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Abstract: The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very
strong theoretical probe of quantum randomness, using which one can study both chaotic and
non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a
general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way.
Further, we demonstrate an equivalent formalism of computation using a general time-independent
Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum
systems. We found that one needs to consider two new correlators apart from the usual one to have
a complete quantum description. To visualize the impact of the given formalism, we consider the
two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the
framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time
dependence but dissimilar parameter dependences compared to the results obtained from both micro-
canonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other
hand, for the One-Dimensional Potential Well problem, we found significantly different time scales
and the other parameter dependence compared to the results obtained from non-Supersymmetric
quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical
limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a
model-independent Hamiltonian, along with the previously mentioned well-cited models.
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1. Introduction

The concept of out-of-time-ordered-correlators (OTOC) was first introduced by the
author duo Larkin and Ovchinnikov to describe the semi-classical correlation in the context
of superconductivity [1], which was mostly used in various condensed matter systems
to study various out-of-equilibrium phenomena in the quantum regime [2]. However,
recently, it has attracted the attention of theoretical physicists from other branches in very
different contexts, finding applications in the finite-temperature extension of quantum field
theories, bulk gravitational theories, quantum black holes, and many more sensational
topics [3–8]. It is considered to be one of the strongest theoretical probes for quantifying
quantum chaos in terms of quantum Lyapunov exponent [9], as well as quantum theories of
stochasticity and randomness, among the theoretical physics community. Besides playing
a key role in investigating the holographic duality [10–13] between a strongly correlated
quantum system and a gravitational dual system, it also characterizes the chaotic behavior
and information scrambling [14–20] in the context of many-body quantum systems [21–23].
The detailed study of OTOCs reveals an intimate relationship between three entirely differ-
ent physical concepts, namely holographic duality, quantum chaos, and information scrambling.
The key idea of OTOCs can be best understood as the growth of the non-commutativity of
quantum mechanical operators Specifically, this non-commutative structure of the quan-
tum operators describes the unequal time commutation relations (UETCRs) within the
framework of quantum mechanics. However, the mathematical structure, as well as the
physical consequences of these correlators in the quantum regime, is completely different
from the concept of formulating advanced and the retarded correlators. In the later part
of this paper, we will explicitly demonstrate such differences or the correlators within
the framework of micro-canonical and canonical quantum statistical systems, which are
defined at different time scales, and, hence, can be described using the Poisson Brackets for
its classical counterpart. Not only that but also the quantum mechanical thermal ensemble
average, or, equivalently, the quantum mechanical trace operation, can be described by
using the phase space average in the classical limit. It is considered as the quantum mechan-
ical analogue of the classical sensitiveness to the initial conditions in the time dynamics of
a quantum system. The exponential growth of these correlators indicates the presence of
chaos in the quantum system, which has led to discussions of the “butterfly effect” in black
holes [24–26] with a saturation bound on the quantum Lyapunov exponent and for various
spin models [27,28].

There has been a growing interest to understand the behavior of OTOC, even for
systems where quantum chaos is expected to be absent, the most relevant example being
the study of OTOC in the quantum Ising spin chain model, where power law growth
of OTOCs is observed, as opposed to the exponential growth in non-integrable models
in support of non-chaoticity [29–31]. Another interesting revelation came from a recent
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study of OTOCs for a quantum system with discrete energy levels, weakly coupled to a
non-adiabatic dissipative thermal environment. This type of system is commonly known
as open quantum system (OQS), where the OTOC was found to saturate exponentially in
contrast to the exponential growth for a quantum chaotic system [32]. OTOCs have been of
prime theoretical interest for diagnosing also the rate of growth of chaos with respect to the
different time scales involved in the quantum system through the operators and, hence, for
studying the scrambling of quantum information in black holes and strongly correlated
quantum mechanical systems. It serves as a strong theoretical probe for investigating
various bulk gravitational dual theories in the framework of AdS/CFT correspondence.
Among others, the existence of shock waves inside black holes [33–35] and the maximum
saturation bound of the quantum version of the Lyapunov exponent are the most famous
examples where out of time ordered correlation functions have proven to be useful in
the AdS/CFT correspondence. This maximum saturation bound is famously known as
the Maldacena-Shenker-Stanford (MSS) bound [36]. The SYK model [37–87] is a well known
model which saturates this well known bound and shows the signature of maximal chaos,
both in its 1D CFT and gravitational dual 2D black hole counterpart. In Reference [88], this
bound on quantum Lyapunov exponent was further generalized for many body systems using
the well known Eigenstate Thermalization Hypothesis (ETH). Very recently, in Reference [89],
the author used the tools and techniques of computing OTOC in the context of Cosmology
by following the underlying slogan Cosmology meets Condensed Matter Physics to study the
quantum mechanical correlation functions from random primordial fluctuations appearing
in the context of cosmological perturbation theory of background spatially flat FLRW
metric. Specifically, these fluctuations are appearing in the context of stochastic particle
production during inflation, during the epoch of reheating, and also for the primordial
phenomena, which is governed by the quantum generalization of Brownian motion, i.e.,
for the cosmological epochs in the time line of the universe, where the physics of out-of-
equilibrium phenomena play a significant role.

In Reference [90], the earlier discussed fact regarding the exponential growth of
the OTOCs in the associated time scales to describe the chaotic fluctuations for non-
integrable systems has been established for various well known quantum mechanical
systems. A study of the same for integrable models suggest non-chaotic quantum me-
chanical fluctuations in the quantum regime. In the present context, the phrase quantum
randomness describes a physical phenomena which describes chaotic or non-chaotic, i.e., in
principle, any random behavior of a system with respect to the associated time scales of
the system. For the physical systems, such quantum randomness can be described by the
following 2-fold formalisms:

1. Formalism I:
The first approach is based on the construction and the mathematical from of the
solution of the Fokker Planck equation, using which various stochastic phenomena in
the quantum out-of-equilibrium regime can be studied. One of the famous examples
is the stochastic cosmological particle production phenomena, which can be directly
mapped to a problem of solving Schrödinger equation with an impurity potential
within the framework of quantum mechanics, which is actually describing propaga-
tion of electrons inside an electrical wire in presence of an impurity or defect. Within
the framework of quantum statistical mechanics, instead of solving the Schrödinger
problem directly, or maybe solving the dynamical equation for the quantum me-
chanical fluctuations during the stochastic particle production, one can think about a
cumulative probability distribution function of this stochastic process, P(n, τ), which
depends on two crucial quantities, which are: the number density of the produced
particle and the associated time scale of the stochastic process. Using detailed physical
arguments and computation, one can explicitly show that this probability distribution
function, P(n, τ), satisfies the Fokker Planck equation, which is given by:
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At infinite temperature (β→ 0) :

1
µ

∂P(n, τ)

∂τ
= n(n + 1)

∂2P(n, τ)

∂n2︸ ︷︷ ︸
Diffusion

+ (1 + 2n)
∂P(n, τ)

∂n︸ ︷︷ ︸
Drift

, (1)

At finite temperature (β 6= 0) :

1
µ

∂P(n, τ)

∂τ
= n(n + 1)

∂2P(n, τ)

∂n2︸ ︷︷ ︸
Diffusion

+ (1 + 2n)
∂P(n, τ)

∂n︸ ︷︷ ︸
Drift

+ β

{
n(n + 1)

[
∂V(n)

∂n
∂P(n, τ)

∂n
+

∂2V(n)
∂n2 P(n, τ)

]
+ (2n + 1)

∂V(n)
∂n

P(n, τ)

}
︸ ︷︷ ︸

Finite temperature contribution

, (2)

where µ represents the mean stochastic particle production rate and V(n) associated
potential, which is only significant at finite temperature. By solving this set of equa-
tions in the presence of appropriate initial conditions, one can get to know about the
related profile of the stochastic process semi-classically in the present context. And
not only that, but one can also treat these versions of the Fokker Planck equation as
the semi-classical statistical moment generating equations because, by replacing the
profile function P(n, τ) with the appropriate moment generating function F (n), one
can compute all the moments. To serve this purpose, one needs to use the following
fundamental equation:

Statistical average of moment generator : 〈F (n)〉 :=
∫

dn F (n) P(n, τ), (3)

which physically represents the expectation value or the statistical average value
of the number density-dependent moment generating any arbitrary function F (n).
Further substituting the appropriate form of this function in the moment dependent
Fokker Planck equations, one can explicitly compute the expression for all the physically
relevant statistical moments, i.e., 〈n〉, 〈n2〉, · · · explicitly without explicitly knowing
about the particular mathematical structure of the profile of the related stochastic
dynamical process at infinite or finite temperature for a given structure of number
density potential function. These moments are extremely important in the present
context of study as all of them semi-classically compute the expressions for all the
equal time quantum correlation functions required to study the out-of-equilibrium
aspects, such as stochastic effects, disorder, random fluctuations [91], etc., both at
infinite and finite temperatures. See References [2,92–96], where all authors have
studied the physical impact of this formalism to describe out-of-equilibrium aspects
in various different contexts.
Now, let us speak about some applicability issues related to this particular formalism.
Since this formalism only allows us to know about the effect of the semi-classical
correlations at equal time that might be not very interesting when we are actually
thinking of doing the computation of the correlations and its rate of change at different
time scales associated with the quantum mechanical system of study. For example, if
we are interested in computing any general N-point semi-classical correlation function
as defined by the following expression:

〈
N

∏
i=1

n(τi)〉 = 〈n(τ1)n(τ2) · · · n(τN)〉 ∀ τi (i = 1, 2, · · · , N) contain disorder, (4)

then this particular formalism will not work, as using this formalism one cannot
capture the effect of disorder effect in the associated time scale of the system. On the
other hand, by following the usual tools and techniques, one can only compute the
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aforementioned N-point correlators either in time ordered sense, where τ1 > τ2 >
· · · > τN or in the anti-time ordered sense, where τ1 < τ2 < · · · < τN . So, from the
technical ground defining this N-point correlator, including the effect of disorder in
the time scale at any arbitrary temperature is also a very important topic of research,
and here comes the crucial role of the next formalism where we are allowed to define
and explicitly compute such quantum effects at the level of correlation functions.
Another important aspect we want to point out here is that the present formalism
does not bother with any Lagrangian or the Hamiltonian formulation of the associated
quantum mechanical system under consideration. So, if we are really interested
to know about the effect of time disordering in the expressions for the quantum
mechanical correlation functions, which are defined in terms of the fundamental
operators appearing in the quantum version of the Lagrangian or the Hamiltonian
of the system under consideration, and also want to explicitly know about time
variation with respect to different time scales associated with the system, which are
actually the source of time disordering, then, instead of the present formalism, it is
obviously technically correct and easier to think about the implementation of the
second formalism, which gives us the better understanding of time scale disordering.
In the next point, and in the rest of the paper, we will follow the second formalism to
compute the quantum correlation functions from the fundamental operators from the
quantum mechanical systems under study, which can explicitly capture the effect of
disordering in the time scale. Not only us, but also the present trend in the research,
suggests to make use of the next formalism to get better understanding of time
disordering phenomena in quantum mechanical system.

2. Formalism II:
The second approach is based on finding quantum correlation functions, including the
time disordering effect, and, throughout the paper, we have followed this formalism
to study effects of out-of-equilibrium physics in physical systems [89]. The present
computational methodology helps us to know more about the underlying unexplored
physical facts regarding the quantum mechanical aspects of various stochastic random
process where time ordering or anti-time ordering is not at all important, and, instead
of that, disorder in the time scale can be captured in the quantum correlations at very
early time scale. This method not only helps us to know about the early time behavior
of quantum correlations in the out-of-equilibrium regime of the quantum statistical
mechanics but also gives crucial information regarding the late time equilibrium
behavior of the quantum correlations of a specific quantum system. However, for all
the systems in nature, the above interpretation of the quantum mechanical aspects
of the randomness phenomena are not same. Based on all these types of quantum
systems, one can categorize the random time disordering phenomena as: A.) a chaotic
system which shows exponential growth in the quantum correlators, and B.) a non-
chaotic system which shows periodic or aperiodic or irregular random fluctuations
in the quantum correlators. The best possible theoretical measure of all such time
disorder averaging phenomena for various statistical ensembles, micro-canonical
and canonical ensembles, is described by out-of-time-ordered correlation (OTOC)
function within the framework of quantum statistical mechanics. Let us define a set
of operators, Oi(tj) ∀ i, j = 1, 2 with i 6= j or i = j possibilities. The time disorder
thermal average over statistical ensemble is described by the following expression:

C(ij)
N (t1, t2) := −〈

[
Oi(t1),Oj(t2)

]N〉β = −Tr
[
ρβ

[
Oi(t1),Oj(t2)

]N
]
∀ i, j = 1, 2, (5)

where the thermal density matrix ρβ is defined as:

ρβ :=
1
Z

exp(−βH) with Z = Tr[exp(−βH)]. (6)
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In the present context, C(ij)
N (t1, t2) represents three possible types of OTOC, out of

which only i 6= j possibility, which will describe only one OTOC, has been explored in
earlier works in this area. The other two OTOCs appearing from the i = j possibility
will be explicitly studied in this paper. The prime objective is to incorporate two
more type of OTOCs, along with the well known other OTOC, to study all of the
possible signatures of time disordering average from a quantum mechanical system.
Our expectation is all these three types of OTOCs are able to describe the more
general structure of stochastic randomness or any simple type of random process in
the quantum regime. This idea was revived by Kitaev, then followed by Maldacena,
Shenker, and Stanford (MSS) and many more in studying the quantum mechanical
signature of chaos, which is actually the i 6= j case in the above definition; but, the
mathematical structure of the other two OTOCs represented by the i = j case suggests
that any non-chaotic behavior, such as periodic or aperiodic time-dependent behavior,
any time-dependent growth in the correlators which is different from any type of
exponential growth, and any type of decaying behavior in the correlators, can be
explained in a better way compared to just studying the time-dependent behavior
from the well known OTOCs which are commonly used in the literature. So, in short,
to give a complete picture of any kind of time disordering phenomena, it is better to
study all these possible three types of OTOCs to finally comment on the properties of
any physical systems in quantum mechanical regime. A few other important things
we want to point out here for better understanding the structure of all these OTOCs
capturing the underlying physics of disordering averaging phenomena: First of all,
here, we have to mention that, in using the definition that we have provided in this
paper, we are able to compute three sets of 2N point OTOCs. Though, in the further
computation, we have restricted our study in the paper by considering N = 1 and
N = 2 cases, to study the general time disorder averaging process, one may study any
even multipoint (i.e., 2N point) correlation functions from the present definition. Now,
here, the N = 1 case is basically representing a non-zero UTCR and can be treated
as the building block of the full computation, as this particular case is mimicking
the computation of the Green’s function in presence of time disordering. More
technically, one can interpret that this contribution is made up of two disconnected
time disorder averaged thermal correlator. These disconnected contributions are
extremely significant if we wait for a large time scale; in literature, we usually identify
this time scale as a dissipation time scale on which one can explicitly factorize any
higher 2N point correlators in terms of the non-vanishing disconnected contributions.
For this specific reason, one can treat the N = 1 case result as the building block of
any higher 2N point thermal correlators. However, for most of the quantum systems,
the N = 1 case shows random but decaying behavior with respect to the associated
time scales which are explicitly appearing in the quantum operators of the theory. For
this reason, study of any N > 1 plays a significant role to give a better understanding
of the time disordering phenomena. For this purpose, next, we studied the N = 2
case, which represents the 4-point thermal correlator in the present context of study,
and one of the most significant quantity in the present day research of this area, which
can capture better information regarding the time disorder averaging compared to
the N = 1 case. In a future version of this work, we have a plan to extend the present
computation to study the physical implications of N > 2 quantum correlators to
better understand the time disorder averaging phenomena. Now, we will comment
on the technical side of the present formalism, using which one can explicitly compute
these OTOCs in the present context. First of all, we talk about the time-independent
Hamiltonians of a quantum system, which have their own eigenstates with a specific
energy eigenvalue spectrum. In this case, construction of the OTOCs describing
the time disorder thermal averaging over a canonical ensemble is described by two
crucial components, the Boltzmann factor on which the general eigenstate dependent
spectrum appears and also the temperature independent micro-canonical part of the
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OTOCs. At the end, we need to take the sum over all possible eigenstates, which
will finally give a simplified closed expressions for OTOCs in the present context.
Due to the appearance of the eigenstates from the time-independent Hamiltonian,
this particular procedure will reduce the job extremely to study the time-dependent
behavior of all the previously mentioned OTOCs that we have defined earlier in this
paper. In the rest of the paper, we followed this prescription, which is only valid
for time-independent Hamiltonian which have their own well-defined eigenstates.
For more details, see the rest of the computations and related discussion that we
studied in this paper. Most importantly, using this formalism, we can compute all of
these OTOCs in a very simple model-independent way. The other technique is more
complicated than the previously discussed one. In this case, one starts with a time-
dependent Hamiltonian of the theory and uses the well-known Schwinger Keldysh
formalism, which is a general path integral framework at finite temperature, for the
study of the time evolution of a quantum mechanical system, which is in the out-of-
equilibrium state. At the early time scale, once a small perturbation or a response is
provided to a quantum system, then it is described by a out-of-equilibrium process
within the framework of quantum statistical mechanics, and the present formalism
provides us the sufficient tools and techniques, using which one can compute the
expressions for the OTOCs. Not only that, the late time behavior of such an OTOC is
described by a saturation behavior for chaotic systems, from which one can compute
the various characteristic features of large time equilibrium behavior from these
OTOCs.

3. Formalism III:
The third approach is based on the circuit quantum complexity [97–103], which is
relatively a very new concept and physically defined as the minimum number of
unitary operators, commonly known as quantum gates, that are specifically required
to construct the desired target quantum state from a suitable reference quantum
mechanical state. In a more generalized physical prescription, quantum mechanical
complexity can serve as one of several strong diagnostics for probing the time disorder
averaging phenomena of a quantum mechanical system or quantum randomness.
The underlying physical concept of circuit complexity can essentially provide essential
information regarding various aspects of quantum mechanical randomness, such as
the concept of scrambling time, Lyapunov exponent, (The associated time scale when the
quantum circuit complexity starts to grow is usually identified to be the scrambling
time scale and, in the representative plot with respect to the time scale, particularly, the
magnitude of the slope of the linear portion of the curve is physically interpreted as
the Lyapunov exponent for the specific systems where the general quantum randomness
or the time disorder averaging phenomena is described by quantum chaos.), etc., which
are particularly the key features of the study of quantum mechanical chaos. One
can further compare between the physical outcomes of the two strongest measures
of quantum randomness, which are appearing from out-of-time-order correlators
(OTOCs) and the quantum mechanical circuit complexity, and comment further that,
for a specific quantum system which one is capturing, there is more information
regarding the description of quantum mechanical randomness.

In this paper, we generalize the study of OTOCs for investigating the phenomena of
quantum randomness in various Supersymmetric integrable quantum mechanical models.
The main motivation behind introducing the concept of Supersymmetry lies in the well-
established fact that, for any Supersymmetric quantum mechanical model, the original
Hamiltonian is always associated with a partner Hamiltonian, which, in general, is widely
different from its original counterpart in terms of eigenstates. Though not always, it is
possible that the quantum mechanical model under consideration attains vastly different
properties in the context of quantum randomness due to the introduction of Supersymmetry
within the framework of quantum mechanics. It is our expectation that this generalization
of the study of all the classes of OTOCs would provide an understanding about the signifi-
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cant role that Supersymmetry plays in modifying the randomness behavior of the quantum
mechanical models under investigation. Most importantly, from the present study, it will
be clear that the additional inclusion of symmetries in the form of Supersymmetry will all
affect—and, if so, then how much it will affect—the time disorder averaging phenomena
for a canonical and micro-canonical statistical ensemble studied within the framework of
out-of-equilibrium quantum statistical mechanics. In the eigenstate representation of the
OTOCs, we actually studied three types of OTOC in this paper, out of which one of them is
commonly studied in the literature, mostly used to explain the phenomena of quantum
mechanical randomness (not only chaotic behavior, but also a general feature including
any types of non-chaotic behavior), and the other two OTOCs that we have included in
this paper might not be completely independent physical information of each other, but it
is extremely important to capture the complete quantum mechanical effect in the quantum
mechanical correlation functions to give a more general physical interpretation and a com-
plete and detailed description of time disorder averaging phenomena for various quantum
statistical ensembles within the framework of Supersymmetric quantum mechanics. Now,
if we cannot able to find out the eigenstate representation of a given time-independent
Hamiltonian within the framework of Supersymmetry, then the prescribed methodology
for computing the general class of OTOCs in terms of the simplest eigenstate representation
will not work. This can happen for the physical systems which are actually described
by the time-dependent Hamiltonians. In that case, to compute all of these previously
mentioned general classes of OTOCs, one needs to use the quantum mechanical path inte-
gral generalization of the present framework, which is commonly described by Schwinger
Keldysh formalism, at finite temperature within the framework of Supersymmetric quantum
mechanics. The good news is physical outcomes of such a generalization also have not been
studied yet, but we have a future plan to look into at this in detail and are also hopeful that
we will get a non-trivial and better understanding of various Supersymmetric quantum
mechanical models out of these computations.

The mnemonic diagram shows the organization of the entire paper is appearing in
Figure 1. Also the out-of-time-ordered correlation (OTOC) team is featured in Figure 2.

Organization of the paper is as follows

• In Section 3, we provide a brief review of the concept of Supersymmetric Quantum
Mechanics (QM).

• In Section 4, we explain how the phenomenon of Quantum Randomness can be
diagnosed through the out of time ordered correlators.

• In Section 5, we provide a model-independent eigenstate representation of the 2- and
the 4-point correlators of all the three kinds defined equally well for any QM model
with well defined eigenstates.

• In Section 6, we explicitly calculate the correlators for the Supersymmetric Harmonic
Oscillator.

• In Section 7, we provide the numerical calculations of the correlators for the Super-
symmetric 1D infinite potnetial well.

• In Section 8, we discuss the semiclassical analogue results for the two Supersymmetric
QM models.

• Finally, we conclude with the most important observations from our analysis of the
considered Supersymmetric QM models.
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Figure 1. This mnemonic diagram shows the organization of the entire paper.
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Figure 2. The out-of-time-ordered correlation (OTOC) team.
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2. Lexicography

The lexicographic notations used in this paper is appearing in the Table 1, which
will be very helpful to follow various types of notations and its physical interpretations
frequently used in this paper.

Table 1. The lexicographic notations used in this paper.

Symbol Meaning

W(x) Superpotential

HSUSY Hamiltonian of the Supersymmetric Quantum mechanical model.

|Ψn〉 Eigenstate of the Supersymmetric QM model in the direct sum Hilbert space.

Enm = En − Em Energy difference between the nth and mth energy eigenstate.

y(1)m (t1, t2) Microcanonical 2-point correlator of first kind.

y(2)m (t1, t2) Microcanonical 2-point correlator of second kind.

y(3)m (t1, t2) Microcanonical 2-point correlator of third kind.

Y(1)(t1, t2) = − 〈[x(t1), p(t2)]〉β Un-normalized 2-point correlator of first kind.

Y(2)(t1, t2) = − 〈[x(t1), x(t2)]〉β Un-normalized 2-point correlator of second kind.

Y(3)(t1, t2) = − 〈[p(t1), p(t2)]〉β Un-normalized 2-point correlator of third kind.

c(1)m (t1, t2) Microcanonical 4-point correlator of first kind.

c(2)m (t1, t2) Microcanonical 4-point correlator of second kind.

c(3)m (t1, t2) Microcanonical 4-point correlator of third kind.

C(1)(t1, t2) = − 〈[x(t1), p(t2)]
2〉β Un-normalized 4-point canonical correlator of first kind.

C(2)(t1, t2) = − 〈[x(t1), x(t2)]
2〉β Un-normalized 4-point canonical correlator of second kind.

C(3)(t1, t2) = − 〈[p(t1), p(t2)]
2〉β Un-normalized 4-point canonical correlator of third kind.

Ỹ(1)(t1, t2) = − 〈[x(t1),p(t2)]〉β
〈x(t1)x(t1)〉β〈p(t2)p(t2)〉β

Normalized 2-point correlator of first kind.

Ỹ(2)(t1, t2) = − 〈[x(t1),x(t2)]〉β
〈x(t1)x(t1)〉β〈x(t2)x(t2)〉β

Normalized 2-point correlator of second kind.

Ỹ(3)(t1, t2) = − 〈[p(t1),p(t2)]〉β
〈p(t1)p(t1)〉β〈p(t2)p(t2)〉β

Normalized 2-point correlator of third kind.

C̃(1)(t1, t2) = − 〈[x(t1),p(t2)]2〉β
〈x(t1)x(t1)〉β〈p(t2)p(t2)〉β

Normalized 4-point correlator of first kind.

C̃(2)(t1, t2) = − 〈[x(t1),x(t2)]2〉β
〈x(t1)x(t1)〉β〈x(t2)x(t2)〉β

Normalized 4-point correlator of second kind.

C̃(3)(t1, t2) = − 〈[p(t1),p(t2)]2〉β
〈p(t1)p(t1)〉β〈p(t2)p(t2)〉β

Normalized 4-point correlator of third kind.

3. A Short Review of Supersymmetric Quantum Mechanics

The theory of Supersymmetric Quantum Mechanics [104–108] relates quantum eigen-
functions and the corresponding eigenvalues between two partner Hamiltonians through
an intertwining relationship using the so-called charge operators. It generally uses the
technique of factorizing the Hamiltonian in terms of the intertwining operators, hence
determining the superpotential using the well known Riccati equation. The idea of fac-
torizing generally allows one to express the superpotential in terms of the ground state
wave-function of the original Hamiltonian of the quantum mechanical model under consid-
eration. The process of factorization is mathematically described by the following equation:

H1 = A† A, (7)
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where A and A† are the intertwining operators which are defined from the superpotential as:

A =
1√
2

d
dx

+ W(x) ; A† = − 1√
2

d
dx

+ W(x). (8)

Within the framework of Supersymmetry, the ground state energy is usually taken to be
zero, which is well justified because it is only the relative energy difference that matters.
For a zero energy ground state, the Schrödinger equation can be written as:

H1 |Ψ0〉 = 0. (9)

Substituting the expressions for A and A† in the above equation it is not very hard to
derive the Riccati equation, which further gives a way of writing the potential in terms of
the superpotential given by the following expression:

V1(x) = W2(x)− 1√
2

W ′(x), (10)

where ′ corresponds to d/dx in the above equation. It is often an overrated fact that one
needs to know the form of the potential guiding the Hamiltonian to have an idea about the
wave functions of the quantum mechanical system, and the fact that the knowledge of the
ground state wave function allows one to exactly know the potential associated with the
system is overlooked. However, in Supersymmetric quantum mechanics, one generally
utilizes this unappreciated fact to construct the potential from the known ground state
wave function with zero modes:

W(x) = − 1√
2m

ψ′0(x)
ψ0(x)

. (11)

The knowledge of superpotential allows one to determine the Supersymmetric partner
potential via the following equation:

V2(x) = W2(x) +
1√
2m

W ′(x). (12)

The partner Hamiltonian is constructed by reversing the order of the intertwining operators
used in the factorization of the original Hamiltonian. The energy eigenvalues and the
eigenstates of the original and the partner Hamiltonian are not independent of each other,
and that is where the beauty of Supersymmetry lies. Knowing the original Hamiltonian and
its ground state, one can easily determine the energy spectrum of the partner Hamiltonian.
The eigenvalues of H1 (original Hamiltonian) and H2 (partner Hamiltonian) are related via
the following equation:

E(2)
n = E(1)

n+1 ; E(1)
0 = 0 ∀ n = 0, 1, 2, . . . (13)

It is easy to show that the knowledge of the eigenfunctions of H1 can be used to derive the
eigenfunctions of H2 using the A operator and the eigenfunctions of H1 from that of H2
using the A† operator. The role of the operators A and A†, apart from the conversion of an
eigenfunction of the original Hamiltonian to that of its partner Hamiltonian with the same
energy, also destroys or creates one node in the eigenfunction. This justifies the absence of
the zero energy or the ground energy state of the partner Hamiltonian. One can put this
argument simply by stating that the operator A converts an energy state of the original
Hamiltonian into a lower energy state of the partner Hamiltonian keeping the energy value
of the state constant. A †, on the other hand, does the opposite conversion, i.e., takes an
energy state of the partner Hamiltonian and converts it into an higher energy state of the
original Hamiltonian, keeping the energy eigenvalue fixed.

A Supersymmetric quantum mechanical model is generally described by a Hamilto-
nian having the following form:
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HSUSY =

(
H1 0
0 H2

)
. (14)

In general, for such a Hamiltonian, a quantum state is represented by:

|Ψn〉T =
(
|ψ(1)〉 |ψ(2)〉

)
, (15)

where, |ψ(1)〉 and |ψ(2)〉 are the wave functions of the original and the partner Hamiltonian,
respectively.

The prime objective of this paper is to provide an eigenstate representation of the
desired OTOCs that we have already defined in the introduction, using which we study
the various well known quantum mechanical models in the context of Supersymmetry
to study the general aspects of time disorder averaging phenomena. With this aim, one
would generally look for an eigenstate of the Hamiltonian under inspection. Remembering
the relation between the energy eigenvalues and eigenstates of the original and the partner
Hamiltonian, it can be easily verified that the wave function given by Equation (15) is
not an eigenstate of the Hamiltonian given in Equation (14). We, therefore, take the wave
function of the Hamiltonian to be of the form

|Ψn〉T =
1√
2

(
|ψ(1)〉 |ψ(2)〉

)
, (16)

which indeed represents a normalized eigenfunction of the Hamiltonian of the Supersym-
metric quantum mechanical systems considered in this work.

HSUSY |Ψn〉 =
1√
2

(
H1 0
0 H2

)( |ψ(1)
n 〉

|ψ(2)
n−1〉

)
=

1√
2

(
E(1)

n |ψ(1)
n 〉

E(2)
n−1|ψ

(2)
n−1〉

)
=

E(1)
n√
2

(
|ψ(1)

n 〉
|ψ(2)

n−1〉

)
,

where we have used the relation E(2)
n−1 = E(1)

n . If we use Equation (15), then |Ψn〉 does not
remain an eigenstate of HSUSY, as we show below.

HSUSY |Ψn〉 =
(

H1 0
0 H2

)(|ψ(1)
n 〉
|ψ(2)

n 〉

)
=

(
E(1)

n |ψ(1)
n 〉

E(2)
n |ψ(2)

n 〉

)
.

Since the energy associated with the nth energy eigenstate of the original Hamiltonian, H1

is not equal to that of its associated partner Hamiltonian H2, i.e., E(1)
n 6= E(2)

n , |Ψn〉 fails to
be an eigenstate of HSUSY.

4. General Remarks on Time Disorder Averaging and Thermal OTOCs

Quantum randomness, using which we have the prime objective to technically demon-
strate the time disorder averaging phenomena, is actually a very broad topic of research
in theoretical physics, and there are many ways and possibilities, using which one can
explicitly quantify this phenomena in the quantum regime. Quantum correlators of dif-
ferent orders are one of them. When a quantum state evolves to reach equilibrium at the
late time scales, in that case, the overall amplitude of the correlators also evolves with
the evolutionary time scales, which are usually described in terms of the fundamental
quantum operators, and the time evolution of these correlators can show the presence of
time disorder averaging in the form of chaotic or non-chaotic, periodic, or aperiodic ran-
dom behavior in the quantum mechanical system under study. Thermal average over the
canonical statistical ensemble of a quantum operator is a very powerful technique, using
which one can explicitly study the time-dependent exponential growth (chaotic) or some
other time-dependent non-chaotic random behavior of an operator for a quantum system
that is in out of equilibrium after giving an external response. For a very long time, it was
not very clear how one can actually quantify these quantum correlation functions within
the framework of out-of-equilibrium quantum statistical physics. Following the previous
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set of works, the present work helps us to quantify, as well as to physically understand,
the impact of them in the present context. In this paper, we are actually interested in three
specific kinds of OTOCs, which are described by six sets of correlators, given by:

1. 2-point OTOCs: 〈[x(t1), x(t2)]〉, 〈[p(t1), p(t2)]〉, 〈[x(t1), p(t2)]〉,
2. 4-point OTOCs: 〈[x(t1), x(t2)]

2〉, 〈[p(t1), p(t2)]
2〉, 〈[x(t1), p(t2)]

2〉,
where x is the quantum position operator, p is the associated canonically conjugate mo-
mentum, and, most importantly, both the quantum operators are defined at different time
scales, which is one of the prime requirements in studying the effect of time disorder
averaging phenomena through the above set of OTOCs. In addition, it is important to
note that the symbol 〈· · · 〉 actually represents the thermal average of a time-dependent
quantum operator over a canonical ensemble within the framework of quantum mechanics,
which is technically defined as:

〈O(t)〉 :=
1

Z(t)
Tr[exp(−βH)O(t)] = Tr

[
ρβO(t)

]
, (17)

where the partition function Z and thermal density matrix operator ρβ in terms of a quan-
tum system Hamiltonian, H, are already defined in the introduction of this paper. Since we
are dealing with quantum mechanical operators, using which we are trying to understand
the impact of random features in the quantum regime, it is quite expected to start with the
fact that thermal 1-point function of the position operator x and momentum operator p
defined at a specific time scale are zero, which can be technically demonstrated as:

〈x(t)〉 = 0, 〈p(t)〉 = 0, (18)

where t is the associated time scale on which both of the quantum operators are evolving.
For this specific reason, the explicit study and the computation of these 1-point functions
are not at all important in the present context of discussion. On the other hand, due to the
time translational symmetry in these thermal correlators, which is actually described by
the well known Kubo Martin Schwinger condition, all the odd point OTOCs appearing in
the present context will be trivially zero and, for that reason, not the object of interest in the
present context of study. This can be further technically demonstrated as:

Odd x correlator :

〈x(t1)x(t2)x(t3) · · · odd number of terms〉 = 0, (19)

Odd p correlator :

〈p(t1)p(t2)p(t3) · · · odd number of terms〉 = 0, (20)

One p & even x correlator :

〈p(t1)x(t2)x(t3) · · · odd number of terms〉 = 0, (21)

One x & even p correlator :

〈x(t1)p(t2)p(t3) · · · odd number of terms〉 = 0. (22)

This implies that we are only left with all even order OTOCs, out of which, in this paper,
we are explicitly computing the physical outcomes from the six sets of time-dependent
correlators, described by the previously mentioned 2-point and the 4-point of all possible
OTOCs.

Among these correlators, two are made of different operators, which will show the
perturbation of one operator measured at one time scale to the other measured at a different
time, and vice versa. The other four operators are the new sets of 2- and 4-point correlators
that are defined in terms of the same quantum operators, which are basically capturing
the quantum effect of the self-correlation of one operator on itself having any arbitrary
time-dependent profile in general to describe the phenomena of time disordering within the
framework of quantum mechanics. In specific cases, it may happen that these newly defined
operators show exponential growth or some other kind of growth, which is periodic or
aperiodic, in the corresponding associated time scales of the quantum mechanical operator
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on which we are interested in the present context. In a more general context, one can
see, by studying different kinds of physical systems available in the literature, where the
2-point self-correlation will decay exponentially with an associated time scale of td, widely
known as “dissipation time scale”. This particular time scale is playing the role of transition
scale in the present context after reaching that the 4-point correlators can be factorized
into the product of two 2-point correlation functions representing disconnected diagrams
within the framework of quantum field theory. In addition, it is important to note that,
here, at the “dissipation time scale”, all other terms are exponentially suppressed by the
factor e−t/td , which will completely disappear from the factorized version of the 4-point
correlators, on which we are interested in this paper, in the large time limit given by t� td
with t → ∞. In usual prescription of the “dissipation time scale”, td is identified with the
inverse temperature β, i.e., td ∼ β = 1/T, where we use Boltzmann constant kB = 1, and
T physically represents the equilibrium temperature of the quantum statistical ensemble
on which we are interested in. So, one can translate the large time limit in terms of the
associated equilibrium temperature as tT � 1, which is not obviously true for a zero
temperature case but can be justifiable in any (small or large) temperature of the system
under consideration. For example, we now look into a specific 4-point thermal correlation
function at the vicinity of the previously mentioned dissipation time scale, around which one
can factorize it in the following specific form:

〈x(t1)x(t1)p(t2)p(t2)〉︸ ︷︷ ︸
Unequal time 4−point correlator

≈ 〈x(t1)x(t1)〉︸ ︷︷ ︸
Equal time 2−point correlator

〈p(t2)p(t2)〉︸ ︷︷ ︸
Equal time 2−point correlator

+ O(e−t/td)︸ ︷︷ ︸
Subdominant decaying contribution

, (23)

where, in this aforementioned factorization,O(e−t/td) are the higher order correction terms,
which are actually sub-dominant at the vicinity of the dissipation time scale. One more thing
we can observe from the aforementioned factorization is that the individual contributions
of the 2-point contributions do not mix up the time scales, and, for this reason, they can
be written in terms of the product of two equal time 2-point correlators. In addition, for
this particular example, when we are thinking of doing the computation with two different
operators, after doing the factorization, one can easily observe that the two different
operators do not mix with each other at the level of 2-point correlators. So, we are mainly
interested in the terms that cannot be written in time ordered form, and those terms provide
more insight to the randomness present in a system. Now, we would like to go one step
further and normalize the OTOC, which is basically related to this factorization process of
the 4-point correlators in terms disconnected equal time 2-point contributions. The process
of normalization actually helps us to reduce the unwanted fluctuations from the computed
OTOCs, which further allows us to give a clearer picture of the time-dependent behavior
of the desired OTOCs in which we are interested in this paper. We do not normalize the
2-point correlation functions as they are the main building blocks of our computation of
OTOCs; hence, we only normalize the 4-point OTOC as given by the following expression.
We can write − 〈[x(t1), p(t2)]

2〉 in the following simplified mathematical form:

− 〈[x(t1), p(t2)]
2〉 = 2{[〈x(t1)x(t1)p(t2)p(t2)〉]− Re[〈x(t1)p(t2)x(t1)p(t2)〉]}. (24)

After imposiing the previously mentioned constrained obtained at the vicinity of the
dissipation time scale, one can further simplify the expression for the mentioned correlator
as given by the following expression:

− 〈[x(t1), p(t2)]
2〉 = 2{〈x(t1)x(t1)〉 〈p(t2)p(t2)〉 − Re[〈x(t1)p(t2)x(t1)p(t2)〉]}+O(e−t/td). (25)

Now, we normalize this aforementioned quantity using two different equal time
2-point correlators, which we have obtained from the factorization in terms of the dis-
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connected pieces. Consequently, we get the following simplified form of the normalized
OTOC:

C(1)(t1, t2) =
− 〈[x(t1), p(t2)]

2〉
〈x(t1)x(t1)〉 〈p(t2)p(t2)〉

= 2
[

1− Re[〈x(t1)p(t2)x(t1)p(t2)〉]
〈x(t1)x(t1)〉 〈p(t2)p(t2)〉

]
. (26)

The first expression in Equation (26) is a universal contribution, which will always appear
for the quantum systems where the previously mentioned factorization process works at
the vicinity of the dissipation time scale. On the other hand, the second term of Equation (26)
is basically representing a normalized version of the previously mentioned 4-point function,
which can only appear after dissipation time. The other two non-trivial OTOCs we are
also interested in this paper are of the form − 〈[x(t1), x(t2)]

2〉 and − 〈[p(t1), p(t2)]
2〉, and,

by following the same logical argument at the vicinity of the dissipation time scale, we can
normalize them, as well, and write them in the following simplified mathematical forms:

C(2)(t1, t2) =
− 〈[x(t1), x(t2)]

2〉
〈x(t1)x(t1)〉 〈x(t2)x(t2)〉

= 2
[

1− Re[〈x(t1)x(t2)x(t1)x(t2)〉]
〈x(t1)x(t1)〉 〈x(t2)x(t2)〉

]
, (27)

and

C(3)(t1, t2) =
− 〈[p(t1), p(t2)]

2〉
〈p(t1)p(t1)〉 〈p(t2)p(t2)〉

= 2
[

1− Re[〈p(t1)p(t2)p(t1)p(t2)〉]
〈p(t1)p(t1)〉 〈p(t2)p(t2)〉

]
. (28)

Now, since these OTOCs acts as a theoretical probe to know about the generic chaotic
or non-chaotic time-dependent behavior of quantum system, it has to satisfy the following
constraints in terms of the 4-point correlations, which survived in the vicinity of the
previously introduced dissipation time scale, as given by:

Re[〈x(t1)p(t2)x(t1)p(t2)〉]
〈x(t1)x(t1)〉 〈p(t2)p(t2)〉

=


1−A(1)

12 eλ1

(
t1+t2

2

)
with λ1 ≤

2π

β1
, Chaotic

1−B(1)12 f1(t1, t2). Non-Chaotic

(29)

Re[〈x(t1)p(t2)x(t1)p(t2)〉]
〈x(t1)x(t1)〉 〈p(t2)p(t2)〉

=


1−A(2)

12 eλ2

(
t1+t2

2

)
with λ2 ≤

2π

β2
, Chaotic

1−B(2)12 f2(t1, t2). Non-Chaotic

(30)

Re[〈p(t1)p(t2)p(t1)p(t2)〉]
〈p(t1)p(t1)〉 〈p(t2)p(t2)〉

=


1−A(3)

12 eλ3

(
t1+t2

2

)
with λ3 ≤

2π

β3
, Chaotic

1−B(3)12 f3(t1, t2). Non-Chaotic

(31)

The aforementioned expression captures all the possibilities which one can observe in
different quantum mechanical systems available in nature. Here, A(1)

12 , A(2)
12 , and A(3)

12 are
the quantum mechanical model-dependent pre-factors which show exponential growth
(chaotic behavior) in the 4-point correlator with respect to the time scales associated with
the system under study. On the other hand, B(1)12 , B(2)12 , and B(3)12 are the quantum mechan-
ical model-dependent pre-factors which show any type of time-dependent fluctuations
(non-chaotic behavior). In addition, for the general prescription, the quantum Lyapunov
exponents, λ1, λ2, and λ3, are not the same for which the MSS bound on quantum chaos
from these three cases are also not the same. Consequently, the equilibrium saturation
temperatures at the late time scales from these three OTOCs also differ from each other,
i.e., β1 6= β2 6= β3. In addition, it is important to point out that the mathematical structure
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of the time-dependent functions f1(t1, t2), f2(t1, t2), and f3(t1, t2) are also different for
general quantum mechanical set ups. When we are considering the quantum mechanical
models described by time-dependent Hamiltonians, in that case, these expectations and all
sorts of predictions work very well. However, when we are thinking about particularly
quantum mechanical models which are described by the time-independent Hamiltonian
and the eigenstate representation of OTOCs, in that situation, one might have further
simplifications. There might be a possibility to have an underlying connection between the
two functions f2(t1, t2) and f3(t1, t2) in the eigenstate representation of the OTOCs in the
non-chaotic case, and, for this reason, they might not be capturing completely independent
information of the time disorder averaging. On the other hand, in the chaotic case, if
three of the OTOCs independently show exponential growth in the time scale, the quantum
Lyapunov exponents and the related equilibrium saturation temperatures are not at all same,
even in the eigenstate representation. But, if the first OTOC is showing the chaotic behavior,
and other two are not, in that case, the previous connection between the two functions
f2(t1, t2) and f3(t1, t2) holds good in the eigenstate representation.

In Figures 3 and 4, we present the diagrammatic representations of all types of OTOCs in
which we are interested in this paper. Particularly, in Figure 3, we explicitly depict the possi-
ble 2-point OTOCs. Here, we have three possibilities, which are given by − 〈[x(t1), p(t2)]〉,
− 〈[x(t1), x(t2)]〉, and − 〈[p(t1), p(t2)]〉. Since each OTOC is made up of a commutator
bracket in the quantum mechanical description, for each case, we have two different contri-
butions having overall opposite signatures. Further, to draw the representative diagrams,
we need to consider the flow of time scale from t1 to t2 or t2 to t1. In all the representative
diagrams, the two vertical solid thick lines correspond to the specific time slice having time
t = t1 and t = t2, respectively. It is understandable, from the mathematical structure of the
mentioned 2-point OTOCs, that, since the correlator involves only two time scales, that is
why drawing two vertical parallel lines are physically justifiable in the present context. Be-
cause of the previously mentioned flow of time scale from t1 to t2 or t2 to t1 for each 2-point
OTOCs, we have two possible diagrams. So, as a whole, for the 2-point OTOCs, one can
draw six possibilities. In addition, by studying each of the diagrammatic representations,
we can also observe that each of the contributions of the 2-point functions are represented
by separate lines with representative arrows which completely depend on the structure of
the individual 2-point correlators. To differentiate between these two contributions, we
have used red dotted line and blue solid line in the representative diagrams. Further, in
Figure 4, we have explicitly shown the possible 4-point OTOCs in the present context of
discussion. Here, we can draw three possible representative diagrams, which are coming
from the three possible OTOCs, as given by, − 〈[x(t1), p(t2)]

2〉, − 〈[x(t1), x(t2)]
2〉, and

− 〈[p(t1), p(t2)]
2〉. Here, as we can see that each of the OTOCs is made up of commutator

bracket squared contributions in the quantum description, for each case, we have four
contributions if we expand them. Out of these four 4-point thermal correlators, two of
them have a positive signature, and other two have an overall negative signature in the
front of each contribution. Just like the 2-point OTOCs, here, we also need to consider the
flow of time scale from t1 to t2 or from t2 to t1. It is understandable, from the mathematical
structure of the mentioned 4-point OTOCs, that, because the correlator involves only two
time scales instead of four different time scales, is why drawing two vertical parallel lines to
represent the time slice at t = t1 and t = t2 are physically justifiable in the present context.
Now, because of the time scale flow, each of the 4-point OTOCs have two contributions in
the diagrammatic representation. In addition, for a given time flow, we have four possible
diagrams, which we show in a single diagram, for the sake of simplicity. So, as a whole, to
consider both the possibilities of the time flow, we have cumulatively 24 diagrams from
the 4-point OTOCs. Like the previous case, here, to differentiate between each of the indi-
vidual terms for a given OTOC with a specified time flow, we have also used a red dotted
line, blue dotted line, and red thick line, respectively, in the representative diagrammatic
representations. Last but not least, here, it is important to point that these set of diagrams
are the simplest version of the well known Feynman diagrams as appearing in the context
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of quantum field theory literature. However, within the present framework, we do not
have exactly similar Feynman diagrams, but, to understand the structure of the previously
mentioned OTOCs, the present version of the diagrammatic representations play a very
crucial role. All of the arrows appearing in all the diagrams represent an underlying time
disordering upon which we have to take the final average in the present context.

(a) Correlator: − 〈[x(t1), p(t2)]〉 (b) Correlator: − 〈[x(t1), x(t2)]〉 (c) Correlator: − 〈[p(t1), p(t2)]〉

(d) Correlator: − 〈[x(t1), p(t2)]〉 (e) Correlator: − 〈[x(t1), x(t2)]〉 (f) Correlator: − 〈[p(t1), p(t2)]〉

Figure 3. Diagrammatic representation of all possible 2-point OTOCs.
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(a) Correlator: − 〈[x(t1), p(t2)]
2〉 (b) Correlator: − 〈[x(t1), x(t2)]

2〉 (c) Correlator: − 〈[p(t1), p(t2)]
2〉

(d) Correlator: − 〈[x(t1), p(t2)]
2〉 (e) Correlator: − 〈[x(t1), x(t2)]

2〉 (f) Correlator: − 〈[p(t1), p(t2)]
2〉

Figure 4. Diagrammatic representation of all possible 4-point OTOCs.

5. Eigenstate Representation of thermal OTOCs in Supersymmetric Quantum
Mechanics

In this section, our prime objective is to study various thermal correlators, OTOCs,
and see how they can be expressed in a model-independent manner in the framework of
quantum mechanics. We also demarcate clearly the effect of Supersymmetry and how it
modifies the functional form of the correlators at the end.

To perform this explicit computation, we will follow the prescription outlined in Refer-
ence [90] to compute all the thermal OTOCs we have mentioned in the previous section of
this paper (Reference [90], particularly, is extremely important for our computation because,
here, the authors first have performed the computation of the first OTOC, − 〈[x(t1), p(0)]2〉
(though, in our computation, we have generalized this to − 〈[x(t1), p(t2)]

2〉) in the eigen-
state formalism for a time-independent quantum mechanical model-independent Hamilto-
nian.). According to this prescription, for any time-independent Hamiltonian, we define
the expectation value of quantum mechanical operators as thermal expectation value in the
present context, which one can easily apply for a canonical quantum statistical ensemble.
Let us say a quantum mechanical time-dependent operator A(t) is defined on a specific
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Hilbert Space H with an associated Hamiltonian H (which is time-independent, obviously)
and the eigenvalues (eigen energy spectrum) of H corresponding to a infinite tower of
eigenkets |Ψn〉 ∀ n = 0, 1, · · · , ∞, where the corresponding energy levels are character-
ized by the index n. This energy eigenspectrum is represented by En ∀ n = 0, 1, · · · , ∞.
Then, for a canonical quantum statistical ensemble, the thermal expectation value of the
quantum mechanical time-dependent operator A(t) at inverse temperature β, considering
the Boltzmann constant kB = 1, is defined as:

〈A(t)〉β =
1
Z

Tr
[
e−βH A(t)

]
,

where the thermal partition function is represented by Z such that Z = Tr
[
e−βH]. Here, our

job is to represent this mathematical trace operation in terms of the sum over all possible
eigenstates starting from the ground state (n = 0). Once we are able to express this
operation clearly, then the rest of the story is very typical, and, following this, one can easily
compute all of the mentioned OTOCs in the eigenstate representation. It pays to use the
thermal representation for expectation values of quantum mechanical operators because
there are many physical models and physically relevant toy models which have well-
studied structure of time-independent Hamiltonians; hence, we can utilize this property to
give an eigenstate representation to the correlators as presented elaborately in this work.
Consequently, the analysis presented in this paper is physically justifiable, applicable, and
believable, as such, to quantum mechanical models with a well-defined Hamiltonian. In
the eigenstate representation, the thermal expectation value of a quantum mechanical
time-dependent operator A(t) can be written as:

〈A(t)〉β =
1
Z

Tr
[

e−βH A(t) ∑
n
|Ψn〉 〈Ψn|︸ ︷︷ ︸

Identity operator

]
=

∑
n

e−βEn 〈Ψn|A(t)|Ψn〉

∑
n

e−βEn
.

Here, we work in the Heisenberg Picture, where the operators evolve with time, as given by
OH(t) = eiHt OS(0) e−iHt, where OH(t) represents operator OH at time scale t in Heisen-
berg picture and OS(0) represents its Schrödinger picture representation at all time scales
since operators do not evolve with time in Schrödinger picture. The latter is denoted as OS
to simplify the notation and make it easier to read.

What do we learn here?:
Thermal Expectation Value: 〈A(t)〉β =

1
Z

Tr
[
e−βH A(t)

]
(32)

Heisenberg Repsentation of Operators: OH(t) = eiHt OS e−iHt (33)

Eigenstate Rep. of Thermal Exp.: 〈A(t)〉β =
∑
n

e−βEn 〈Ψn|A(t)|Ψn〉

∑
n

e−βEn
(34)

To demonstrate the computation further, let us consider a general time-independent
Hamiltonian of the following form:

H(qi, pi) =
N

∑
i=1

p2
i + V(qi), (35)

where we have used the fact that the mass of all N number of particles are the same and
given by mi = m = 1/2 to make the further computation simpler. Now, here, it is very easy
to prove the following relation (see Reference [90]), which relates the quantum mechanical
momentum operator matrix elements with that of the position and the energy operator
matrix elements by the following expression:
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pkm =
i
2

Ekmxkm. (36)

Furthermore, the role Supersymmetry plays in modification of non-Supersymmetric quan-
tum mechanical observables can be seen vis-a-vis the matrix elements of observables. Let
us consider a simple matrix element for the position operator x. In the following chart,
we show exactly how the matrix elements in non-Supersymmetric quantum mechanical
theories and Supersymmetric quantum mechanical theories are connected:

xmk = 〈Ψm|x|Ψk〉 =
1
2

 〈ψB
m|x|ψB

k 〉︸ ︷︷ ︸
bosonic part

non-SUSY & SUSY

+ 〈ψF
m−1|x|ψF

k−1〉︸ ︷︷ ︸
fermionic part
SUSY-only

︸ ︷︷ ︸
neither m/k is ground state

switch off−−−−−−→
SUSY

〈ψB
m|x|ψB

k 〉 ,

SUSY−−−−−−−−−→
if one of m/k is
ground state

1√
2
〈ψB

m|x|ψB
k 〉 ,

SUSY−−−−−−−−−→
both m & k are
ground state

〈ψB
m|x|ψB

k 〉 .

The modifications due to Supersymmetry can clearly be traced back to the fact that we
could formulate a wave function of total Hamiltonian as given in Equation (16) from the
two partner Hamiltonians H1 and H2, as appearing from the bosonic and the fermion
sectors in Supersymmetry. In fact, it is the factorization property of H1 and H2 which
generalizes to a more powerful setting in terms of Supersymmetric generalized description
of the theory under consideration. One might consider the power of the Supersymmetric
description in two ways:
1. First, one can merely consider it as a tool to solve non-trivial potentials by means of

solutions of their partner ones, provided that the partner ones are easily solvable.
2. Secondly, one can consider it as a more unifying description of a more beautiful theory

based on the principles of symmetries of nature. It is this second philosophy which
has been considered in this work.

We will consider the following six correlators in this work as stated below:

Correlation Functions

2-point Correlator: Y(1)(t1, t2) = − 〈[x(t1), p(t2)]〉β (37)

2-point Correlator: Y(2)(t1, t2) = − 〈[x(t1), x(t2)]〉β (38)

2-point Correlator: Y(3)(t1, t2) = − 〈[p(t1), p(t2)]〉β (39)

4-point Correlator: C(1)(t1, t2) = − 〈[x(t1), p(t2)]
2〉β (40)

4-point Correlator: C(2)(t1, t2) = − 〈[x(t1), x(t2)]
2〉β (41)

4-point Correlator: C(3)(t1, t2) = − 〈[p(t1), p(t2)]
2〉β (42)

We will also consider normalized 4-point Correlation Functions, and the discussion per-
taining to those is provided in the previous section:
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Normalized 4-point Correlation Functions

Normalized 4-point Correlator: C̃(1)(t1, t2) =
C(1)(t1, t2)

〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β

=
− 〈[x(t1), p(t2)]

2〉β
〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β

(43)

Normalized 4-point Correlator: C̃(2)(t1, t2) =
C(2)(t1, t2)

〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β

=
− 〈[x(t1), x(t2)]

2〉β
〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β

(44)

Normalized 4-point Correlator: C̃(3)(t1, t2) =
C(3)(t1, t2)

〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β

=
− 〈[p(t1), p(t2)]

2〉β
〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β

(45)

5.1. Partition Function from Supersymmetric Quantum Mechanics

In the context of Supersymmetric quantum mechanics, the partition function, Z, can be
can be expressed in terms of the eigenstate by the following expression:

Z = Tr[e−βHSUSY ] = ∑
m
〈Ψm|e−βHSUSY |Ψm〉 .

Here, the underlying relation between Supersymmetric total system and the component (or part-
ner) systems, as discussed in Section 3, is established through the following relations:

HSUSY =

(
H1 0
0 H2

)
=⇒ e−βHSUSY =

(
e−βH1 0

0 e−βH2

)
,

|Ψm〉T =
1√
2

(
|ψ(1)

m 〉 |ψ(2)
m−1〉

)
; |Ψ0〉T =

(
|ψ(1)

m 〉 0
)

.

So, the Supersymmetric quantum partition function in the eigenstate representation can be
explicitly written as:

Z = 〈ψ(1)
m |e−βH1 |ψ(1)

m 〉
∣∣∣∣
m=0

+
1
2 ∑

m>0

{
〈ψ(1)

m |e−βH1 |ψ(1)
m 〉+ 〈ψ(2)

m−1|e−βH2 |ψ(2)
m−1〉

}
,

= e−βE(1)
m 〈ψ(1)

m |ψ(1)
m 〉

∣∣∣∣
m=0︸ ︷︷ ︸

Ground State
Contribution

+
1
2 ∑

m>0

{
e−βE(1)

m 〈ψ(1)
m |ψ(1)

m 〉+ e−βE(2)
m−1 〈ψ(2)

m−1|ψ
(2)
m−1〉

}
.

As shown in Section 3, in Supersymmetric quantum mechanical theories, we have the
following constraint:

Em = E(1)
m = E(2)

m−1, (46)

with the requirement that the ground state is eigenstate of H1 only, and all other states
are doubly degenerate. It is also important to note that the ground state always has zero
energy eigenvalue. It is to be noted that Em refers to the energy eigenvalue of the total
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Hamiltonian HSUSY. Using this set of requirements, the aforementioned expression for
the quantum partition function within the framework of Supersymmetry can be further
simplified as:

Z = 1 +
1
2 ∑

m>0

{
e−βEm

(
〈ψ(1)

m |ψ(1)
m 〉+ 〈ψ(2)

m−1|ψ
(2)
m−1〉

)}
= 1 + ∑

m>0
e−βEm , (47)

which is different compared to usual quantum mechanics results without Supersymmetry,
as in the present context ground state energy eigenvalue E0 = 0, which is not, in general,
zero for the other case. So, this implies that, if we separately write down the contribution
from the ground state and from all other excited states, instead of writing sum over all
eigenstates together, then one can clearly visualize the difference between the results
obtained for quantum partition function in the eigenstate representation in both the cases.
In the next section, we will provide the summary of all the obtained general model-
independent results in which we will implement the aforementioned fact to explicitly show
that our obtained results for all types of OTOCs in the framework of Supersymmetric
quantum mechanics are different compared to the results obtained from usual quantum
mechanics without Supersymmetry.

5.2. Representation of 2-Point OTOC: Y(1)(t1, t2)

The first 2-point OTOC is given by the thermal average of the operator −[x(t1), p(t2)],
which is described in the eigenstate representation as:

Y(1)(t1, t2) : = − 〈[x(t1), p(t2)]〉β = −
∑
m

e−βEm 〈Ψm|[x(t1), p(t2)]|Ψm〉(
1 + ∑

m>0
e−βEm

) ..

Using Equation (33) for Heisenberg representation for x(t1) and p(t2) and inserting the
identities between the operators, this 2-point correlator can be written in terms of the
micro-canonical correlator, which shows the temperature-independent behavior of the
system:

Y(1)(t1, t2) =
∑
m

e−βEm y(1)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (48)

where the micro-canonical 2-point OTOC is defined as:

y(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]|Ψm〉 . (49)

Expanding the commutator in the definition of the micro-canonical correlator, and using
the above relation with appropriate insertion of identities between the operators, it can be
shown that the eigenstate representation of the micro-canonical correlator y(1)m (t1, t2) takes
the following form.

y(1)m (t1, t2) = −i ∑
k

Ekm xmk xkm cos Ekm(t1 − t2), (50)

where we define Emk/m,k = Em − Ek and xmk/m,k = 〈Ψm|x|Ψk〉 .
Substituting the aforementioned expression for the micro-canonical OTOC in the definition
of the canonical correlator, Y(1)(t1, t2), we get the following expression:
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Y(1)(t1, t2) = −i
∑
m,k

e−βEm Ekm xmk xkm cos Ekm (t1 − t2)(
1 + ∑

m>0
e−βEm

) . (51)

5.3. Representation of 2-Point OTOC: Y(2)(t1, t2)

The second 2-point OTOC is given by the thermal average of the operator
−[x(t1), x(t2)], which is described in the eigenstate representation as:

Y(2)(t1, t2) = − 〈[x(t1), x(t2)]〉β = −
∑
m

e−βEm 〈Ψm|[x(t1), x(t2)]|Ψm〉(
1 + ∑

m>0
e−βEm

) .

Using Equation (33) for Heisenberg representation for x(t1) and x(t2) the 2-point correlator
in terms of the temperature independent micro-canonical correlator can be written as:

Y(2)(t1, t2) =
∑
m

e−βEm y(2)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (52)

where the micro-canonical 2-point OTOC is defined as:

y(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]|Ψm〉 . (53)

Expanding the commutator in the definition of the micro-canonical correlator and inserting
identity in between the operators, it can be shown that the eigenstate representation for
micro-canonical correlator y(2)m (t1, t2) takes the following form:

y(2)m (t1, t2) = −2i ∑
k

xmk xkm sin Emk(t1 − t2). (54)

where we define, Emk/m,k = Em − Ek and xmk/m,k = 〈Ψm|x|Ψk〉 .

Substituting Equation (54) in Equation (52), the eigenstate representation for the canonical
correlator Y(2)(t1, t2) takes the form:

Y(2)(t1, t2) = −2i
∑
m,k

e−βEm xmk xkm sin Emk(t1 − t2)(
1 + ∑

m>0
e−βEm

) . (55)

5.4. Representation of 2-Point OTOC: Y(3)(t1, t2)

The third two-point OTOC is given by the thermal average of the operator
−[p(t1), p(t2)], which is described in the eigenstate representation as:

Y(3)(t1, t2) = − 〈[p(t1), p(t2)]〉β = −
∑
m

e−βEm 〈Ψm|[p(t1), p(t2)]|Ψm〉(
1 + ∑

m>0
e−βEm

) .
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Proceeding as previously mentioned, we obtain the following expression for the OTOC,
which can be expressed in terms of the temperature independent micro-canonical correla-
tor as:

Y(3)(t1, t2) =
∑
m

e−βEm y(3)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (56)

where the micro-canonical 2-point OTOC is defined as:

y(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]|Ψm〉 . (57)

Expanding the commutator in the definition of the micro-canonical correlator and inserting
identity in between the operators, it can be shown that the eigenstate representation for
micro-canonical correlator y(3)m (t1, t2) is given by the following expression:

y(3)m (t1, t2) = −
i
2 ∑

k
Emk xmk Ekm xkm sin Ekm(t1 − t2). (58)

Substituting the expression for the micro-canonical correlator obtained from Equation (58)
in Equation (56), the eigenstate representation for the canonical correlator Y(3)(t1, t2) can
be written as:

Y(3)(t1, t2) = −
i
2

∑
m,k

e−βEm Emk xmk Ekm xkm sin Ekm(t1 − t2)(
1 + ∑

m>0
e−βEm

) . (59)

5.5. Representation of 4-Point OTOC: C(1)(t1, t2)

In this section, we provide the eigenstate representation of the 4-point OTOCs that are
mainly used for studying the quantum mechanical analogue of phenomena of time disorder
averaging, related randomness in quantum regime. Similar to the 2-point correlators, we
define three kinds of 4-point correlators. Generally, in the literature, people study the
4-point correlator C(1)(t1, t2) (as per our notation), which is the thermal expectation value
of the square of the commutator made up of the dynamical operators of different kinds
at different time scales. The 4-point correlator, C(1)(t1, t2), is proposed as a quantifier of
quantum chaos, but chaos is a specific kind of randomness. Hence, it is important to
consider the correlators constructed from similar operators at different times to have a
complete understanding of the underlying phenomenon of randomness. To understand this
time disordering phenomena explicitly, we have also introduced two more new correlators,
C(2)(t1, t2) and C(3)(t1, t2), described in detail in the latter half of this paper.

5.5.1. Un-Normalized: C(1)(t1, t2)

The first 4-point OTOC is given by the thermal average of the operator−[x(t1), p(t2)]
2,

which is described in the eigenstate representation as:

C(1)(t1, t2) = − 〈[x(t1), p(t2)]
2〉β =

∑
m

e−βEm c(1)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (60)
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where c(1)m (t1, t2) is the micro-canonical correlator and is responsible for the temperature
independent behavior of the correlator. The temperature dependence in the canonical
correlator is actually appearing due to the exponential thermal Botzmann factor in the
eigenstate representation of the OTOC. Once we take the sum over all possible eigenstates
(finite or infinite in number), we get a cumulative dependence on time, temperature,
and energy eigenstates. In the present context, the micro-canonical 4-point correlator for
Equation (60) is given by the following simplified expression:

c(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]
2|Ψm〉 = ∑

k
b(1)mk (t1, t2) b(1)∗mk (t1, t2), (61)

where we define a time-dependent matrix element, b(1)mk (t1, t2), which is given by:

b(1)mk (t1, t2) = −i 〈Ψm|[x(t1), p(t2)]|Ψk〉 .

Using the Heisenberg picture evolution equation for an operator and inserting identity
between the operators after expanding the commutator, it is not hard to verify that b(1)mk can
be written as:

b(1)∗mk (t1, t2) =
1
2 ∑

r

{
Erkeit1Erm eit2Ekr − Emreit2Erm eit1Ekr

}
xrmxkr.

Substituting the above expression of b(1)∗mk (t1, t2) in Equation (61), it can be shown that,
after simplification, the eigenstate representation of the micro-canonical correlator for
Equation (60) is given by the following expression:

c(1)m (t1, t2) =
1
4 ∑

k,l,r
xml xlk xrm xkr ×

[
ErkElkeiErl(t1−t2) + EmrEmle−iErl(t1−t2)

− ErkEmlei(Erm+Elk)(t1−t2) − EmrElke−i(Erm+Elk)(t1−t2)

]
. (62)

So, the eigenstate representation of canonical correlator from Equation (60) using Equation
(62) is given as:

C(1)(t1, t2) =
1

4

(
1 + ∑

m>0
e−βEm

) ∑
m,k,l,r

e−βEm xml xlk xrm xkr

×
[

ErkElkeiErl(t1−t2) + EmrEmle−iErl(t1−t2)

− ErkEmlei(Erm+Elk)(t1−t2) − EmrElke−i(Erm+Elk)(t1−t2)

]
. (63)

5.5.2. Normalized: C̃(1)(t1, t2)

The normalized first 4-point OTOC is from the un-normalized one expressed in
Equation (43) can be expressed as:

C̃(1)(t1, t2) =
C(1)(t1, t2)

〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β
.

We have already calculated the numerator C(1)(t1, t2) as given in Equation (63). So, here
our only job is compute the two sets of equal time thermal correlators in the eigenstate
representation. Since we know the formalism very well that we have developed in this
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paper, computing these disconnected pieces of equal time correlators, which are extremely
significant in the large time dissipation limit, is not at all complicated. Now, we are going
to show how one can compute these contributions.

To serve this purpose we need to compute the following expressions in the eigenstate
representation:

〈j|x(t1)x(t1)|j〉 = ∑
l

xjl xl j, (64)

〈j|p(t2)p(t2)|j〉 = ∑
l

pjl pl j = −
1
4 ∑

l
EjlEl jxjl xl j. (65)

Consequently, the desired canonical equal time thermal correlators can be computed as:

〈x(t1)x(t1)〉β =

∑
j

e−βEj 〈j|x(t1)x(t1)|j〉(
1 + ∑

m>0
e−βEm

) =

∑
j,l

e−βEj xjl xl j(
1 + ∑

m>0
e−βEm

) , (66)

〈p(t2)p(t2)〉β =

∑
j

e−βEj 〈j|p(t2)p(t2)|j〉(
1 + ∑

m>0
e−βEm

) =

∑
j,l

e−βEj pjl pl j(
1 + ∑

m>0
e−βEm

) = −1
4

∑
j,l

e−βEj EjlEl jxjl xl j(
1 + ∑

m>0
e−βEm

) . (67)

Finally, the normalized first 4-point OTOC can be expressed by the following simpli-
fied expression in the eigenstate representation, as given by:

C̃(1)(t1, t2) =
C(1)(t1, t2)

〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β

= −

(
1 + ∑

j>0
e−βEj

)

∑
j,m,l

e−β(Ej+Em) EjlEl jxjl xl j

× ∑
m,k,l,r

e−βEm xml xlk xrm xkr

×
[

ErkElkeiErl(t1−t2) + EmrEmle−iErl(t1−t2)

− ErkEmlei(Erm+Elk)(t1−t2) − EmrElke−i(Erm+Elk)(t1−t2)

]
. (68)

5.6. Representation of 4-Point OTOC: C(2)(t1, t2)

5.6.1. Un-Normalized: C(2)(t1, t2)

The second 4-point OTOC is given by the thermal average of the operator
−[x(t1), x(t2)]

2, which is described in the eigenstate representation as:

C(2)(t1, t2) = − 〈[x(t1), x(t2)]
2〉β =

∑
m

e−βEm c(2)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (69)

where c(2)m (t1, t2) is the micro-canonical correlator and is responsible for the temperature
independent behavior of the correlator. The temperature dependence in the canonical
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correlator is actually appearing due to the exponential thermal Botzmann factor in the
eigenstate representation of the OTOC. Once we take the sum over all possible eigenstates
(finite or infinite in number), we get a cumulative dependence on time, temperature,
and energy eigenstates. In the present context, the micro-canonical 4-point correlator for
Equation (69) is given by the following simplified expression:

c(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]
2|Ψm〉 = −∑

k
b(2)mk (t1, t2)b

(2)
km (t1, t2), (70)

where we define a time-dependent matrix element, b(2)mk (t1, t2), which is given by:

b(2)mk (t1, t2) = 〈Ψm|[x(t1), x(t2)]|Ψk〉 .

Using the Heisenberg picture for the evolution of operators and inserting identity between
the operators, it can be shown that b(2)mk (t1, t2) can be written as:

b(2)mk (t1, t2) = ∑
l

{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
xml xlk. (71)

Substituting Equation (71) in Equation (70) and simplifying the eigenstate representation
for the temperature independent micro-canonical correlator can be expressed by the fol-
lowing simplified expression:

c(2)m (t1, t2) = 4 ∑
k,l,r

xml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (72)

The canonical or the temperature-dependent correlator can be calculated by substituting
the expression of Equation (69) in Equation (72), and, after applying some algebraic manip-
ulation, it can be shown that the canonical correlator can be expressed by the following
two expressions:

C(2)(t1, t2) =
4(

1 + ∑
j>0

e−βEj

) ∑
m,k,l,r

e−βEm xml xlkxkrxrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (73)

5.6.2. Normalized: C̃(2)(t1, t2)

The normalized first 4-point OTOC is from the un-normalized one expressed in
Equation (44) can be expressed as:

C̃(2)(t1, t2) =
C(2)(t1, t2)

〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β
.

We have already calculated the numerator C(2)(t1, t2) as given in Equation (73). So, here
our only job is compute the two sets of equal time thermal correlators in the eigenstate
representation. Since we know the formalism very well that we have developed in this
paper, computing these disconnected pieces of equal time correlators, which are extremely
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significant in the large time dissipation limit, is not at all complicated. Now, we are going
to show how one can compute these contributions.

To serve this purpose, we need to compute the following expressions in the eigenstate
representation:

〈j|x(t1)x(t1)|j〉 = ∑
l

xjl xl j = 〈j|x(t2)x(t2)|j〉. (74)

Consequently, the desired canonical equal time thermal correlators can be computed as:

〈x(t1)x(t1)〉β =

∑
j

e−βEj 〈j|x(t1)x(t1)|j〉(
1 + ∑

m>0
e−βEm

) =

∑
j,l

e−βEj xjl xl j(
1 + ∑

m>0
e−βEm

) = 〈x(t2)x(t2)〉β . (75)

Finally, the normalized first 4-point OTOC can be expressed by the following simplified
expression in the eigenstate representation, as given by:

C̃(2)(t1, t2) =
C(2)(t1, t2)

〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β

=

4

(
1 + ∑

j>0
e−βEj

)

∑
j,m,l,k

e−β(Ej+Em) xjl xl jxmkxkm
∑

m,k,l,r
e−βEm xml xlkxkrxrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (76)

5.7. Representation of 4-Point OTOC: C(3)(t1, t2)

5.7.1. Un-Normalized: C(3)(t1, t2)

The third 4-point OTOC is given by the thermal average of the operator−[p(t1), p(t2)]
2,

which is described in the eigenstate representation as:

C(3)(t1, t2) = − 〈[p(t1), p(t2)]
2〉β =

∑
m

e−βEm c(3)m (t1, t2)(
1 + ∑

m>0
e−βEm

) , (77)

where c(3)m (t1, t2) is the micro-canonical correlator and is responsible for the temperature
independent behavior of the correlator. The temperature dependence in the canonical
correlator is actually appearing due to the exponential thermal Botzmann factor in the
eigenstate representation of the OTOC. Once we take the sum over all possible eigenstates
(finite or infinite in number), we get a cumulative dependence on time, temperature,
and energy eigenstates. In the present context, the micro-canonical 4-point correlator for
Equation (77) is given by the following simplified expression:

c(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]
2|Ψm〉 = −∑

k
b(3)mk (t1, t2)b

(3)
km (t1, t2), (78)

where we define a time-dependent matrix element, b(2)mk (t1, t2), which is given by:

b(3)mk (t1, t2) = 〈Ψm|[p(t1), p(t2)]|Ψk〉 . (79)
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Using the Heisenberg picture for the evolution of operators and inserting identity between
the operators, it can be shown that b(3)mk (t1, t2) can be simplified into the following form:

b(3)mk (t1, t2) = ∑
l

{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
pml plk.

Substituting the expression of b(3)mk (t1, t2), i.e., Equation (79) in Equation (78), and simplify-
ing, the eigenstate representation of the micro-canonical correlator can be expressed as:

c(3)m (t1, t2) =
1
4 ∑

k,l,r
Eml Elk Ekr Ermxml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (80)

The eigenstate representation of the canonical correlator from Equation (77) using Equa-
tion (80), after simplification, can be expressed by the following two equations:

C(3)(t1, t2) =
1

4

(
1 + ∑

m>0
e−βEm

) ∑
m,k,l,r

e−βEm Eml Elk Ekr Ermxml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (81)

5.7.2. Normalized: C̃(3)(t1, t2)

The normalized first 4-point OTOC is from the un-normalized one expressed in
Equation (45) can be expressed as:

C̃(3)(t1, t2) =
C(3)(t1, t2)

〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β
.

We have already calculated the numerator C(3)(t1, t2) as given in Equation (81). So, here
our only job is compute the two sets of equal time thermal correlators in the eigenstate
representation. Since we know the formalism very well that we have developed in this
paper, computing these disconnected pieces of equal time correlators, which are extremely
significant in the large time dissipation limit, is not at all complicated. Now, we are going
to show how one can compute these contributions.

To serve this purpose, we need to compute the following expressions in the eigenstate
representation:

〈j|p(t1)p(t1)|j〉 = ∑
l

pjl pl j = −
1
4 ∑

l
EjlEl jxjl xl j = 〈j|p(t2)p(t2)|j〉. (82)

Consequently, the desired canonical equal time thermal correlators can be computed as:

〈p(t1)p(t1)〉β =

∑
j,l

e−βEj pjl pl j(
1 + ∑

j>0
e−βEj

) = −1
4

∑
j,l

e−βEj EjlEl jxjl xl j(
1 + ∑

j>0
e−βEj

) = 〈p(t2)p(t2)〉β . (83)

Finally, the normalized first 4-point OTOC can be expressed by the following simplified
expression in the eigenstate representation, as given by:



Symmetry 2021, 13, 44 32 of 103

C̃(3)(t1, t2) =
C(3)(t1, t2)

〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β

=

4

(
1 + ∑

j>0
e−βEj

)
∑

j,m,k,l
e−β(Ej+Em) EjlEl jEmkEkm xjl xl jxmkxkm

× ∑
m,k,l,r

e−βEm Eml Elk Ekr Erm xml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
.

(84)

5.8. Summary of Results

Related equations are following:

Eigenstate Representation for Micro-Canonical Correlators

y(1)m (t1, t2) = −i ∑
k

Ekm xmk xkm cos(Ekm(t1 − t2)), (85)

y(2)m (t1, t2) = −2i ∑
k

xmk xkm sin(Emk(t1 − t2)), (86)

y(3)m (t1, t2) = −
i
2 ∑

k
Emk xmk Ekm xkm sin(Ekm(t1 − t2)), (87)

c(1)m (t1, t2) =
1
4 ∑

k,l,r
xml xlk xrm xkr

×
[

ErkElkeiErl(t1−t2) + EmrEmle−iErl(t1−t2)

− ErkEmlei(Erm+Elk)(t1−t2) − EmrElke−i(Erm+Elk)(t1−t2)

]
, (88)

c(2)m (t1, t2) = 4 ∑
k,l,r

xml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
, (89)

c(3)m (t1, t2) =
1
4 ∑

k,l,r
Eml Elk Ekr Ermxml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (90)
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Eigenstate Representation for Canonical Correlators without normalization

Subjected to (51)

Y(2)(t1, t2) = −2i
∑
m,k

e−βEm xmk xkm sin(Emk(t1 − t2))(
1 + ∑

m>0
e−βEm

) , (91)

Y(3)(t1, t2) = −
i
2

∑
m,k

e−βEm Emk xmk Ekm xkm sin(Ekm(t1 − t2))(
1 + ∑

m>0
e−βEm

) , (92)

C(1)(t1, t2) =
1

4

(
1 + ∑

m>0
e−βEm

) ∑
m,k,l,r

e−βEm xml xlk xrm xkr

×
[

ErkElkeiErl(t1−t2) + EmrEmle−iErl(t1−t2)

− ErkEmlei(Erm+Elk)(t1−t2) − EmrElke−i(Erm+Elk)(t1−t2)

]
, (93)

C(2)(t1, t2) =
4(

1 + ∑
m>0

e−βEm

) ∑
m,k,l,r

e−βEm xml xlkxkrxrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
, (94)

C(3)(t1, t2) =
1

4

(
1 + ∑

m>0
e−βEm

) ∑
m,k,l,r

e−βEm Eml Elk Ekr Ermxml xlk xkr xrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (95)

Eigenstate Representation for Canonical Correlators with normalization referred to
(75), (83), (68), (76) and (84).

6. Model I: Supersymmetric Quantum Mechanical Harmonic Oscillator
6.1. Eigenspectrum of the Super-Partner Hamiltonian

We consider a system described by Hamiltonian H1 with the harmonic oscillator
potential as given by:

V1(x) =
1
2

ω2x2, (96)

where ω is the natural frequency of the oscillator, and we have assumed that the mass is
m = 1, for the sake of algebraic simplification. Now, we represent Ψ(1)

n (x) and E(1)
n as the

eigenstates and eigenvalues corresponding to Hamiltonian H1, which can be obtained by
solving the Schrödinger equation as:

Ψ(1)
n (x) =

(
ω

π

)1/4 1√
2nn!

e−
ω
2 x2

Hn(
√

ωx) , (97)

E(1)
n =

(
n +

1
2

)
ω , (98)
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where Hm(y) appearing in the eigenfunctions are the well-known Hermite polynomials of
order m. As discussed in Section 3, the superpotential can be calculated once the ground
state wavefunction is known. Hence, using the ground state wavefunction obtained by sub-
stituting n = 0 in Equation (97), the superpotential can be calculated using Equation (11),
and, for the case of Supersymmetric one-dimensional harmonic oscillator, it is obtained to
be the following:

W(x) =
x√
2

. (99)

Thus, we can construct the partner Hamiltonian, which is of the following form:

H2 = −1
2

d2

dx2 + V2(x), (100)

where V2 is the partner potential and can be computed using Equation (12). For the
Supersymmetric one-dimensional harmonic oscillator, we get the following expression for
the partner potential:

V2(x) =
(

1 +
ω2x2

2

)
. (101)

More precisely, in the context of Supersymmetric harmonic oscillator, the original Hamil-
tonian is usually identified as the Bosonic Hamiltonian, and its associated super-partner is
identified as the Fermionic Hamiltonian, which are constructed by subtracting off the ground
state energy as:

Bosonic Hamiltonian : HB = H1 − E(1)
0 , (102)

Fermionic Hamiltonian : HF = H2 − E(1)
0 . (103)

Now, since this is just a constant shift in the energy, the corresponding eigenstates of the
partner Hamiltonians remain the same and can be represented as:

Bosonic eigenstate : Ψ(1)
n (x) ≡ Ψ(B)

n (x), (104)

Fermionic eigenstate : Ψ(2)
n (x) ≡ Ψ(F)

n (x). (105)

However, in this case, the energy eigenvalues get shifted by an amount E(1)
0 and can be

described as:

Bosonic eigenspectrum : E(B)
n = nω, (106)

Fermionic eigenspectrum : E(F)
n = (n + 1)ω, (107)

where we have used the property of Supersymmetric quantum mechanical theories:

E(F)
n = E(B)

n+1 ∀n = 0, 1, 2, . . . . . (108)

We can compute the energy eigenstates of the partner fermionic system by using the
Schrödinger equation for the Hamiltonian HF, which yields the same wave functions as for
HB, as given in Equations (97) and (98).

6.2. Partition Function

The partition function in the eigenstate representation is defined by the following
expression:

Z = Tr[e−βH ] = ∑
n
〈Ψn|e−βH |Ψn〉. (109)
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In the framework of Supersymmetric quantum mechanics, as already discussed, the ground
state is only bosonic. The structure of the normalized eigenfunctions are also different for
the ground state and the higher energy state. Hence, the partition function can be written
in terms of the ground state contribution and in terms of the contribution coming from the
excited state as:

Z = 〈Ψ0|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+
1
2 ∑

n>0
[〈ΨB

n |e−βHB |ΨB
n〉+ 〈ΨF

n−1|e−βHF |ΨF
n−1〉]︸ ︷︷ ︸

Excited State Contribution

. (110)

Further using the fact that the bosonic and the fermionic Hamiltonians nth energy eigen-
function are exactly identical, the partition function for the Supersymmetric one-dimensional
harmonic oscillator can be computed as:

Z = 1 +
1
2 ∑

n>0

[
(e−βωn + e−βωn)

]
=

1
1− e−βω

=
1
2

e
βω
2 cosech

(
βω

2

)
. (111)

6.3. Computation of 2-Point OTOCs

6.3.1. Computation of Y(1)(t1, t2)

We compute the 2-point correlators for the Supersymmetric Harmonic oscillator. We
begin with the correlator constructed from two different dynamical operators, which is
defined as:

Y(1)(t1, t2) = − 〈[x(t1), p(t2)]〉β
= − 1

Z ∑
n

e−βEn 〈Ψn|[x(t1), p(t2)]|Ψn〉

= − 1
Z

[
〈Ψ0|[x(t1), p(t2)]|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[x(t1), p(t2)]|Ψn〉︸ ︷︷ ︸
Excited States Contribution

]

= 2e−
βω
2 sinh

(
βω

2

) (
y(1)0 (t1, t2) + ∑

n>0
e−βωn y(1)n (t1, t2)

)
, (112)

where y(1)0 (t1, t2) and y(1)n (t1, t2) represent the micro-canonical correlators for the ground
state and the excited states, and the overall temperature-dependent normalization function
is appearing from the expression for the inverse of the thermal partition function for
canonical quantum statistical ensemble. The purpose of taking the ground state and excited
states separately is due to the fact that, in Supersymmetric quantum mechanics, the ground
state is always bosonic, having zero energy eigenvalue, whereas, for the excited states,
there are contributions from the bosonic, as well as the fermionic, states. It is easy to see
that the ground state contribution can be calculated by expanding the commutator and
inserting the completeness relation, ∑

k
|Ψk〉 〈Ψk| = 1. However, here, it is important to

note that there is no contribution appearing from the k = 0 term, as for the ground state
we have 〈Ψ0|x(t1)|Ψ0〉 = 0. Hence, from the ground state, we finally get the following
time-dependent non-trivial contribution, which is given by:

〈Ψ0|[x(t1), p(t2)]|Ψ0〉 =
i
2

cos ω(t1 − t2). (113)
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Now, to further determine the contribution from the excited states, we need to expand
the commutator and insert the completeness relation between the desired time-dependent
quantum operators, which gives the following expression:

〈Ψn|[x(t1), p(t2)]|Ψn〉 =
i
2

cos ω(t1 − t2) δn1

+
i
2

cos ω(t1 − t2)
(
1 +

√
n(n + 1)−

√
n(n− 1)

)
. (114)

Therefore, the micro-canonical correlators for the ground state and the excited states are
given by the following temperature independent simplified expressions:

y(1)0 = − i
2

cos ω(t1 − t2), (115)

y(1)n = − i
2

cos ω(t1 − t2)δn1 −
i
2

cos ω(t1 − t2)
(
1 +

√
n(n + 1)−

√
n(n− 1)

)
= − i

2
cos ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
. (116)

Further, using Equations (115) and (116), the canonical 2-point thermal correlator can be
obtained by the following expression:

Y(1)(t1, t2) = −ie−
βω
2 sinh

(
βω

2

)
cos ω(t1 − t2)

×
{

1 + e−βω + ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= − i
2

tanh
(

βω

2

)
cos ω(t1 − t2)

×
{

1 + 2 cosh
(

βω

2

)
∑
n>0

e−βω(n+ 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

. (117)

It can be seen that the obtained OTOC is just a periodic function, indicating the absence
of chaos. However, it is quite interesting that the obtained result has an explicit temperature
dependence, which mainly comes from the contribution of the ground state. Though the
2-point OTOC is not of much significance, it stills give us a pretty good idea that, at the level
2-point correlation function, the context of Supersymmetric one-dimensional harmonic
oscillator is non-chaotic in nature.

Micro-Canonical 2-point Correlator for Ground State :

y(1)0 (t1, t2) = −
i
2

cos ω(t1 − t2). (118)

Micro-Canonical 2-point Correlator for Excited States :

y(1)n (t1, t2) = −
i
2

cos ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
. (119)

Canonical 2-point Correlator :

Y(1)(t1, t2) = −
i
2

tanh
(

βω

2

)
cos ω(t1 − t2)

×
{

1 + 2 cosh
(

βω

2

)
∑
n>0

e−βω(n+ 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

. (120)
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As discussed earlier, the correlator Y(1)(t1, t2) alone does not provide the complete
knowledge about the quantum randomness of the system. Hence, we need to calculate
two other correlators constructed from similar operators at different time scales. The other
two correlators will be: − 〈[x(t1), x(t2)]〉β and − 〈[p(t1), p(t2)]〉β, which we will compute
in the next part of the paper.

6.3.2. Computation of Y(2)(t1, t2)

The second correlator is constructed from the commutator of the two position opera-
tors defined at different time scales and can be represented as:

Y(2)(t1, t2) = − 〈[x(t1), x(t2)]〉β

= − 1
Z

[
〈Ψ0|[x(t1), x(t2)]|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[x(t1), x(t2)]|Ψn〉︸ ︷︷ ︸
Excited States Contribution

]

= 2e−
βω
2 sinh

(
βω

2

) (
y(2)0 (t1, t2) + ∑

n>0
e−βωn y(2)n (t1, t2)

)
. (121)

The reason for separately considering the ground state from the other states has already
been discussed in the calculation of Y(1)(t1, t2). Following a similar procedure, we get:

y(2)0 (t1, t2) = − 〈Ψ0|[x(t1), x(t2)]|Ψ0〉

=
i

2ω
sin ω(t1 − t2), (122)

y(2)n (t1, t2) = − 〈Ψn|[x(t1), x(t2)]|Ψn〉

= − i
2ω

sin ω(t1 − t2)δn1

− i
2ω

sin ω(t1 − t2)

[
1 +

√
n(n + 1)−

√
n(n− 1)

]
= − i

2ω
sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
. (123)

Using Equations (122) and (123), the canonical correlator can be obtained as:
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Y(2)(t1, t2) =
i
ω

e−
βω
2 sinh

(
βω

2

)
sin ω(t1 − t2)

×
{

1− e−βω − ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

=
2i
ω

e−βω sinh2
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

=
i
ω

e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

. (124)

Micro-Canonical 2-point Correlator for Ground State :

y(2)0 (t1, t2) =
i

2ω
sin ω(t1 − t2) = −ω−2 y(3)n (t1, t2). (125)

Micro-Canonical 2-point Correlator for Excited States :

y(2)n (t1, t2) = −
i

2ω
sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
= −y(3)n (t1, t2)

ω2 . (126)

Canonical 2-point Correlator :

Y(2)(t1, t2) =
i
ω

e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= −Y(3)(t1, t2)

ω2 . (127)

6.3.3. Computation of Y(3)(t1, t2)

The third correlator is constructed from the commutator of the two momentum
operators defined at different time scales and can be represented as:

Y(3)(t1, t2) = − 〈[p(t1), p(t2)]〉β

= − 1
Z

[
〈Ψ0|[p(t1), p(t2)]|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[p(t1), p(t2)]|Ψn〉︸ ︷︷ ︸
Excited States Contribution

]

= 2e−
βω
2 sinh

(
βω

2

) (
y(3)0 (t1, t2) + ∑

n>0
e−βωn y(3)n (t1, t2)

)
. (128)

The reason for separately considering the ground state from the other states has already
been discussed in the calculation of Y(1)(t1, t2). Following a similar procedure, we get the



Symmetry 2021, 13, 44 39 of 103

following expressions for the micro-canonical correlators for the ground state and excited
states as given by:

y(3)0 (t1, t2) = − 〈Ψ0|[p(t1), p(t2)]|Ψ0〉

= − iω
2

sin ω(t1 − t2), (129)

y(3)n (t1, t2) = − 〈Ψn|[p(t1), p(t2)]|Ψn〉

=
iω
2

sin ω(t1 − t2) δn1

+
iω
2

sin ω(t1 − t2)

[
1 +

√
n(n + 1)−

√
n(n− 1)

]
=

iω
2

sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
. (130)

Using Equations (129) and (130), the canonical correlator can be obtained as:

Y(3)(t1, t2) = −iω e−
βω
2 sinh

(
βω

2

)
sin ω(t1 − t2)

×
{

1− e−βω − ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= −2iω e−βω sinh2
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= −iω e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

. (131)

Micro-Canonical 2-point Correlator for Ground State :

y(3)0 (t1, t2) = −
iω
2

sin ω(t1 − t2) = −ω2 y(2)0 (t1, t2), (132)

Micro-Canonical 2-point Correlator for Excited States :

y(3)n (t1, t2) =
iω
2

sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
= −ω2 y(2)n (t1, t2). (133)

Canonical 2-point Correlator :

Y(3)(t1, t2) = −iω e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= −ω2 Y(2)(t1, t2). (134)
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6.4. Computation of Un-Normalized 4-Point OTOCs

Though the building block 2-point OTOCs give us some basic insight about the nature
of randomness present in the quantum system, it is actually the 4-point OTOCs that are
considered to be the prime observables for determining the degree and the nature of
randomness present in the quantum mechanical systems. Similar to the 2-point case,
we consider here different types of OTOCs for the 4-point case from all three possible
combinations of the dynamical operators characterizing the quantum mechanical system
under consideration; here, it is a one-dimensional Supersymmetric harmonic oscillator.

6.4.1. Computation of C(1)(t1, t2)

The corresponding 4-point desired OTOC of first kind is defined by the following ex-
pression:

C(1)(t1, t2) = − 〈[x(t1), p(t2)]
2〉β

= − 1
Z ∑

n
〈Ψn|e−βH [x(t1), p(t2)]

2|Ψn〉

= − 1
Z

{
〈Ψ0|[x(t1), p(t2)]

2|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[x(t1), p(t2)]
2|Ψn〉︸ ︷︷ ︸

Excited State Contribution

}

= 2e−
βω
2 sinh

(
βω

2

) [
c(1)0 (t1, t2) + ∑

n>0
e−βωnc(1)n (t1, t2)

]
, (135)

where the ground and the excited contribution of the micro-canonical part of the 4-point
temperature independent OTOCs are defined by the following expressions:

c(1)0 (t1, t2) = − 〈Ψ0|[x(t1), p(t2)]
2|Ψ0〉

= ∑
m

b(1)0m (t1, t2)b
(1)∗
0m (t1, t2)

= b(1)00 (t1, t2)b
(1)∗
00 (t1, t2) + ∑

m>0
b(1)0m (t1, t2)b

(1)∗
0m (t1, t2), (136)

and

c(1)n (t1, t2) = − 〈Ψn|[x(t1), p(t2)]
2|Ψn〉

= ∑
m

b(1)nm(t1, t2)b
(1)∗
nm (t1, t2)

= b(1)n0 (t1, t2)b
(1)∗
n0 (t1, t2) + ∑

m>0
b(1)nm(t1, t2)b

(1)∗
nm (t1, t2), (137)

where b(1)nm(t1, t2), b(1)0m (t1, t2), b(1)m0(t1, t2), and b(1)00 (t1, t2) used in the above expression are
given by:

b(1)nm(t1, t2) = −i 〈Ψn|[x(t1), p(t2)]|Ψm〉 , (138)

b(1)0m (t1, t2) = −i 〈Ψ0|[x(t1), p(t2)]|Ψm〉 , (139)

b(1)m0(t1, t2) = −i 〈Ψm|[x(t1), p(t2)]|Ψ0〉 , (140)

b(1)00 (t1, t2) = −i 〈Ψ0|[x(t1), p(t2)]|Ψ0〉 . (141)

Now, an extremely important fact to keep in mind while performing this calculation is that
the ground state is always bosonic; this enforces considering the ground state separately
each time an identity is inserted. On expanding the commutator and inserting the identity
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operator (I := ∑
k
|Ψk〉 〈Ψk|) and considering the k = 0 term separately from the k > 0 term

above, sets of equations can be written as:

b(1)nm(t1, t2) = −i
(
〈Ψn|x(t1) |Ψ0〉 〈Ψ0| p(t2)|Ψm〉 − 〈Ψn|p(t2) |Ψ0〉 〈Ψ0| x(t1)|Ψm〉

+ ∑
k>0
〈Ψn|x(t1) |Ψk〉 〈Ψk| p(t2)|Ψm〉 − 〈Ψn|p(t2) |Ψk〉 〈Ψk| x(t1)|Ψm〉

)
, (142)

and a similar expression will be obtained for b(1)0m (t1, t2), b(1)m0(t1, t2), and b(1)00 (t1, t2). Keeping
all the above discussed facts, it is not difficult to show that, for the Supersymmetric one-
dimensional harmonic oscillator, we get:

b(1)nm(t1, t2) = −
i
2

cos ω(t1 − t2)

[
δn1 +

(
1 +

√
n(n + 1)−

√
n(n− 1)

)
δnm

]
, (143)

b(1)0m (t1, t2) = −
i
2

cos ω(t1 − t2)δm0 = − i
2

cos ω(t1 − t2)δ0m = b(1)m0(t1, t2), (144)

b(1)00 (t1, t2) = −
i
2

cos ω(t1 − t2). (145)

Here, one can explicitly show that, for the Supersymmetric one-dimensional harmonic
oscillator case, the following contributions trivially vanish:

∑
m>0

b(1)0m (t1, t2)b
(1)∗
0m (t1, t2) = 0, & b(1)n0 (t1, t2)b

(1)∗
n0 (t1, t2) = 0 ∀ n > 0. (146)

The above equations can be used to calculate the micro-canonical correlator, which is
the temperature independent part of the total OTOC. The temperature-dependent part
comes from the canonical part of the correlator, which can be calculated by substituting
Equations (143) and (144) in Equation (173), and, for the Supersymmetric one-dimensional
harmonic oscillator, we get:

c(1)0 (t1, t2) =
1
4

cos2 ω(t1 − t2), (147)

c(1)n (t1, t2) =
1
4

{
δn1δn1 +

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
cos2 ω(t1 − t2). (148)

Hence, the temperature-dependent canonical part of the 4-point OTOC of the first kind for
a Supersymmetric harmonic oscillator is given by substituting Equations (147) and (148) in
Equation (135) to obtain the following simplified result:

C(1)(t1, t2) =
1
2

e−
βω
2 sinh

(
βω

2

)
cos2 ω(t1 − t2)

×
{

1 + e−βω + ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

=
1
2

e−βω sinh(βω) cos2 ω(t1 − t2)

×
{

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (149)
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Micro-Canonical 4-point Correlator for Ground State :

c(1)0 (t1, t2) =
1
4

cos2 ω(t1 − t2), (150)

Micro-Canonical 4-point Correlator for Excited States :

c(1)n (t1, t2) =
1
4

cos2 ω(t1 − t2)

{
δn1δn1 +

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
. (151)

Canonical 4-point Correlator :

C(1)(t1, t2) =
1
2

e−βω sinh(βω) cos2 ω(t1 − t2)

×
{

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (152)

6.4.2. Computation of C(2)(t1, t2)

The corresponding 4-point desired OTOC of second kind is defined by the following
expression:

C(2)(t1, t2) = − 〈[x(t1), x(t2)]
2〉β

= − 1
Z ∑

n
〈Ψn|e−βH [x(t1), x(t2)]

2|Ψn〉

= − 1
Z

{
〈Ψ0|[x(t1), x(t2)]

2|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[x(t1), x(t2)]
2|Ψn〉︸ ︷︷ ︸

Excited State Contribution

}

= 2e−
βω
2 sinh

(
βω

2

) [
c(2)0 (t1, t2) + ∑

n>0
e−βωnc(2)n (t1, t2)

]
, (153)

where the ground and the excited contribution of the micro-canonical part of the 4-point
temperature independent OTOCs are defined by the following expressions:

c(2)0 (t1, t2) = − 〈Ψ0|[x(t1), x(t2)]
2|Ψ0〉

= ∑
m

b(2)0m (t1, t2)b
(2)∗
0m (t1, t2)

= b(2)00 (t1, t2)b
(2)∗
00 (t1, t2) + ∑

m>0
b(2)0m (t1, t2)b

(2)∗
0m (t1, t2), (154)

and

c(2)n (t1, t2) = − 〈Ψn|[x(t1), x(t2)]
2|Ψn〉

= ∑
m

b(2)nm(t1, t2)b
(2)∗
nm (t1, t2)

= b(2)n0 (t1, t2)b
(2)∗
n0 (t1, t2) + ∑

m>0
b(2)nm(t1, t2)b

(2)∗
nm (t1, t2), (155)
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where b(2)nm(t1, t2), b(2)0m (t1, t2), b(2)m0(t1, t2), and b(2)00 (t1, t2) used in the above expression are
given by:

b(2)nm(t1, t2) = −i 〈Ψn|[x(t1), x(t2)]|Ψm〉 , (156)

b(2)0m (t1, t2) = −i 〈Ψ0|[x(t1), x(t2)]|Ψm〉 , (157)

b(2)m0(t1, t2) = −i 〈Ψm|[x(t1), x(t2)]|Ψ0〉 , (158)

b(2)00 (t1, t2) = −i 〈Ψ0|[x(t1), x(t2)]|Ψ0〉 . (159)

Now, an extremely important fact to keep in mind while performing this calculation is that
the ground state is always bosonic; this enforces considering the ground state separately
each time an identity is inserted. On expanding the commutator and inserting the identity
operator (I := ∑

k
|Ψk〉 〈Ψk|) and considering the k = 0 term separately from the k > 0 term

above sets of equations can be written as:

b(2)nm(t1, t2) = −i
(
〈Ψn|x(t1) |Ψ0〉 〈Ψ0| x(t2)|Ψm〉 − 〈Ψn|x(t2) |Ψ0〉 〈Ψ0| x(t1)|Ψm〉

+ ∑
k>0
〈Ψn|x(t1) |Ψk〉 〈Ψk| x(t2)|Ψm〉 − 〈Ψn|x(t2) |Ψk〉 〈Ψk| x(t1)|Ψm〉

)
, (160)

and a similar expression will be obtained for b(2)0m (t1, t2), b(2)m0(t1, t2), and b(2)00 (t1, t2). Keeping
all the above discussed facts, it is not difficult to show that, for Supersymmetric one-
dimensional harmonic oscillator, we get:

b(2)nm(t1, t2) =
i

2ω
sin ω(t1 − t2)

[
δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)
δnm

]
, (161)

b(2)0m (t1, t2) =
i

2ω
sin ω(t1 − t2)δm0 =

i
2ω

sin ω(t1 − t2)δ0m = b(2)m0(t1, t2), (162)

b(2)00 (t1, t2) =
i

2ω
sin ω(t1 − t2). (163)

Here, one can explicitly show that, for the Supersymmetric one-dimensional harmonic
oscillator case, the following contributions trivially vanish:

∑
m>0

b(2)0m (t1, t2)b
(2)∗
0m (t1, t2) = 0, & b(2)n0 (t1, t2)b

(2)∗
n0 (t1, t2) = 0 ∀ n > 0. (164)

The above equations can be used to calculate the micro-canonical correlator, which is
the temperature independent part of the total OTOC, and the corresponding ground and
excited state contributions are explicitly given by the following expressions:

c(2)0 (t1, t2) =
1

4ω2 sin2 ω(t1 − t2), (165)

c(2)n (t1, t2) =
1

4ω2 sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
. (166)

The canonical part of the 4-point thermal OTOC of the second kind for a Supersymmetric
Harmonic Oscillator is given by substituting Equations (165) and (166) in Equation (153) to
obtain the following simplified result:

C(2)(t1, t2) =
1

2ω2 e−
βω
2 sinh

(
βω

2

)
sin2 ω(t1 − t2)

×
{

1 + e−βω − ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}
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=
1

2ω2 e−βω sinh(βω) sin2 ω(t1 − t2)

×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (167)

Micro-Canonical 4-point Correlator for Ground State :

c(2)0 (t1, t2) =
1

4ω2 sin2 ω(t1 − t2), (168)

Micro-Canonical 4-point Correlator for Excited States :

c(2)n (t1, t2) =
1

4ω2 sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2
}

. (169)

Canonical 4-point Correlator :

C(2)(t1, t2) =
1

2ω2 e−βω sinh(βω) sin2 ω(t1 − t2)

×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (170)

6.4.3. Computation of C(3)(t1, t2)

The corresponding 4-point desired OTOC of third kind is defined by the following
expression:

C(3)(t1, t2) = − 〈[p(t1), p(t2)]
2〉β

= − 1
Z ∑

n
〈Ψn|e−βH [p(t1), p(t2)]

2|Ψn〉

= − 1
Z

{
〈Ψ0|[p(t1), p(t2)]

2|Ψ0〉︸ ︷︷ ︸
Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|[p(t1), p(t2)]
2|Ψn〉︸ ︷︷ ︸

Excited State Contribution

}

= 2e−
βω
2 sinh

(
βω

2

) [
c(3)0 (t1, t2) + ∑

n>0
e−βωnc(3)n (t1, t2)

]
, (171)

where the ground and the excited contribution of the micro-canonical part of the 4-point
temperature independent OTOCs are defined by the following expressions:

c(3)0 (t1, t2) = − 〈Ψ0|[x(t1), x(t2)]
2|Ψ0〉

= ∑
m

b(3)0m (t1, t2)b
(3)∗
0m (t1, t2)

= b(3)00 (t1, t2)b
(3)∗
00 (t1, t2) + ∑

m>0
b(3)0m (t1, t2)b

(3)∗
0m (t1, t2), (172)

and

c(3)n (t1, t2) = − 〈Ψn|[x(t1), x(t2)]
2|Ψn〉

= ∑
m

b(3)nm(t1, t2)b
(3)∗
nm (t1, t2)
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= b(3)n0 (t1, t2)b
(3)∗
n0 (t1, t2) + ∑

m>0
b(3)nm(t1, t2)b

(3)∗
nm (t1, t2), (173)

where b(3)nm(t1, t2), b(3)0m (t1, t2), b(3)m0(t1, t2), and b(3)00 (t1, t2) used in the above expression are
given by:

b(3)nm(t1, t2) = −i 〈Ψn|[p(t1), p(t2)]|Ψm〉 , (174)

b(3)0m (t1, t2) = −i 〈Ψ0|[p(t1), p(t2)]|Ψm〉 , (175)

b(3)m0(t1, t2) = −i 〈Ψm|[p(t1), p(t2)]|Ψ0〉 , (176)

b(3)00 (t1, t2) = −i 〈Ψ0|[p(t1), p(t2)]|Ψ0〉 . (177)

Now, an extremely important fact to keep in mind while performing this calculation is that
the ground state is always bosonic; this enforces considering the ground state separately
each time an identity is inserted. On expanding the commutator and inserting the identity
operator (I := ∑

k
|Ψk〉 〈Ψk|) and considering the k = 0 term separately from the k > 0 term

above, sets of equations can be written as:

b(3)nm(t1, t2) = −i
(
〈Ψn|p(t1) |Ψ0〉 〈Ψ0| p(t2)|Ψm〉 − 〈Ψn|p(t2) |Ψ0〉 〈Ψ0| p(t1)|Ψm〉

+ ∑
k>0
〈Ψn|p(t1) |Ψk〉 〈Ψk| p(t2)|Ψm〉 − 〈Ψn|p(t2) |Ψk〉 〈Ψk| p(t1)|Ψm〉

)
, (178)

and a similar expression will be obtained for b(3)0m (t1, t2), b(3)m0(t1, t2), and b(3)00 (t1, t2). Keeping
all the above discussed facts, it is not difficult to show that, for Supersymmetric one-
dimensional harmonic oscillator, we get:

b(3)nm(t1, t2) =
iω
2

sin ω(t1 − t2)

[
δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)
δnm

]
, (179)

b(3)0m (t1, t2) =
iω
2

sin ω(t1 − t2) δn0 =
iω
2

sin[ω(t1 − t2)] δ0n = b(3)m0(t1, t2), (180)

b(3)00 (t1, t2) =
iω
2

sin ω(t1 − t2). (181)

Using the above equations, the ground state and the excited state contributions to the
micro-canonical OTOC can be calculated as follows:

c(3)0 (t1, t2) =
ω2

4
sin2 ω(t1 − t2), (182)

c(3)n (t1, t2) =
ω2

4
sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
. (183)

Then, the canonical part of the thermal 4-point OTOC of the third kind for a Supersymmetric
harmonic oscillator is given by substituting Equations (182) and (183) in Equation (171) to
obtain the following simplified result:

C(3)(t1, t2) =
ω2

2
e−

βω
2 sinh

(
βω

2

)
sin2 ω(t1 − t2)

×
{

1 + e−βω − ∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

=
ω2

2
e−βω sinh(βω) sin2 ω(t1 − t2)
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×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (184)

Micro-Canonical 4-point Correlator for Ground State :

c(3)0 (t1, t2) =
ω2

4
sin2 ω(t1 − t2), (185)

Micro-Canonical 4-point Correlator for Excited States :

c(3)n (t1, t2) =
ω2

4
sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
. (186)

Canonical 4-point Correlator :

C(3)(t1, t2) =
ω2

2
e−βω sinh(βω) sin2 ω(t1 − t2)

×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

. (187)

6.5. Computation of Normalized 4-Point OTOCs

In this section, our prime objective is to normalize all of the derived un-normalized
three types of OTOCs with appropriate normalization factors, which we have already
introduced in the earlier half of the paper for model-independent eigenstate representation.
In this section, we will explicitly derive the expressions for the normalization factors for
Supersymmetric in a dimensional harmonic oscillator model in its eigenstate representation
and derive all of the possible three types of OTOCs after normalization.

6.5.1. Computation of C̃(1)(t1, t2)

To normalize the obtained OTOC C(1)(t1, t2), we need to compute the appropriate
factors, which we are going compute in this subsection.

First of all, we need to evaluate the following 2-point equal time thermal correlator,
which is given by:

〈x(t1)x(t1)〉β =
1
Z

Tr(e−βHx(t1)x(t1))

=
1
Z ∑

n
〈Ψn|e−βHx(t1)x(t1)|Ψn〉

=
1
Z

[
〈Ψ0|x(t1)x(t1)|Ψ0〉︸ ︷︷ ︸

Ground State Contribution

+ ∑
n>0

e−βEn 〈Ψn|x(t1)x(t1)|Ψn〉︸ ︷︷ ︸
Excited State contribution

]
. (188)

Inserting the completeness relation between the operators and using the Heisenberg
picture equation for the evolution of an operator, the normalization factor involving the
position operator can be written as:
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〈x(t1)x(t1)〉β =
1

2ω
e−

βω
2 sinh

(
βω

2

)
×
(

1 + e−βω + ∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)

=
1

2ω
e−βω sinh(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)

. (189)

A similar calculation can carried out for computing the 2-point equal time thermal
correlator involving the momentum operators, which is given by:

〈p(t2)p(t2)〉β =
1
Z

Tr(e−βH p(t2)p(t2))

=
1
Z ∑

n
〈Ψn|eβH p(t2)p(t2)|Ψn〉

=
1
Z

[
〈ψ0|p(t2)p(t2)|ψ0〉︸ ︷︷ ︸

Ground state contribution

+ ∑
n>0
〈ψn|p(t2)p(t2)|ψn〉︸ ︷︷ ︸

Excited state contribution

]
. (190)

One generally needs to consider the ground state separately from the other higher
energy states due to the fact that, in Supersymmetric QM, the ground state has contribu-
tions only from the original Hamiltonian. There is no contribution of the associated partner
Hamiltonian in the ground state. Keeping this interesting fact in mind and adopting a
similar approach as taken in the previous case, the normalization factor involving the
thermal expectation value of the momentum operators are given by:

〈p(t2)p(t2)〉β =
ω

2
e−

βω
2 sinh

(
βω

2

)
×
(

1 + e−βω + ∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)

=
ω

2
e−βω sinh(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)

. (191)

Therefore, the normalization factor N1 for the 4-point correlator C(1)(t1, t2) is given by
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Normalization factor N1 of C(1)(t1, t2)

N1 = 〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β

=
1
4

e−βω sinh2
(

βω

2

)
×
(

1 + e−βω + ∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

=
1
4

e−2βω sinh2(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= ω2 N2 = ω−2 N3. (192)

Consequently, the normalized OTOC of the first kind can be expressed as:

Normalized C(1)(t1, t2) :

C̃(1)(t1, t2) = 2eβωcosech(βω) cos2 ω(t1 − t2)

×

{
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

{
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
}2 . (193)

6.5.2. Computation of C̃(2)(t1, t2)

To normalize the obtained OTOC C(2)(t1, t2), we need to compute the appropriate
factors, which we are going compute in this subsection.

Similarly, the normalization factor N2 for the 4-point OTOC C(2)(t1, t2) can be com-
puted explicitly, which is given by the following simplified expression:

Normalization factor N2 of C(2)(t1, t2)

N2 = 〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β

=
1

4ω2 e−βω sinh2
(

βω

2

)
×
(

1 + e−βω + ∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

=
1

4ω2 e−2βω sinh2(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

=
1

ω4 N3

=
1

ω2 N1. (194)
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Consequently, the normalized OTOC of the second kind can be expressed as:

Normalized C(2)(t1, t2) :

C̃(2)(t1, t2) = 2eβωcosech(βω) sin2 ω(t1 − t2)

×

{
1− 1

2
sech

(
βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

(
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= C̃(3)(t1, t2). (195)

6.5.3. Computation of C̃(3)(t1, t2)

To normalize the obtained OTOC C(3)(t1, t2), we need to compute the appropriate
factors, which we are going compute in this subsection.

Similarly, the normalization factor N3 for the 4-point OTOC C(3)(t1, t2) can be com-
puted explicitly, which is given by the following simplified expression:

Normalization factor N3 of C(3)(t1, t2)

N3 = 〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β

=
ω2

4
e−βω sinh2

(
βω

2

)
×
(

1 + e−βω + ∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

=
ω2

4
e−2βω sinh2(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= ω4 N2

= ω2 N1. (196)

Consequently, the normalized OTOC of the third kind can be expressed as:

Normalized C(3)(t1, t2) :

C̃(3)(t1, t2) = 2eβωcosech(βω) sin2 ω(t1 − t2)

×

{
1− 1

2
sech

(
βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

(
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= C̃(2)(t1, t2). (197)



Symmetry 2021, 13, 44 50 of 103

6.6. Summary of Results

Related equations are following:

Ground State Contributions for Micro-Canonical OTOC for SUSY 1D Harmonic Oscil-
lator

y(1)0 (t1, t2) = −
i
2

cos ω(t1 − t2), (198)

y(2)0 (t1, t2) =
i

2ω
sin ω(t1 − t2) = −

1
ω2 y(3)0 (t1, t2), (199)

y(3)0 (t1, t2) = −
iω
2

sin ω(t1 − t2) = −ω2 y(2)0 (t1, t2), (200)

c(1)0 (t1, t2) =
1
4

cos2 ω(t1 − t2), (201)

c(2)0 (t1, t2) =
1

4ω2 sin2 ω(t1 − t2) =
1

ω4 c(3)0 (t1, t2), (202)

c(3)0 (t1, t2) =
ω2

4
sin2 ω(t1 − t2) = ω4 c(2)0 (t1, t2). (203)

Excited State Contributions for Micro-Canonical OTOC for SUSY 1D Harmonic Oscil-
lator

y(1)n (t1, t2) = −
i
2

cos ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
, (204)

y(2)n (t1, t2) = −
i

2ω
sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
= − 1

ω2 y(3)n (t1, t2), (205)

y(3)n (t1, t2) =
iω
2

sin ω(t1 − t2)

[
1 + δn1 +

√
n(n + 1)−

√
n(n− 1)

]
= −ω2 y(2)n (t1, t2), (206)

c(1)n (t1, t2) =
1
4

cos2 ω(t1 − t2)

{
δn1δn1 +

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
, (207)

c(2)n (t1, t2) =
1

4ω2 sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
=

1
ω4 c(3)n (t1, t2), (208)

c(3)n (t1, t2) =
ω2

4
sin2 ω(t1 − t2)

{
δn1δn1 −

(
1 +

√
n(n + 1)−

√
n(n− 1)

)2}
= ω4 c(2)n (t1, t2). (209)
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Un-normalized two and 4-point Canonical OTOC for SUSY 1D Harmonic Oscillator

Y(1)(t1, t2) = −
i
2

tanh
(

βω

2

)
cos ω(t1 − t2)

×
{

1 + 2 cosh
(

βω

2

)
∑
n>0

e−βω(n+ 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

, (210)

Y(2)(t1, t2) =
i
ω

e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= − 1
ω2 Y(3)(t1, t2), (211)

Y(3)(t1, t2) = −iω e−βω sinh(βω) tanh
(

βω

2

)
sin ω(t1 − t2)

×
{

1− 1
2

cosech
(

βω

2

)
∑
n>0

e−βω(n− 1
2 )
(

1 +
√

n(n + 1)−
√

n(n− 1)
)}

= −ω2 Y(2)(t1, t2), (212)

C(1)(t1, t2) =
1
2

e−βω sinh(βω) cos2 ω(t1 − t2)

×
{

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

, (213)

C(2)(t1, t2) =
1

2ω2 e−βω sinh(βω) sin2 ω(t1 − t2)

×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

=
1

ω4 C(3)(t1, t2), (214)

C(3)(t1, t2) =
ω2

2
e−βω sinh(βω) sin2 ω(t1 − t2)

×
{

1− 1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

= ω4 C(2)(t1, t2). (215)
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Normalized 4-point Canonical OTOC for SUSY 1D Harmonic Oscillator

〈x(t1)x(t1)〉β = 〈x(t2)x(t2)〉β
=

1
2ω

e−βω sinh(βω)

×
(

1 +
1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)

=
1

ω2 〈p(t1)p(t1)〉β =
1

ω2 〈p(t2)p(t2)〉β , (216)

C̃(1)(t1, t2) =
C(1)(t1, t2)

〈x(t1)x(t1)〉β 〈p(t2)p(t2)〉β
= 2eβωcosech(βω) cos2 ω(t1 − t2)

×

{
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

(
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2 , (217)

C̃(2)(t1, t2) =
C(2)(t1, t2)

〈x(t1)x(t1)〉β 〈x(t2)x(t2)〉β
= 2eβωcosech(βω) sin2 ω(t1 − t2)

×

{
1− 1

2
sech

(
βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

(
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= C̃(3)(t1, t2), (218)

C̃(3)(t1, t2) =
C(3)(t1, t2)

〈p(t1)p(t1)〉β 〈p(t2)p(t2)〉β
= 2eβωcosech(βω) sin2 ω(t1 − t2)

×

{
1− 1

2
sech

(
βω

2

)
∑
n>0

e−βωn
(

1 +
√

n(n + 1)−
√

n(n− 1)
)2}

(
1 +

1
2

sech
(

βω

2

)
∑
n>0

e−βωn[2n +
√

n(n + 1) +
√

n(n− 1)]
)2

= C̃(2)(t1, t2). (219)

7. Model II: Supersymmetric One-Dimensional Potential Well

The one-dimensional infinite potential well is characterized by the following potential:

V1(x) =
{

0 for 0 ≤ x ≤ L
∞ otherwise

}
. (220)

The eigenfunctions and the corresponding energy eigenvalues associated with the Hamil-
tonian H1 for this potential is a well known result [109] and is given by the following ex-
pressions:

ψ
(1)
n =

√
2
L

sin
[
(n + 1)π

L
x
]

and E(1)
n =

(n + 1)2π2h̄2

2mL2 for n ∈ {0, 1, 2, . . . },
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where we have replaced the energy level tagging from n to n + 1 compared to the regular
expressions one encounters in typical textbooks. This does not change anything physically,
and, with this convention, n can take values from 0 instead of 1. In addition, for the sake of
simplicity, we consider h̄ = L = 2m = 1. Furthermore, as we have previously mentioned,
we need the ground state energy to be zero, so that, after subtracting off the ground state
energy, we get the following simplified results:

ψ
(1)
n =

√
2 sin[(n + 1)πx] and E(1)

n = n(n + 2) π2 for n ∈ {0, 1, 2, ...}. (221)

To obtain the partner potential associated with the original potential, the superpotential
needs to be calculated, which has been donein Reference [109] and is given by the following
expression:

W(x) = −π cot(πx). (222)

Once the superpotential of a Supersymmetric quantum mechanical model is known, it can
be used to obtain the eigenspectrum and the associated partner potential, as discussed in
Section 3. For the Supersymmetric One-Dimensional Potential Well, it can be very easily
verified that the associated partner potential is given by the following equation:

V2(x) = 2π2 cosec2(πx).

A look at Equation (223) immediately suggests that the partner potential is remarkably
different from the original one, unlike the harmonic oscillator case in which partner po-
tential is identical to that of the original one. The energy eigenfunctions and eigenvalues
associated with the partner potential can easily be calculated as:

ψ
(2)
n (x) =

√
2

(n + 2)2 − 1

{
(n + 2) cos((n + 2)πx)− cot(πx) sin((n + 2)πx)

}
; (223)

E(2)
n = (n2 + 4n + 3) π2 for n ∈ {0, 1, 2, . . . }. (224)

To compute the correlators, we need the partition function and the matrix elements of
the position operator between any two arbitrary energy states. However, while computing
the matrix elements, if one of the states is the ground state, then the expression can be
written in a closed form because, in the ground state, there is no contribution of the partner
Hamiltonian.

Z = 1 + ∑
m>0

e−βm(m+2), (225)

x0k =
√

2
∫ 1

0
dx sin πx sin(k + 1)πx =

√
2

(k + 2)
sin πk

πk
(226)

xmk =
1

4π

[
sin(k−m)π

(k−m)
− sin(k + m + 2)π

(k + m + 2)

]
,

+
2√

((1 + k)2 − 1)((1 + m)2 − 1)∫ 1

0
dx x

(
(1 + k) cos(1 + k)πx− cot πx sin(1 + k)πx

)
(
(1 + m) cos(1 + m)πx− cot πx sin(1 + m)πx

)
. (227)

Substituting the above expressions in the eigenstate representation of the correlators ob-
tained in Section 5, the correlators for 1D SUSY potential well can be calculated. Now, it is
important to mention here that the OTOCs computed from this particular model only can
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be presented in terms of integrals, which, at the end, we need to evaluate using numerical
computation. So, to avoid writing complicated mathematical expressions in terms of huge
size integrals, and instead of presenting a detailed calculation here, we provide and discuss
the results later, in Section 11 of this paper.

8. General Remarks on the Classical Limiting Interpretation of OTOCs

In this section, our prime objective is to study the classical limit of the thermal OTOCs
derived explicitly in the previous sections of this paper in the context of Supersymmetric
quantum mechanical systems. This computation is essential to understand the time and
the temperature-dependent behavior of the two and 4-point thermal OTOCs in the classical
limit. By studying the behavior in this limit, one can check the consistency of the result
obtained of the quantum randomness from the computed thermal OTOCs in the previous
sections.

The strategy adopted in calculating the classical limit of OTOCs is usually replacing
the quantum mechanical commutator bracket with the usual classical Poisson bracket
defined by the following equation:

{ f , g}qi ,pi = ∑
i

(
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi

)
. (228)

In the above equation, the qi and the pi are the generalized coordinates and momenta,
and f and g are functions of these coordinates and momenta, i.e.,

f ≡ f (q1, . . . , qn ; p1, . . . , pn, t), (229)

g ≡ g(q1, . . . , qn ; p1, . . . , pn, t). (230)

It can be readily checked that the commutator bracket of two quantum mechanical operators
satisfy the same properties as that of the classical Poisson bracket, and it can be viewed as
the outcome of the following limit on the commutator bracket:

lim
h̄→0

[ f̂ , ĝ]
ih̄

= { f , g}. (231)

The thermal average of the correlators is carried out by the trace operation in the
quantum case, which can be further simplified in the eigenstate representation. For its
classical counterpart, the trace operation is replaced by the phase space integral in the
classical limit. For a quantum mechanical model in the context of Supersymmetry, usually,
one would expect that there are two generalized coordinates and momenta, one coming
from the original Hamiltonian of the system and the other one from its Supersymmetric
part. Below, we write down the generic expressions for the Poisson Brackets involving the
position and the momentum operators and provide a general expression for the classical
limit of the 2- and 4-point classical versions of the correlators.

Classical limit of 2-point Canonical OTOCs

Y(1)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH {x(t1), p(t2)}, (232)

Y(2)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH {x(t1), x(t2)}, (233)

Y(3)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH {p(t1), p(t2)}, (234)

where Zcl =
∫∫ dxdp

2π
e−βH . (235)
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Classical limit of 4-point Canonical OTOCs

C(1)(t1, t2) =
1

Zcl

∫∫ dx dp
2π

e−βH {x(t1), p(t2)}2, (236)

C(2)(t1, t2) =
1

Zcl

∫∫ dx dp
2π

e−βH {x(t1), x(t2)}2, (237)

C(3)(t1, t2) =
1

Zcl

∫∫ dx dp
2π

e−βH {p(t1), p(t2)}2, (238)

where Zcl =
∫∫ dxdp

2π
e−βH . (239)

9. Classical Limit of OTOC for Supersymmetric One-Dimensional
Harmonic Oscillator

As discussed earlier, any Supersymmetric quantum mechanical Hamiltonian is associ-
ated with a partner Hamiltonian. For a Supersymmetric Harmonic oscillator, the potential
associated with the original and the partner Hamiltonian are exactly equal apart from
a constant factor, as shown in Section 6.1. Hence, the classical solutions of the dynam-
ical operators take identical forms and are obtained by trivially solving the following
differential equation:

d2x
dt2 = −ω2x. (240)

In solving the above differential equation, we take the initial position and momentum to
be x(0) and p(0). The classical solutions of the operators obtained by solving the above
differential equation, and the mentioned initial conditions are given by:

x(t) = x(0) cos ωt +
p(0)

ω
sin ωt; (241)

p(t) = p(0) cos ωt− x(0) ω sin ωt. (242)

We want to calculate the classical limit of OTOC using the position operators at
different times. Using the distributive property of Poisson Bracket, {x(t1), p(t2)} can be
expanded for our Supersymmetric case in the following way:

{x(t1), p(t2)} = {xB(t1), pB(t2)}︸ ︷︷ ︸
Bosonic part

+ {xF(t1), pF(t2)}︸ ︷︷ ︸
Fermionic part

. (243)

Each of the terms of the above equation can be evaluated using the definition of classical
Poisson Bracket and has been done below:

{xB(t1), pB(t2)} =
(

∂xB(t1)

∂xB(0)
∂pB(t2)

∂pB(0)
− ∂xB(t1)

∂pB(0)
∂pB(t2)

∂xB(0)

)
= cos ω(t1 − t2), (244)

{xF(t1), pF(t2)} =
(

∂xF(t1)

∂xF(0)
∂pF(t2)

∂pF(0)
− ∂xF(t1)

∂pF(0)
∂pF(t2)

∂xF(0)

)
= cos ω(t1 − t2), (245)

which implies that the contributions from both the bosonic and the fermionic part of
the Poisson brackets are exactly identical for Supersymmetric one-dimensional harmonic
oscillator. Therefore, the Poisson Bracket of the position and the momentum at different
times is given by:

{x(t1), p(t2)} = 2 cos ω(t1 − t2). (246)
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We want to calculate the classical limit of OTOC using the position variables at
different times. Using the distributive property of Poisson Bracket, {x(t1), x(t2)} can be
expanded for our Supersymmetric case in the following way:

{x(t1), x(t2)} = {xB(t1), xB(t2)}︸ ︷︷ ︸
Bosonic contribution

+ {xF(t1), xF(t2)}︸ ︷︷ ︸
Fermionic contribution

. (247)

Each of the terms of the above equation can be evaluated using the definition of the classical
Poisson Bracket and has been done below:

{xB(t1), xB(t2)} =
(

∂xB(t1)

∂xB(0)
∂xB(t2)

∂pB(0)
− ∂xB(t1)

∂pB(0)
∂xB(t2)

∂xB(0)

)
= − 1

ω
sin ω(t1 − t2), (248)

{xF(t1), xF(t2)} =
(

∂xF(t1)

∂xF(0)
∂xF(t2)

∂pF(0)
− ∂xF(t1)

∂pF(0)
∂xF(t2)

∂xF(0)

)
= − 1

ω
sin ω(t1 − t2), (249)

which implies that the contributions from both the bosonic and the fermionic part of
the Poisson brackets are exactly identical for Supersymmetric one-dimensional harmonic
oscillator. Therefore, the classical Poisson Bracket of the position variables at different
times is given by:

{x(t1), x(t2)} = −
2
ω

sin ω(t1 − t2). (250)

We want to calculate the classical limit of OTOC using the momentum variables at
different times. Using the distributive property of Poisson Bracket, {p(t1), p(t2)} can be
expanded for our Supersymmetric case, and the non-zero contribution is given by the
following equation:

{p(t1), p(t2)} = {pB(t1), pB(t2)}︸ ︷︷ ︸
Bosonic contribution

+ {pF(t1), pF(t2)}︸ ︷︷ ︸
Fermionic contribution

. (251)

Each of the terms of the above equation can be evaluated using the definition of Poisson
Bracket and has been done below:

{pB(t1), pB(t2)} =
(

∂pB(t1)

∂xB(0)
∂pB(t2)

∂pB(0)
− ∂pB(t1)

∂pB(0)
∂pB(t2)

∂xB(0)

)
= −ω sin ω(t1 − t2), (252)

{pF(t1), pF(t2)} =
(

∂pF(t1)

∂xF(0)
∂pF(t2)

∂pF(0)
− ∂pF(t1)

∂pF(0)
∂pF(t2)

∂xF(0)

)
= −ω sin ω(t1 − t2), (253)

which implies that the contributions from both the bosonic and the fermionic part of
the Poisson brackets are exactly identical for Supersymmetric one-dimensional harmonic
oscillator. Therefore, the classical Poisson Bracket of the momentum variables at different
times is given by:

{p(t1), p(t2)} = −2ω sin ω(t1 − t2). (254)

Finally, the classical limit of OTOC of a 2-point thermal classical version of the OTOCs
is given by the following expressions:
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Classical limit of 2-point OTOCs for SUSY 1D HO

Y(1)(t1, t2) = 2 cos ω(t1 − t2),

Y(2)(t1, t2) = −
2
ω

sin ω(t1 − t2) =
1

ω2 Y(3)(t1, t2),

Y(3)(t1, t2) = −2ω sin ω(t1 − t2) = ω2 Y(2)(t1, t2).

Classical limit of 4-point OTOCs for SUSY 1D HO

C(1)(t1, t2) = 4 cos2(ω(t1 − t2)),

C(2)(t1, t2) =
4

ω2 sin2(ω(t1 − t2)) =
1

ω4 C(3)(t1, t2),

C(3)(t1, t2) = 4ω2 sin2(ω(t1 − t2)) = ω4C(2)(t1, t2).

From the classical limit result of the Supersymmetric Harmonic oscillator, it is clear
that the classical statistics do not produce the quantum result. Though we get a similar
time dependence, which is periodic, both in the classical and the quantum case, the results
are not identical to each other. The prime difference in the result lies in the fact that the
quantum result depends on the energy eigenstate. This explicit dependence of the OTOC
on the energy eigenstates is what prevents the quantum results from giving the classical
result in the high temperature limit. The important factor to note here is the appearance
of the factor 2 in the 2-point classical correlators. It was already discussed in Section 3
that, for every potential in Supersymmetry, there is an associated partner potential. For the
case of Supersymmetric Harmonic oscillator, it can be seen that the structure of the partner
potential is exactly similar to the original potential, differing in only an overall constant
factor. So, it is very easy to understand that the classical solutions for both the potentials
will be exactly identical. Now, while calculating the Poisson Bracket in the context of
Supersymmetric, the bosonic and the fermionic part can be considered as two degrees of
freedom. Due to the similar solutions of the dynamical variables, the contribution of the
bosonic and the fermionic degrees of freedom for the Supersymmetric harmonic oscillator
are exactly identical, which adds up to give twice the result obtained from one degree of
freedom. Another important point to note is that the classical limit of the correlators do not
depend on the initial conditions of the dynamical variables.

10. Classical Limit of OTOC for Supersymmetric 1D Box

The case of Supersymmetric infinite potential well is not as trivial as that of the
Harmonic oiscillator. The associated partner potential is not identical to that of original
potential. As has been derived in Reference [109], the partner potential for a 1D box of unit
length is given by

V2(x) = 2π2cosec2(πx), (255)

whereas the well known original potential is given by

V1(x) =
{

0 for 0 ≤ x ≤ 1
∞ otherwise

}
. (256)

The classical solutions of the dynamical operators for the original potential are pretty
trivial to calculate and are obtained by trivially solving the following differential equation:

d2x
dt2 = 0. (257)
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The classical solutions of the operators in this case can be explicitly written as:

x1(t) = x1(0) + 2p1(0) t , (258)

p1(t) = p1(0). (259)

where x1(0) and p1(0) are the initial position and momentum of the particle moving in
the potential V1(x). However, the classical solution of the particle moving in the potential
V2(x) can be obtained by solving the following differential equation:

d2x2

dt2 = 4π3 cot(πx2) cosec2(πx2). (260)

The above differential equation can be solved explicitly to give the following solutions of
the dynamical variables:

x2(t) =
1
π

cos−1
[√

c
c + 4π4 sin

(√
c + 4π4 (c1 − t)

)]
, (261)

p2(t) =
√

c− 4π4 cot2(πx2). (262)

The constants c and c1 can be fixed from the initial conditions by taking the initial position
and momentum to be x2(0) and p2(0), respectively, and can be written as:

c = p2(0)2 + 4π4 cot2[πx2(0)], (263)

c1 =
1√

c + 4π4
sin−1

[√
c + 4π4 cos(πx2(0))√

c

]
. (264)

It is to be noted that the classical solution written above is valid before the particle bounces
at a boundary. After it experiences a bounce at the boundary, the momentum changes its
direction, i.e., p(t)→ −p(t). We take this fact into account by considering the infinitesimal
deviation of the initial position and fixing the momentum as:

(x(0), p(0))→ (x(0) + δx(0), p(0)).

The bouncing of the particle at the boundary is given by the time evolution, i.e.,

δx(t) = (−1)nδx(0),

after the nth bounce.
We are interested in calculating the Poisson Bracket of the position operator at a certain

time with the momentum operator at another time, which gives us the classical limit of
the correlator of first kind. Similarly, the classical limit of the correlator of the second kind
is obtained from the Poisson Bracket of the position operators at two different times. The
classical limit of the correlator of the third kind is given by the Poisson Bracket of the
momentum operators at two different times. The Poisson Bracket for the classical limit of
first kind of correlator is given by:

{x(t1), p(t2)} = {x1(t1), p1(t2)}B︸ ︷︷ ︸
Bosonic contribution

+ {x2(t1), p2(t2)}F︸ ︷︷ ︸
Fermionic contribution

. (265)

Using the classical solutions obtained in Equation (258), the Poisson Bracket involving
the position and momentum of the particle moving in the potential V1 can be written as:

{x1(t1), p1(t2)} =
(

∂x1(t1)

∂x1(0)
∂p1(t2)

∂p1(0)
− ∂x1(t1)

∂p1(0)
∂p1(t2)

∂x1(0)

)
= (−1)n. (266)
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In a similar manner, the Poisson Bracket involving the classical position variables of the
particle associated with the original potential can be calculated as:

{x1(t1), x1(t2)} =
(

∂x1(t1)

∂x1(0)
∂x1(t2)

∂p1(0)
− ∂x1(t1)

∂p1(0)
∂x1(t2)

∂x1(0)

)
= 2 (−1)n (t2 − t1). (267)

The Poisson Bracket involving the classical momentum variables of the particle associated
with the original potential can be calculated as

{p1(t1), p1(t2)} =
(

∂p1(t1)

∂x1(0)
∂p1(t2)

∂p1(0)
− ∂p1(t1)

∂p1(0)
∂p1(t2)

∂x1(0)

)
= 0. (268)

In the same manner, the Poisson Bracket relations of the particle associated with the
partner potential can be calculated in the following way:

{x2(t1), p2(t2)} =
(

∂x2(t1)

∂x2(0)
∂p2(t2)

∂p2(0)
− ∂x2(t1)

∂p2(0)
∂p2(t2)

∂x2(0)

)
= (−1)n X2

Q2
, (269)

where the expressions of X2 and Q2 are given in Appendix B.
The Poisson Bracket involving the classical position variables of the particle associated

with the partner potential can be calculated as:

{x2(t1), x2(t2)} =
(

∂x2(t1)

∂x2(0)
∂x2(t2)

∂p2(0)
− ∂x2(t1)

∂p2(0)
∂x2(t2)

∂x2(0)

)
=
K1

K2
, (270)

where the symbols K1 and K2 represent the following terms

K1 = (−1)n (1 + 4π4) (t1 − t2) cos(sin−1(α)− t1 β) cos(sin−1(α)− t2 β),

K2 =
√

η(t1) η(t2).

Similarly, the Poisson Bracket involving the classical momentum variables of the particle
associated with the partner potential can be calculated as

{p2(t1), p2(t2)} =
(

∂p2(t1)

∂x2(0)
∂p2(t2)

∂p2(0)
− ∂p2(t1)

∂p2(0)
∂p2(t2)

∂x2(0)

)
=
P1

P2
. (271)

The explicit expressions for the symbols used in the above equations have been written in
Appendix B. Therefore, the classical limit of OTOC of 2-point correlators are given by:

Classical limit of 2-point Canonical Correlators for SUSY 1D infinite potential
well

Y(1)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
[
(−1)n

(
1 +
X2

Q2

)]
,

Y(2)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
[

2 (−1)n (t2 − t1) +
K1

K2

]
,

Y(3)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
(P1

P2

)
.
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Classical limit of 4-point Canonical Correlators for SUSY 1D infinite potential
well

C(1)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
[
(−1)n

(
1 +
X2

Q2

)]2

,

C(2)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
[

2 (−1)n (t2 − t1) +
K1

K2

]2

,

C(3)(t1, t2) =
1

Zcl

∫∫ dxdp
2π

e−βH
(P1

P2

)2

.

The solutions of the classical dynamical variables obtained for the partner potential as-
sociated with the 1D infinite well potential is not trivial, as obtained in
Equations (261) and (262). The Poisson Bracket involving the partner potential degrees of
freedom have complicated terms for which the explicit expressions are given in Appendix B.
An important observation here is that the contribution of the two degrees of freedom (one
from the original potential and the other from the partner potential) are not identical, which
is expected as the structure and, hence, the classical solutions of the dynamical variables,
are not same for both the cases. On careful observation of the Poisson Bracket relations of
the partner potential degrees of freedom, it can be seen that there is an explicit dependence
on the initial values of the dynamical variables.

11. Numerical Results

In this section, we do the following studies to ascertain the randomness properties of
micro-canonical and canonical correlators of the two integrable models we have considered:
• Study A:

The time dependence of 2-point and 4-point micro-canonical correlators for four
different states: m = 1, m = 2, m = 5, m = 10. This demonstrates the comparative
behavior of micro-canonical correlators for different states under time evolution.

• Study B:
The time dependence of 2-point and 4-point canonical correlators for three different
temperatures: T = 10, T = 50, T = 100 at fixed time t = 0.5. We have chosen units
such that the Boltzmann Constant, kB = 1, so that the inverse temperature, β = 1/T.
This demonstrates the comparative behavior of canonical correlators for different
temperature under time evolution.

• Study C:
The temperature dependence of the 2-point and 4-point canonical correlators in
the temperature range: 10 ≤ T ≤ 100. This demonstrates the explicit temperature
dependence of the canonical correlators.

Technically, one has to take the full infinite-dimensional Hilbert Space associated with
the Supersymmetric 1D Potential Well for computing the correlators, but it is not possible
to do that in a numerical evaluation; hence, one must choose some finite number of states
in the Hilbert Space. This choice of a finite value of total number of states will result in
an error, and this kind of error is known as Truncation Error. The terminology refers to
the fact that the error is arising because we have truncated the number of states to a finite
value. Here, we have chosen the truncation to be such that all states ≤ Ntrunc = 10 for
numerical evaluation.

From the eigenstate representations for the correlators: y(1,2,3)
m (t1, t2), Y(1,2,3)(t1, t2),

c(1,2,3)
m (t1, t2), and C(1,2,3)(t1, t2) given in Section 5.8, we know that they depend only on

t1 − t2; hence, we have defined t = t1 − t2. So, the negative values of t refer to the case of
t2 > t1, and so on. We proceed to the discussion of obtained numerical results.
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To make any bold comments about whether we are observing randomness or not, we
need to take the commutator brackets as operators Oi and then calculate

∆Oi =

√
〈O2

i 〉β − 〈Oi〉2β

and check whether ∆Oi depends on time t or not. If it does not, then what we have
is just statistical fluctuation, which is arising from the inherent quantum nature of the
systems and not from randomness. For example: Consider a QHO which has ∆x 6= 0,
but it is also independent of time; this means that, at each instant of time, if we take a
large number of copies, then there will be some statistical variation in the values of x
across different copies, but that variation will be found exactly the same at each instant of
time. If ∆Oi = f (t), then it is indeed a true signature of quantum randomness, perhaps
depending on functional form of f (t). Since we have calculated both 〈O2

i 〉β and 〈Oi〉β,
it is really easy to check for any signature of randomness. Furthermore, we can use the
same method to calculate higher moments than ∆Oi and get more and more sensitive
measurements for randomness, which is helpful if the f (t) above turns out to be some
simple periodic function, like f (t) ∼ cos(at), and we are not satisfied with it because we
have really sensitive and amazing technology which can probe for even finer randomness
signatures.

To elaborate further, consider the following. We do not really know what quantum
uncertainty is; hence, to work with it, we replace it by statistical uncertainty using en-
sembles, and so on. Then, uncertainty of an operator Oi represents its fluctuation across
ensembles, and it is not really a true measure of randomness. The fluctuation is merely
a sampling fluctuation. Say we take an ensemble consisting of 10,000 copies of a system,
then the uncertainty tells us the variation in the measured value of Oi across the copies /
ensemble at a particular time. Now, if we obtain the ∆Oi as a function of time, then we
can easily probe for randomness depending on the sensitivity of our instrument. If our
instrument is really sensitive, then we can even use higher moments to check for stronger
and stronger conditions of randomness. Obtaining ∆Oi as a function of time means that
the fluctuation itself is changing; hence, this can be a true signature of randomness, which,
of course, depends on what kind of function we get.

11.1. Supersymmetric 1D Infinite Potential Well

For numerical evaluation, we have chosen: L = 1 & 2m = 1, where L is the length of the
box in which a particle of mass m is confined. We also consider h̄ = 1.

• In Figures 5–7, we perform Study A on the 2-point micro-canonical correlators

y(1,2,3)
m (t1, t2) for Supersymmetric 1D Infinite Potential Well.

– We observe that the correlators y(1,2,3)
m (t1, t2) are periodic and that their periodicity

does not vary with the state. For the correlator y(1)m (t1, t2), the periodicity is
∆t ' 0.65. At present, there are no studies for the non-Supersymmetric case
for y(2,3)

m (t1, t2), and we plan to do the same in a work which is to appear very
shortly.

– The amplitude of the correlators increases with increasing m, which primarily
comes about because we have:

−i× y(1)m (t1, t2) ∼ Emk = Em − Ek = π2
(

m2 − k2
)

in the correlator’s eigenstate representation, which increases with increasing state
number.

– It is also observed that, with a higher and higher excited state, the number of
nodes increases and takes on the shape of a wave-packet. This is so because, as
we go to higher and higher excited states, the high frequency modes become
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more and more prominent. So, the comparison of the scaling of the number of
nodes here with non-Supersymmetric case is also important job to perform in
near future.

– In the insets of Figures 5–7, we have also plotted y(1,2,3)
10 (t1, t2) to draw a contrast

of the boundary / truncation state with the other states. The m = 10 correlators
are lacking in features, sometimes deceptively so, as compared to the other
states, which should come as no surprise because we have set our truncation at
Ntrunc = 10. Furthermore, this state appears to violate the properties shown by
other intermediate states, but, in fact, this is merely an artefact of m = 10 being
the truncation state and that contribution of states with m > 10 could not be
accommodated in the calculations for m = 10.

– The correlators y(2,3)
m (t1, t2) largely follow the same patterns and behavior as

shown by y(1)m (t1, t2) with two exceptions. First, the amplitude for y(2)m (t1, t2) cor-
relator is suppressed, whereas that of y(3)m (t1, t2) is amplified, both by a factor of
O(101), as compared to y(1)m (t1, t2). This comes from the absence of Emk factor in
y(2)m (t1, t2) and the presence of an additional Emk factor in y(3)m (t1, t2) as compared
to y(1)m (t1, t2). Second is the contrasting behavior in the symmetry properties in t,
whereas y(1)m (t1, t2) is symmetric in t, and y(2,3)

m (t1, t2) are anti-symmetric.

• We present the results of performing Study B and Study C on 2-point canonical correla-
tors Y(i)(t1, t2) as follows:

– In Figures 8–10, we perform Study B on the 2-point canonical correlators
Y(1,2,3)(t1, t2). We observe that the correlators shows periodic behavior for the
different chosen values of temperature. We observe that, for Y1(t1, t2), the mid
temperature value 50 shows the minimum amplitude, whereas lower value of
temperature (10) has greater amplitude. However, there is a sudden increase in
the amplitude of the correlator for temperatures in the higher value range as can
be seen from Figure 8. In correlators Y2(t1, t2) and Y3(t1, t2), however, we follow
a gradual pattern of decreasing amplitude with increasing in temperature, as ob-
served from Figures 9 and 10. To have a better understanding of the temperature
dependence of the 2-point correlators, we plot them with varying temperatures,
keeping the time constant.

– In Figures 11–13, we perform Study C on the 2-point canonical correlators
Y(1,2,3)(t1, t2). We plot, respectively, Y(1,2,3)(t1, t2), which are the thermal or
canonical correlators corresponding to y(1,2,3)

m (t1, t2), respectively, with respect to
temperature. It is clearly visible that, for very low temperatures, the canonical
correlators are constant. However, after a certain value of the temperature, the
correlators decays rapidly and falls off to zero within a small temperature range

– In Figures 14–16, we perform Study A on the 4-point micro-canonical correlators

c(1,2,3)
m (t1, t2) for Supersymmetric 1D Infinite Potential Well.

– We observe that the correlators c(1,2,3)
m (t1, t2) are periodic and that their periodic-

ity does not vary with the state. For the correlator c(1)m (t1, t2), the periodicity is
∆t ' 0.35, which is roughly half of the corresponding 2-point micro-canonical
correlator. We note that this is approximately the same periodicity, within nu-
merical error, observed in the case of non-Supersymmetric 1D Infinite Potential
Well as obtained by Hashimoto et al. [90]. Hence, we conclude that introduc-
ing Supersymmetry in integrable QMcal models does not affect the periodicity
of 4-point micro-canonical correlators. At present, there are no studies for the
non-Supersymmetric case for c(2,3)

m (t1, t2), and we plan to do the same in a work
which is to appear very shortly.
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– Other properties of c(i)m (t1, t2) are much like y(i)m (t1, t2). We observe a similar in-
crease in the amplitude of the correlators with increasing m. The scaling of ampli-
tudes in the case of 4-point micro-canonical correlators is with a factor of O(104)

instead of a factor O(101) as is the case with y(i)m (t1, t2) such that the relative
order of amplitudes can be arranged as: c(3)m (t1, t2) > c(2)m (t1, t2) > c(1)m (t1, t2).

– All c(i)m (t1, t2) are symmetric about t = 0, which means that, to these 4-point
micro-canonical correlators, it does not matter whether t1 > t2 or t1 < t2.

– In Figures 17–19, we perform Study B on the 4-point canonical correlators. We
plot the 4-point canonical correlators for three different temperatures. We observe
that all the 4-point correlators shows periodic behavior irrespective of the value
of the temperature. It is also observed that, for each correlator, the amplitude
increases with the increasing temperature. To have a better understanding of the
temperature dependence of the 4-point correlators, we plot them with varying
temperature, keeping the time constant.

– In Figures 20–22, we perform Study C on the 4-point canonical correlators. we
plot, respectively, C(1,2,3)(t1, t2), which are the thermal or canonical correlators
corresponding to c(1,2,3)

m (t1, t2), respectively, with respect to temperature. It is
observed that, for low temperatures, the 4-point correlators show negligible value.
However, after a certain threshold temperature, the 4-point correlators increases
and then saturates to a certain finite value.

• The temperature-dependent plots for the 2-point and the 4-point canonical correlators
suggests that both the 2- and the 4-point canonical correlators are essential if one wants
to have a complete understanding of the phenomenon of Quantum randomness. The
plots suggests that 2-point correlators are a better probe for understanding Quantum
randomness at low temperatures, whereas, at high temperatures, it is actually the
4-point correlators, which is more significant. However, in the mid-temperature range,
the 2-point and the 4-point correlators have exactly opposite behavior. Hence, to
understand the significance of temperature in this range on any Supersymmetric
Quantum mechanical model, having knowledge of both 2- and 4-point correlators is
of utmost importance.

−10

−5

0

5

10

15

20

25

30

35

40

−1 −0.5 0 0.5 1

−10
−8
−6
−4
−2
0
2
4
6
8

10

−0.3−0.2−0.1 0 0.1 0.2 0.3−i
×y

(1
)

m
(t)

Time (t)

SUSY 1D Potential Well : y(1)
m (t)

m=1
m=2
m=5

m=10

Figure 5. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point micro-canonical correlator

y(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one relevant
time parameter.
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Figure 6. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point micro-canonical correlator

y(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one relevant
time parameter.
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Figure 7. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point micro-canonical correlator

y(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one relevant
time parameter.
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Figure 8. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlator
Y(1)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), p(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 9. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlator
Y(2)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), x(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 10. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlator
Y(3)(t1, t2) = −∑m e−βEm 〈Ψm|[p(t1), p(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 11. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 12. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 13. Supersymmetric 1D Infinite Potential Well: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 14. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point micro-canonical correlator

c(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one rele-

vant time parameter.
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Figure 15. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point micro-canonical correlator

c(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one relevant

time parameter.
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Figure 16. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point micro-canonical correlator

c(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one rele-

vant time parameter.
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Figure 17. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlator
C(1)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), p(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 18. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlator
C(2)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), x(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 19. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlator
C(3)(t1, t2) = −∑m e−βEm 〈Ψm|[p(t1), p(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.



Symmetry 2021, 13, 44 71 of 103

0.1 100 10
5

0

20

40

60

80

Figure 20. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 21. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 22. Supersymmetric 1D Infinite Potential Well: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.

11.2. Supersymmetric 1D Harmonic Oscillator

For numerical evaluation, we have chosen: ω = 1 & 2M = 1, where ω is the frequency
of the oscillator, in which a particle of mass M is confined. We also consider h̄ = 1.

• In Figures 23–25, we perform Study A on the 2-point micro-canonical correlators

y(1,2,3)
m (t1, t2) for Supersymmetric 1D Harmonic Oscillator.

– We observe that the correlators y(1,2,3)
m (t1, t2) are periodic and that their periodicity

does not vary with the state.
– The amplitude of the correlator y(1)m (t1, t2) initially increases with increasing m,

which can be seen from the greater amplitude for m = 2 than the amplitude for
m = 1. However, with further increase of m, the amplitude of the correlator
shows negligible change, and the amplitudes of the higher states almost overlap.
This suggests that, for the lower energy states, the micro-canonical correlators
depend on the energy state in which they are calculated. However, this state
dependency goes away when calculated for the higher energy states. This can also
be understood from the analytical expression obtained for the micro-canonical
correlators obtained in Section 6 (calculated for Harmonic Oscillator of unit mass,
i.e., M = 1). The micro-canonical correlators have a non-trivial state dependence
in the form of the factor

(
1 +

√
m(m + 1)−

√
m(m− 1)

)
, which reduces simply

to 1 for higher energy states.
– In Figures 23–25, we have also plotted y(1,2,3)

10 (t1, t2) to draw a contrast of the
boundary / truncation state with the other states. The m = 10 correlators are lack-
ing in feature, sometimes deceptively so, as compared to the other states, which
should come as no surprise because we have set our truncation at Ntrunc = 10.
Furthermore, this state appears to violate the properties shown by other interme-
diate states, but, in fact, this is merely an artefact of m = 10 being the truncation
state and that contribution of states with m > 10 could not be accommodated in
the calculations for m = 10.

– The correlators y(2,3)
m (t1, t2) largely follow the same patterns and behavior as

shown by y(1)m (t1, t2) with two exceptions. First, the amplitude for y(2)m (t1, t2)
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correlator is amplified, whereas that of y(3)m (t1, t2) is suppressed, as compared
to y(1)m (t1, t2). The order of the amplification of the micro-canonical correlator
y(2)m (t1, t2) is exactly twice the amplitude of y(1)m (t1, t2), which is merely a reflec-
tion of the fact that the mass of the oscillator has been chosen as 1/2. Similarly,
the suppression of y(3)m (t1, t2) is exactly by the same factor. Second is contrasting
behavior in the symmetry properties in t, whereas y(1)m (t1, t2) is symmetric in t,
and y(2,3)

m (t1, t2) are anti-symmetric.
– In Figures 26–28, we perform Study B on the 2-point canonical correlators

Y(1,2,3)(t1, t2). We observe that the correlators shows periodic behavior for the
different chosen values of temperature. We observe that each of the 2-point
correlators behave identically with respect to temperature. The amplitude of each
of them decreases with increasing temperature. To have a better understanding
of the temperature dependence of the 2-point correlators, we plot them with
varying temperatures, keeping the time constant.

– In Figures 29–31, we present the results of performing Study C on 2-point canoni-
cal correlators Y(i)(t1, t2). Here, we plot Y(1,2,3)(t1, t2), which are the thermal or
canonical correlators corresponding to y(1,2,3)

m (t1, t2), respectively, with respect to
temperature. It is clearly visible that, for very low temperatures, the canonical
correlators are constant. After a certain value of the temperature, the amplitude
of the correlator shows a gradual increase. It reaches a maximum for a particular
value of the temperature and then decays exponentially to zero.

• In Figures 32–34, we perform Study A on the 4-point micro-canonical correlators

c(1,2,3)
m (t1, t2) for Supersymmetric Harmonic Oscillator.

– We observe that the correlators c(1,2,3)
m (t1, t2) are periodic and that their periodicity

does not vary with the state. For the correlator c(1)m (t1, t2), the periodicity is
roughly half of the corresponding 2-point micro-canonical correlator.

– Other properties of c(i)m (t1, t2) are much like y(i)m (t1, t2). We observe a similar
change in the amplitude of the correlators with changing m. The scaling of
amplitudes in the case of 4-point micro-canonical correlators, c(2)m (t1, t2) and
c(3)m (t1, t2) is exactly by a factor of 2 than c(1)m (t1, t2). This is because, for the 4-point
correlators, there is a mass square dependence, unlike the 2-point correlators,
which have just mass dependence. The amplitudes of the respective 4-point
correlators can also be found to be exactly half of the amplitudes of its 2-point
counterpart. This is obvious from the time-dependent functions appearing in the
case of Supersymmetric Harmonic oscillator.

– All c(i)m (t1, t2) are symmetric about t = 0, which means that, to these 4-point
micro-canonical correlators, it does not matter whether t1 > t2 or t1 < t2.

– In Figures 35–37, we perform Study B on the 4-point canonical correlators
C(1,2,3)(t1, t2). We observe that the correlators shows periodic behavior for the
different chosen values of temperature. We observe that each of the 4-point corre-
lators behaves identically with respect to temperature, which is exactly opposite
in character from the 2-point canonical correlators. The amplitude of each of them
increases with increasing temperature. To have a better understanding of the
temperature dependence of the 4-point correlators, we plot them with varying
temperature, keeping the time constant.

– In Figures 38–40, we present the results of performing Study C on 4-point canoni-
cal correlators C(i)(t1, t2). Here, we plot C(1,2,3)(t1, t2), which are the thermal or
canonical correlators corresponding to y(1,2,3)

m (t1, t2), respectively, with respect
to temperature. It is clearly visible that, for very low temperatures, the 4-point
canonical correlators have negligible amplitudes. After a certain value of the tem-
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perature, the amplitude of the correlator starts increasing and, finally, saturates
to a finite value.

• The temperature-dependent plots shows the significance of computing the 4-point
and the 2-point correlators to study the phenomenon of quantum randomness for a
Supersymmetric quantum mechanical model. From the plots, it can be seen that, for
very low temperatures, the 2-point correlators show a certain finite value, whereas the
4-point correlators are almost negligible. On the other hand, at very high temperatures,
the 2-point correlators are almost zero, whereas the 4-point correlators shows certain
finite value. This suggests that, to understand quantum randomness for a Supersym-
metric model at very low temperature, the results from the 4-point correlators can
be misleading, and, similarly, at high temperatures, the 2-point correlators might not
be an appropriate quantity to study randomness. However, to understand quantum
randomness at the mid temperature range, both 2- and 4-point correlators play a
significant role. We feel this shows the necessity for computing the 2-point correlators.
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Figure 23. Supersymmetric Harmonic Oscillator: Behavior of 2-point micro-canonical correlator

y(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one
relevant time parameter.
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Figure 24. Supersymmetric Harmonic Oscillator: Behavior of 2-point micro-canonical correlator

y(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one
relevant time parameter.
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Figure 25. Supersymmetric Harmonic Oscillator: Behavior of 2-point micro-canonical correlator

y(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one
relevant time parameter.
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Figure 26. Supersymmetric Harmonic Oscillator: Behavior of 2-point canonical correlator
Y(1)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), p(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 27. Supersymmetric Harmonic Oscillator: Behavior of 2-point canonical correlator
Y(2)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), x(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 28. Supersymmetric Harmonic Oscillator: Behavior of 2-point canonical correlator
Y(3)(t1, t2) = −∑m e−βEm 〈Ψm|[p(t1), p(t2)]|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 29. Supersymmetric 1D Harmonic Oscillator: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 30. Supersymmetric 1D Harmonic Oscillator: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 31. Supersymmetric 1D Harmonic Oscillator: Behavior of 2-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 32. Supersymmetric Harmonic Oscillator: Behavior of 4-point micro-canonical correlator

c(1)m (t1, t2) = − 〈Ψm|[x(t1), p(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one

relevant time parameter.
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Figure 33. Supersymmetric Harmonic Oscillator: Behavior of 4-point micro-canonical correlator

c(2)m (t1, t2) = − 〈Ψm|[x(t1), x(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one

relevant time parameter.
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Figure 34. Supersymmetric Harmonic Oscillator: Behavior of 4-point micro-canonical correlator

c(3)m (t1, t2) = − 〈Ψm|[p(t1), p(t2)]
2|Ψm〉 with time for different m. We have chosen t1 − t2 = t as there is only one

relevant time parameter.
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Figure 35. Supersymmetric Harmonic Oscillator: Behavior of 4-point canonical correlator
C(1)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), p(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 36. Supersymmetric Harmonic Oscillator: Behavior of 4-point canonical correlator
C(2)(t1, t2) = −∑m e−βEm 〈Ψm|[x(t1), x(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 37. Supersymmetric Harmonic Oscillator: Behavior of 4-point canonical correlator
C(3)(t1, t2) = −∑m e−βEm 〈Ψm|[p(t1), p(t2)]

2|Ψm〉 with time for different temperatures. We have chosen t1 − t2 = t
as there is only one relevant time parameter.
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Figure 38. Supersymmetric 1D Harmonic Oscillator: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 39. Supersymmetric 1D Harmonic Oscillator: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.
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Figure 40. Supersymmetric 1D Harmonic Oscillator: Behavior of 4-point canonical correlators with temperature for a
particular value of the time interval. We have chosen t1 − t2 = t as there is only one relevant time parameter.

12. Conclusions

To summarize, in this work, we have addressed the following issues to study the
OTOC in the context of Supersymmetric quantum mechanics:

• We apply the computational techniques of recently developed methodology of out of
time ordered correlators (OTOCs) to study the phenomenon of time disorder averag-
ing for a given quantum statistical ensemble or quantum randomness for two very
well known integrable one-dimensional quantum mechanical models viz. Harmonic
Oscillator and 1D potential well in the context of one-dimensional Supersymmetric
quantum mechanics. We show that, to develop a complete understanding of the
underlying randomness in the quantum system, not only the correlators constructed
from different operators at different times scales are important but also the correlators,
constructed from similar quantum mechanical operators at different time scales, play
a pivotal role.

• We have constructed all the temperature independent micro-canonical and
temperature-dependent canonical un-normalized and normalized version of these
OTOCs in the eigenstate representation of the Supersymmetric time-independent
Hamiltonian of the quantum system and represent all of them in a general model-
independent way. From the previous study, it is expected that the OTOCs in the
eigenstate representation one should not expect any chaotic behavior, i.e., the ex-
ponential growth with respect to the time scale in the correlators. However, one
can get a broader knowledge of some other aspects of quantum randomness, which
might capture the random behavior in the correlators in terms of non-chaoticity. From
our analysis, it is expected that a large class of quantum mechanical models will be
covered which provide the signature of quantum mechanical randomness, in general.

• The explicit calculation of the 4-point correlator C(1)(t1, t2), for the Supersymmetric
Harmonic Oscillator, shows the significance of the introduction of Supersymmetry
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within the context of quantum mechanics compared to the framework of quantum
mechanics without having any Supersymmetry. Supersymmetry introduces an energy
state dependence on the temperature-independent micro-canonical correlators, which
usually does not appear in the framework without having Supersymmetry in the
quantum mechanics description. Apart from the dependence on the energy states, the
canonical correlators have an additional dependence on temperature, which is also a
different and notable feature compared to the results obtained from quantum mechan-
ical set up without having Supersymmetry. This energy state and temperature depen-
dence of the correlators differentiates a Supersymmetric and a Non-Supersymmetric
Harmonic oscillator [90], though the time dependence in the OTOCs remains same. In
addition, particularly for the Supersymmetric Harmonic Oscillator, we have found
that the normalized 4-point OTOCs that are made up of same operators at different
time scales show exactly the same behavior, which implies they are not independent of
each other. However, this statement might not be true for other integrable models. On
the other hand, in the un-normalized version of these two correlators, we have found
exact same time dependence, but the overall frequency dependent normalization
factors will be different, which implies that they are proportional to each other in
this case.

• The classical limit, however, matches with the non-Supersymmetric case apart from a
factor of 2, which can be inferred from the fact that, in a Supersymmetric quantum
mechanical model, there are two degrees of freedom, one from the original potential
and the other associated with the partner potential. The time dependence of the
classical and the quantum version of the correlators are exactly identical. However,
the temperature dependence observed in the quantum case vanishes for its classical
counterpart, which is obviously an important finding from our computation.

• We observe a similar temperature and state dependence on the correlators for the
Supersymmetric 1D Infinite potential well. However, it is interesting to note that
Reference [90] also observed this state and temperature dependence for
Non-Supersymmetric Infinite potential well. The behavior of the only correlator
studied in Reference [90] is exactly identical to what we observe for the Supersym-
metric case. The correlator showed increase in the amplitude with increasing state
number and higher temperatures, which is exactly what we observe here. Hence, we
conclude that introduction of Supersymmetry does not introduce new features in the
case of 1D Infinite potential well.

• The significance of Supersymmetry in 1D potential well, however, can be realized from
its classical counterpart, which is markedly different from what is obtained in the non-
Supersymmetric case. The classical limit of OTOC for the 1D non-Supersymmetric
infinite potential is well independent of time and is merely a constant, whereas, for
the Supersymmetric case, there is a non-trivial time dependence, which is obviously a
new finding from our computations.

The future prospects of this work are as follows:

• In this paper, we restricted ourselves in considering only 2- and 4-point correlation
functions to study quantum randomness in various Supersymmetric QM models.
However, a more generalized approach would be to consider the multipoint correla-
tion functions to have a better understanding about the randomness underlying the
system. We have an immediate plan to carry forward the work along this direction
very soon.

• The study of OTOCs can be used to understand quantum randomness in various
quantum mechanical models, which are of prime significance in various condensed
matter, nuclear, and atomic physics models. Particularly, the time-dependent Hamil-
tonians we have not studied in this paper are where this eigenstate formalism and
related simplification to determine OTOC will not work. In that case, one needs to
use the general definition and representation of OTOC in terms of the well known
Schwinger Keldysh formalism. We have some future plans on that direction, as well.
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• The other types of correlators defined in this paper can be used to study some of the
well understood QM models to have an insight on the lost information of quantum
randomness. We are very hopeful that incorporating the study of these additional
correlators, which we have defined and evaluated in this paper, can make it possible
to capture more broader perspective on time disorder averaging phenomena through
quantum randomness, rather than only give insight about quantum mechanical chaos
from the temporal growth of the correlators.

• Very recently, in Reference [110–114], the authors have studied various relevant mea-
sures for an entangled open quantum system. The study of OTOCs for such type
of entangled systems [115–118] will be quite relevant for understanding the rtime
disorder averaging phenomena and chaos for such an entangled OQS.

• Last but not least, very recently, we proposed a detailed mechanism and framework,
using which one is able to compute the OTOC within the framework of primordial
cosmological perturbation theory by making use of the gauge invariant scalar per-
turbations and its associated canonically conjugate momenta [89], and, finally, found
out the chaotic-like behavior in the representative cosmological version of OTOC.
However, in that paper, we did not reported anything about the other possible two
operators, which we have introduced in this paper. At present, we are working on
that direction and very hopeful to get the certain non-trivial features of time disorder
averaging, which might have application to explain various cosmologically-relevant
phenomena within the evolution history of our universe, which was not explored
earlier at all.
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Appendix A. Derivation of the Normalization Factors for the Supersymmetric HO

To normalize the obtained OTOC, we divide it by the thermal average of the dynamical
variables considered in calculating the OTOC.

〈x(t1)x(t1)〉β =
1
Z

Tr(e−βHx(t1)x(t1)) =
1
Z ∑

n
e−βnω〈Ψn|p(t1)p(t1)|Ψn〉. (A1)

http://pirsa.org/19110117/
http://scgp.stonybrook.edu/video portal/video.php?id=4358
https://www.youtube.com/playlist?list=PLzW8AJcryManrTsG-4U4z9ip1J1dWoNgd
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Now, keep in mind that the ground state is only bosonic, whereas all the other
eigenstates have a fermionic part associated with it. Hence, separating the ground state
from the other states, the above equation can be written as

〈x(t1)x(t1)〉β =
1
Z

[
〈ψ0|x(t1)x(t1)|ψ0〉+ ∑

n>0
e−βnω 〈ψn|x(t1)x(t1)|ψn〉

]
(A2)

=
1
Z ∑

k

[
〈ψ0|x(t1) |ψk〉 〈ψk| x(t1)|ψ0〉︸ ︷︷ ︸

Term A

+ ∑
n>0

e−βnω 〈ψn|x(t1) |ψk〉 〈ψk| x(t1)|ψn〉︸ ︷︷ ︸
Term B

]
.

Now, we are going to explicitly show the calculation of term A and term B. Expanding
the position operators using the Heisenberg picture for the evolution of operators:

Term A = ∑
k
〈ψ0|x(t1) |ψk〉 〈ψk| x(t1)|ψ0〉

=
1
2 ∑

k
e−ikωt1 xB

0k eikωt1 xB
k0 =

1
2 ∑

k
xB

0k xB
k0 =

1
4ω

. (A3)

Term B = ∑
n>0

e−βnω ∑
k
〈ψn|x(t1) |ψk〉 〈ψk| x(t1)|ψn〉

= ∑
n>0

e−βnω 〈ψn|x(t1) |ψ0〉 〈ψ0| x(t1)|ψn〉+ ∑
n>0

e−βnω ∑
k>0
〈ψn|x(t1) |ψk〉 〈ψk| x(t1)|ψn〉

=
1
2 ∑

n>0
e−βnωeinωt1 xn0 e−inωt1 x0n + ∑

n>0
∑
k>0

xnk(t1)xkn(t1)

=
e−βω

4ω
+

1
4ω ∑

n>0
e−βnω

(
2n +

√
n(n + 1) +

√
n(n− 1)

)
. (A4)

〈x(t1)x(t1)〉β =
1

4Zω

(
1 + e−βω + ∑

n>0
e−βEn [2n +

√
n(n + 1) +

√
n(n− 1)]

)
. (A5)

A similar calculation is carried out for the thermal average of the product of the
momentum operators.

〈p(t2)p(t2)〉β =
1
Z

Tr(e−βH p(t2)p(t2)) =
1
Z ∑

n
e−βnω〈Ψn|p(t2)p(t2)|Ψn〉. (A6)

Now, keep in mind that the ground state is only bosonic, whereas all the other eigenstates
have a fermionic part associated with it. Hence, separating the ground state from the other
states, the above equation can be written as

〈p(t2)p(t2)〉β =
1
Z

[
〈ψ0|p(t2)p(t2)|ψ0〉+ ∑

n>0
〈ψn|p(t2)p(t2)|ψn〉

]
(A7)

=
1
Z ∑

k

[
〈ψ0|p(t2) |ψk〉 〈ψk| p(t2)|ψ0〉︸ ︷︷ ︸

Term A

+ ∑
n>0
〈ψn|p(t2) |ψk〉 〈ψk| p(t2)|ψn〉︸ ︷︷ ︸

Term B

]
.

Now, we are going to explicitly show the calculation of term A and term B. Expanding
the position operators using the Heisenberg picture for the evolution of operators:

Term A = ∑
k
〈ψ0|p(t2) |ψk〉 〈ψk| p(t2)|ψ0〉

=
1
2 ∑

k
eiE0kt2 pB

0k eiEk0t2 pB
k0 =

1
2 ∑

k
pB

0k pB
k0 =

ω

4
. (A8)
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Term B = ∑
n>0

e−βEn ∑
k
〈ψn|p(t2) |ψk〉 〈ψk| p(t2)|ψn〉

= ∑
n>0

e−βEn 〈ψn|p(t2) |ψ0〉 〈ψ0| p(t2)|ψn〉+ ∑
n>0

∑
k>0
〈ψn|p(t2) |ψk〉 〈ψk| p(t2)|ψn〉

=
1
2 ∑

n>0
e−βEn eiEn0t2 pn0 eiE0nt2 p0n + ∑

n>0
∑
k>0

pnk(t2)pkn(t2)

=
ωe−βω

4
+

ω

4 ∑
n>0

e−βEn

(
2n +

√
n(n + 1) +

√
n(n− 1)

)
. (A9)

〈p(t2)p(t2)〉β =
ω

4Z

(
1 + e−βω + ∑

n>0
e−βEn

[
2n +

√
n(n + 1) +

√
n(n− 1)

])
. (A10)

Appendix B. Poisson Bracket Relation for the Supersymmetric Partner Potential
Associated with the 1D Infinite Well Potential

For calculating the Poisson Bracket {x2(t1), p2(t2)}, we need the partial derivaties
of the dynamical variables characterising the partner hamiltonian with respect to their
initial values. For the partner potential associated with the 1D box, it can be seen from
Equations (261) and (262) that the partial derivatives of the classical variables with respect
to its initial value will not be trivial and will depend on the initial value chosen. For the
sake of convenience, we introduce some symbols in this section. We denote the partial
derivative of position with respect to its initial value with the symbol O1

O2
, i.e.,

∂x2(t)
∂x2(0)

= (−1)nO1

O2
. (A11)

where the symbols O1 and O2 have the following expressions:

O1 =
√

1 + 4π4 cos(sin−1(α)− tβ) sin(πx2(0))
(

p2(0)2 + 4p2(0)2π4+

16π8 cot4(πx2(0)) + 8π4 cot2(πx2(0))(p2(0)22π4 − 2π4cosec2(πx2(0)))

− 16π8 cot3(πx2(0)) t c cosec3(πx2(0))

√
p2(0)2 sin2(πx2(0))

c

4π4t cot(πx2(0))c3cosec5(πx2(0))
[

p2(0)2 sin2(πx2(0))
c

]3/2)
. (A12)

O2 = c2

√
p2(0)2 sin (πx2(0))

c
η(t). (A13)

Similarly, for the partial derivative of x2(t) with p2(0), we get

∂x2(t)
∂p2(0)

=

p2(0)
√

1 + 4π4 cos
[

sin−1(α)− tβ

](
4π4cos(πx2(0)) + c3t

)√
p2(0)2 sin2(πx2(0))

c

πc3β

√
p2(0)2 sin2(πx2(0))

c
η(t)

, (A14)

where the symbols α, β, and η(t) used in the above equations have the following expres-
sions.

α =
cos(πx2(0))√

p2(0)2 + 4π4 cot2(πx2(0))
p2(0)2 + 4π4 + 4π4 cot2(πx2(0))

, β =
√

p2(0)2 + 4π4 + 4π4 cot2(πx2(0)),
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η(t) =
(

1− (1 + 4π4) sin2[sin−1(α)− tβ]

)
.

The partial derivative of the momentum associated with the partner potential wrt its initial
position and the momentum are now explicitly evaluated. The partial derivative of the
momentum wrt the initial position is given by

∂p2(t)
∂x2(0)

=

4π5
(
− cot(πx2(0))cosec2(πx2(0)) +

Y1
Y2
− Y3
Y4

)
√

c2 − 4π4(1 + 4π4) sin2[sin−1(α)− βt]
η(t)

. (A15)

where the symbols Y1, Y2, Y3, Y4 used in the above equations refers to the following:

Y1 = (1 + 4π4)2 cos[sin−1(α)− βt] sin(πx2(0))
(

p2(0)4 + 4p2(0)2π4 + 16π8 cot4(πx2(0))

+ 8π4 cot2(πx2(0)) (p2(0)2 + 2π4 − 2π4cosec2(πx2(0)))− 16π8t cot2(πx2(0)) c

cosec3(πx2(0))

√
p2(0)2 sin2(πx2(0))

c2 − 4π4t cot(πx2(0))c3cosec5(πx2(0))(
p2(0)2 sin2(πx2(0))

c2

)3/2)
sin3[sin−1(α)− tβ], (A16)

Y2 = c3β

√
p2(0)2 sin2(πx2(0))

c2

(
− 1 + (1 + 4π4) sin2[sin−1(α)− βt]

)2

, (A17)

Y3 = (1 + 4π4) sin(πx2(0))
(

p2(0)4 + 4p2(0)2π4 + 16π8 cot4(πx2(0))

+ 8π4 cot2(πx2(0)) (p2(0)2 + 2π4 − 2π4cosec2(πx2(0)))− 16π8t cot2(πx2(0)) c

cosec3(πx(0))

√
p(0)2 sin2(πx2(0))

c2 − 4π4t cot(πx2(0))c3cosec5(πx2(0))(
p2(0)2 sin2(πx2(0))

c2

)3/2

sin[2 sin−1(α)− 2βt]
)

, (A18)

Y4 = 2c3β

√
p2(0)2 sin2(πx2(0))

c2

(
− 1 + (1 + 4π4) sin2[sin−1(α)− βt]

)
. (A19)

The partial derivative of the momentum wrt the initial momentum is given by

∂p2(t)
∂p2(0)

=

(
2p2(0) +

Z1
Z2
− Z3
Z4

)
2

√
c2 +

4π4(1 + 4π4) sin2[sin−1(α)− βt]
−1 + (1 + 4π4) sin2[sin−1(α)− βt]

, (A20)

where the symbols Z1, Z2, Z3, Z4 represent the following expressions:

Z1 = 8p2(0)π4(1 + 4π4)2 cos[sin−1(α)− βt]
(

4π4 cos(πx2(0))

+ c3t

√
p2(0)2 sin2(πx2(0))

c2

)
sin3[sin−1(α)− βt], (A21)

Z2 = c3β

√
p2(0)2 sin2(πx2(0))

c2

(
− 1 + (1 + 4π4) sin2[sin−1(α)− βt]

)
, (A22)
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Z3 = 4p2(0)π4(1 + 4π4)

(
4π4 cos(πx2(0)) +

√
2tc3

·
√

p2(0)2 sin2(πx2(0))
p2(0)2 + 4π4 + (−p2(0)2 + 4π4) cos(2πx2(0))

)
, (A23)

Z4 = c3β

√
p2(0)2 sin2(πx2(0))

c

(
− 1 + (1 + 4π4) sin2[sin−1(α)− βt]

)
. (A24)

In a similar way, for the Poisson Bracket involving the position and momentum
variables at different times, we denote it by X2

P2
, for the sake of convenience, i.e.,

{x2(t1), p2(t2)} = (−1)n X2

Q2
, (A25)

where X2 and Q2 can be explicitly evaluated to have the following expressions:

X2 = p2(0)
√

1 + 4π4
[

3p2(0)4 + 20p2(0)2π4 + 64π8 − 4(p2(0)4 + 4p(0)2π4 − 16π8)

cos(2πx(0)) + (p2(0)2 − 4p2(0)2π4) cos(4πx(0))
]

cos
[

sin−1 α− t1γ√
2

]
cosec3(πx2(0))(

3γ√
2
− 4
√

2π4γ + 24
√

2π8γ +
(1 + 4π4)2 cos[4 sin−1(α)− 2

√
2t2γ] γ√

2

− 2
√

2(−1 + 16π8) cos[2 sin−1(α)−
√

2t2γ]− 16π4t1 sin[2 sin−1(α)−
√

2t2γ]

− 64π8t1 sin[2 sin−1(α)−
√

2t2γ] + 16π4t2 sin[2 sin−1(α)−
√

2t2γ]

+ 64π8t2 sin[2 sin−1(α)−
√

2t2γ]

)
. (A26)

Q2 = 64c2β2 p2(0) sin(πx2(0))
√

η(t1) (η(t2))
2

√
c2 − 4π4(1 + 4π4) sin2[sin−1(α)− t2β]

η(t2)
.

The symbol γ used in the above equations denotes the following expression:

γ =

√(
p2(0)2 + 8π4 − p2(0)2 cos(2πx2(0))

)
cosec(πx2(0)). (A27)

The Poisson Bracket of the momentum at different times is symbolically denoted by
{p2(t1), p2(t2)} = P1/P2 , where P1 and P2 represent the following expressions:

P1 = 2p(0)π4(1 + 4π4) sin(πx(0))
(
− 1

4

(
1− 4π4 + (1 + 4π4) cos[2 sin−1(α)− 2βt1]

))2

β sin[2 sin−1(α)− 2t2β] + sin[2 sin−1(α)− 2t1β]

(
1
4

(
1− 4π4 + (1 + 4π4)

cos[2 sin−1(α)− 2t2β]

)2

β− 2π4(1 + 4π4)(t1 − t2) sin[2 sin−1(α)− 2t2β]

)
, (A28)

P2 =

{
p(0) sin(πx(0))

(
(1 + 4π4) sin2[sin−1(α)− t1β]− 1

)2

×
√

c2 +
4π4(1 + 4π4) sin2[sin−1(α)− t1β]

(1 + 4π4) sin2[sin−1(α)− t1β]− 1

}
×
(
(1 + 4π4) sin2[sin−1(α)− t2β]− 1

)2

×
√

c2 +
4π4(1 + 4π4) sin2[sin−1(α)− t2β]

(1 + 4π4) sin2[sin−1(α)− t2β]− 1
. (A29)
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Appendix C. Derivation of the Eigenstate Representation of the Correlators

We provide a detailed derivation of the eigenstate representation of the various 2-
point and the 4-point correlators that we intend to calculate for various Supersymmetric
quantum mechanical models.

Appendix C.1. Representation of 2-point Correlator: Y(1)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [x(t1), p(t2)]:

Y(1)(t1, t2) = − 〈[x(t1), p(t2)]〉β = − 1
Z ∑

m
e−βEm 〈ψm|[x(t1), p(t2)]|ψm〉 .

Using Equation (33) for Heisenberg representation for x(t1) and p(t2) and inserting the
identities between the operators the 2-point correlator can be written in terms of the
micro-canonical correlator, which shows the temperature independent behavior of the
system:

Y(1)(t1, t2) = −
1
Z ∑

m
e−βEm 〈ψm|{x(t1)p(t2)− p(t2)x(t1)}|ψm〉

= − 1
Z ∑

m
e−βEm 〈ψm|

{
eiHt1 xe−iHt1 eiHt2 pe−iHt2 − eiHt2 pe−iHt2 eiHt1 xe−iHt1

}
|ψm〉

= − 1
Z ∑

m
e−βEm × 〈ψm|

{
eiHt1 xe−iHt1

(
∑
k
|ψk〉 〈ψk|︸ ︷︷ ︸
Identity

)
eiHt2 pe−iHt2

− eiHt2 pe−iHt2

(
∑
k
|ψk〉 〈ψk|︸ ︷︷ ︸
Identity

)
eiHt1 xe−iHt1

}
|ψm〉

= − 1
Z ∑

m
∑
k

e−βEm

{
〈ψm|eiHt1 xe−iHt1 |ψk〉 〈ψk|eiHt2 pe−iHt2 |ψm〉

− 〈ψm|eiHt2 pe−iHt2 |ψk〉 〈ψk|eiHt1 xe−iHt1 |ψm〉
}

= − 1
Z ∑

m
∑
k

e−βEm
{

eit1Emk eit2Ekm xmk pkm − eit2Emk eit1Ekm xkm pmk

}
= − 1

Z ∑
m

∑
k

e−βEm
{

eit1Emk eit2Ekm + eit2Emk eit1Ekm
}

xmk pkm

= − i
2Z ∑

m
∑
k

e−βEm
{

eit1Emk eit2Ekm + eit2Emk eit1Ekm
}

Ekmxmkxkm

=
1
Z ∑

m
e−βEm y(1)m (t1, t2), (A30)

using xmk = xkm and pmk = p∗km = −pkm ∵ x and p are Hermitian. Here, we have defined:
Emk/m,k = Em − Ek, xmk/m,k = 〈ψm|x|ψk〉 and pmk/m,k = 〈ψm|p|ψk〉. We have also used a
simple result from Reference [90]:

pkm =
i
2

Ekmxkm. (A31)

The micro-canonical correlator for Equation (A30) is:

y(1)m (t1, t2) =
−i
2 ∑

k
Ekmxmkxkm

{
eit1Emk eit2Ekm + eit2Emk eit1Ekm

}
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=
−i
2 ∑

k
Ekmxmkxkm

{
eiEmk(t1−t2) + e−iEmk(t1−t2)

}
=
−i
2 ∑

k
Ekmxmkxkm{2 cos(Emk(t1 − t2))}

= −i ∑
k

Ekmxmkxkm cos(Ekm(t1 − t2)).

So, the eigenstate representation for micro-canonical correlator y(1)m (t1, t2) is:

y(1)m (t1, t2) = −i ∑
k

Ekm xmk xkm cos(Ekm(t1 − t2)). (A32)

Hence, the eigenstate representation for the canonical correlator Y(1)(t1, t2) is:

Y(1)(t1, t2) = −
i
Z ∑

m,k
e−βEm Ekm xmk xkm cos(Ekm (t1 − t2)). (A33)

Appendix C.2. Representation of 2-point Correlator: Y(2)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [x(t1), x(t2)]:

Y(2)(t1, t2) = − 〈[x(t1), x(t2)]〉β = − 1
Z ∑

m
e−βEm 〈ψm|[x(t1), x(t2)]|ψm〉 .

Using Equation (33) for Heisenberg representation for x(t1) and x(t2):

Y(2)(t1, t2) = −
1
Z ∑

m
e−βEm 〈ψm|{x(t1)x(t2)− x(t2)x(t1)}|ψm〉

= − 1
Z ∑

m
∑
k

e−βEm
{

eit1Emk eit2Ekm − eit2Emk eit1Ekm
}

xmkxkm

=
1
Z ∑

m
e−βEm y(2)m (t1, t2), (A34)

again we have defined: Emk/m,k = Em − Ek and xmk/m,k = 〈ψm|x|ψk〉 .

The micro-canonical correlator for Equation (A34) is:

y(2)m (t1, t2) = −∑
k

xmkxkm

{
eit1Emk eit2Ekm − eit2Emk eit1Ekm

}
= −∑

k
xmkxkm

{
eiEmk(t1−t2) − e−iEmk(t1−t2)

}
= −2i ∑

k
xmkxkm{sin(Emk(t1 − t2))}.

So, the eigenstate representation for micro-canonical correlator y(2)m (t1, t2) is:

y(2)m (t1, t2) = −2i ∑
k

xmk xkm {sin(Emk(t1 − t2))}. (A35)
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Hence, the eigenstate representation for the canonical correlator Y(2)(t1, t2) is:

Y(2)(t1, t2) = −
2i
Z ∑

m,k
e−βEm xmk xkm {sin(Emk(t1 − t2))}. (A36)

Appendix C.3. Representation of 2-point Correlator: Y(3)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [p(t1), p(t2)]:

Y(3)(t1, t2) = − 〈[p(t1), p(t2)]〉β = − 1
Z ∑

m
e−βEm 〈ψm|[p(t1), p(t2)]|ψm〉 .

Proceeding as above, we obtain the following:

Y(3)(t1, t2) = −
1
Z ∑

m
e−βEm 〈ψm|{p(t1)p(t2)− p(t2)p(t1)}|ψm〉β

= − 1
Z ∑

m
∑
k

e−βEm
{

eit1Emk eit2Ekm − eit2Emk eit1Ekm
}

pmk pkm

=
1
Z ∑

m
e−βEm y(3)m (t1, t2), (A37)

where again we have defined: Emk/m,k = Em − Ek, pmk/m,k = 〈ψm|p|ψk〉 and used Equa-
tion (36).

The micro-canonical correlator for Equation (A37) is:

y(3)(t) = −∑
k

pmk pkm

{
eit1Emk eit2Ekm − eit2Emk eit1Ekm

}
= −∑

k
pmk pkm

{
eiEmk(t1−t2) − e−iEmk(t1−t2)

}
= 2i ∑

k
pmk pkm sin(Ekm(t1 − t2))

=
−i
2 ∑

k
Emk xmk Ekm xkm sin(Ekm(t1 − t2)).

So, the eigenstate representation for micro-canonical correlator y(3)m (t1, t2) is:

y(3)m (t1, t2) =
−i
2 ∑

k
Emk xmk Ekm xkm sin(Ekm(t1 − t2)). (A38)

Hence, the eigenstate representation for the canonical correlator Y(3)(t1, t2) is:

Y(3)(t1, t2) =
−i
2Z ∑

m,k
e−βEm Emk xmk Ekm xkm sin(Ekm(t1 − t2)). (A39)

Appendix C.4. Representation of 4-Point Correlator: C(1)(t1, t2)

Appendix C.4.1. Un-normalized: C(1)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [x(t1), p(t2)]

2:
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C(1)(t1, t2) = − 〈[x(t1), p(t2)]
2〉β

= − 1
Z ∑

m
e−βEm 〈ψm|[x(t1), p(t2)]

2|ψm〉

=
1
Z ∑

m
e−βEm c(1)m (t1, t2). (A40)

The micro-canonical correlator for Equation (60) is

c(1)m (t1, t2) = − 〈ψm|[x(t1), p(t2)]
2|ψm〉 = ∑

k
b(1)mk (t1, t2) b(1)∗mk (t1, t2),

with

b(1)mk (t1, t2) = −i 〈ψm|[x(t1), p(t2)]|ψk〉

= −i 〈ψm|
{

eiHt1 xe−iHt1

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt2 pe−iHt2

− eiHt2 pe−iHt2

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt1 xe−iHt1

}
|ψk〉

= −i ∑
l

{
eit1Eml eit2Elk xml plk − eit2Eml eit1Elk pml xlk

}
=

1
2 ∑

l

{
Elkeit1Eml eit2Elk − Emleit2Eml eit1Elk

}
xml xlk,

so that
b(1)∗mk (t1, t2) =

1
2 ∑

r

{
Erkeit1Erm eit2Ekr − Emreit2Erm eit1Ekr

}
xrmxkr.

Hence, the micro-canonical correlator for Equation (60) is:

c(1)m (t1, t2) =
1
4 ∑

k,l,r
xml xlk xrm xkr ×[{

Erkeit1Erm eit2Ekr − Emreit2Erm eit1Ekr
}
×
{

Elkeit1Eml eit2Elk − Emleit2Eml eit1Elk
}]

=
1
4 ∑

k,l,r
xml xlk xrm xkr ×[{
ErkElkeit1(Erm+Eml)eit2(Ekr+Elk)

}
−
{

ErkEmleit1(Erm+Elk)eit2(Ekr+Eml)
}

−
{

EmrElkeit1(Ekr+Eml)eit2(Erm+Elk)
}
+
{

EmrEmleit1(Ekr+Elk)eit2(Erm+Eml)
}]

=
1
4 ∑

k,l,r
xml xlk xrm xkr ×[{
ErkElkeit1Erl eit2Elr

}
−
{

ErkEmleit1(Erm+Elk)e−it2(Erm+Elk)
}

−
{

EmrElke−it1(Erm+Elk)eit2(Erm+Elk)
}
+
{

EmrEmleit1Elr eit2Erl
}]

=
1
4 ∑

k,l,r
xml xlk xrm xkr ×

[{
ErkElkeiErl(t1−t2)

}
+
{

EmrEmle−iErl(t1−t2)
}
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−
{

ErkEmlei(Erm+Elk)(t1−t2)
}
−
{

EmrElke−i(Erm+Elk)(t1−t2)
}]

.

Hence, the eigenstate representation for the micro-canonical correlator c(1)m (t1, t2) is:

c(1)m (t1, t2) =
1
4 ∑

k,l,r
xml xlk xrm xkr ×

[{
ErkElkeiErl(t1−t2)

}
+
{

EmrEmle−iErl(t1−t2)
}

−
{

ErkEmlei(Erm+Elk)(t1−t2)
}
−
{

EmrElke−i(Erm+Elk)(t1−t2)
}]

. (A41)

So, the eigenstate representation of canonical correlator from Equation (A40) using Equa-
tion (A41) is given as:

C(1)(t1, t2) =
1

4Z ∑
m

e−βEm ∑
k,l,r

xml xlk xrm xkr

×
[{

ErkElkeiErl(t1−t2)
}
+
{

EmrEmle−iErl(t1−t2)
}

−
{

ErkEmlei(Erm+Elk)(t1−t2)
}
−
{

EmrElke−i(Erm+Elk)(t1−t2)
}]

. (A42)

Appendix C.4.2. Un-normalized: C(2)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [x(t1), x(t2)]

2:

C(2)(t1, t2) = − 〈[x(t1), x(t2)]
2〉β = − 1

Z ∑
m

e−βEm 〈ψm|[x(t1), x(t2)]
2|ψm〉

=
1
Z ∑

m
e−βEm c(2)m (t1, t2). (A43)

The micro-canonical correlator for Equation (A43) is

c(2)m (t1, t2) = − 〈ψm|[x(t1), x(t2)]
2|ψm〉 = −∑

k
b(2)mk (t1, t2)b

(2)
km (t1, t2),

with

b(2)mk (t1, t2) = 〈ψm|[x(t1), x(t2)]|ψk〉

= 〈ψm|
{

eiHt1 xe−iHt1

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt2 xe−iHt2

− eiHt2 xe−iHt2

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt1 xe−iHt1

}
|ψk〉

= ∑
l

{
eit1Eml eit2Elk xml xlk − eit2Eml eit1Elk xml xlk

}
= ∑

l

{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
xml xlk,
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so that

b(2)km (t1, t2) = ∑
r

{
eit1Ekr eit2Erm − eit2Ekr eit1Erm

}
xkrxrm.

The micro-canonical correlator from Equation (A43) is:

c(2)m (t1, t2) = −∑
k,l,r

xml xlkxkrxrm

×
[{

eit1Eml eit2Elk − eit2Eml eit1Elk
}{

eit1Ekr eit2Erm − eit2Ekr eit1Erm
}]

= −∑
k,l,r

xml xlkxkrxrm ×
[{

eit1(Eml+Ekr)eit2(Elk+Erm)
}
−
{

eit1(Eml+Erm)eit2(Elk+Ekr)
}

−
{

eit1(Elk+Ekr)eit2(Eml+Erm)
}
+
{

eit1(Elk+Erm)eit2(Eml+Ekr)
}]

= −∑
k,l,r

xml xlkxkrxrm ×
[{

ei(Eml+Ekr)(t1−t2)
}
−
{

ei(t1−t2)Erl
}
−
{

e−i(t1−t2)Erl
}

+ e−i(Eml+Ekr)(t1−t2)

]
= ∑

k,l,r
xml xlkxkrxrm ×

{
2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
.

We can further simplify this in terms of individual energies as follows:

c(2)m (t1, t2) = ∑
k,l,r

xml xlkxkrxrm

×
{

2 cos[(Er − El)(t1 − t2)]− 2 cos[(Em − El + Ek − Er)(t1 − t2)]

}
= ∑

k,l,r
xml xlkxkrxrm

×
{

2 cos[(Er − El)(t1 − t2)]− 2 cos[(Er + El − Em − Ek)(t1 − t2)]

}
= ∑

k,l,r
xml xlkxkrxrm ×

{
2 cos

[(
Er − El −

Em + Ek
2

+
Em + Ek

2

)
(t1 − t2)

]
− 2 cos

[(
Er + El −

Em + Ek
2

− Em + Ek
2

)
(t1 − t2)

]}
= ∑

k,l,r
xml xlkxkrxrm ×

{
2 cos

[(
Er −

Em + Ek
2

− El +
Em + Ek

2

)
(t1 − t2)

]
− 2 cos

[(
Er −

Em + Ek
2

+ El −
Em + Ek

2

)
(t1 − t2)

]}
= 4 ∑

k,l,r
xml xlkxkrxrm sin

[(
Er −

Em + Ek
2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
.

So, two eigenstate representations of micro-canonical correlator c(2)m (t1, t2) are:
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c(2)m (t1, t2) = ∑
k,l,r

xml xlk xkr xrm

×
{

2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
, (A44a)

c(2)m (t1, t2) = ∑
k,l,r

xml xlk xkr xrm

4× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (A44b)

The canonical correlator from Equation (A43) using Equation (A44a) is:

C(2)(t1, t2) =
1
Z ∑

m
e−βEm ∑

k,l,r
xml xlk xkr xrm×{

2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
=

1
Z ∑

l,r
〈ψl |x

{
∑
k
|ψk〉 〈ψk|︸ ︷︷ ︸
Identity

}
x|ψr〉 〈ψr|x

{
∑
m

e−βEm |ψm〉 〈ψm|︸ ︷︷ ︸
Z

}
x|ψl〉

× 2 cos[Erl(t1 − t2)]−
2
Z ∑

m
e−βEm ∑

k,l,r
xml xlkxkrxrm cos[(Eml + Ekr)(t1 − t2)]

= ∑
l,r

x2
lrx2

rl × 2 cos[Erl(t1 − t2)]

− 2
Z ∑

m
e−βEm ∑

k,l,r
xml xlkxkrxrm cos[(Eml + Ekr)(t1 − t2)],

where x2
ij = 〈ψi|x2|ψj〉.

It is to be noted that the first term here is independent of the partition function, Z.
The canonical correlator from Equation (A43) using Equation (72) is:

C(2)(t1, t2) =
4
Z ∑

m
e−βEm ∑

k,l,r
xml xlkxkrxrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
.

So, two eigenstate representations of the canonical correlator C(2)(t1, t2) are:

C(2)(t1, t2) = ∑
l,r

x2
lr x2

rl × 2 cos[Erl(t1 − t2)]

− 2
Z ∑

m
e−βEm ∑

k,l,r
xml xlk xkr xrm cos[(Eml + Ekr)(t1 − t2)], (A45a)

C(2)(t1, t2) =
4
Z ∑

m
e−βEm ∑

k,l,r
xml xlkxkrxrm

× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (A45b)
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Appendix C.5. Representation of 4-point Correlator: C(3)(t1, t2)

Un-Normalized: C(3)(t1, t2)

We have the correlator’s definition as the negative of thermal expectation value of the
commutator [p(t1), p(t2)]

2:

C(3)(t1, t2) = − 〈[p(t1), p(t2)]
2〉β = − 1

Z ∑
m

e−βEm 〈ψm|[p(t1), p(t2)]
2|ψm〉

=
1
Z ∑

m
e−βEm c(3)m (t1, t2), (A46)

where c(3)m (t1, t2) is the micro-canonical correlator and can be identified as . The micro-
canonical correlator for Equation (A46) is

c(3)m (t1, t2) = − 〈ψm|[p(t1), p(t2)]
2|ψm〉 = −∑

k
b(3)mk (t1, t2)b

(3)
km (t1, t2), (A47)

with

b(3)mk (t1, t2) = 〈ψm|[p(t1), p(t2)]|ψk〉

= 〈ψm|
{

eiHt1 pe−iHt1

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt2 pe−iHt2

− eiHt2 pe−iHt2

(
∑

l
|ψl〉 〈ψl |︸ ︷︷ ︸

Identity

)
eiHt1 pe−iHt1

}
|ψk〉

= ∑
l

{
eit1Eml eit2Elk pml plk − eit2Eml eit1Elk pml plk

}
= ∑

l

{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
pml plk

b(3)mk (t1, t2) = ∑
l

{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
pml plk (A48)

b(3)km (t1, t2) = ∑
r

{
eit1Ekr eit2Erm − eit2Ekr eit1Erm

}
pkr prm.

The micro-canonical correlator from Equation (77) is:

c(3)m (t1, t2) = −∑
k,l,r

pml plk pkr prm

[{
eit1Eml eit2Elk − eit2Eml eit1Elk

}
×
{

eit1Ekr eit2Erm − eit2Ekr eit1Erm
}]

= −∑
k,l,r

pml plk pkr prm ×
[{

eit1(Eml+Ekr)eit2(Elk+Erm)
}
−
{

eit1(Eml+Erm)eit2(Elk+Ekr)
}

−
{

eit1(Elk+Ekr)eit2(Eml+Erm)
}
+
{

eit1(Elk+Erm)eit2(Eml+Ekr)
}]
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= −∑
k,l,r

pml plk pkr prm ×
[{

ei(Eml+Ekr)(t1−t2)
}
−
{

ei(t1−t2)Erl
}
−
{

e−i(t1−t2)Erl
}

+ e−i(Eml+Ekr)(t1−t2)

]
= ∑

k,l,r
pml plk pkr prm ×

{
2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
.

We can further simplify this in terms of individual energies by following calculations from
the previous subsection, in which we get:

c(3)m (t1, t2) = 4 ∑
k,l,r

pml plk pkr prm sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
.

So, two eigenstate representations of micro-canonical correlator c(3)m (t1, t2) are:

c(3)m (t1, t2) = ∑
k,l,r

pml plk pkr prm

×
{

2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
, (A49a)

c(3)m (t1, t2) = ∑
k,l,r

pml plk pkr prm

4× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (A49b)

The canonical correlator from Equation (A46) using Equation (A49a) is:

C(3)(t1, t2) =
1
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm×{

2 cos[Erl(t1 − t2)]− 2 cos[(Eml + Ekr)(t1 − t2)]

}
=

1
Z ∑

l,r
〈ψl |p

{
∑
k
|ψk〉 〈ψk|︸ ︷︷ ︸
Identity

}
p|ψr〉

× 〈ψr|p
{

∑
m

e−βEm |ψm〉 〈ψm|︸ ︷︷ ︸
Z

}
p|ψl〉 × 2 cos[Erl(t1 − t2)]

− 2
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm cos[(Eml + Ekr)(t1 − t2)]

= ∑
l,r

p2
lr p2

rl × 2 cos[Erl(t1 − t2)]

− 2
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm cos[(Eml + Ekr)(t1 − t2)],

where p2
ij = 〈ψi|p2|ψj〉.

The canonical correlator from Equation (A46) using Equation (A49b) and by following
calculations from previous subsection is:

C(3)(t1, t2) =
4
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm
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× sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
.

So, two eigenstate representations of the canonical correlator C(3)(t1, t2) are:

C(3)(t1, t2) = ∑
l,r

p2
lr p2

rl × 2 cos[Erl(t1 − t2)]

− 2
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm cos[(Eml + Ekr)(t1 − t2)], (A50a)

C(3)(t1, t2) =
4
Z ∑

m
e−βEm ∑

k,l,r
pml plk pkr prm

× 4 sin
[(

Er −
Em + Ek

2

)
(t1 − t2)

]
sin
[(

El −
Em + Ek

2

)
(t1 − t2)

]
. (A50b)

Appendix C.6. Eigenstate Representation of the Normalization Factors for the 4-point Correlators

Therefore, the 4-point correlators are generally divided by the disconnected parts, for
which eigenstate representation is provided below.

〈x(t), x(t)〉β =
1
Z

Tr[e−βHx(t)x(t)]

=
1
Z ∑

n
e−βEn 〈Ψn|x(t)x(t)|Ψn〉

=
1
Z ∑

n
e−βEn 〈Ψn|x(t)

{
∑
k
|Ψk〉 〈Ψk|︸ ︷︷ ︸
Identity

}
x(t)|Ψn〉

=
1
Z ∑

n
e−βEn ∑

k

{
ei(n−k)ωtxnkei(k−n)ωtxkn

}
=

1
Z ∑

n
e−βEn ∑

k
xnkxkn, (A51)

where, in the above derivation, we have used the Heisenberg evolution of operators and
the fact that Enk = −Ekn. Similarly, the other normalization factor involving the momentum
operators can be derived in a similar way, which is as follows:

〈p(t), p(t)〉β =
1
Z

Tr[e−βH p(t)p(t)]

=
1
Z ∑

n
e−βEn 〈Ψn|p(t)p(t)|Ψn〉

=
1
Z ∑

n
e−βEn 〈Ψn|p(t)

{
∑
k
|Ψk〉 〈Ψk|︸ ︷︷ ︸
Identity

}
p(t)|Ψn〉

=
1
Z ∑

n
e−βEn ∑

k

{
eiEnkt pnkeiEknt pkn

}
=

1
Z ∑

n
e−βEn ∑

k
pnk pkn.
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