
terms and seven probability terms (Table 1). Because we elicited judgments from children
as young as 4 years old, it was important to keep the experiment and used uncertainty
expressions as simple as possible. We therefore decided to use a variety of single-word terms
covering different degrees of probability and frequency, rather than constructing compos-
ite expressions based on a limited number of root terms combined with different modifiers
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Table 1

Frequency and probability terms used in the present study

Expression Original German Type
rarely selten frequency
sometimes manchmal frequency
occasionally gelegentlich frequency
half of the cases Halfte der Fille frequency
often oft frequency
frequently hiufig frequency
most of the time meistens frequency
unlikely unwahrscheinlich probability
uncertain unsicher probability
perhaps eventuell probability
maybe vielleicht probability
possibly moglich probability
equiprobable gleichwahrscheinlich probability
likely wahrscheinlich probability

Note. Sometimes an English term could correspond to multiple German translations, and vice versa. For
instance, the German term wahrscheinlich could be translated as probably or likely; for the purpose of this paper
we chose the latter. The German word selten could be translated as seldom, infrequently, or rarely; we here use
the latter.

(e.g., “very likely,” “highly likely” etc.). The set of frequency expressions included all six
single-word frequency expressions and the compound expression half of the cases consid-
ered by Bocklisch et al. (2012) who elicited numerical equivalents from a German-speaking
sample of adult participants. The set of probability expressions included the German equiv-
alents of the three single-word probability expressions likely, possibly, and unlikely from the
meta-analysis by Mosteller and Youtz (1990). In addition, we included the probability terms
perhaps, equiprobable, uncertain, and maybe.

5.3. Materials and procedure

We developed a child-friendly paradigm where quantitative estimates were provided using
a slider on a tablet. Underlying the slider was a scale from O to 100 in steps of 1, but no num-
bers were shown throughout the experiment. To account for age-related differences in reading
abilities, instructions on the screen were always read out aloud by the experimenter through-
out the whole study. This was done for all participants regardless of age, in order to keep the
experimental procedure identical across subjects. During the introduction and practice trials,
participants were repeatedly asked if they understood the instructions and mechanics of the
task and given the opportunity to ask clarification questions, which were answered verbally.
During the actual judgment phase, the instructions for each term were read out aloud in the
order in which they appeared on the screen (see next), with the experimenter pointing to the
relevant part of the screen. All judgments were recorded by the software; we did not audio-
or video-record the sessions.



264 B. Meder, R. Mayrhofer, A. Ruggeri/Topics in Cognitive Science 14 (2022)

?
likely that the.
onsler has a tail.

Itis
me

P
»

Fig. 1. Example trials. The upper panel shows example trials for the frequency terms rarely and often. The lower
panel shows example trials for the probability terms unlikely and likely.

Participants were first introduced to the cover story. They were told that they would
visit different planets, each home to different (friendly) monsters. Throughout their journey
they would be accompanied by Robbie the robot (Fig. 1), who had already been to all
planets and knew everything about them. Next, participants were familiarized with the
slider, which was introduced as a “control panel” they could use to answer questions in the
game. The unlabeled slider was shown on a blank screen and participants were instructed to
move the slider to different positions, including the middle, the rightmost, and the leftmost
point.

The structure of each trial in the subsequent experimental phase was as follows. First,
participants were shown a planet with two monsters differing in a single binary feature (e.g.,
dotted or not dotted, paws or no paws; Fig. 1). Next participants were presented with the term-
evaluation question they should answer using the slider. Participants were first presented with
four practice trials (in randomized order), with the two frequency terms always and never,
and the two probability terms impossible and certain. We chose these terms, assumed to
correspond to the extreme values of the slider (i.e., values of 0 or 100), to ensure that children
understood the meaning of these relatively simple and clearly defined terms, and to further
check they understood how to use the slider (the labels of the end points were identical to
the subsequent judgment phase). After the practice trials, participants were asked to provide
quantitative estimates for each of the terms shown in Table 1.

We used slightly different instructions for the frequency and probability terms. The fre-
quency phrases referred to the population of monsters living on the planet. The probability
phrases pertained to a single monster living on that planet. This was done to avoid that partici-
pants translated the probability terms into a frequency format or the other way around, thereby
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blurring the conceptual distinction. For the frequency terms participants were asked: “What
do you think: How many monsters on the planet have [feature]?” Then Robbie appeared on
the screen with a speech bubble saying “Monsters on this planet [term] have [feature].” For
instance, during the practice trials Robbie might state that “Monsters on this planet never
[always] have an antenna.” In the actual trials Robbie might say “Monsters on this planet
rarely have stripes” or “Monsters on this planet often have paws” (Fig. 1).

For the probability terms the following instruction was given: “Imagine you land on the
planet and meet one of the monsters. What do you think: Does the monster rather have an
antenna or rather not?” Then Robbie appeared on the screen with a speech bubble saying
“It is [term] that the monster has an [feature].” For instance, during the practice trials Robbie
might state that “It is impossible [certain] that the monster has an antenna.” In the actual trials
Robbie might say “It is unlikely that the monster is dotted” or “It is likely that the monster has
a tail” (Fig. 1).

After Robbie provided his information, participants were asked to answer the question
using the slider, which appeared on the screen with the initial position set to the midpoint of
the scale (Fig. 1). For the frequency terms, the endpoints of the slider were labeled “None of
them have [feature]” and “All of them have [feature].” For the probability terms, the endpoints
were labeled “Certainly does not have [feature]“and “Certainly does have [feature].”

After providing a judgment using the slider, the next trial started, presenting a new planet
with different monsters and a novel feature. All terms were presented in random order, with
the assignment of monsters and features to terms being randomized. Upon providing quanti-
tative judgments for all 14 terms, the experiment ended.

6. Results

In total, we obtained 204 x 14 = 2856 quantitative judgments, including 2240 judgments
from children aged 4-14 (17 estimates were not recorded due to technical error and not
included in the analyses). We conducted both group-level and individual-level analyses to
assess developmental trends in how children interpreted the different expressions. In addi-
tion, 10 participants provided a wrong judgment in more than two practice questions (i.e.,
did not assign maximal or minimal values by moving the slider to the leftmost or rightmost
position) and were excluded from the analyses.

We compared adults’ mean judgments in our sample to the mean estimates reported in the
literature. Six of the frequency terms we used were included in Bocklisch et al. (2012) who
elicited them from German-speaking adults. The correlation with these estimates was r =
.99, with a mean absolute deviation (MAD) of 5.8. Mosteller and Youtz (1990) reported the
mean estimates for several expressions across 20 studies with English-speaking participants,
of which nine corresponding German terms were used in the present study (six frequency and
three probability terms; here we used the English term “infrequently” for the German term
“selten”). The correlation of adults’ mean judgments in our study with the estimates reported
in Mosteller and Youtz (1990) was r = .96, MAD = 9.3. Thus, adults’ mean judgments in our
paradigm were comparable to existing findings obtained with different methods and subject
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samples, and there was a reasonable cross-language consistency between the German terms
used in our study and the corresponding English terms.

6.1. Group-level analyses

Fig. 2 shows the distribution of children’s and adults’ judgments for the different expres-
sions. These plots reveal two main findings. First, for most expressions the variability in the
quantitative judgments is much higher for young children (e.g., 4- to 6-year-olds), compared
to older children and adults, indicating that older children and adults were more consistent
in how they interpreted the terms. Also note that the only two sharply defined phrases corre-
sponding to a clear and objective numerical estimation, in half of the cases and equiprobable,
almost always received judgments of 50 only from age 8, whereas younger children showed
much more variation in their judgments of these phrases.

Second, children’s mean judgments converged to adult-like response patterns relatively
early in development, for both types of terms. From age 9 the correlation of children’s esti-
mates with those obtained from adults was very high (Pearson’s » > .9). The correlation of
children’s and adults’ mean judgments increased strongly with age, while at the same time
the MAD strongly decreased (see the Supporting Information for the full correlation matrix
across all age groups).

Note that older children continued to further approximate adults’ estimates, both in terms of
correlation and MAD. This development in early adolescence is also supported by data from
Biehl and Halpern-Felsher (2001), who asked 10-, 12-, and 14-years-olds, as well as young
adults, to assign percentages to 30 terms. A reanalysis of their data shows that the correlation
of 10-year-olds’ mean estimates with those of adults was .93, further increasing to .97 and .99,
respectively, for 12- and 14-year-olds (see the Supporting Information for details). Similarly,
the MAD of children’s average estimates from those of adults further decreased in that age
range, from 11 for 10-year-olds to 9.7 and 5.6, respectively, for 12- and 14-year-olds.

Taken together, these results suggest that adult-like intuitions about the meaning of every-
day uncertainty terms emerge quite early in development, and are further refined in early ado-
lescence.

6.2. Variability of judgments

The between-subjects variability in the quantitative estimates strongly varied with age,
with younger children being less consistent in their judgments than older children and adults
(Fig. 2). We computed for each age group and term the variance in the judgments. Fig. 3a
shows that the between-subjects variability across the verbal expressions decreased strongly
as children grow older; from about 9 years on children are as consistent as adults.

Large parts of the variance in young children’s judgments can be traced to a tendency to
assign extreme values of 0 or 100 to the different terms, thus giving judgments of certainty,
rather than uncertainty (Fig. 3b). These analyses suggest that younger children’s judgments
were not merely noisier than those of adults, in which case one would expect more evenly
distributed answers across the response scale. Rather, young children’s judgments were
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Fig. 2. Tukey box plots of the quantitative estimates assigned to different frequency and probability expressions.
Diamonds indicate group means, the horizontal line in the box shows the group median. r = Pearson correlation
with adults” mean estimates, MAD = mean absolute deviation from adults’ average estimates.
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Fig. 3. Variance in quantitative estimates and proportion of certainty judgments.

characterized by a strongly dichotomous response pattern. This finding echoes other develop-
mental findings, which consistently indicated that young children tend to make extreme judg-
ments across different response scales and formats (Chambers, 2002; Light, Zax, & Gardiner,
1965; O’Dowd, 1980; Zaman, Abeele, & De Grooff, 2013), in line with the Piagetian theory
positing that young children characteristically engage in dichotomous thinking (Gelman &
Baillargeon, 1983). This tendency to give extreme judgments quickly tapered off with age
though, indicating that children’s interpretation of the different terms became more nuanced
and consistent as they got older (Fig. 3b).

Note that while we observed a large proportion of extreme judgments in children, especially
for ages 4-7, only 15 of 160 children always assigned 0 or 100 to the different terms (four
4- to 5-year-olds, six 6-year-olds, four 7-year-olds, and one 8-year-old). Thus, even young
children showed some sensitivity to the gradedness of the terms.

6.3. Individual-level analyses

To account for the variability in children’s judgments we computed the Pearson correlation
of each child’s individual judgments with adults’ mean estimates (Fig. 4, upper panel).
Consistent with the group-level analyses, we obtained a strong developmental trend, with
children’s judgments increasingly converging to the average estimates of adults. This is also
reflected in the deviation of children’s individual judgments from adults’ mean estimates,
which strongly declined with age (Fig. 4, lower panel). Also note that the relationship
between children’s and adults’ judgments becomes less variable as they get older, both in
terms of correlation with and deviation from adults’ mean estimates.
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Fig. 4. Tukey box plots of children’s individual (Pearson) correlations with adults’ mean estimates (upper panel)

and their mean absolute deviation from these estimates (lower panel). The horizontal line in the box shows the
group median and the diamonds indicate the group means, connected by the line.

Taken together, our results map strong and consistent age-related trends in the under-
standing of everyday language expressions of uncertainty. While young children’s judg-
ments were highly variable and characterized by a tendency to assign extreme values to
many terms, this tendency quickly diminished with age, with children’s judgments approach-
ing those of adults from about age 9. These findings demonstrate that adult-like intu-
itions about the meaning and nuances of verbal uncertainty terms emerge quite early in

development.

7. Modeling the vagueness of verbal uncertainty terms

A characteristic feature of everyday uncertainty expressions is that they are not sharply
defined, but are inherently imprecise or vague. There are some boundary cases which have a
clear-cut interpretation that is also reflected in the numerical estimates assigned to them, such
as always or never (although, never say never). Generally though, when linguistic expressions
are mapped to quantitative estimates, there typically is not a single value that people consider
to exactly correspond to the term, but multiple values (or a range of values) are assumed to
represent the term to a varying extent. In this sense, everyday uncertainty phrases resemble
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Fig. 5. Fitted beta distributions and empirical densities (dashed line) for the terms unlikely, sometimes, likely, and
frequently. Note. We used the f, beta-kernel estimator recommended by Chen (1999) to estimate the empirical
densities. Because the beta distribution is not defined on the bounds of the unit interval, we shifted data points
located exactly on the bounds (i.e., judgments of 0 and 1, respectively) by 0.001.

fuzzy sets (Zadeh, 1975) or prototype representations (Rosch, 1973; Wittgenstein, 1953) of
concepts—there might be typical values, and more or less likely numerical values that could
be subsumed under a term, but the boundaries are not sharply defined.

Previous work has often used membership functions (Bocklisch et al., 2012; Rapoport,
Wallsten, Erev, & Cohen, 1990; Reagan et al., 1989; Wallsten et al., 1986a; Zadeh, 1975) to
represent the vagueness of verbal expressions and to account for the variability in people’s
quantitative judgments. Formally, this approach is well defined, with fuzzy set theory (Zadeh,
1965) providing the mathematical framework. However, membership functions are not den-
sity functions, therefore it is difficult to analyze them using common statistical methods or
to integrate them with probabilistic models of cognition. A conceptually distinct approach
is to represent the vagueness of verbal terms using probability distributions, where a density
function on the interval [0,1] is used to denote the likelihood of different numerical values
belonging to the concept (Meder & Mayrhofer, 2017, also see Dhami & Wallsten, 2005).
Represented this way, each numerical value has a certain likelihood of belonging to a partic-
ular term, and the dispersion of the distribution encodes the phrases’ inherent vagueness.

A natural choice is the family of beta distributions, which are defined on the interval [0,1]
and are parameterized by shape parameters o and 8. Consider Fig. 5, where the densities
represent the frequency terms sometimes and frequently and the probability terms unlikely
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Fig. 6. Kullback-Leibler (KL) divergence between children’s and adult’s beta distributions representing linguistic
expressions of frequency and probability.

and likely. To obtain these distributions we mapped the obtained quantitative estimates in
the range [0,100] to the interval [0,1] by dividing each value by 100. We then calculated
for each term and age group the beta distributions’ shape parameters « and 8 based on the
sample mean and variance, using the method of moments (see Appendix A.l and Supporting
Information for details and overview of all terms used in the present study).

The fitted beta distributions have the same mean and variance as the empirical estimates.
However, if there is large variation in the quantitative estimates, similarities in the distribu-
tions’ central tendencies (e.g., mean or median judgments) are not particularly informative.
The beta distributions, by contrast, have more expressive power to capture key aspects of the
behavioral data. One example is the tendency of young children to assign extreme values of 0
or 100 to the terms, which renders the mean and median of the empirical distribution largely
uninformative. By contrast, the beta distribution appropriately represents this tendency, as
indicated by the U-shaped distribution for children until about age 6, where most of the den-
sity is located toward the boundary values O and 1. As children grow older, this tendency
tapers off, with the variance decreasing and the shape of the distribution approaching that
of adults.

To further analyze the observed developmental trends and to assess the similarity of the dis-
tributions across age groups we computed the Kullback—Leibler (KL) divergence (Kullback
& Leibler, 1951) between children’s distributions and the corresponding distributions derived
from adults’ judgments (Appendix A.1). Fig. 6a shows the KL divergence across all terms,
excluding the terms “half of the cases” and “equiprobable.” The plot shows how the KL diver-
gence strongly decreases across childhood, indicating that the distributions representing the
terms become more similar to those of adult participants with age.

Fig. 6b and c plots the KL divergence for the frequency term half of the cases and equiprob-
able, respectively. The reason for plotting these expressions separately is that 11- to 14-year-
olds and adults almost always (correctly) gave judgments of 50, rendering the variance min-
imal (for term half of the cases) or zero (for term equiprobable). In these cases, the shape
parameters of the corresponding beta distributions are very high or not defined, respectively,
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Fig. 7. Example of belief updating with everyday uncertainty terms. (a) Scenario where the goal is to derive
the posterior probability that Toma comes from Planet Vuma, given that he has stripes. (b) Modeling Bayesian
reasoning, where the probability distributions representing the terms “sometimes” and “often” for 9-year-olds and
adults, respectively, serve as likelihoods to derive the posterior distribution over p(Vumal|stripes), assuming equal
prior probabilities (i.e., p(Vuma) = p(Ando) = 0.5).

as all or most of the density is located at 0.5. For the term equiprobable we therefore manually
set the shape parameters to o = 8 = 10°, such that virtually all density is located at 0.5 and
the variance is minimal (Appendix A.1). As can be seen from the plots, the developmental
shift observed for all other expressions holds for these terms, too—the older children get, the
closer their distributions resemble those of adult participants.

In sum, using probability distributions to represent the vagueness of verbal expressions pro-
vided additional traction for tracing developmental trajectories in the quantitative estimates
children assign to them. Importantly, this approach offers new methodological pathways for
investigating how children and adults reason with such vague and nonnumerical information
(Meder & Mayrhofer, 2017). Probability distributions representing verbal terms seamlessly
integrate with Bayesian inference mechanisms, making it possible to model different kinds of
reasoning processes and belief updating.

Fig. 7a illustrates a belief updating task with verbal uncertainty terms. Robbie has visited
two planets, Ando and Vuma. On both planets there live monsters with stripes, but in
different proportions: On Vuma, monsters “often” have stripes, whereas on Ando monsters
“sometimes” have stripes. Robbie made a new friend, Toma, who has stripes. What is the
probability that Toma is from planet Vuma? Formally, this question corresponds to comput-
ing the posterior probability p(Vumal|stripes). Using probability distributions to represent
the verbal terms enables a formal treatment of this inference that preserves the vagueness
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of the expressions, where the terms’ distributions represent the likelihoods (probability of
stripes on planets Vuma and Ando, respectively) and the posterior distribution is derived
using Bayesian inference. The example in Fig. 7b illustrates this for adults and 9-year-olds,
using the fitted beta distributions of the term ‘“sometimes” and “often” of the age groups
to derive the posterior distribution over p(Vuma|stripes). (For simplicity, we here assume
equal priors, that is, p(Vuma) = p(Ando) = .5.) Deriving age-specific posterior distribu-
tions enables the derivation of precise and empirically testable predictions about expected
mean (or median) judgments, variability of judgments, and shape of the distribution. Thus,
whereas both membership functions and probability distributions enable a formal repre-
sentation of verbal uncertainty terms, using probability distributions additionally provides
traction for modeling more complex inferences based on nonnumerical, rather vague verbal
information.

8. Concluding remarks and future directions

The present study mapped developmental trajectories in the understanding of everyday
uncertainty terms. Our analyses show strong and systematic differences in the quantitative
estimates that children aged 4—14 assign to different frequency and probability expressions,
suggesting that adult-like intuitions of their meaning emerge around age 9. This finding was
true both in terms of how strongly children’s judgments correlated with adults’ judgments at
the group and individual level, and when evaluating the similarity of the probability distribu-
tions used to represent the verbal terms via KL divergence.

Our findings bear several relations to key issues in developmental research. One important
question is how the understanding of everyday uncertainty expressions relates to the devel-
opment of quantitative reasoning skills. Several studies have demonstrated that even infants
are sensitive to core principles of probabilistic inference (Denison, Reed, & Xu, 2013; Xu &
Garcia, 2008), and that both infants and preschoolers are able to use probability information
in judgment and decision making (see Gweon, Tenenbaum, & Schulz, 2010; Kushnir, Xu,
& Wellman, 2010). Notwithstanding these early competencies, even 10-year-olds perform
substantially worse than adults’ in simple proportional reasoning tasks, even when supported
by children-friendly presentation formats (Ruggeri, Vagharchakian, & Xu, 2018). While this
is consistent with developmental theories positing that the ability to represent and manipu-
late quantitative and numerical proportions depends on the acquisition of a verbally medi-
ated system of numbers and inference strategies assumed to mature only in late adolescence
(Carey, 2009; Inhelder & Piaget, 1958), such findings also raise important questions about
the interplay between the ability to reason with numerical information and the understanding
of verbal uncertainty terms. Is the ability to reason with numerical information a precursor
for a shared understanding of verbal probabilities? Conversely, to what extent does sound
proportional reasoning require a more mature understanding of verbal uncertainty terms? For
instance, one could construct proportional reasoning tasks where participants receive the rel-
evant information either numerically or verbally through matched linguistic terms (Meder
& Mayrhofer, 2017), and compare performance on these tasks across development. Such
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studies would help bridging the literature on the development of quantitative reasoning skills
and the understanding of verbal probabilities, thereby fostering theory integration and provid-
ing insights than cannot be gained from investigating these competencies in isolation.

How exactly do children develop their understanding of verbal uncertainty terms, and what
factors do contribute to their learning process over the course of development and through
their everyday activities? This question is particularly interesting because, compared to other
competencies such as reading, writing, and doing basic math, this ability is not subject to
any formal training—no one explicitly teaches children the meaning of words such as likely
or sometimes. One approach to shed light on the underlying learning processes would be to
conduct ecological analyses that relate children’s learning processes to their everyday social
and informational environments. For instance, researchers could study the prevalence and use
of everyday uncertainty terms in conversational interactions between children and parents
by analyzing corpus data such as the Child Language Data Exchange System (CHILDES).
Another approach would be to examine when and how often children are presented with
such terms in their daily lives and everyday activities. For instance, the childLEX database
(Schroeder, Wiirzner, Heister, Geyken, & Kliegl, 2015) contains corpus data from children’s
books intended for different age groups. Researchers could track which terms the books tar-
geting different age groups contain, and use this information as a proxy for evaluating the
prevalence with which children of different ages encounter different phrases. Such analyses
would also provide traction for relating the understanding of everyday uncertainty terms with
language development more generally. For instance, the vocabulary size in a German sample
has been estimated to increase from approximately 6000 lemmas in first grade to about 73,000
lemmas in young adulthood (Segbers & Schroeder, 2017). Given the plethora of natural lan-
guage expressions denoting degrees of probability and frequency, it would be particularly
interesting to assess whether the growth of the mental lexicon of such terms is characterized
by similar trends and growth rates, thereby helping to gain a more comprehensive understand-
ing of how language development more generally is related to developing adult-like intuitions
about the meaning of everyday uncertainty terms.

A related issue concerns conversational pragmatics and social function (Collins & Hahn,
2018; Harris, Corner, & Hahn, 2013a; Honda & Yamagishi, 2017; Juanchich, Teigen, & Ville-
joubert, 2010; Piercey, 2009). For instance, Bonnefon and Villejoubert (2006) found that the
numerical estimates assigned to the word “possibly” in a statement such as “The doctor tells
you, you will possibly suffer from insomnia soon” differed depending on the assumed social
function. Listeners assigned lower estimates when they assumed the goal was to communi-
cate a degree of likelihood, compared to when they assumed that the expression was used to
communicate bad news in a tactful manner. Another example is that verbal uncertainty state-
ments can be directional in that they draw attention to either the occurrence or nonoccurrence
of an outcome (Teigen & Brun, 1995). For instance, when participants were told that there
is “‘some possibility” that a treatment would be helpful, they were more likely to recommend
it than when it was “quite uncertain” that the treatment would help (Teigen & Brun, 1999).
Importantly, this asymmetry held even when similar numerical equivalents were assigned to
the two phrases, showing how additional factors mediate people’s understanding of and rea-
soning with verbal uncertainty terms. Interestingly, children around age 9 have been shown to
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be less influenced by the directionality of verbal expressions (Gourdon & Villejoubert, 2009).
Given that the quantitative estimates of 9-year-olds in our study already seem to be fairly
similar to those of adults, this might indicate that children’s sensitivity to conversational rules
and pragmatics matures later in development.

The present findings also provide leverage for evaluating and improving the communica-
tion of risk information to children and adolescents, which often relies on verbal phrases (e.g.,
“car drivers are likely to not see you because you’re small”’). Using verbal terms is a natural
choice in educational campaigns targeting children, because their ability to understand and
reason with numbers is typically less developed than that of adults. Careful investigation of
how they understand such terms is critical to develop effective educational materials based
on codified language that is tailored to the specific groups targeted. For instance, while in our
study most children from around age 8 onward clearly understood the meaning of the term
“half of the cases” and assigned a value of 50 to this term, younger children’s judgments were
much more variable, indicating that they had not yet developed a precise meaning of this term
(which might be tied to having acquired basic math skills and understanding of proportions).
In this context, it is also important to take into account possible cross-language differences in
the understanding of verbal uncertainty expressions (Doupnik & Richter, 2003). For instance,
codification schemes such as the one used by the International Panel on Climate Change are
typically translated into different languages, but the numerical estimates that people intu-
itively assign to them have been shown to differ across languages and cultures (Harris et al.,
2013b). Conducting comparisons on children’s understanding of verbal probability phrases
across different cultures, communities, and languages can provide additional insights and help
to take into account these differences in applied settings. A related issue concerns children’s
understanding of quantifiers such as very and highly, which are frequently used in tandem
with different uncertainty terms (Cliff, 1959; Mosteller & Youtz, 1990; Teigen, 1988). This
issue is important as such modifiers are also used in many codification schemes (e.g., the
guidelines of the International Panel on Climate Change use the modifier “very” for the root
terms “likely” and “unlikely”). Investigating how such modifiers influence children’s under-
standing in comparison to adults will provide additional insights into cognitive development
and the understanding of everyday uncertainty terms.

Finally, an important venue for future research is to evaluate the understanding of everyday
uncertainty terms over the whole life span, assessing whether and how the interpretation of
verbal expressions changes in later adulthood and as a function of experience or changes in
cognitive ability. This is of particular importance as many societies face fundamental demo-
graphic changes due to increased longevity and decreasing birth rates, resulting in substantial
shifts in the population structure. Building artificial systems and digital personal assistants
that interact with and aid the elderly in their everyday activities plays a critical role in keep-
ing pace with these changes and the ever-increasing demand for support and care. Our and
related findings can support these developments by helping to devise calibrated language and
codification systems grounded in empirical research on how people intuitively understand
such terms. This is of particular importance because a mismatch between the intended and
perceived meaning of verbal probabilities can have serious implications. For instance, Berry
et al. (2002) investigated how people understand different frequency terms recommended by
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the European Union to communicate the side effects of medical treatments (e.g., “common,”
“rare”). The numerical equivalents assigned to these terms were much higher than intended,
leading to an increased judgments of the expected severity of the side effects and reduced
intention to comply (compared to a control group that received numerical information). Such
findings are critical for real-world applications designed to support everyday activities. For
instance, if a person inquires about possible side effects of a medication, a digital assistant
should not merely provide the verbal labels used in medicine information leaflets, but addi-
tionally provide the relevant numerical information to avoid a mismatch between the intended
and perceived meaning (see Jenkins, Harris, & Lark, 2018, for a detailed analysis). Ideally,
such systems and their natural language processing capacities could be tailored to individual
users or target populations, based on empirical data on how the interpretation of everyday
uncertainty terms develops over the life span and how particular age groups interpret them.
Ultimately, this could also help to improve artificial systems’ ability to use and represent
common-sense knowledge.

In sum, verbal expressions of uncertainty form an integral part of everyday communica-
tion and activities. Thus, from both an applied and basic science view, understanding how
people—children and adolescents, young and elderly adults—interpret verbal uncertainty
terms is paramount to developing a comprehensive theory of everyday reasoning and activity.
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APPENDIX
A.1 Probabilistic modeling of everyday uncertainty terms

The beta distribution is defined on the interval [0,1] and is parameterized by two (positive)
parameters, o and S, which determine its shape. We fitted individual beta distributions to
participants’ numerical estimates (mapped on the interval [0,1] by dividing each judgment by
100), using the method of moments to derive the shape parameters o and 8 separately for
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each verbal term from the age group’s sample mean £ and sample variance s”>. The estimate
for shape parameter «, &, is given by

q@= x<)L;x) — 1) (A1)

S

and the estimate for shape parameter B, 8, is given by
o X1 —X)
B=({0-X%) s—2_1 . (A2)

For each term, the corresponding beta distribution has the same mean and variance as the
empirical distribution of judgments. Numerical values of all shape parameters can be found
at https://osf.io/g2c6x/; visualizations of the fitted in distributions for each term across age
groups can be found in the Supporting Information and OSF repository.

Note that the terms half of the cases and equiprobable are special in the sense that they have
a clear-cut definition, such that both of them should correspond to the midpoint (i.e., 50 out
of 100) of the used slider. As of age 8 almost all participants gave this judgment, such that the
variance for half of the cases was very small, resulting in high values for the shape parameters
(see Egs. Al and A2). A similar pattern was obtained for the term equiprobable. For 11- to
14-year-olds the variance was in fact zero, as all subjects gave a judgment of 50. Therefore,
we set @ = B = 10°, such that virtually all density of the beta distribution is located at 0.5
and its variance is minimal. Furthermore, note that adults’ shape parameters for this term
were also very high (>50,000), as almost all of subjects assigned a value of 50 to this term,
rendering the variance minimal.

A.2Using Kullback—Leibler divergence to assess developmental trends

Given the fitted beta distributions, we can use the Kullback—Leibler (KL) divergence as
a measure of the similarity of two probability distributions P and Q (Kullback & Leibler,
1951). Here, we used the KL divergence to assess how similar each of the children’s distribu-
tion P is to the corresponding distribution Q derived from adult participants. For continuous
probability distributions, KL divergence is defined as

o0

p(x)In (—p (x)), (A3)
q(x)

where p(x) and g(x) denote the densities of distributions P and Q. It can be solved analytically

when P and Q are beta distributions with parameters (c,, 8,) and (o, B,):

[, + Bp) ) I ( [y + By) )
[(ap) +T'(Bp) I'(ag) + T'(By)

+ (‘Xp - “q) (‘I’(O‘p) — (e, + ﬁp))
+ (B, — By) (W(B,) — W(a, + B)), (A4)

where ' and W denote the gamma and digamma functions, respectively.

Dgr(P|Q) :/

—00

Dk (P||Q) =In (
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For our analyses, adults’ beta distributions for the different terms serve as reference distri-
butions Q for each of the distributions P derived for the corresponding distribution obtained
for the children. Thus, for each term and age group the obtained KL divergence quantifies
how similar children’s distribution is to adults’ distribution. Fig. 6 shows the distribution
of KL divergences across the terms and age groups, illustrating how children’s distributions
become more similar to those of adult subjects as they grow older. We evaluated the terms
half of the cases and equiprobable separately, as the variances for these terms was minimal or
zero (see above). Accordingly, the KL divergences for terms half of the cases and equiprob-
able are much higher than for the other terms; therefore we plot them separately (Fig. 6b
and ¢).



