English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Convective self-aggregation in a mean flow

MPS-Authors

Jung Hyunju,  Hyunju
MPI for Meteorology, Max Planck Society;

/persons/resource/persons73304

Naumann,  Ann Kristin
Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE,;

/persons/resource/persons37347

Stevens,  Bjorn
Director’s Research Group AES, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

acp-21-10337-2021.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Jung Hyunju, H., Naumann, A. K., & Stevens, B. (2021). Convective self-aggregation in a mean flow. Atmospheric Chemistry and Physics, 21, 10337-10345. doi:10.5194/acp-21-10337-2021.


Cite as: https://hdl.handle.net/21.11116/0000-0007-D904-0
Abstract
Convective self-aggregation is an atmospheric phenomenon found in numerical simulations in a radiative convective equilibrium framework of which configuration captures the main characteristics of the real-world convection in the deep tropics. As tropical deep convection is typically embedded in a large-scale flow, we impose a background mean wind flow on convection-permitting simulations through the surface flux calculation. The simulations show that with imposing mean flow, the organized convective system propagates in the direction of the flow but slows down compared to what pure advection would suggest, and eventually becomes stationary relative to the surface after 15 simulation days. The termination of the propagation arises from momentum flux, which acts as a drag on the near-surface horizontal wind. In contrast, the thermodynamic response through the wind-induced surface heat exchange feedback is a relatively small effect, which slightly retards (by about 15 %) the convection relative to the mean wind.