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Abstract: We present a novel derivation of Einstein equations from the balance between
Clausius entropy crossing the boundary of a local causal diamond and entanglement entropy
associated with its horizon. Comparing this derivation with the entanglement equilibrium
approach developed by Jacobson, we are able to argue for the equivalence of matter en-
tanglement and Clausius entropy in the semiclassical regime. We also provide a direct
comparison of both entropies for conformal matter, showing their equivalence without ap-
pealing to gravitational dynamics. Furthermore, we determine that gravitational dynamics
implied by thermodynamics of spacetime, in fact, corresponds to unimodular gravity rather
than general relativity.
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1 Introduction

The connection between thermodynamics and gravitational physics first appeared in the
context of black hole thermodynamics [1–3]. Since then, considerable attention has been
devoted to understanding its nature and implications [4].

Significant progress in this area, although not free of controversy, was the derivation of
Einstein equations from thermodynamics of (local virtual) Rindler horizons [5]. It assumes
that local Rindler horizons are in thermodynamic equilibrium, thus, matter entropy flux
across the causal horizon is compensated by the change of quantum entanglement entropy
associated with it (assumed to be proportional to the horizon’s area). The matter entropy
is defined via the equilibrium Clausius relation, dS = δQ/T , being δQ the matter-energy
flux across the causal horizon and T the Unruh temperature. If the entanglement entropy
associated with the horizon is identified with Bekenstein entropy, equilibrium conditions for
the Rindler horizons constructed in every spacetime point imply Einstein equations.

Later, the notion of Clausius entropy was expanded to almost any null bifurcate sur-
face [6], and a complete derivation of Einstein equations was carried out for stretched light
cones [7]. Einstein equations were also obtained in a more rigorous way from the thermo-
dynamic equilibrium of local causal diamonds, with matter entropy described in terms of
entanglement entropy rather than by the Clausius relation [8]. Since entanglement entropy
is a purely quantum concept, the resulting equations of motion involve quantum expecta-
tion values rather than classical quantities. Let us further remark that the derivation for
local Rindler horizons was also improved to work in the context of non-equilibrium ther-
modynamics [9, 10] and similar thermodynamic derivations were provided for the equations
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of motion of certain modified theories of gravity [7, 9–13]. Overall, thermodynamics of
spacetime can be used not only to derive Einstein equations and equations of motion for
several modified theories of gravity but can also provide insight into situations in which
sources of gravity are quantum fields rather than classical matter.

In the present paper, we provide an alternative derivation of Einstein equations from
thermodynamics of local causal diamonds, using the construction of Clausius entropy flux
across an arbitrary causal horizon presented in [6]. Our derivation is based on well-known
methods and definitions, and provides a new perspective on several unclear features of
thermodynamics of spacetime. By using geodesic local causal diamonds as the basic struc-
ture [8] and describing matter entropy in terms of the semiclassical Clausius relation rather
than quantum entanglement; we show the equivalence of Clausius and matter entanglement
entropy. We also provide an argument for the equivalence of both entropies for a causal
diamond filled with conformal matter, which is completely independent of gravitational
dynamics. The relevance of this result lies in the fact that thermodynamic derivations of
gravitational equations of motion usually consider entanglement entropy associated with
a local causal horizon together with Clausius entropy flux across it [5, 7, 9, 10, 12]. If
Clausius entropy and matter entanglement entropy differ in the semiclassical regime, these
derivations compare two conceptually different entropies. Here we partially resolve this
issue, using the example of local causal diamonds to argue that such a comparison is indeed
justified.

Furthermore, we find that the gravitational dynamics has much more in common with
unimodular gravity (UG) than general relativity (GR). We argue that this is the case for
any thermodynamic derivation of Einstein equations. Since Einstein equations can also
be obtained from the equations of motion of UG (by assuming a divergence-free energy-
momentum tensor), this, in no way contradicts the previous thermodynamic results. Some
aspects of thermodynamics derivation that can be associated with UG were already noted
(without that interpretation) in the literature (see, e.g. [11])1. Our approach shows the
emergence of UG as a direct consequence of the derivation, as we automatically obtain a
traceless right-hand side of the gravitational equations of motion (a characteristic feature
of UG).

The article is organised in the following way. First, in section 2, the geometry of
geodesic local causal diamonds is introduced, which is the setting of our thermodynamic
considerations. In section 3, we discuss all kinds of entropy involved in thermodynamics
of spacetime and their relations. Especially, we present new arguments for the equiva-
lence of Clausius and matter entanglement entropy. Section 4 is concerned with obtaining
gravitational dynamics from thermodynamics of spacetime. We first briefly review the
entanglement equilibrium derivation in this setting, and then develop a novel derivation
based on Clausius entropy flux. We also analyse the connection between thermodynam-
ics of spacetime and UG. Finally, in section 5, we discuss our results and outline some
possibilities for future research.

1On writing this article we also found that a broad connection between thermodynamics of spacetime
and UG was already pointed out [14]
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Throughout the article, we work in four spacetime dimensions and use metric signature
(−,+,+,+). Definitions of curvature-related quantities follow [15]. We use lower case Greek
letters to denote abstract spacetime indices and lower case Latin letters for spatial indices
with respect to a (local) Cartesian basis. Unless otherwise explicitly stated, we use SI units.

2 Geodesic local causal diamonds

Local causal diamonds are a natural setting for thermodynamic derivations of gravitational
dynamics, being closed and easy to construct locally, without worrying about the horizon’s
continuation. Furthermore, a causal diamond is fully determined by its origin, a choice
of a local time coordinate and a single length scale. In contrast, local Rindler wedges,
usually considered in spacetime thermodynamics, require an arbitrary choice of a small
pencil of horizon generators and, also, of an arbitrary interval of the null parameter along
the generators. This makes Rindler wedges more cumbersome to work with and complicates
generalisations of the formalism (see, e.g. [7, 13] for further details).

For these reasons, our paper focuses on thermodynamic properties of geodesic local
causal diamonds (GLCD). We begin by introducing the construction of a GLCD and its ba-
sic properties. A more detailed discussion of causal diamonds can be found in, e.g. [16–18].

In any spacetime point, P , choose an arbitrary unit timelike vector, nµ, and construct
Riemann normal coordinates (RNC), in which the metric nearby P equals [19]

gµν(x) = ηµν −
1

3
Rµανβ (P )xαxβ +O

(
x3
)
. (2.1)

In every direction orthogonal to nµ, send out of P geodesics of parameter length l,
forming a 3-dimensional geodesic ball, which we denote by Σ0. The spacetime region
causally determined by this ball is called a geodesic local causal diamond. For a clear
visualisation, a sketch of GLCD is represented in figure 1.

Assuming l << Lcurvature, where Lcurvature is the characteristic local curvature scale,
i.e., inverse of the square root of the Riemann tensor’s largest eigenvalue, the boundary, B,
of Σ0 is approximately a 2-sphere of area

A = 4πl2 − 2π

9
l4Rijij (P ) +O

(
l5
)
, (2.2)

where Latin indices denote the spatial components. From now on, we use that xµxµ ≤ l2

inside the ball to write the error terms only in powers of l. The extrinsic curvature of a
geodesic ball vanishes up to O (l) [16]. Thus, Rijij = (3)R = 2G00 +O (l) [8], where (3)R is
the intrinsic scalar curvature, and the expression for the area results in

A = 4πl2 − 4π

9
l4G00 (P ) +O

(
l5
)
, (2.3)

where G00 = Gαβn
αnβ .

In flat spacetime, a GLCD is endowed with a unique (up to a multiplicative constant)
conformal Killing vector, generating a spherically symmetric conformal isometry that pre-
serves the GLCD [8]

ξ = C

((
l2 − t2 − r2

) ∂
∂t
− 2rt

∂

∂r

)
. (2.4)
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Figure 1. A schematic picture of a GLCD with angular coordinate θ suppressed. Diamond’s
base Σ0 is a spacelike geodesic ball, formed by geodesics of parameter length l sent out from point
P (represented by the grey lines inside the base). Boundary B of Σ0 is approximately a 2-sphere.
The ball is orthogonal to a timelike vector nµ. The tilted lines represent geodesic generators of
the diamond’s null boundary. The generators all start from past apex Ap (corresponding to coor-
dinate time −l/c) and again converge together in future apex Af (coordinate time l/c). Thus, the
diamond’s base is the spatial cross-section of the future domain of dependence of Ap at coordinate
time t = 0 and, likewise, the cross-section of the past domain of dependence of Af .

We can see that the null boundary of the GLCD is a conformal Killing horizon, as the
coefficient in front of ∂/∂t vanishes there. In curved spacetime, the conformal symmetry is
still satisfied up to O

(
l3
)
.

3 Entropy in thermodynamics of spacetime

The key result of thermodynamics of spacetime is that gravitational dynamics is encoded
in the equilibrium condition for maximal entropy: δS = 0, valid for all virtual causal
horizons (in our case null boundaries of GLCD’s, constructed at every point of spacetime).
This condition involves both entropy of quantum correlations across the horizon and that
of matter-energy crossing it. Since, usually, the former is described in terms of quantum
von Neumann entropy and the latter as thermodynamic Clausius entropy, it is not obvious
that they can be combined to define a meaningful equilibrium condition. To prove this is
the case, one would have to show that Clausius entropy flux equals that of von Neumann
entropy of matter with sufficient precision. Then, the equilibrium condition can be restated
as demanding maximal total von Neumann entropy of the system, δSvN = 0. In the
following, we argue that Clausius and matter entanglement entropy crossing the boundary
of a causal diamond are indeed equal to the leading order for the case of conformal fields.
Let us remark that the comparison we perform is independent of gravitational dynamics.
Therefore, we can use it to justify thermodynamic derivation of gravitational equations of
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motion without presenting a circular argument. We start in this section by introducing
all the relevant entropies that will take part in the derivation, i.e., entanglement entropy
associated with causal horizons, matter entanglement entropy and Clausius entropy.

Firstly, we discuss an interpretation of the entropy associated with local causal horizons.
It has been shown that to recover Einstein equations from thermodynamics, it must be equal
to Bekenstein entropy [5] (for modified theories of gravity, it needs to be the corresponding
Wald entropy [11, 20]), that was originally defined for black hole event horizons as [1–3]

SBH =
kBA
4l2P

, (3.1)

where A denotes the area of the black hole’s event horizon, kB the Boltzmann constant and
lP =

√
G~/c3 the Planck length. Since the Bekenstein’s original article [1], much attention

has been devoted to finding a microscopic interpretation of black hole entropy [4]. One of the
proposals interprets it as a result of the quantum entanglement between the regions which
are causally separated by the horizon. An observer on one side of the horizon cannot access
information on the other side. Since vacuum fluctuations of quantum fields are correlated
across the horizon, some information is inaccessible to the observer, leading to non-zero
entanglement entropy. On the semiclassical level, entanglement entropy associated with a
horizon is proportional to its area [21–24]

Se = ηA, (3.2)

where η can in principle depend on the position in spacetime [10]. However, to interpret
Bekenstein entropy as entanglement entropy, η must be assumed to have a universal value,
η = kB/4l

2
P .

This expression for entanglement entropy holds not only for black hole event hori-
zons, but also for observer dependent causal horizons such as Rindler wedges and spherical
horizons in flat spacetime [24]. It has been shown that it is possible to interpret the en-
tire Bekenstein entropy as entanglement entropy [24, 25]; and it is usually done in studies
concerned with thermodynamics of spacetime.

In order to describe thermodynamic equilibrium of a local causal horizon, one must
further include the entropy of matter. To be consistent with the entanglement interpretation
of the entropy associated with the horizon, one should describe matter entropy in terms of
quantum entanglement. For the case of causal diamonds, this entanglement entropy can be
explicitly evaluated for small perturbations from vacuum. Density operator ρ corresponding
to the vacuum state of quantum fields inside geodesic ball Σ0 obeys ρ = e−K/kBT /Z, withK
being the so called modular Hamiltonian, Z the partition function and T = ~lC/πkBc the
Unruh temperature associated with the defined conformal Killing vector ξµ. For conformal
fields, a variation of the modular Hamiltonian corresponds to a variation of the local matter
Hamiltonian [26] which reads

δK = δH =

∫
Σ0

δ〈Tµν〉ξµnνd2Ωdr, (3.3)
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where n = ∂/∂t. This allows us to explicitly calculate the matter entanglement entropy
variation in the following way

δSm =
1

T
δK =

2πkB
~c

4πl4

15
δ〈T00〉+O

(
l5
)
. (3.4)

In the case of a non-conformal quantum field, δK and δH are no longer equal. However,
when the field theory possesses a UV fixed point, their difference is only some spacetime
scalar, X, and it holds [8, 27, 28]

δSm =
2πkB
~c

4πl4

15
(δ〈T00〉+ δX) . (3.5)

where δX, in general, depends on l and can even contain terms that become dominant for
small l.

Within previous definitions, it is possible to use equilibrium condition for total entropy
δSe + δSm = 0 to obtain Einstein equations [8] (we will review this derivation in subsec-
tion 4.1). Then, one simply demands that the total entanglement entropy of the system is
maximal for the equilibrium state. However, it is usual to assume [5, 7, 10, 11]

δSe + δSC = 0, (3.6)

where SC is computed from the heat flux across the horizon by Clausius relation. Then,
two conceptually different entropies are summed together and it is unclear whether this
equation represents the correct condition on maximum of the total entropy. This question
of the entropy equivalence has been pointed out, e.g. in [6], where a rigorous definition
of Clausius entropy flux across any arbitrary causal horizon was provided. Using this
definition for the case of causal diamonds, we are able to argue that δSC equals δSm to
the leading order for conformal fields. Therefore, former equation indeed appears to be the
correct thermodynamic equilibrium condition for local causal horizons. Since the technique
by which the Clausius entropy flux is constructed is relevant both for its comparison with
matter entanglement entropy and for the derivation of Einstein equations we introduce in
subsection 4.2, we provide in the following a detailed overview.

3.1 Clausius entropy flux

Consider a geodesic local causal diamond (GLCD) in curved spacetime as introduced in
section 2. Uniformly accelerating observers with a large acceleration, a + O (1), moving
inside GLCD have the following velocity and acceleration

V µ = c
(

cosh
(aτ
c2

)
,− sinh

(aτ
c2

)
, 0, 0

)
+O (l) (3.7)

aµ = a
(

sinh
(aτ
c2

)
,− cosh

(aτ
c2

)
, 0, 0

)
+O (1) , (3.8)

where τ is the observers’ proper time and the correction terms come from the RNC ex-
pansion of the metric. The observers’ worldlines intersect at coordinate times tcollision =

±
√
l2/c2 − c2/a2. Then, the approximately hyperbolic timelike sheet Σ they sweep out has

a unit normal
Nµ =

(
− sinh

(aτ
c2

)
, cosh

(aτ
c2

)
, 0, 0

)
+O (l) . (3.9)
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The future pointing energy density flux vector crossing Σ equals −TµνV ν . The total outward
heat flux across a segment of the hypersurface reads

δQ = −
∫

Σ
TµνV

νNµd3Σ. (3.10)

To use the equilibrium Clausius relation dS = δQ/T we further need a well-defined
notion of temperature. Note that the Unruh effect for finite lifetime observers moving
inside a causal diamond in flat spacetime can be rigorously defined [29] (some of these
results have been verified also using a different method [30]). It was found that for high
accelerations the Unruh temperature obeys the standard formula, T = ~a/2πkBc. While
acceleration of the observers is no longer exactly constant in curved spacetime, it has been
shown that the Unruh effect will still hold adiabatically if the region where the acceleration
is approximately constant is large compared to c2/a [31]. Therefore, as long as we restrict
ourselves to sufficiently large values of a, the use of the standard Unruh temperature in the
Clausius relation is justified, and we obtain

SC =
δQ

T
= −2πkBc

~a

∫
Σ
TµνV

νNµd3Σ +O
(
l5
)
. (3.11)

Note that this definition of Clausius entropy flux is clearly observer-dependent.
In the limit of a→∞, the timelike sheet Σ approaches the causal horizon of the GLCD.

The coordinate time derivative of SC in this limit equals

dSC (t)

dt
=

2πkBc

~
t

∫
S(t)

Tµνk
µ
±k

ν
±d

2A+O
(
l4
)
, (3.12)

where S (t) is the spatial cross-section of the horizon at time t (approximately a 2-sphere)
and kµ± =

(
1,−sign (t)mi

)
+ O (l), are future pointing null normals to the causal horizon

for t > 0 and t < 0, respectively, with mi = (sin θ cosφ, sin θ sinφ, cos θ) being the radial
unit 3-vector. In flat spacetime, this equation holds exactly. Note that, on one hand, due
to necessity to invoke the Unruh effect, the definition of Clausius entropy flux across a
causal horizon requires the consideration of quantum mechanics. On the other hand, it is
completely independent of gravitational dynamics.

Previous expression can be integrated to obtain the total Clausius entropy of the horizon
at any given time (smaller than the intersection time, t = l/c). For the case of a GLCD,
integration from the bifurcation 2-sphere B at t = 0 to the diamond’s future apex Af at
t = l/c (see figure 1) yields the total decrease of Clausius entropy

∆SC = SC (Af )−SC (B) = −2πkBc

~

∫ l
c

0
t

∫
S(t)

Tµν (x (t, θ, φ)) kµ+k
ν
+d

2Adt+O
(
l5
)
, (3.13)

where for the area element it holds d2A (t) = (l − t)2 d2Ω + O
(
l4
)
, with d2Ω = sin θdθdφ.

To explicitly evaluate the integral, we expand the energy-momentum tensor around the
origin of coordinates, Tµν (x (t, θ, φ)) = Tµν (P ) +O (l). Furthermore, we use

∫
mid2Ω = 0,∫

mimjd2Ω = δij/3 [16]. This results into

∆SC = −2π2kBl
4

3~c

(
T00 (P ) +

1

3
T ii (P )

)
+O

(
l5
)
, (3.14)
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which can be rewritten, using T ≡ Tµµ = T ii − T00 +O
(
l2
)
, in the form

∆SC = −8π2kBl
4

9~c

(
T00 (P ) +

1

4
T (P )

)
+O

(
l5
)
. (3.15)

One can expect the entropy of a single point, Af , to be zero [6]. Therefore, it holds
SC (B) = −∆SC .

3.2 Entropy equivalence

Upon reviewing the definitions of matter entanglement entropy, Sm, and Clausius entropy,
SC , we are now ready to perform their comparison. We start by addressing the case of
conformal fields and then turn our attention to the general situation.

By comparing the computed values of both entropies, we immediately see that matter
entanglement and Clausius entropy are proportional to each other (note that the energy-
momentum tensor of a conformal field is traceless), but the numerical factors differ. How-
ever, the difference can be explained by the way both entropies are defined. On one hand,
matter entanglement entropy, Sm, is computed inside the ball Σ0, regardless of its devel-
opment in time. On the other hand, SC represents the Clausius entropy of matter crossing
the GLCD horizon. In fact, it can be easily shown that Clausius entropy is different for a
light cone’s spatial cross-section of radius l (SC =

(
8π2kBl

4/3~c
)
T00) and for the GLCD

bifurcation surface of the same radius (SC =
(
8π2kBl

4/9~c
)
T00); although both surfaces

are 2-spheres of the same radius and Sm would be the same for the inner regions of both.
The reason for this is the preferred nature of the bifurcation surface t = 0 in the calculation
of SC [6] (dSC/dt = 0 on the bifurcation surface).

To properly compare Sm and SC , we calculate their coordinate time derivatives. As they
quantify the momentary entropy flux across the horizon, the above-discussed differences
between both entropies do not affect them. Before doing so, we must realise that Sm
depends on the conformal Killing vector ξµ, whose definition changes with time, i.e., at
time t, one should use conformal Killing vector ξ′µ corresponding to GLCD of parameter
length l − t, not the formula for ξµ evaluated at t. This also changes the definition of the
Unruh temperature (which uses ξµ). Therefore, the comparison of time derivatives can be
only reliably done for small values of t for which we can still use the original Killing vector
ξµ, i.e., by considering only the lowest order terms in t. On one side, for SC , we get

dSC
dt

(t) = −32kBc

3~
t (l − ct)2 T00 ≈ −

32π2kBc

3~
tl2T00. (3.16)

On the other side, for Sm, we obtain

dSm
dt
≈ 4π2kBc

~l
δ〈T00〉

d
dt

∫ l−ct

0
r2
(
l2 − c2t2 − r2

)
dr ≈ −32π2kBc

3~
tl2δ〈T00〉. (3.17)

We see that the time derivatives are indeed equal for small t. The only difference is that
dSC/dt depends on the classical energy-momentum tensor and dSm/dt on the quantum
expectation value of its variation. Therefore, Sm and SC appear to be equivalent in the
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leading order in l, and then comparing the changes in Clausius and horizon entanglement
entropy is justified.

For non-conformal matter, the situation is more complicated. The originally conjec-
tured general formula for matter entanglement entropy was equation (3.5) withX = T/4 [8].
This agrees with the definition of SC in the same sense as for conformal matter. However,
our procedure in the above presented form cannot be applied directly to the more precise
formulas for non-conformal Sm [27, 28]. Thus, the explicit equivalence of Sm and SC in the
most general cases remains an open issue.

4 Thermodynamics of spacetime and gravitational dynamics

Once we have discussed the basic concepts involved in the formalism, we proceed with pre-
senting two independent derivations of Einstein equations from thermodynamics of causal
diamonds. The first one describes the entropy of both the horizon and matter in terms of
quantum entanglement [8]. In the second one, we follow the definition of Clausius entropy
for bifurcating horizons [6] (reviewed in subsection 3.1) and use it for a novel derivation
of gravitational dynamics. By comparing both derivations, we are able to argue for the
general equivalence of Clausius and matter entanglement entropy at the semiclassical level.
Furthermore, we clearly illustrate that thermodynamically derived gravitational dynamics
correspond to unimodular gravity.

4.1 Derivation from the maximal vacuum entanglement hypothesis

In order to compare it later with the Clausius entropy approach we develop in subsection 4.2,
we first shortly review a derivation of Einstein equations from the variation of entanglement
entropy around equilibrium for the case of four spacetime dimensions [8] (a generalisation to
an arbitrary dimension is straightforward). Since this derivation describes both the entropy
associated with the horizon and that of matter inside it in terms of quantum entanglement,
it raises no issues with potential comparing of two different kinds of entropy. We also point
out previously unnoticed unimodular character of the resulting gravitational dynamics.

The starting point of the derivation is the maximal vacuum entanglement hypothesis
(MVEH), which states: “When the geometry and quantum fields are simultaneously varied
from maximal symmetry, the entanglement entropy in a small geodesic ball is maximal at
fixed volume [8].”

To be meaningful, MVEH requires a finite and universal prescription for the area density
of vacuum entanglement entropy. If the density agrees with Bekenstein formula and only
first order variations of the local vacuum state for quantum fields are considered, MVEH
implies Einstein equations [8].

Consider the aforementioned GLCD construction carried out in a maximally symmetric
spacetime (MSS). A small variation of quantum fields from their vacuum state leads to a
change of matter entanglement entropy, δSm, in the spatial geodesic ball Σ0.

Note that, to define δSm, one needs to invoke the Unruh effect. In order to have the
quantum fields present in the GLCD in a thermal state corresponding to a well defined
Unruh temperature, we assume that their ground state can be locally approximated by
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Minkowski vacuum [10]. This amounts to assume Einstein equivalence principle (EEP),
which states: “Fundamental non-gravitational test physics is not affected, locally and at
any point of spacetime, by the presence of a gravitational field [32].”

The variation of quantum fields induces a change of the spacetime metric and, therefore,
of the GLCD horizon area and the entanglement entropy Se associated with it, expressed
as Se = ηA, as we have seen. In the following, we consider that η is a universal constant,
unaffected by the variation of quantum fields (otherwise, Einstein equations cannot be
recovered [10]).

Intuitively, one would tend to choose a variation of the metric which leaves the size
parameter l unchanged. However, it was shown that such a variation gives incorrect numer-
ical factor in Einstein equations [8]. Instead, one must consider a variation of the metric
which leaves fixed the volume of Σ0. The variation of Se from MSS at the fixed volume of
Σ0 equals [8]

δSe = Se − SMSS
e = ηδA = −η4π

15
l4 (G00 (P ) + λ (P ) g00 (P )) +O

(
l5
)
, (4.1)

where we have used GMSS
00 = −λg00. The curvature scale λ is approximately (that is, up

to O (l)) constant inside the GLCD, but can depend both on the diamond’s origin P and
on the length l.

According to MVEH, the total entropy variation vanishes to the first order, resulting
in

2πkBc

~
4π

15
l4 (δ〈T00 (P )〉 − δX (P ) g00 (P ))− η4π

15
l4 (G00 (P ) + λ (P ) g00 (P )) = 0. (4.2)

Due to EEP, this equation holds in every spacetime point P . Furthermore, the construction
of GLCD in point P holds for any arbitrary unit timelike vector nµ. Therefore, we can obtain
equations for all the components of the Einstein tensor by carefully choosing 10 different
unit timelike vectors in any coordinate system. For example, in RNC we pick vectors
(1, 0, 0, 0),

(√
2, 1, 0, 0

)
,
(√

3,
√

2, 0, 0
)
,
(√

3, 1, 1, 0
)
,
(
2,
√

2, 1, 0
)
,
(√

6, 2, 1, 0
)
, (2, 1, 1, 1),(√

5,
√

2, 1, 1
)
,
(√

6,
√

2,
√

2, 1
)
,
(√

7,
√

3,
√

2, 1
)
. Writing prior equation for each of the

vectors leads to a system of 10 independent equations which uniquely fix all components
of the Einstein tensor. Thus, we can dispense with the contractions with nµ and the
dependence on P and obtain a system of equations valid throughout the spacetime

2πkBc

~
4π

15
l4 (δ〈Tµν〉 − δXgµν)− η4π

15
l4 (Gµν + λgµν) = 0. (4.3)

In order to obtain Einstein equations, one must set η = kB/4l
2
P . Thus, Se corresponds

to Bekenstein entropy. Note that EEP still allows for the gravitational constant G to be
a function of the position in spacetime [32]. Then, η is no longer constant and Einstein
equations cannot be recovered (one would have to consider the variation of η). To deal
with this, we invoke the strong equivalence principle (SEP): “All test fundamental physics
(including gravitational physics) is not affected, locally, by the presence of a gravitational
field [32].” SEP then requires G to be a universal constant [32].
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To fix λ one can take a trace of equations of motion, yielding

λ =
1

4
R+

8πG

c4

(
1

4
δ〈T 〉 − δX

)
(4.4)

and providing traceless equations of motion

Rµν −
1

4
Rgµν =

8πG

c4

(
δ〈Tµν〉 −

1

4
δ〈T 〉gµν

)
. (4.5)

Since, rather than a classical energy-momentum tensor, δ〈Tµν〉 is the expectation value of
the energy-momentum tensor of quantum fields present in the spacetime, the Einstein tensor
should also be understood as a quantum expectation value [8]. In other regards, the result
corresponds to the equations of motion of unimodular gravity. If one further imposes the
local energy-momentum conservation condition, T ν

µ ;ν = 0, one recovers Einstein equations

Gµν + Λgµν =
8πG

c4
δ〈Tµν〉, (4.6)

in which the cosmological term appears as an arbitrary constant of integration. Notably,
scalar δX, which measures the non-conformality of quantum fields, does not affect grav-
itational dynamics. In other words, only the conformally invariant part of the energy-
momentum tensor couples to gravity. All these properties are characteristic for unimodular
theories, as we will discuss in more detail in subsection 4.3.

4.2 Derivation from Clausius entropy flux

In our preceding analysis of the relation between matter entanglement and Clausius en-
tropy associated with a GLCD, it was not possible to argue for their general equivalence.
However, we made no reference to gravitational dynamics. Our main aim here is to further
our analysis by comparing gravitational dynamics derived from matter entanglement and
Clausius entropy in the same geometric set up. We also confirm the general unimodu-
lar character of thermodynamically derived gravitational dynamics, noted in the previous
subsection.

We argue that Einstein equations can be derived from equilibrium condition on entropy.
Specifically, we compare the total decrease of Clausius entropy between times t = 0 and
t = l/c, already computed above, with the corresponding change in the entanglement
entropy associated with the GLCD horizon. Recall that by doing so, we consider both EEP
(we invoke the Unruh effect to define Clausius entropy) and the equivalence of Clausius
and matter entanglement entropy in the leading order (so we do not compare conceptually
different entropies). The latter condition was already justified for conformal matter.

The decrease in entanglement entropy Se from t = 0 to t = l/c associated with the
horizon is directly proportional to the area of the bifurcation 2-sphere B, A, and results in

∆Se = −4πηl2 +
4πηl4

9
G00 (P ) +O

(
l5
)
. (4.7)

It is clear that ∆Se is non-zero even in flat spacetime in which SC is identically zero (SC
arises only due to the presence of matter). Therefore, some “equilibrium state contribution”
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must be subtracted before the comparison of ∆Se and ∆SC is made. A similar problem was
encountered in the derivation of gravitational dynamics from thermodynamics of stretched
light cones (a light cone expands even in flat spacetime, and the increase in entropy due
to this had to be subtracted) [7]. In previous subsection we showed that the appropri-
ate equilibrium state of GLCD, that allowed the derivation of Einstein equations, was a
maximally symmetric spacetime, rather than a flat one; if the present quantum fields were
non-conformal. As we made no assumptions about conformality, we take the most general
approach and subtract a contribution corresponding to MSS

∆SeMSS = −4πηl2 − 4πηl4

9
λ (P ) g00 (P ) +O

(
l5
)
, (4.8)

where λ is again approximately constant inside the GLCD but can depend both on P and l.
In total, we have the following thermodynamic equilibrium condition

∆Se −∆SeMSS + ∆SC = 0, (4.9)

which leads to

G00 (P ) + λ (P ) g00 (P )− 2πkB
~cη

(
T00 (P )− 1

4
T (P ) g00 (P )

)
= 0. (4.10)

Note that EEP ensures its validity in every spacetime point P . Furthermore, it holds for
any timelike vector nµ. Therefore, by the same argument as in the previous subsection, we
obtain a system of tensorial equations

Gµν + λgµν =
2πkB
~cη

(
Tµν −

1

4
Tgµν

)
. (4.11)

Notice that only traceless, conformal part of the energy-momentum tensor appears on the
right hand side. Upon fixing λ by taking a trace of these equations, we again find traceless
equations of motion of unimodular gravity

Rµν −
1

4
Rgµν =

8πG

c4

(
Tµν −

1

4
Tgµν

)
. (4.12)

As before, η is set to the Bekenstein value, η = kB/4l
2
P (note that we must again consider

SEP, so that G is a universal constant). Finally, the local energy-momentum conservation
allows us to recover Einstein equations with Λ appearing as an integration constant

Gµν + Λgµν =
8πG

c4
Tµν . (4.13)

Note that both derivations yield completely equivalent gravitational dynamics in the
same setting, despite using different descriptions of matter entropy. Furthermore, in both
cases we consider the same maximally symmetric equilibrium state with locally constant
curvature scale λ. For MVEH we have (if we demand local energy-momentum conservation)
λ = −

(
8πG/c4

)
δX+Λ and for the Clausius entropy case λ = −

(
2πG/c4

)
T+Λ. Note that

in both cases λ = 0 for conformal matter. Taking δX = −T/4 would make λ the same even
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for non-conformal matter, but this is not generally the case [27, 28]. However, λ in both
cases contains the non-conformal contribution to matter entropy. We can conclude that only
the conformally invariant sector of matter entropy couples to gravity, and this sector is the
same both for Clausius and entanglement entropy. Therefore, both entropy descriptions
lead to completely equivalent gravitational dynamics in the semiclassical limit, so they
can be used interchangeably in thermodynamics of spacetime. Notably, the gravitational
dynamics we find is in both cases unimodular, as we clearly show in the following.

4.3 Thermodynamics of spacetime and unimodular gravity

Traceless equations found in the previous subsection are precisely the equations of motion
of unimodular gravity. The basic idea of unimodular gravity (UG) is restricting the full
diffeomorphism invariance of general relativity (GR) only to the diffeomorphisms keeping
the determinant of the metric fixed, originally to g = −1. More generally, one can demand
g = −ε20, with ε0 being an arbitrary real number. The simplest unimodular action reads

S =

∫
Ω

(
c4

16πG
R (ĝµν) + Lmatter

)
ε0d4x, (4.14)

where Ω is a spacetime manifold, Lmatter is the matter Lagrangian density and ĝµν denotes
metrics satisfying the fixed determinant condition, ĝ = −ε20. Using integration by parts,
one can rewrite the first term in this action in the following form [33]

S =

∫
Ω

(
c4

16πG
ĝαβ;µĝ

κλ
;ν

(
2ĝακδ

µ
λδ

ν
β − ĝµν ĝακĝβλ

)
+ Lmatter

)
ε0d4x, (4.15)

where the semicolon denotes covariant derivatives defined with respect to a background
Minkowski metric, ηµν . The action can also be restated in terms of metric gµν =

(
−g/ε20

)1/4
ĝµν ,

whose determinant is arbitrary. This version of unimodular action is invariant under con-
formal transformations of the form

g′µν = Ω2gµν , (4.16)

and under transverse diffeomorphism transformations, that are infinitesimally expressed

ĝ′µν = ĝµν + 2ξ(µ;ν), (4.17)

ξµ;µ = 0. (4.18)

The theory corresponding to this action is also known as Weyl transverse gravity [33].
The full diffeomorphism invariance of GR is lost due to the presence of a non-dynamical

proper volume element, dV = ε0d4x. Therefore, the action does not imply a divergence-free
energy-momentum tensor that must be assumed as an additional requirement (although
it is also possible to work without that assumption [34]). Then, it is easy to rewrite the
traceless equations of motion of UG as Einstein equations.

The presence of a cosmological constant term in the Lagrangian breaks the invariance
under conformal transformation [35]. Moreover, any such term does not enter into classical
equations of motion (although it becomes relevant on the quantum level [36]). Instead,
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the cosmological constant present in Einstein equations arises as an arbitrary integration
constant from the local energy-momentum conservation condition, T ν

µ ;ν = 0. Apart from
the different status of the cosmological constant, classical gravitational dynamics implied
by UG and GR is equivalent. However, on the quantum level, diverse proposals regarding
the equivalence of both theories appear in the literature (see, e.g. [36–38]). Aside from the
above cited works, more detailed treatment of UG can be found, e.g. in [39].

Now, one can see that both methods of obtaining gravitational dynamics from ther-
modynamics point to UG rather than GR. Firstly, the cosmological term appears in both
approaches due to integration of the local energy-momentum conservation condition. There-
fore, the value of cosmological constant is arbitrary and equations of motion are invariant
under simultaneous shifting of the energy-momentum tensor by Cgµν and the cosmological
constant by C, being C an arbitrary constant. This precisely corresponds to unimodular
gravity. Secondly, conformal invariance breaking contributions to matter entropy, i.e., scalar
δX for MVEH derivation and the trace of the energy-momentum tensor for the Clausius flux
approach, do not influence equations of motion. Therefore, only the conformally invariant
(traceless) part of the energy-momentum tensor couples to gravity, allowing for invariance
of equations of motion under conformal transformation. This is again consistent with the
conformal invariance of UG action discussed above (for details of conformal invariance of
UG in the presence of matter, see e.g. [40]). Furthermore, unimodular condition g = −1 is
locally obeyed up to O

(
l2
)
by the RNC metric expansion considered in both derivations.

The same reasoning applies even to the original Jacobson’s derivation of Einstein equa-
tions from thermodynamics of local Rindler wedges [5] (and, indeed, to all thermodynamic
derivations known to the authors). Without assuming T ν

µ ;ν = 0, it implies

Rµν + Φgµν =
2πkB
~cη

Tµν , (4.19)

with Φ being an undetermined scalar function, which is invariant under adding Cgµν to
Tµν and simultaneously shifting Φ by C. Furthermore, Φ can simply be fixed by taking the
trace of the equations, leading again to traceless equations of motion.

The reasons for unimodular nature of thermodynamically derived gravitational dynam-
ics can be partially understood by considering properties of entropy. One way to see this is
by noting that for the study of entropy is relevant only its difference between two states of
the system and not its total value. This results into vacuum contribution to matter entan-
glement entropy being an arbitrary universal constant and, thus, its value does not affect
the conditions for thermodynamic equilibrium. Then, in gravitational dynamics obtained
from thermodynamics, vacuum energy naturally would not couple to gravity, leading to the
behaviour of the cosmological constant characteristic for UG. This issue will be addressed
in detail in a future work.

The similarities between thermodynamically derived gravitational equations of motion
and UG were previously noted in [14] by conjecturing a qualitative relation for the case
of local Rindler wedges. In [11] the invariance of equations of motion under the shift of
the energy-momentum tensor by Cgµν was pointed out (and implications for the nature of
the cosmological constant were discussed), but the connection with UG was not explored.
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So far, we have only discussed classical equations of motion, which are equivalent in both
UG and GR. To reliably decide towards which theory the thermodynamic methods point
indicate, one would have to analyse quantum corrections to equations of motion, that
break the equivalence of both theories. We carry out such an analysis in a paper under
preparation, in which quantum modified dynamics are obtained by considering logarithmic
corrections to entanglement entropy [41].

5 Discussion

Building on the construction of Clausius entropy for bifurcating horizons [6], we present a
novel derivation of Einstein equations from thermodynamics of local causal diamonds. By
showing that this derivation is fully equivalent to the one based on MVEH [8], we showed
that Clausius entropy [6] and matter entanglement entropy can be used interchangeably
in thermodynamics of spacetime in the semiclassical regime. For the case of conformal
matter, we even explicitly proved the equivalence without appealing to gravitational physics
in any way. This retrospectively justifies the use of Clausius entropy instead of matter
entanglement entropy in the Jacobson’s original paper on thermodynamics of spacetime [5]
and many subsequent works (e.g., [7, 10, 11]).

Furthermore, our method provides a connection between the maximal vacuum entangle-
ment hypothesis approach [8] and the original Jacobson’s thermodynamic derivation [5], as
it reproduces the results obtained from MVEH in the same setting but using Clausius rather
than matter entanglement entropy. In other words, we have employed the construction of
Clausius entropy from [5] (although in a more refined formulation of [6]) in the geometric
setting of [8], and we have found a result completely consistent with both approaches.

We also clearly show the unimodular nature of thermodynamically derived gravitational
dynamics. This is evident from the fact that gravity couples only to the conformal part
of the energy-momentum tensor and that vacuum energy does not gravitate. It appears
that these features are encoded in the properties of entropy, but the precise nature of this
encoding deserves further study. Moreover, we need to better understand how does the loss
of full diffeomorphism invariance and presence of background structures in UG relate to the
thermodynamic description. Furthermore, it appears that thermodynamics of spacetime
allows one to consider certain energy-momentum tensors that are not divergence-free. It
might be worthwhile to study what this in turn implies for the thermodynamic description.
Let us also remark that the different status of the cosmological constant in this approach
might deserve further attention.

In a future work, we will address the issue of showing the entropy equivalence in a
strict way for non-conformal matter and for generic local causal horizons. This would
allow us to understand in which cases it is possible to derive Einstein equations from
thermodynamic equilibrium conditions. Furthermore, we should not forget that both our
GLCD derivation and the entropy equivalence question could be treated in case of non-
equilibrium thermodynamics of spacetime (and possibly of modified theories of gravity).

The scope of the present analysis is limited to semiclassical thermodynamics of space-
time. Therefore, due to the equivalence of the classical dynamics implied by UG and GR, we
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are unable to conclusively prove the unimodular nature of the thermodynamically derived
gravitational dynamics. However, this should be possible when quantum corrections to the
equations of motion are considered. In that case, we also explore whether the corrections
implied by quantum gravity effects break the entropy equivalence [41].
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